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Abstract 
The UK domestic sector accounts for more than a quarter of total energy use. This 

energy use can be reduced through more efficient building operations. The energy 

efficiency can be improved through better control of heating in houses, which 

account for a large portion of total energy consumption. The energy consumption 

can be lowered by using renewable energy systems, which will also help the UK 

government to meet its targets towards reduction in carbon emissions and 

generation of clean energy. Building control has gained considerable interest from 

researchers and much improved ways of control strategies for heating and hot water 

systems have been investigated. This intensified research is because heating 

systems represent a significant share of our primary energy consumption to meet 

thermal comfort and indoor air quality criteria. Advances in computing control and 

research in advanced control theory have made it possible to implement advanced 

controllers in building control applications.  

Heating control system is a difficult problem because of the non-linearities in the 

system and the wide range of operating conditions under which the system must 

function. A model of a two zone building was developed in this research to assess 

the performance of different control strategies. Two conventional (On-Off and 

proportional integral controllers) and one advanced control strategies (model 

predictive controller) were applied to a solar heating system combined with a heat 

pump. The building was modelled by using a lumped approach and different 

methods were deployed to obtain a suitable model for an air source heat pump. The 

control objectives were to reduce electricity costs by optimizing the operation of the 

heat pump, integrating the available solar energy, shifting electricity consumption to 

the cheaper night-time tariff and providing better thermal comfort to the occupants. 

Different climatic conditions were simulated to test the mentioned controllers. Both 

on-off and PI controllers were able to maintain the tank and room temperatures to 

the desired set-point temperatures however they did not make use of night-time 

electricity.  

PI controller and Model Predictive Controller (MPC) based on thermal comfort are 

developed in this thesis. Predicted mean vote (PMV) was used for controlling 

purposes and it was modelled by using room air and radiant temperatures as the 
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varying parameters while assuming other parameters as constants. The MPC dealt 

well with the disturbances and occupancy patterns. Heat energy was also stored into 

the fabric by using lower night-time electricity tariffs.   

This research also investigated the issue of model mismatch and its effect on the 

prediction results of MPC. MPC performed well when there was no mismatch in the 

MPC model and simulation model but it struggled when there was a mismatch. A 

genetic algorithm (GA) known as a non-dominated sorting genetic algorithm (NSGA 

II) was used to solve two different objective functions, and the mixed objective from 

the application domain led to slightly superior results. 

Overall results showed that the MPC performed best by providing better thermal 

comfort, consuming less electric energy and making better use of cheap night-time 

electricity by load shifting and storing heat energy in the heating tank. The energy 

cost was reduced after using the model predictive controller.  
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𝛷   Relative Humidity (%)
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Chapter 1 Introduction 
1.1 Introduction 
The rapid increase in the world’s energy use is one of the main concerns of today’s 

society. This energy use has high environmental impacts such as depletion of the 

ozone layer, global warming, climate change etc. Buildings account for almost 40% 

of the final energy use in the world. In European countries 70% of this energy goes 

towards comfort control in buildings- for HVAC (IEA, 2008). All the energy in wood, 

Oil and natural gas was originally produced through photosynthesis and complex 

chemical reactions. Fossil fuels are the result of chemical reactions in decaying 

vegetation under high temperatures and pressures over long periods of time (Kreith 

et al., 1978). The UK government is committed to delivering 15% of its energy 

demand from renewable sources by 2020. Solar energy on the other hand is clean 

and can be delivered without pollution.  

There are different renewable energy sources, which can be used to generate 

energy e.g. solar energy, wind energy, tidal energy, biomass etc. Photovoltaic arrays 

can be used to generate electricity from solar energy and these can be connected to 

the main grid. Solar home systems are also available to generate electricity for 

homes. This system consists of PV arrays, a rechargeable battery and a charge 

controller. The wind’s kinetic energy can be captured by using wind turbines and 

then this kinetic energy can be converted into mechanical energy and then into 

electrical energy. Solar collectors have a wide variety of applications, such as solar 

water heating, space heating and cooling, solar refrigeration, solar thermal power 

plants, solar desalination etc. In solar water heating systems the main component is 

the solar collector, which absorbs energy and transfers it to the working fluid. 

Integrated collector systems use part of the tank as a solar collector. The 

disadvantage of this system is the thermal losses from the tank (Kalogirou, 2004). 

Solar energy systems can be used for hot water generation. In this application a heat 

exchanger is used between the solar collector and the hot water tank, which allows 

the use of antifreeze solutions in the solar collector loop (Duffie et al., 1991).  

A heat pump is a device that transfers heat energy from a low temperature source to 

a high temperature sink. The use of a heat pump for space heating and hot water 
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generation is gaining popularity day by day because of its low energy consumption 

compared to other equipment (Agrawal et al., 2007). The heat pump operates best at 

low temperature differences, when the coefficient of performance (COP) is higher 

and the required energy is low (Zogg et al., 2001).  

Solar radiation is not available during night-time. Therefore, solar collectors can be 

combined with a heat pump in such a way that in times of low solar radiation the heat 

pump is used instead. The heat pump can also benefit from lower night-time 

electricity tariffs when combined with a thermal storage. The main idea behind 

developing an optimal control strategy in this work is that the control strategy can 

predict outside weather conditions and occupancy patterns in the building. The 

strategy will also predict any future hot sunny day and can then use maximum free 

energy during the day i.e. solar energy and can also predict the electricity prices and 

use electricity during the night.  

1.2 Control System 
The control system is one of the key components of any HVAC system, and it is 

critical for good energy performance of a building. It is also acknowledged that the 

heating systems are challenging to control because of swings in day-to-day and 

season-to-season energy and thermal comfort demands (El-Deen, 2002). The 

heating system of a building is always about a compromise between thermal comfort 

of the occupants and energy consumption. If a high level of thermal comfort is 

maintained at all times then energy cost will be high; and if energy consumption is 

minimized then thermal comfort has to be sacrificed. A smart system can try to save 

energy in periods of low occupancy, which significantly reduces any negative impact 

on thermal comfort.  

There are different control strategies that are used for renewable energy systems. 

Classical control methods use single input single output (SISO) feedback without 

requiring a model of the system e.g. thermostat controlling room temperature. Such 

a control method is easy to implement and can be useful for a wide range of 

renewable systems. However, these control methods are limited and they are difficult 

to extend to multivariable systems without significant experience.  

Further controllers have been developed in recent years which try to increase the 

effectiveness with complex and non-linear systems and to make them more 
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accessible for non-control engineers. Model predictive and fuzzy logic control 

techniques are among these control methods. The fuzzy logic control is based on 

three main parts; fuzzifier, rules and defuzzifier. The drawback of this controller is 

that few guidelines are available on how to set rules of the fuzzification values 

(Marjanovic et al., 2004).  

The model predictive controller (MPC) uses a model of the system to predict the 

future dynamics of the system. This information is then used by the controller to find 

the best control move. The controller uses information about past inputs and outputs 

along with the estimation of the current and future disturbances (Camacho et al., 

2004). During the development phase of renewable energy, a system model is 

typically created to assess the potential performance of the system. This model can 

then be used by the model predictive controller, which gives a strong reason to apply 

the MPC. The other reason is that the MPC can be implemented and tuned without 

advanced knowledge of control engineering theory. This type of controller deals well 

with external disturbances and can handle system constraints. However, these 

advantages need to be investigated in detail to make sure that this controller is 

feasible and gives cost effective control for renewable energy systems. 

1.3 Research aim and objectives 
The aim of the research is to develop an optimal control strategy for a solar heating 

system combined with a heat pump. According to Tordorov, 2006, an optimal control 

strategy is a model based method which decides the control signal that will make 

process to satisfy physical constraints and at the same time minimizing/maximizing 

certain performance criteria.  

This leads to the following objectives; 

• A simulation model of the system, building and control will be developed as a 

test bed for analysing different control strategies. 

• Design of a multi-input multi-output model predictive controller. 

• Benchmarking a model predictive controller with on-off and PI controllers.  

• Design of a thermal comfort based model predictive controller to provide 

better thermal comfort to the occupants as the refinement of the above.  
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• Use of a genetic algorithm to explore the compromise between thermal 

comfort and energy consumption. 

• A comparison between different control methods in terms of load shifting, 

energy cost, thermal comfort and response to environmental changes. 

1.4 Thesis organisation 
A brief description of the thesis organization is given below. 

Chapter 2: Literature Review 

This chapter critically reviews the previous research on model predictive control 

applied to buildings, heating systems and thermal comfort based control. Energy 

trends, UK and world legislation for climate change and different incentives offered 

by the UK government are discussed. Thermal comfort based control research is 

explained. To conclude the review, a number of issues deserving further study are 

also indentified.  

Chapter 3: Setup and modelling of the solar system assisted by a heat pump 

This chapter presents the experimental setup and deduces the dynamic model of the 

solar heating system combined with a heat pump and also of a building. The model 

is developed to assess the performance of different control strategies. A lumped 

parameter method is used to model the building realistically with a reasonably simple 

model. A resistance-capacitance model is constructed for the building. Different 

methods to develop a realistic model of the heat pump are presented in this chapter 

and the solar collector and tank model are explained. Model verification is done in 

this chapter. A linear model and state space representation are also discussed at the 

end.  

Chapter 4: Control Strategies 

In this chapter, two conventional control strategies are applied to the solar heating 

system combined with a heat pump. For comparison, a basic linear model predictive 

control algorithm is applied to the system. Initially, all three control strategies are 

applied to a simple plant consisting of solar collectors and heat pump which are 

connected to a single tank. These control strategies are also applied to the main 

system. Four different climatic conditions are simulated to find out how these 
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controllers behave in different weather conditions. The performance of all three 

control strategies is evaluated on the basis on two objectives: using night-time 

cheaper electricity tariffs (low energy cost) and storing energy during the off-peak 

period (load shifting). The simulation results obtained from all three controllers are 

also presented and discussed. 

Chapter 5: Thermal comfort based control 

In this chapter proportional-integral and model predictive controllers are applied to 

control the thermal comfort perception of the occupants. Two case are simulated, 

one is based on the room air temperature and the second one is on the predicted 

mean vote (PMV). PMV is modelled by considering only room air and radiation 

temperatures as the changing parameters, whereas the other four parameters are 

kept constant.  

Chapter 6: Investigation of model and objective mismatch 

In chapters 4 and 5, the linear MPC is applied to a non-linear simulation model and 

this model mismatch is found to cause a number of issues. These are investigated 

by using a linear MPC to control a linear simulation model of the system. A genetic 

algorithm (GA) known as a non-dominating sorting genetic algorithm (NSGA-II) is 

then applied to the system in this chapter, finding how linear cost and squared cost 

can affect energy consumption and temperature deviation from its set point. 

Chapter 7: Conclusions and recommendations for future work 

The final chapter considers the findings of the research and presents the main 

conclusions. Future recommendations are also made with regard to the areas that 

are worthy for further investigation. 
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Chapter 2 Literature Review 
2.1 World and UK energy consumption 
The rapid increase in world energy use is one of the main concerns of today’s world. 

This energy use has high environmental impacts such as depletion of the ozone 

layer, global warming, climate change etc. According to the IEA (International Energy 

Agency) primary energy has grown by 49% in the last two decades (1984-2004) and 

the CO2 emissions have increased by 43% (InternationalEnergyAgency, 2006). It 

was also shown by the IEA that there is an average annual increase of 2% in energy 

and 1.8% in the CO2 emissions. These values are shown in Figure  2-1.  

 

Figure  2-1: Primary Energy Consumption and CO2 emissions. Source IEA, 2006 

According to International Energy Outlook 2011 by EIA, there is a growth of 53% in 

the marketed word energy consumption from 2008 to 2035. In this reference case, 

IEO2011 also pointed out that much of the growth is in the countries outside the 

Organization for Economic Cooperation and Development (non-OECD) 

(U.S.EnergyInformationAdministration, 2011).  

The energy sector can be divided into three main categories; buildings, industrial and 

transportation. The building category can be divided into two sub categories; 

residential and commercial. Residential energy use increases by 1.1% per year 

according to the IEO2011 reference case. The rise in residential energy consumption 

in the non-OECD countries is 1.9% per year whereas in OECD nations it is 0.3% per 

year. Commercial energy use has an average growth of 1.5% per year up to 2035 

and the large share is again from Non-OECD nations.  
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There is also a change in the type of fuel that has been used for domestic 

consumption since 1970. In 1970, for the UK 39% of consumption was coal, 24% 

natural gas and 18% was electricity; in 1990 this changed to 8% coal, 63% natural 

gas and 20% electricity; and in 2011 to 1% coal, 65% natural gas and 25% electricity. 

This change can be seen in detail in Figure  2-2 shown below. 

 

Figure  2-2: UK domestic consumption by fuel from 1970 to 2011 Source: DECC 2011 

The main source of energy consumption in the domestic energy sector is for space 

heating, which was 60% of the total domestic energy consumption in 2011. Water 

heating accounted for 18%, lighting 19 per cent and cooking 3%. Figure  2-3 

indicates that there has clearly been an increase in the amount of the energy used 

for domestic heating (DECC, 2011). It can also be shown that the main sources of 

energy consumption are space heating, hot water and lighting.  
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Figure  2-3: Final energy consumption of domestic sector by end use in UK Source: DECC, 2011 

In Figure  2-4 projected trends in energy demand by sector are shown. It can be seen 

that the domestic energy demand is projected to decrease by 19% between 2007 

and 2020. This decrease in projected demand is driven by energy efficiency 

measures and government policies on micro-generation and renewable energy 

(DECC, 2009a).  

 

Figure  2-4: UK energy demand by sector Source: DECC, 2009a 

2.2 Climate Change 
Climate change is a global problem with local causes and effects, while air quality is 

usually a local problem. The UK government considers both to be important policy 

drivers. Hulme, 2002 et al., mentioned in their report on the UK Climate Impact 
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Program (UKCIP02) that climate is referred to as the average weather that is 

experienced over a long period of time, typically 30 years. In response to natural 

causes, the world climate has changed considerably, but recently it has also been 

driven by man-made influences. Human beings can affect global climate by releasing 

greenhouse gases –such as methane and CO2 into the atmosphere. These gases 

absorb heat that is radiated from the Earth’s surfaces and thus global temperature is 

increased by warming the atmosphere. Important natural causes include volcanic 

eruption,CO2 capture in erosion, changes in the Earth’s orbit and interaction between 

the oceans and the atmosphere. 

 Global climate Change and CO2 emissions 2.2.1
The Earth’s temperature is determined by a balance between energy coming to the 

Earth from the Sun and energy emitted by the Earth. Since the industrial revolution 

started, the concentration of greenhouse gases has increased, because of human 

activities. It is concluded by Crown (2008) that a rise in global temperature of 

between 1.8 to 4oC is expected by the end of the 21st century. For the UK the rise in 

temperature is expected to be between 2 and 3.5oC by the 2080s. The UK 

contributes about 2 per cent to global emissions of CO2. It is estimated that this 2 per 

cent approximately equates to 6.2 to 6.9 billion tonnes of carbon per annum (Crown, 

2008). The UK carbon dioxide emissions were 543 million tonnes in 2007 and 

residential emissions accounted for approximately 26% as shown in Figure  2-5 (ONS, 

2009b). 

 

Figure  2-5: UK Carbon dioxide emissions percentage by sector wise Source: ONS, 2009b 

The most useful way to describe the state of the global climate is by the average 

surface air temperature. The temperature has increased by (approximately) 0.74oC 

from 1906 to 2005 (Hulme, 2002).This increase in temperature is accompanied by; 
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• Night-time temperatures have increased at about twice the rate of day-time 

temperature. 

• A decrease in the amount of mountain glaciers. 

• An increase in rainfall over many Northern hemisphere areas.  

• A decrease in Northern hemisphere sea-ice amounts. 

According to the Central England Temperature (CET) series the temperature has 

increased by 0.7oC in the UK since 1659 and of that, a rise of around 0.5oC occurred 

in the 20th century (UKCIP02). 

2.3 Climate change policies and legislations 
There are a large number of policies and legislations that have been designed to 

address the issue of climate change and it effect on built environment.  

 International climate change protocols 2.3.1
Climate change is a global issue and has to be addressed and legislated globally. 

The Kyoto Protocol is one of the protocols that binds countries to measure and 

manage their carbon emissions against set targets. This has to done by making 

policies including carbon capturing mechanisms, energy efficient buildings and new 

approaches for industry. In 2009, the Copenhagen Accord set a goal of keeping 

global warming under 2oC through continued commitment of reducing carbon dioxide 

emissions. The summit also pointed out that the global warming can be kept under  

2oC by first identifying the imbalance between carbon emissions of developed and 

developing nations and then addressing them. The real issue of keeping global 

warming under 2oC and meeting the Copenhagen Accord depends on the accuracy 

of the predictive model (SCRI, 2010). 

The European Union has also established a number of directives to bring down the 

carbon emissions through the European Climate Change Programme (EU, 

2006).The European Climate Change Programme started in 2000 to meet the EU's 

obligations set by the Kyoto protocol. The directive also came up with some issues 

regarding the energy performance of buildings. It addresses the following: 

• A methodology for the calculation of the energy performance of buildings 

• Applying energy performance standards on large buildings that have been 

renovated and applying minimum energy  standards on all buildings 
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• Energy certification 

• Inspection of HVAC systems, mainly boilers and ventilation equipment 

 UK Climate change legislation and policy 2.3.2
The UK government has published its white paper "The Energy Challenge" (DTI, 

2006); issues for climate change and energy are outlined in this policy document. 

This policy was supported by the Climate Change and Sustainable Energy Act 2006, 

which binds the UK government to address fuel poverty and climate change. In a 

report called "Meeting the Energy Challenge" (DTI, 2007), the strategy to address 

some of the key issues of fuel poverty, climate change and energy security is 

outlined. In the Climate Change Act, 2008 targets are set to reduce CO2 emission by 

80% of the 1990 baseline set by Kyoto, by 2050.  The Department of Energy and 

Climate Change was established in 2008, and published a strategy for low carbon 

transition. This strategy addresses how to avoid climate change and also points out 

how the UK can live with some climate change (SCRI, 2010).  

2.4 Energy Sources 
There are different forms of energy that are used worldwide to meet the energy 

requirements. These can be divided into three types i.e. fossil fuel, nuclear and 

renewables. The energy mode of interest here is renewable energy and is discussed 

below; 

  Renewable Energy 2.4.1
Renewable energy is a form of energy that comes from natural resources e.g. rain, 

wind, tides, sunlight and geothermal. It is called renewable because all these natural 

resources are naturally replenished. Renewable energy is not obtained by 

combustion of fossil fuels and therefore using renewable energy reduces 

greenhouse gas emissions. Most of the renewable energy sources are dependent on 

climatic conditions, for example solar radiations are not available during night.  

According to statistics, in 2008 renewable energy supplied 19% of global energy 

consumption (REN21,2010). The 13% of this energy came from biomass which is 

primarily used for cooking and heating purposes, 3.2 % from hydropower and 2.6% 

from other renewable sources i.e. bio fuels, wind, solar, geothermal etc. Energy from 

biomass is growing slowly or declining in some regions of the world as the biomass 

is replaced by more efficient renewable energy forms. Hydropower is growing 



 

12 
 

modestly while other renewables are growing rapidly in developed and developing 

countries (REN21, 2010). The renewable energy share of global final energy 

consumption is shown in Figure  2-6. 

 

Figure  2-6: Global final energy consumption share for renewable energy Source: REN21, 2010 

In 2009, the total use of renewable energy in the UK was 6.87 million tonnes of oil 

equivalent; of this 4.90 million tonnes was used for electricity production, 1.01 million 

tonnes for road transport and 0.97 million tonnes for heat generation. Renewable 

energy use grew by 14.6% between 2008 and 2009 and in 2010 it was more than 

two and half times that in 2000. Figure  2-7 shows the breakdown of that 6.87 million 

tonnes in terms of percentage. Biomass accounted for 80.7% of total renewable 

energy used, 11.6% from  wind and 5.8% from hydro (DECC, 2010a). 

 

Figure  2-7:Renewable energy sources, 2009 Source: DECC, 2010a 

In March 2007, the European Council agreed on a common strategy to address and 

tackle the issues of climate change and energy security. A target of 20% of the EU's 
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energy to come from renewable energy sources was set by the European council. In 

2008 a new renewable energy directive negotiated on this target and came up with 

an agreement of country "shares" of this target. By 2020 the UK has to consume 15% 

of its final energy consumption from renewable energy sources. This percentage is 

calculated on a net calorific basis and with a cap on fuel used for air transport 

(DECC, 2010a). 

 Renewable energy incentives and regulations 2.4.2
The UK government has introduced many incentives for householders in order to 

meet the renewable energy generation targets. One of them is the feed-in tariff but 

unfortunately heat pumps are not included in this scheme. Houses with heat pumps 

installed can gain benefit from the incentives shown below. 

2.4.2.1 Renewable Heat incentive 
Space heating is the main source of energy consumption in the UK and accounts for 

47% of total UK energy consumption. In all non-transport sectors more than 77% of 

energy use is for heating. According to some data in 2011 approximately 69% of 

heat is produced from gas, 10% from oil, 14% from electricity and only 1.5% from 

renewable energy sources. To meet the target of 15% by 2020, the UK has to 

produce 12% of its heat needs from renewable energy. The UK government has 

introduced The Renewable Heat Energy Incentive (RHI) to pay to householders for 

the heat that is generated from renewable energy (DECC, 2011b).  

The RHI is a two phased approach. In the first phase only non-domestic sectors are 

considered and in the second phase, the domestic sector will also be included. 

Currently the following renewable energy technologies are eligible under the RHI; 

 Heat pumps 

 Biomass boilers 

 Solar thermal 

 Geothermal  

 Energy from Municipal solid waste 

 Bio methane injection and biogas 

2.4.2.2 Code for sustainable homes 
Heat pumps can help users to comply with the code for sustainable homes because 

they produce less carbon than a conventional boiler. The code for sustainable 
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homes has been based on the BRE EcoHomes System. The code has the following 

features: 

• It introduces minimum standards for energy and water efficiency and therefore 

it requires a high level of sustainability performance.  

• It uses a simple awarding system - indicated by 'stars', to rate the overall 

sustainability of a home. The minimum rating is one star ★ and the maximum 

is six stars ★★★★★★.  The code considers 9 sustainability criteria and, 

among those criteria one is energy consumption and the resulting CO2  

emissions to the atmosphere (DCLG, 2006). 

2.5 Solar thermal collectors and heat pumps 
A solar thermal collector converts solar energy to the thermal energy of the working 

fluid in the collector. The solar energy is absorbed by a solar collector and this heat 

is transferred to its working fluid. The heat energy then can be used for either 

heating or hot water purposes or to heat up the storage tank. Ayompe et al., 2013 

analysed the thermal performance of a solar water heating system with a 4𝑚2 flat 

plate collector in Dublin, Ireland. The experimental system consisted of a domestic 

scale system and it was tested for a year. The maximum recorded temperature at 

collector outlet was 70.4oC. It was found that the average daily energy collected was 

19.6MJ/d and the energy delivered by the solar coil was 16.2MJ/d. The results 

showed that 12,446.5MJ of auxiliary energy was supplied to meet the total hot water 

demand of 18,359.5MJ. Performance of an solar heating system in Cambridgeshire, 

UK was evaluated by the BRE, 2009. The experimental rig consisted of an 

automated system that incorporated the effects of the auxiliary heating system. The 

report showed that a household would achieve a 57% of hot water energy from the 

solar system. Different other research studies have been done which show the cost 

benefit of using the solar thermal collector but additional energy is required to meet 

the energy demand. By using solar thermal energy alone it has been shown in the 

literature that the water temperature is normally low or it takes a long time to 

generate the hot water. This results in a low performance of the solar thermal 

collector.  

Crawford et al., 2004 analysed the net energy requirement of solar and conventional 

hot water systems including their embodied energy. The solar system provided net 
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energy savings compared to the conventional system after 0.5 years for electric-

boosted and 2 years for gas-boosted systems. The investigation of small solar 

domestic hot water systems based on smart tanks was presented by Furbo et al., 

2005. The authors recommended the development of smart solar tanks combined 

with other auxiliary energy systems. From above review it can concluded that solar 

thermal collectors alone are not sufficient for energy requirements and some form of 

auxiliary energy source is required. To overcome this problem, a heat pump can be 

combined with solar thermal collectors for increasing the water temperature. Huang 

et al., 2005 studied the long-term performance of a combined solar collector and 

heat pump system and found that the electricity price was cheaper than the 

conventional gas system. The performance of a solar water heating system 

combined with a heat pump, using a simulation program, was also studied by 

Nuntaphan et al., 2009. It was shown that the payback period of system was 2.3 

years. These figures show the effectiveness of such systems; however their 

effectiveness can be increased by using a better controller to manage the energy 

flow and by efficiently using solar energy. 

Indoor comfort has a direct effect on occupant's productivity and is important to 

consider for heating control purposes. Energy saving must not put user's welfare at 

risk (Nicol et al., 2002), therefore below the review is done on different thermal 

comfort variables and indices. 

2.6 Thermal comfort and its variables 
According to ISO7730, 1994, Thermal comfort can be defined as: "that state of mind 

which expresses satisfaction with the thermal environment". This definition is also in 

accordance with the ASHRAE55, 1992 international standard. The above mentioned 

definition of thermal comfort can be considered as ambiguous, as the condition of 

mind and human satisfaction remains open. However this definition  stresses that it 

is an emotional process that is influenced by different types of processes i.e. 

physical, physiological or even psychological (ASHRAE, 2005). 

The thermal environment around a human body is generally cooler than people's 

skin in 'ordinary' situations. A human body dissipates heat in three ways: evaporation 

as sweating, convection heat transfer into the air and radiation heat transfer to the 

other surfaces in its surroundings. Outdoor conditions are not as homogenous as 
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indoor climatic conditions and can be very challenging to the human body. The 

human body is exposed to different conditions such as air speed, air temperature, 

radiations, humidity and radiant temperature. Thus in order to assess human thermal 

environment different environmental parameters, physiological and psychological 

responses must be considered. The physical parameters include values of air 

temperature, room humidity, wind speed and radiant temperature. Metabolic rate 

(Met) and clothing insulation (clo value) are also needed in the thermal comfort 

analysis as these are important factors in heat transfer between the environment and 

the body (Parson, 2003). All these variables are discussed in the following sections. 

2.7 Environmental-dependent variables 
The room air temperature, room air humidity, air speed and radiant temperature 

come under the category of environmental-dependent variables and are discussed 

below; 

The indoor dry bulb temperature is the temperature of the air surrounding the 

body. According to Parson, 2003 it can be defined as "the temperature of the air 

surrounding the human body which is representative of that aspect of the 

surroundings which determines heat flow between the human body and the air".  

"Physically, the dry bulb temperature varies with the variation of heat exchange 

between bodies. The air temperature at a distance from the human body will not be 

the representation of the one that decides the heat flow. Similarly, the temperature 

closer to body surface will also not be the representation of the heat flow as it will be 

affected by the boundary conditions" (Parson, 2003). 

The Mean radiant temperature is defined as “the temperature of a uniform 

enclosure within which a small black sphere at the test point would have the same 

radiation exchange as it does with the real environment".  The mean radiant 

temperature and radiant temperature are good methods for quantifying the human 

radiant environment (McIntyre, 1980). The word sphere in the definition shows that 

the average is considered in three dimensions. Heat is transferred between all 

bodies through radiation and it is not necessary to have  air or any other medium for 

transferring heat, the heat can be transferred though a vacuum (Kerslake, 1972).  
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Room air humidity- If the sweat or liquid evaporates from the body then there is 

heat transfer from the body into the surroundings as the liquid has taken heat from 

the human body making it cool down. The driving force for this heat transfer is the 

difference in the absolute humidity at the human skin (surface) and in the 

environment. As for convenience, this driving force can be considered as the 

difference between partial vapour pressure between at the skin surface and that in 

the environment. The humidity can be expressed in a number of forms; however, 

commonly it is expressed by two terms: relative humidity and partial vapour pressure 

(Parson, 2003). 

The relative humidity, denoted by '𝛷 ' is defined as the ratio between "the partial 

pressure of water vapours to the saturated vapour pressure at a given temperature" 

(Parson, 2003). 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 =
𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟

𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑣𝑎𝑝𝑜𝑢𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟
∗ 100% (2.1) 

Indoor air velocity- Air movement across the body can affect the heat transfer from 

and to the body and therefore the temperature. The air movement varies in time, 

space and direction. For convenience it is considered to be the mean velocity 

intensity over an exposure time over all directions. According to ISO7730, 2005, both 

mean air velocity and the standard deviation of air movement should be considered. 

The air movement will affect the rate at which the warm air or water vapours are 

taken away from the body and as a result will affect the human body's temperature. 

The mean velocity discussed above, provides an overall value for this effect on the 

body (Parson, 2003). 

2.8  Person-dependent variables 
There are two other variables which are person-dependent, as these variables 

change from person to person. These variables are the metabolic rate of a person 

and clothing insulation. These variables are discussed below; 

Metabolic rate- is also known as the activity level. The estimation of the heat 

generation because of the metabolism is the key to the estimation of the thermal 

environment. The human body derives heat from food and the energy value of that 

food is turned over to produce heat and energy for work. The human body produces 

heat from food when combined with the oxygen of the cells. A human body at rest 
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and at a temperature of 21oC is considered to have minimum metabolic rate and the 

metabolic activity is called 'basal metabolism'. The metabolic activity has units of 

𝑊/𝑚2,𝑘𝑐𝑎𝑙/𝑚𝑖𝑛/𝑘𝑔 𝑜𝑟 𝑀𝑒𝑡.  1Met is 58.15  𝑊/𝑚2  and is the metabolic rate of a 

resting sedentary person. Metabolic rate is related to people’s body surface area, 

sex, age, level of fitness, environmental temperature and the amount of clothing 

(Winslow et al., 1949). 

The total energy produced is termed the metabolic rate, M, and the total work 

performed by the body is termed W, then the metabolic heat production is given by 

following equation; 

 𝐻 = 𝑀 −𝑊 (2.2) 

Although the production of the energy is a very complicated process the above 

equation gives an idea of how to estimate the metabolic heat generation.  

Clothing thermal resistance- Clothing is one of the key factors for the study of 

thermal comfort. Clothing acts as a thermal resistance between the thermal 

environment and human body. The clothing allows a human body to maintain a 

proper thermal state. Clothing is included in the thermal comfort measurement by 

considering the thermal resistance of the clothing. The clothing value is denoted by 

Clo values. Gagge et al., 1941 defined 1 Clo as the thermal insulation on a person 

who keeps a mean skin temperature of 33°C in comfort at an air temperature of 

21.2°C, relative humidity of 50% and air velocity of 0.1m/s(1 clo=0.155m2 oC/W). The 

thermal behaviour of the clothing is very difficult to quantify as it depends on a 

number of factors. It depends on the dry thermal resistance of the clothing; moisture 

transfer through clothing; heat transfer through clothing by conduction, convection 

and radiation; air penetration through clothing; human body posture; and many more.  

2.9  Thermal comfort indices 
In the early twenties much of the research work was done to find out thermal comfort 

indices. Different studies were conducted to find out a number index which can 

integrate all six basic parameters to indicate thermal comfort. The following are the 

few well known thermal comfort indices; 
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  Effective temperature 2.9.1
A series of studies conducted by Houghton et al., 1923, Houghton et al., 1924 and 

Yagloglou et al., 1925, on behalf of ASHVE have led to the Effective Temperature 

(ET) index. In this study three subjects were asked to walk between two chambers to 

compare different combinations of humidity and air temperature. The subjects gave 

immediate responses that would be largely determined by the effect of transient 

evaporation and absorption of moisture content from skin and clothing. This means 

that the study was overestimating the effect of steady-state conditions and was 

useful for studies of transient effects. In this study air temperature, humidity and air 

velocity were plotted on charts for determining the ET index. A number of methods 

were also proposed to correct the ET index by allowing radiation to be taken into 

account and the index was then known as the Corrected Effective Temperature.  

  Resultant temperature 2.9.2
Missenard, 1935 and Missenard, 1959 determined a thermal index that was called 

the resultant temperature by proposing a number of methods. In order to mimic the 

response of the human body he used dry and wet globe thermometers of appropriate 

size. The researchers also attempted to solve the problem of ET index by defining a 

steady state form and transient form of resultant temperature. CIBSE, 1986 

recommended the temperature of a 100mm diameter black globe as a resultant 

temperature. 

  Equivalent temperature 2.9.3
To mimic the thermal behaviour of a human body, Dufton, 1929 and Dufton, 1936 

developed a heated black copper cylinder. The temperature of that black copper 

cylinder was termed the equivalent temperature. Bedford, 1936 conducted a study 

on female workers of a factory and investigated the relationship between personal 

feelings and physical environment. By using the thermal comfort scale, the author 

correlated subjective judgements with a number of thermal index values.  

Other different climatic chamber studies were carried out at Kansas Laboratory in the 

1960s.Houghton et al., 1923 found a comfort zone and comfort line in terms of ET 

index by using 130 subjects under laboratory conditions. The comfort zone was 

defined as those ET values over which 50% of people were comfortable. On the 

basis of this experiment, it was found out that the comfort zone was between 16.7-
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20.6oC ET with a comfort line of 17.8oC ET (ASHVE, 1924). Nevins et al., 1966 used 

720 college aged students (360 male and 360 female) to re-evaluate the comfort 

conditions as affected by air temperature and relative humidity. 72 conditions were 

investigated involving the combination of temperature and relative humidity. Rohles 

et al., 1971 also conducted a similar but more extensive study that involved 800 

male and 800 female students and also extended the air temperature range from 

60oF to 98oF. It was concluded that the air temperature for these conditions rated as 

comfortable covered the range of 62-98oF. It was also found out that female students 

adapted more quickly to the conditions.  

2.10  Fanger’s model 
The method developed by Fanger, 1970 to study thermal comfort is the most 

significant landmark in the field of thermal comfort. Three conditions were defined for 

a body to be in thermal comfort: 

1. the body is in heat balance; 

2. sweat rate is within comfort limits 

3. mean skin temperature is within comfort limits 

The objective of the research was to use six basic parameters as the inputs and to 

produce a comfort equation; also based on the above conditions, to calculate 

conditions for thermal comfort. This objective was achieved by using a rational 

analysis of heat transfer between the environment and the clothed body and by 

experimental research. 

  Thermal balance equation 2.10.1
A human body maintains heat balance between itself and the environment while 

preserving an internal temperature of 37oC. The body responds dynamically to 

maintain a constant internal body temperature in a changing environment. If the heat 

output from the body is greater than the input, the body temperature will decrease 

and vice versa. The metabolic rate of the body offers energy to enable it to do work 

(W) and the remainder is discharged as heat. Heat transfer from the body is 

achieved through four processes i.e. conduction (K), convention (C), radiation (R) 

and evaporation (E). The rate of heat storage is equal to the rate of heat loss and 

rate of heat production. If the heat storage of the body is zero then this means that 
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the body's heat is in balance. If there is heat gain then the storage is positive and the 

body temperature will increase and vice versa for heat loss.  

The heat balance equation can be; 

 𝑀−𝑊 = 𝐸 + 𝑅 + 𝐶 + 𝐾 + 𝑆 (2.3) 

If there is no heat storage then the above equation becomes; 

 𝑀 −𝑊 − 𝐸 − 𝑅 − 𝐶 − 𝐾 = 0 (2.4) 

Normally the heat transfer through conduction is very small and can be negligible. 

ASHRAE, 1989 gave a practical heat balance equation as; 

 𝑀 −𝑊 = 𝑄𝑠𝑘 + 𝑄𝑟𝑒𝑠
= (𝑅 + 𝐶𝑠𝑘 + 𝐸𝑠𝑘) + (𝐶𝑟𝑒𝑠 + 𝐸𝑟𝑒𝑠) 

(2.5) 

In above equation; 

𝑀 = 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

𝑊 = 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑤𝑜𝑟𝑘 

𝑄𝑠𝑘 = 𝑡𝑜𝑡𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 ℎ𝑒𝑎𝑡 𝑙𝑜𝑠𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑘𝑖𝑛 

𝑄𝑟𝑒𝑠 = 𝑡𝑜𝑡𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 ℎ𝑒𝑎𝑡 𝑙𝑜𝑠𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛   

𝐶𝑠𝑘 = 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 ℎ𝑒𝑎𝑡 𝑙𝑜𝑠𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑘𝑖𝑛 

𝑅 =  𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑣𝑒 ℎ𝑒𝑎𝑡 𝑙𝑜𝑠𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑘𝑖𝑛 

𝐸𝑠𝑘 =  𝑟𝑎𝑡𝑒 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑣𝑒 ℎ𝑒𝑎𝑡 𝑙𝑜𝑠𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑘𝑖𝑛 

𝐶𝑟𝑒𝑠 = 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 ℎ𝑒𝑎𝑡 𝑙𝑜𝑠𝑠 𝑓𝑟𝑜𝑚 𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 

𝐸𝑟𝑒𝑠 =  𝑟𝑎𝑡𝑒 𝑜𝑓 𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑣𝑒 ℎ𝑒𝑎𝑡 𝑙𝑜𝑠𝑠 𝑓𝑟𝑜𝑚 𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 

In equation 2.5, the heat production within the body is (𝑀 −𝑊), heat loss at the skin 

is  (𝑅 + 𝐶𝑠𝑘 + 𝐸𝑠𝑘) and heat loss because of respiration is (𝐶𝑟𝑒𝑠 + 𝐸𝑟𝑒𝑠). 

The heat balance in some circumstances cannot be a sufficient condition for comfort: 

e.g. the body can be in heat balance but uncomfortably cold because of 

vasoconstriction or uncomfortably hot due to sweating. Rohles et al., 1971 provided 
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the equations for skin temperature and sweat rates required for comfort, which 

depends on the activity level. The equations are given below; 

 𝑡𝑠𝑘,𝑟𝑒𝑞 = 35.7 − 0.0275(𝑀−𝑊)℃ (2.6) 

 

 𝐸𝑠𝑤,𝑟𝑒𝑞 = 0.42(𝑀 −𝑊 − 58.15)
𝑊
𝑚2 

 

(2.7) 

By substituting 𝑡𝑠𝑘,𝑟𝑒𝑞  and 𝐸𝑠𝑤,𝑟𝑒𝑞  in the heat balance equation, the equation 

becomes; 

 𝑀 −𝑊 − 3.05[5.73 − 0.007(𝑀 −𝑊) − 𝑃𝑎]

− 0.42[(𝑀−𝑊) − 58.15]

− 0.0173𝑀(5.87 − 𝑃𝑎)

− 0.0014𝑀(34 − 𝑡𝑎)

= 3.96

∗ 10−8𝑓𝑐𝑙[(𝑡𝑐𝑙 + 273)4 − (𝑡𝑟 + 273)4]

+ 𝑓𝑐𝑙ℎ𝑐(𝑡𝑐𝑙 − 𝑡𝑎) 

(2.8) 

 

In the above equation; 

 𝑡𝑐𝑙 = 35.7 − 0.028(𝑀−𝑊) − 𝐼𝑐𝑙{3.96 ∗

∗ 10−8𝑓𝑐𝑙[(𝑡𝑐𝑙 + 273)4 − (𝑡𝑟 + 273)4]

+ 𝑓𝑐𝑙ℎ𝑐(𝑡𝑐𝑙 − 𝑡𝑎)} 

(2.9) 

 
ℎ𝑐 = �

2.98(𝑡𝑐𝑙 − 𝑌𝑇)0.25           12.1 ∗ �𝑣𝑎 < 𝐴
12.1 ∗ �𝑣𝑎                                  12.1 ∗ �𝑣𝑎    ≥ 𝐴

 

 

(2.10) 

𝐴 = 2.98(𝑡𝑐𝑙 − 𝑌𝑇)0.25 

 

𝑓𝑐𝑙 = �
1.00 + 1.290𝐼𝑐𝑙         𝑓𝑜𝑟 𝐼𝑐𝑙 ≤ 0.078 𝑚2.

𝐾
𝑊

1.05 + 0.645𝐼𝑐𝑙        𝑓𝑜𝑟 𝐼𝑐𝑙 > 0.078 𝑚2.
𝐾
𝑊

   
 

(2.11) 

  PMV, PPD and modelling 2.10.2
Fanger, 1970 proposed that the degree of discomfort will depend on the thermal load 

(L). This was defined as "The difference between the internal heat generation and 

the heat loss to the environment for a human body that is hypothetically kept at the 
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comfort values of the sweat secretion and skin temperature at the actual activity 

level". According to this definition during comfort conditions the thermal load will be 

zero. For sedentary activity and other activities different experiments were performed 

to produce the data that provided an equation for predicted mean vote (PMV) of a 

large group of subjects. The following scale was introduced to rate the thermal 

performance of the subjects; 

Hot     +3 

Warm     +2 

Slightly warm    +1 

Neutral    0 

Slightly cool    -1 

Cool     -2 

Cold     -3 

The equation for PMV is; 

 𝑃𝑀𝑉 = [0.303. 𝑒−0.036𝑀 + 0.028] ∗ 𝑀 −𝑊

− 3.05[5.73 − 0.007(𝑀−𝑊) − 𝑃𝑎]

− 0.42[(𝑀−𝑊) − 58.15]

− 0.0173𝑀(5.87 − 𝑃𝑎)

− 0.0014𝑀(34 − 𝑡𝑎)  −  3.96

∗ 10−8𝑓𝑐𝑙[(𝑡𝑐𝑙 + 273)4 − (𝑡𝑟 + 273)4]

− 𝑓𝑐𝑙ℎ𝑐(𝑡𝑐𝑙 − 𝑡𝑎) 

(2.12) 

The number of potential complainers in a thermal environment can be determined by 

using the predicted percentage of dissatisfied (PPD). Nevins et al., 1966, Rohles, 

1970 and Fanger, 1970 developed a relationship between PPD and PMV. The 

relationship is given by following equation; 

 𝑃𝑃𝐷 = 100 − 95𝑒𝑥𝑝(−(0.03353𝑃𝑀𝑉4

− 0.2179𝑃𝑀𝑉2)) 

(2.13) 
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2.11  Adaptive thermal comfort model 
The PMV and PPD indices discussed above are the steady state indices and are 

accepted as ISO standard 7730 and ASHRAE 55. These indices view occupants as 

passive recipients of thermal stimuli. Researchers argued that it is not only the heat 

transfer that controls how occupant perceived thermal comfort but it also depends on 

psychology. Also, adaption to the environment can be psychological, behavioural 

and physiological (de Dear et al., 2001). 

Behavioural adjustments incudes all modification that a person makes consciously or 

unconsciously to avoid thermal discomfort. These changes can include adjusting 

clothing, posture, eating/drinking hot/food, opening/closing windows etc. 

Psychological adaptation refers to an altered conception of and reaction to sensory 

information. Thermal perceptions are directly tempered by occupant’s expectations 

and experiences. Physiological adjustments are the changed in the physiological 

responses which result from exposure to environmental factors (de Dear et al., 1998). 

Brager et al., 1998  suggested that more understanding of the adaptation influence 

on thermal comfort can lead to more responsive control algorithm.  

Both Fanger and adaptive models have been used in research but in this research 

PMV model will be used to perceive the thermal comfort of occupants. The PMV 

model is a flexible model that includes all the major variables influencing thermal 

sensation. Whereas, the adaptive model does not include six factors which have a 

known impact on the human heat balance. The adaptive model is a regression 

model that relates the neutral indoor temperature to the monthly outdoor average 

temperature. The only variable is thus the outdoor average temperature, which at its 

highest may have an indirect impact on the heat balance equation (Ole Fanger et al., 

2002).  

2.12  Control systems 
A study conducted by Herring et al., 1998 concluded that over two thirds of the 

energy used for space heating in buildings could be saved by technical 

improvements. According to DTI, 2001 the building regulations have been changed 

in the past few decades to improve the energy efficiency of new and refurbished 

buildings. Due to these regulations there has not been a significant energy 

consumption rise from space heating over the last three decades.  In addition to the 
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regulations the government has also introduced different incentive programmes to 

encourage energy efficiency in new and refurbished buildings e.g. EST, Action 

Energy (previously known as The Energy Efficiency Best Practice Programme) and 

the Carbon Trust.  

Building energy efficiency depends on many factors e.g. the efficiency of boiler and 

distribution system, the building envelope and the performance of the control system. 

In a report by BRECSU., 1996, it was estimated that approximately 90% of the 

heating systems were operated inefficiently due to lack of good control and this cost 

an additional 500 million pounds per annum. It can be concluded that an appropriate 

control is required to save energy in buildings and without an appropriate control 

system, a huge amount of energy is wasted and can cost in excess of millions of 

pounds per year.  

Currently three widely used control strategies are the on-off controller, weather 

compensator controller and Proportional–Integrate–Derivative (PID) controller. The 

on-off controller and PID controller are feedback controllers whereas the weather 

compensator controller is a feed forward mechanism. PID controllers need some 

information about the dynamics of the system for good performance. Each of the 

mentioned control strategies is easy to tune and all are well known for single input 

and single output systems.  

The on-off control is the simplest type of control used in buildings. It is also known as 

bang-bang control because it is designed to switch snappishly between on and off 

states. Although this control is simple but overshoots in the controlled variable 

(temperature) were not avoidable. The common type of on-off controller used in 

buildings is the thermostat for temperature control (Dounis et al., 2009). In order to 

solve the problem of overshoot, designers have used PID controllers.  

Salsbury, 2005 discussed that the biggest drawback of using PID controller is that 

most building systems are multivariable, non-linear and time invariant, which makes 

the controller’s performance to become sluggish and oscillatory. Also, improper 

choice of the gains can lead to make the system unstable. It is labour intensive and 

can be costly to implemented (Bhatia, 2012). The choice of appropriate controller 

gains is addressed by using auto-tuning. However, auto-tuning may lead to 

disruption of the plant operation and it also requires experience, extensive training 
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and additional cost (Salsbury, 2005). Designers have attempted to address these 

problems by providing alternative solutions e.g. neural networks, genetic algorithms, 

fuzzy logic control and predictive control.  

Artificial intelligence (AI) techniques have also gained popularity in the field of HVAC 

control since the 1990s. AI includes artificial neural networks, genetic algorithm and 

fuzzy logic control. Dounis et al., 1992, are considered as the pioneers of application 

of artificial intelligence techniques for HVAC control. Dounis et al., 2009 reviewed 

advanced control systems for energy and comfort management in buildings. Some 

disadvantages of model predictive control are also mentioned: the requirement of a 

model, the sensitivity of the parameters to noise and non-linearities when dealing 

with comfort. In this review the authors seem to discourage the use of model-based 

control. Later in the chapter it is illustrated that model-based control is an active area 

in building control applications.  

Though artificial intelligence techniques are independent of a model, however the 

need of training data, its accuracy and a training period are serious limitations (Wang 

et al., 2008).Coffey et al., 2010 mentioned that artificial neural networks have a lack 

of building physics and therefore they are not useful for diagnostic work and cannot 

handle changes in the system. A reinforcement learning technique has also been 

used by Liu et al., 2007. This method does not use a model, instead it extract 

information from the operation of the system with an ANN. 

There are different applications where fuzzy logic control was used in buildings. 

Kolokotsa et al., 2001 evaluated different control strategies for preservation of 

thermal and visual comfort, energy consumption and air quality. Three controllers i.e. 

adaptive fuzzy PD, fuzzy PD and on-off were applied. This study was carried out 

through simulations and it was found that the adaptive fuzzy PD consumed less 

energy and also gave optimum responses. Bruant et al., 2001 developed a multi-

objective fuzzy logic controller. The building model was developed in TRNSYS. It 

was compared with an on-off controller and energy consumption was reduced by 

over 10%.  

Fuzzy logic control has been widely used in building energy systems. The problem 

with fuzzy logic control is that one has to embed a lot of thinking/logic in to it. It is a 

way of formulizing the control objectives and all possible solutions/rules must have to 
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be considered. Eftekhari et al., 2003 concluded that the fuzzy controller with greater 

number of IF-THEN rules is more stable. This means that the controller will become 

more complex while achieving its stability. 

Therefore there has to be another control strategy which has feedback, can also 

contain information about the system i.e. history of the system and is also suitable 

for multiple input and multiple output (MIMO) systems. These criteria are met by a 

so-called control strategy called a Model Predictive Controller (MPC). Below is the 

focus of the literature survey on MPC strategy. 

  Model Predictive Control 2.12.1
Model Predictive Control (MPC) originated in the late seventies and has developed 

very considerably. MPC is based on a class of optimization algorithms that utilize a 

process model to predict and optimize the future outcome/response of a plant. The 

control signal is obtained by minimizing an objective function (Qin et al., 2003). The 

main ideas behind predictive control methods are (Camacho et al., 2004); 

• Explicit use of a model to predict the process output up to a future time instant 

(horizon). 

• Obtaining control signal by minimizing an objective function. 

• Using receding strategy, at each instant the horizon extends for the same 

period into the future.  

According to Van Den Boom et al., 2010, MPC is a methodology rather than a single 

technique. The main difference in the various methods is the way the problem is 

translated into the mathematical model. MPC technology is widely used in different 

application areas including the chemical industry, food processing, power plants, 

petroleum, automotive, and aerospace. 

Camacho et al., 2004, mentioned different advantages and drawbacks; 

Advantages 
• It is a very attractive method of control for staff with less knowledge of control. 

• The tuning is relatively very easy. 



 

28 
 

• MPC can be used to control very simple as well as very complex problems. 

This includes systems with long delay times and unstable systems. 

• The multivariable case can easily be dealt with. 

• It can compensate for dead time. 

• MPC introduces feed forward control to compensate for natural disturbances. 

• Model predictive controller is an easy way to implement linear control law. 

• This control strategy is very useful when future references are known. 

• MPC is based on certain basic principles which allow for future extensions. 

Drawbacks 
• Applying MPC to a practical problem can be a complex challenge. 

• When constraints are considered in controlling the process, the calculation of 

the control input becomes much more difficult. 

• The biggest drawback is the necessity for an appropriate model of the 

process. 

MPC has proved to be a very reasonable strategy for controlling industrial 

processes. From a theoretical perspective, it delivers very high performance, and it is 

only lacking in the areas of guaranteed stability and robustness to modelling error. 

The history of model predictive control can be traced back to the 1970s. Richalet et 

al., 1978, proposed a model to control processes. They described applications of this 

method (Model Predictive Heuristic control). Later on this method was known as 

Model Algorithmic control. In 1979 two engineers Cutler et al., 1980 from Shell came 

up with the idea of Dynamic Matrix Control. In both of these techniques, an explicit 

dynamic model was used to predict effects of future outcomes on the outputs. That is 

why it is known as Model predictive control. 

The above two researches were very closely related to minimum time optimal control 

and to linear programming. This relation was recognized by Zadeh et al., 1962. The 

core of all MPC algorithms is known as the moving horizon principle; this principle 

was proposed by Propoi, 1963. In 1978 and 1979, MPC became very popular in 

chemical process industries. Different work has been done on adaptive control ideas, 

in which an attempt was made to keep future values close to the reference. 
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Generalized Predictive Control (GPC) was developed by Clarke et al., 1987. This 

method uses ideas from Generalized Minimum Variance (GMV). 

Morari, 1994 formulated the model predictive control in state space context. This 

allows the generation of more complex problems e.g. systems with non-deterministic 

disturbances and noise in the measured variables. Lee et al., 1994 developed a 

MPC technique, which was based on a step response model. In this model state 

estimation techniques were used. It was shown that state estimation techniques from 

stochastic optimal control can be used to predict without additional complications. 

Bitmead et al., 1990 in their book analysed inherent characteristics of many MPC 

algorithms. By using state-space relationships Mohtadi, 1986 proved some stability 

theorems. He also studied the influence of filter polynomials on robustness 

improvement. The lack of stability for finite horizon receding optimization was also 

pointed out. These drawbacks led to further research in the early nineties.  

Two methods named as CRHPC by Clarke et al., 1991 and SIORHC by Mosca et 

al., 1990 were developed and were proved to be stable. The problem of stability of 

constrained receding horizon control problem was tackled by Rawlings et al., 1993, 

Rossiter et al., 1993 and Zheng et al., 1994. New results have been found by Campo 

et al., 1987 and Allwright, 1994 by using robust control approaches. MPC is still a 

developing technique of control, with much yet to be developed e.g. optimization of 

objective functions for the worst case of the uncertainties.  

  Model predictive Control in buildings 2.12.2
The use of weather prediction to control building climate has recently gained 

attention and has been investigated in several research works. The following is a 

review of the literature on using predictive control in building services engineering 

Zhang et al., 2006 described a way to tackle supervisory control problems of 

different systems. This work was carried out on a prototype building, with a 

photovoltaic array, solar air and water heating, a biomass boiler and a stratified 

thermal storage. The control problem was for every system to decide whether to use 

energy directly, store it or waste it to the environment. Different models of systems 

were selected and implemented in Simulink. An evolutionary control algorithm was 

used to optimize control strategy. The results were compared for both Building 

Energy Management Systems (BEMS) and MPC. In winter using BEMS, the energy 
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consumption was 24.8% more as compared to MPC, while in spring 47.8% more 

energy was consumed. In summer, this consumption of energy was increased. It 

was concluded that MPC with an evolutionary algorithm can be used for better 

control. It was also found that the existing BEMS was difficult to commission 

because of considerable number of operational states. The building energy 

management system is programmed according to standard practice and is not 

familiar with the behaviour of the system.  

Núñez-Reyes et al., 2005 applied a model predictive controller to control the 

temperature in a solar air conditioning plant. A Smith Predictor was used in this 

controller and in order to reject disturbances caused by solar radiations and the 

auxiliary gas heater, a feed forward control action was included. Previously, a PID 

controller was installed to control the inlet temperature of the absorption machine. 

This PID controller was unable to reject the disturbance in the inlet temperature due 

to oscillation in the gas heater temperature. A three input and one output model was 

identified. The experimental results showed that the Smith Predictor is an 

appropriate way to increase the robustness. It also achieved a good performance in 

both set point tracking and rejection of disturbances. Predictive controller’s tuning 

was easier than the PID controller. 

Farkas et al., 2005 developed a model predictive controller for solar plant operation. 

This plant model was based on energy balances. The developed model was the 

internal part of the controller. Internal model control uses the advantages of different 

unconstrained MPC schemes, easy online tuning and good performance. It was 

shown that the internal model control performed very well with short control time and 

no overshooting. The system was a non-linear in nature but the predictive controller 

performed well. A study to design a model predictive controller to smooth the output 

power from a wind farm was carried out by Khalid et al., 2010. They focused on 

optimizing the battery storage system. Model predictive control theory was applied to 

a combined wind power prediction system with a battery storage system. This control 

action consisted of two stages i.e. prediction of wind speed and direction and 

secondly prediction of power output. Predicted power output was obtained by 

converting predicted wind speed. This controller performed better under practical 

constraints and achieved maximum ramp rate. It was also proposed that this 
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controller is not only suitable to wind energy but can also be applied to other 

intermittent energy resources.  

A research of model-based optimal control of hybrid power generation was carried 

out by Zervas et al., 2008. This hybrid power generation system consisted of 

photovoltaic arrays, electrolyser, metal hydride tanks and proton exchange 

membrane fuel cells. Hybrid energy systems can store energy efficiently. A neural 

network model was used to predict the global solar irradiations and then energy 

produced by the solar array was estimated. Finally, MPC was used to get an optimal 

control strategy. The fundamental rolling horizon principle of MPC was used to 

develop decision strategy. The proposed model proved to be a useful tool for 

decision making.  

A robust model predictive control strategy was developed by Huang et al., 2009. This 

control strategy was to improve the performance of air conditioning systems. A first 

order time-delay model with uncertain time delay and system gains was used to 

describe the air-conditioning processes. The uncertainties in time-delay and system 

gains were formulated by using an uncertainty prototype. A typical Variable-Air-

Volume (VAV) system was used for this research. LMI (Linear Matrix Inequality) was 

employed to design this controller. Model predictive control strategy was tested and 

was then compared with the performance of the conventional strategy (PI). It was 

found that for MPC the outlet temperature followed the supply air temperature when 

there was a sudden step change. In the case of PI, it performed well but the output 

response was not very fast. Robust analysis was also performed and MPC strategy 

responded very quickly to the disturbances. The results showed that MPC had much 

more robustness than the conventional PI algorithm control.  

Kolokotsa et al., 2009 combined a model predictive controller with a BEMS (Building 

Energy Management System). The main purpose of the overall system was to 

predict the indoor environmental conditions and to take appropriate actions, in order 

to satisfy indoor environmental conditions and minimize energy consumption. The 

variables were modelled by using a bilinear approach, which is simple and an 

extension of a linear modelling approach. The controller was designed to minimize 

the performance index 𝐽(𝑘), which aimed to keep the variables as close as possible 
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to the set points. It was found that the system’s response to the variable was very 

fast and stable. 

Henze et al., 2005 analyzed MPC experimentally for active and passive building 

thermal storage inventory. Real time experimental implementations were carried out 

using a 24h future horizon and a 1-h controller time step. TRNSYS software was 

used for the building model and MATLAB for central purposes. The controller internal 

model was based on TRNSYS model but the controller was actually controlling real 

building operation. They noticed some technical problems, but overall this approach 

was very successful. In their other research (Henze et al., 2004), they also found out 

the importance of forecasting on the model predictive controller. This research work 

was compromised by the converging of local minima and the communication channel 

was interrupted because of this. Determination of the optimal start time for heating 

was addressed by researchers from Honeywell control systems Ltd and the 

University of Strathclyde (Clarke et al., 2002). There were some concerns between 

control system and simulation tools (ESP-r) and optimizer. Kummert et al., 2005a 

and Kummert et al., 2005b studied optimal control of passive solar building with night 

setback. They made an attempt to minimize energy consumption. A linear S-S 

(steady-space) representation was used and quadratic programming was done for 

optimization.  

Grünenfelder et al., 1985 compared different predictive control strategies for a solar 

hot water system with non-predictive strategies. The authors took weather prediction 

into account. From simulation results it was shown that for a small storage tank, the 

predictive control saved energy cost as compared with non-predictive strategies. 

This is one of the first research works that were carried on predictive strategies for 

renewable energy systems. Ma et al., 2009 investigated implementation of a MPC 

for a chilled water plant. The tanks were charged by using night-time electricity. It 

was found that MPC saved 24.5% of cost as compared to current manual control 

sequence. 

 Cho et al., 2003 studied a MPC strategy for a intermittently heated radiant floor 

heating system. From experimental results it was found that model predictive control 

saved between 10% and 12% of primary energy during the cold months compared to 

the conventional control. It was concluded that the predictive control strategy was 
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energy efficient strategy for district heating systems. Chen, 2002 described an 

improved algorithm for Generalised Predictive Control (GPC). The controller was 

applied to a floor radiant heating system in an outdoor test-room. The performances 

of three controllers i.e. GPC, on-off and PI were evaluated through computer 

simulations. The system model was identified using recursive least squares 

techniques. It was demonstrated that GPC was superior to the other two control 

strategies in every aspect. The GPC gave the fastest response to the change in set 

point, and the indoor temperature showed less deviation from the set point as 

compared to on-off and PI controllers. There was no tuning effort required for GPC, 

which makes predictive control strategies more attractive than PI control.  

Zaiyi et al., 2010 utilized the concept of model predictive controller to optimize the 

use of boilers for multi-zone heating systems. The controller was using outside air 

temperature, solar radiation falling on the building and supplied water temperature to 

the boiler as inputs, and the output was the boiler signal. Two interactive and one 

cascaded control loops were applied. The controller was saving energy by operating 

the boiler at the lowest possible water temperature, minimizing the heat loss as the 

water temperature is maintained at the lowest possible level and also by improving 

the controllability of radiator valves. Simulation results showed that the overall 

performance of the heating system was improved through MPC and it was easy to 

commission as well.  

Prívara et al., 2011 applied MPC to the temperature control of a real building. It was 

suggested that model predictive control can maintain indoor temperature at the 

desired level and is independent of outside weather conditions. It was also pointed 

out by the authors that the proper identification of the building model is crucial.  The 

controller was tested during the heating season of 2009/2010 on a large university 

building and energy savings of 17% to 24% were achieved as compared to the 

present controller. Paris et al., 2010 tested three control schemes i.e. conventional 

PID, combination of PID and fuzzy logic controller (FLC) and combination of PID and 

MPC. There was a saving of 26.9% of fossil energy by using PID-MPC whereas a 

saving of 9.8% was recorded for PID-FLC. It was concluded that PID-MPC 

anticipated set point changes and PID-MPC gave the best results while PID-FLC 

proved to be a good compromise between complexity and performance. It was also 

mentioned that fuzzy logic is easy to develop while MPC is hard to develop.  
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Different researchers have used predictive control strategy to control the thermal 

comfort of the indoor environment. Freire et al., 2008, did a study on the predictive 

controllers for thermal comfort optimization and energy savings. Different strategies 

for the control algorithm were proposed; some were based on minimizing energy 

consumption and others on thermal comfort optimization. One actuator was used for 

cooling and/or heating the indoor environment. Predicted Mean Vote (PMV) was 

considered as the thermal comfort index. A single story building and weather data for 

Brazil were taken to perform the simulations for model based predicted control. Five 

control strategies were presented in this research; three were based on the 

psychometric chart comfort zone and two were based on the PMV index. The 

controller performance was also analysed by changing the metabolic rate and the 

clothing index of the occupants. It was shown that all control strategies provided a 

better thermal environment to the occupants. The control strategies based on the 

psychometric chart had the maximum energy consumption of 222.47kWh and the 

minimum energy consumption of 98.67kWh was that of the controller based on the 

PMV index (Freire et al., 2008).  

Castilla et al., 2011 compared different predictive control strategies to obtain a high 

thermal comfort level by means of different cost functions. They focused on the 

trade-off between energy saving and thermal comfort level. In this research two 

predictive strategies were employed. In the first case, an upper layer of predictive 

control and a lower layer of PID control were developed. The upper layer was used 

to optimize the indoor temperature references and then the lower layer was following 

these references by varying the system fan-coil. In the second approach a classical 

predictive controller was used. Different cost functions were also evaluated for both 

these strategies. The control systems were tested in a solar energy research centre, 

the CDdI CIESOL-ARFRISOL building. The selected strategy minimized a cost 

function and gave the control signal directly, whereas the other strategy used a 

reference governor that minimized the cost function, providing an indoor temperature 

reference that was the set point for a PI controller. This selection was made on three 

selection indices: (1) mean number of changes in the actuator state per hour i.e. 

on/off, (2) the percentage of time the actuator was used and (3) mean energy 

consumption per hour.  
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Ferreira et al., 2012 addressed the problem of controlling an HVAC system with the 

purpose of achieving a thermal comfort level and saving energy. A discrete model 

predictive control was applied. The predictive model was implemented by radial 

basis function neural networks indentified by a multi-objective genetic algorithm. The 

authors presented experimental results within different rooms in a building of the 

University of Algarve. A wireless sensor network system was deployed in the 

building for data acquisition. Different experiments were performed during summer 

and winter weather and it was concluded that the energy savings from the 

application of the method were estimated to be greater than 50%.  

It can be concluded that model predictive control for buildings is an active research 

area and there has been intensive research in this field. However, there are very few 

applications where it is used for renewable energy systems and in most of the case it 

is applied to multi input and single input systems. This makes the control problem 

relatively simple. In this research model predictive control is applied to multi input 

and multi output system and also considering multiple control objectives at the same 

time.  

2.13  Optimum Control Strategies        
Static optimization methods (as opposed to MPC) have long been used to improve 

the efficiency of building control systems. Ke et al., 1997 determined the optimal 

supply air temperature by investigating the interactions between the supply air 

temperature and the required ventilation rate using zone reheat. Englander et al., 

1992 did not compromise on thermal comfort level and minimized the duct static 

pressure set-point. Braun et al., 1989 found the chilled water supply temperature set 

point of a chilled water system by optimizing the whole system. 

Different studies have been carried out in which overall performance of the system 

was optimized. House et al., 1991 and House et al., 1995 proposed a system 

approach to optimizing multi-zone building systems without compromising thermal 

comfort and respecting energy use as well. Wang et al., 2000 proposed a control 

strategy using a system approach based on predicting the responses of the overall 

system environment and energy performance of VAV air-conditioning systems. It 

was concluded from this study that a genetic algorithm is a useful tool for finding the 

optimal setting to minimize the overall system cost for online control applications for 
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air-conditioning systems. Zheng et al., 1996 addressed the problem of optimizing the 

thermal processes in a variable air volume system. The control strategy was based 

on steady-state models of the system. It was concluded from the study that optimal 

control can improve system responses and can also reduce energy consumption as 

compared to conventional control strategies. Nassif et al., 2005 developed an 

optimization process for a VAV system. This process used a multi-objective genetic 

algorithm that permitted the optimal operation of the building's mechanical system. 

By using this optimal control strategy, the supervisory control strategy set points i.e. 

supply air temperature, supply duct static pressure, reheat etc were optimized by 

taking energy use and thermal comfort into account. The results showed that the 

optimization of a supervisory control strategy could save 16% of energy for two 

summer months while satisfying minimum airflow rates and thermal comfort. Dovrtel 

et al., 2012 optimized a building cooling system by using multi-objective performance 

optimization. A multi-objective algorithm called NSGA-II was used to evaluate 

minimum fan energy use and minimal energy use for additional mechanical cooling 

of the building. Magnier et al., 2010 presented a study that used a simulation based 

Artificial Neural Networks (ANN) to describe building behaviour and then combined 

these ANN with a multi-objective genetic algorithm (NSGA-II) for optimization. 

Optimization results showed some significant reduction in energy consumption and 

also improved thermal comfort.  

2.14  Summary 
This chapter has introduced brief history of energy crises, climate change, energy 

security issues, international and UK government legislation on energy use in 

buildings. The review also showed that, to avoid energy crises, renewable energy 

systems have to be used to meet daily energy requirements. The UK government 

provides incentives to use renewable and low carbon energy systems. 

The review also showed that different controllers often provide one or two key 

benefits e.g. good tracking, robustness, commissioning effort or self-adaptation. 

MPC has different applications e.g. in chemical engineering, heating, ventilation and 

air-conditioning systems, electrical systems and the petrochemical industry, but it is 

not typically used in the application of combining an air-source heat pump and a 

solar thermal collector. The benefit of this application is to use free solar energy 

when it is available and to use a heat pump when it is not. Also, the review of 
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previous applications of model predictive control suggests that MPC is capable of 

providing good control when compared to conventional controllers. MPC can be 

used by staff with less knowledge of control. The tuning is relatively easy. The main 

drawbacks of MPC are that its derivation is very complex and selecting an 

appropriate model of the system is crucial. The literature review shows that the 

research on applying model predictive control to building systems has been getting 

more attention in recent years. 

However, the reviews show that there are still few studies of: 

• Development of a model for a system that consists of a solar collector and a 

heat pump. 

• Control strategies for such a system used for domestic hot water and heating 

purposes. 

• Development of a model predictive controller to find an optimal control 

solution for the system. 

• Addressing the issue of compromise between thermal comfort and energy 

cost. 

• Benefits that can be achieved by using different forms of objective functions.  

The research project in this thesis aims to design and simulate a model predictive 

control for a solar thermal collector system combined with a heat pump. The 

literature review carried out on model predictive control and other control strategies 

suggested that a model predictive controller would be capable of dealing with such 

control aims, if the complexity problem can be solved.  
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Chapter 3 Setup and modelling of the 
solar system combined with a heat 
pump 

3.1 Introduction 
In this chapter a description of the plant is given with detailed methods used for 

modelling building dynamics, tanks and solar collector. A two-zoned building is 

considered and construction layers are modelled as lumps. Different methods are 

presented to get an appropriate model of the air source heat pump which matched 

with the data available from the manufacturer. The resulting model is a simple model 

and its coefficient of performance does match with the manufacturer’s supplied data. 

Models of tanks and solar collector are presented in this chapter. A description of 

state-space and linear models used in this research are explained. The system 

model was verified by using different step input signals. 

3.2 Experimental setup description 
The solar system combined with a heat pump system is installed at the School of 

Civil and Building Engineering of Loughborough University as an experimental rig. It 

consists of a solar panel, a heat pump and accumulator tanks as presented in 

Figure  3-1. 

Solar panels are used for heating when feasible, and the heat pump is used for 

heating when solar radiation is insufficient (cloudy weather, night) and for domestic 

hot water purposes. The heat pump has a power capacity of 6kW.  

A general schematic diagram of the system is shown in Figure  3-1, where the main 

components of the system can be observed. The heat pump is connected to the 

buffer tank. The plant uses two different energy sources: the solar collector and the 

electric air source heat pump. Both of these can be used together or separately for 

heating the heating tank. 
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 Figure  3-1: Solar system combined with a heat pump Schematic  

The mixing valve M1 allows water to flow from the buffer tank (heat pump tank) into 

the heating tank or the hot water tank, while the diverter D1 diverts the flow to either 

or both of these tanks. The valve M2 allows water to bring energy into the heating 

tank or to take it back to the solar collectors. 

The objective for the system is to supply hot water for heating and domestic hot 

water at the required temperatures. The control objective is to minimize the cost of 

electric energy for the system. If the solar radiation is low then the heat pump can be 

used to heat up the heating and hot water tanks. The optimum cost solution may be 

to operate the heat pump during the night time period when the energy tariffs are 

significantly lower. 

The primary source of energy (solar energy) cannot be manipulated. So while it is 

useful, from a control perspective it is a disturbance, because changes in solar 

energy have to be compensated for. It is expected that solar radiation will be used 

when possible, and the heat pump will be used to make up for any shortfall in solar 

radiation.  

Pictures of the main components of the system are shown in Figure  3-2: 
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a) The heating tank, which encapsulates the hot water tank (not visible). 

b) The diverter, which diverts the flow from the buffer tank to the heating tank or 

the hot water tank. 

c) The valve, which regulates the flow from the buffer tank to the other two tanks. 

d) The current controller, which controls the heat pump, diverter and valves. 

e) The buffer tank, which is connected to the heat pump. 

 

Figure  3-2: Solar system combined with a heat pump. (a) Heating tank (b) Diverter (c) Valve (d) Controller 
and (e) Buffer tank 

3.3 System description 
The main components of the solar heating system combined with a heat pump are 

described here. 

The Accumulation system consists of three tanks. The hot water tank is inside the 

heating tank. The capacity of the heating tank is 450l and of the hot water tank is 

300l. The third tank is the buffer tank which is 300l. It is connected to the heat pump 

and supplies hot water to the other two tanks when required.  

Solar Collectors are used to collect solar radiation and to raise the temperature of 

the water of the heating tank. They use solar energy to raise the water temperature 

and are the primary energy source of the system. There are 2 flat plate collectors 

that each has a surface area of 2m2. 

Heat Pump-The installed heat pump uses air as a heat source. It is the auxiliary 

source of the energy for the heating tank, but it is the main (only) energy source for 
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the hot water tank. The heat pump is directly connected to the buffer tank. The rated 

electric power of the heat pump is 6kW. The heat pump used is a single stage heat 

pump. The single heat pump is unable to modulate its power output during low load 

conditions, as this would cause overheating of the fluid loop. In order to solve this 

problem a tank is used in between the load loop and the heat pump i.e. the buffer 

tank. When using this setup under low load conditions, the heat pump is only run 

intermittently, and the load slowly draws energy from the buffer tank while the heat 

pump is off.   

Manipulated variables 

• The flow through valve M1 between the buffer tank and the other two tanks. 

• The flow from valve M2 that allows the solar collector liquid to flow to the heat 

exchanger inside the heating tank to dissipate heat energy into the heating 

tank. 

• The flow through D1 diverter to either the hot water tank or the heating tank. 

• Heat pump On/Off switch. 

• Two heater On/Off switches for fan coil units to heat the indoor environment. 

Measured variables 

• Water temperature in all tanks 

• Solar collector output temperature or useful energy from the collector. 

Objective functions 

• Energy consumed by the heat pump 

• Temperature deviations 

• Thermal comfort  

System disturbances 

• Outside environmental temperature 

• Solar radiation 

• Domestic hot water consumption 

• Occupancy 

3.4 Building Model 
Crabb et al., 1987 developed a simplified thermal response model of a building. In 

this work a single lumped construction capacitance and room air capacitance were 
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linked together with a conduction path through a network of three resistances. The 

work also describes a good agreement of model internal temperature with a limited 

set of observed data for a school building. The impact of inputs e.g. zone heat gains 

on the building model was not addressed in this research. Dewson et al., 1993 found 

out five parameters of the Crabb et al., 1987 model by using experimental data and 

stated that the method can be used for online system identification. 

Tindale, 1993 concluded that the second order model did not work when used for 

high mass construction elements i.e. materials with high thermal capacitance. A 

further node was added to the basic 2nd order model and convective and radiant heat 

transfer paths were separated. He also developed a method for the calculation of 

model parameters.  

The model used for this research is based on the method used by Gustafsson et al., 

2008 and is widely used by other researchers. Zhang et al., 2006 also used lumped 

approach to model the building for model predictive control. A typical construction 

element consists of multi-layered construction is used. Each layer of the element is 

defined by its thickness and material properties i.e. thermal conductivity, density and 

specific heat capacity. All the external walls and roof are considered to be of the 

same construction materials. The construction materials and properties of the 

external walls, roof and partition wall between hall and bedroom are summarized in 

Table  3-2. The building under consideration is kept intentionally simple: it consists of 

only two rooms; a hall and a bedroom. The hall has a south facing window and the 

dimensions of both the rooms are 4.27m*4.57m and 2.44m high. The total area of 

the south facing window in the hall is 5.83m2. The schematic layout of the building is 

shown in Figure  3-3. As the normal heating load of a typical house in the UK varies 

between 10-12kW (approx.) and the heat pump system is of small scale therefore a 

simple and small building is considered. The building was simulated in specialist 

domain software called Integrated Environmental Solutions (IES) in order to obtain 

the indoor heat gains i.e. lighting, occupants and solar gains (Table  3-1). The solar 

gains through the window for the whole year in the bedroom and the hall are shown 

in Figure  3-4. As there is no window in the bedroom the solar gain in the bedroom is 

zero for the whole year. 
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Table  3-1: Internal heat gains and occupancy timings 

Internal Gain 
Sources Gain Room 

Occupancy 
Time 

People 70W/person Hall 8 hours 
Lighting 8W/m2 Bedroom 13hours 
Computer 110W     

 

 

Figure  3-3: Building schematic layout 

 

Figure  3-4: Solar gains through window 
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Table  3-2: House model specifications 

Wall/Roof 
  

Thickness 
in 𝑚 

Thermal conductivity in  𝑊
𝐾𝑚

 Density in   𝑘𝑔
𝑚3 

 
  

 
Brick 0.1 0.84 1700 

 
Polystyrene 0.0795 0.034 35 

 
Concrete 0.1 0.51 1400 

 
Plaster 0.013 0.025 900 

 
Partition 
Wall    

  

Gypsum 0.025 0.25 900 
 

Air 0.1 0.15 𝐾 𝑚2

𝑊
 (Resistance) 1.204 

 
Gypsum 0.025 0.25 900 

 
 

A wall consists of 'N' number of layers that can be represented by ‘N’ number of 

thermal resistances and 'N' number of thermal capacitances. The model will also 

have two thermal resistances for the air contact on the inner side and outer side of 

the wall. A wall with 'N' number of layers can be seen in Figure  3-5. The advantage 

of this method when used for developing a building model by considering wall 

capacitance and resistance is that it takes into account the time varying effect of the 

building. In this case, when the outside air temperature changes it does not affect the 

indoor room temperature instantly and the change follows the laws of 

thermodynamics to transfer heat between indoors and outdoors. More importantly, 

effects of changes in indoor air temperature on the wall surface temperature (and 

therefore the radiation temperature) can be established. In the following sections a 

brief overview of thermodynamic laws and the equations that are used in the 

modelling are discussed.  
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Figure  3-5: Wall divisions 

The equivalent electrical diagram of a single layer wall is shown in Figure  3-6, in 

which 𝑹𝒊 is the interior film resistance, 𝑹𝒐 is the outer film resistance, 𝑹𝟏
𝟐

 is the half 

resistance of the wall layer and 𝑪𝟏 is the capacitance of the wall layer. It can be 

noted that for a wall of one layer there will be three resistances and one capacitance.  

 

Figure  3-6: Equivalent electrical circuit diagram of a single layer wall 

The resistance diagram of the hall is shown in Figure  3-7. The external wall has four 

layers and therefore has four resistances and four capacitances. The resistances 

resist the heat transfer between the layers while capacitances store heat energy. 

The window does not have any storage capacity and therefore represented by 

resistance only.  

Most of the solar gain in the building is due to the solar radiation coming through the 

window. There is no solar gain in the bedroom air as there is no window; solar gain 

is only considered in the hall area. The fabric solar heat gain through walls and roof 

is taken as negligible because the construction considered has high thermal capacity 

and it tends to delay the solar gains transmissions of the heat until its direction is 

reversed during night time. Other heat gains are from people and other equipment i.e. 
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computers and lighting. There can also be partition heat gain or loss depending on 

the air temperature difference between the bedroom and the hall.    

 

Figure  3-7: Resistance diagram of hall 

 One dimensional heat conduction 3.4.1
One-dimensional heat conduction can be derived from Fourier's law and is given by 

the following equation; 

 𝑞𝑐𝑜𝑛𝑑 = −𝑘𝐴1
𝑑𝑇
𝑑𝑥

 (3.1) 

Where 𝑑𝑇
𝑑𝑥

 is the temperature gradient, k is the thermal conductivity and 𝐴1 is the area 

of the heat transfer section. The negative sign in the equation 3.1 indicates that the 

flow of heat energy is from the high temperature surface to the low temperature 

surface. By rearranging equation 3.1; 

 𝑞𝑐𝑜𝑛𝑑 = −𝑘𝐴
∆𝑇
𝐿

=  
∆𝑇𝑘𝐴
𝐿

 (3.2) 

Equation 3.2 is the analogous to Ohm’s law (V=IR). Here heat transfer (𝑞𝑐𝑜𝑛𝑑) is the 

current flow, L
kA

 is the resistance and ∆T corresponds to the voltage difference.  

 One dimensional convection 3.4.2
The heat transfer between solid and gas (or liquid) is known as convection and can 

be described by the equation 3.3.  

 𝑞𝑐𝑜𝑛𝑣 = ℎ𝐴2(𝑇1 − 𝑇2) (3.3) 
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Where h is the convective heat transfer coefficient, 𝐴2  is the surface area and 

(𝑇1 − 𝑇2) is the temperature difference between two mediums. Kirchoff’s Law is used 

to calculate the temperature between each layer of the wall, roof and floor. In 

Figure  3-5 typical wall divisions are shown, where 𝑇𝑖 is the inside temperature, 𝑇1 is 

the temperature of first layer, ………,𝑇𝑁  is of the Nth layer and 𝑇𝑂  is the outside 

temperature.  

The heat transferred from indoor air to the wall can be summarized in the following 

equation; 

 𝑞𝑐𝑜𝑛𝑣 = 𝑞𝑐𝑜𝑛𝑑 +  𝑞𝑠𝑡𝑜𝑟𝑒𝑑 (3.4) 

𝑞𝑠𝑡𝑜𝑟𝑒𝑑  is the stored heat energy inside the wall layer or heat energy of lumped 

capacitance.  

 
ℎ𝑖𝑛(𝑇𝑖𝑛 − 𝑇𝑖) =

𝑘𝑖
𝐿𝑖

 (𝑇𝑖 − 𝑇𝑖+1) +  
𝑑𝑇𝑖
𝑑𝑡

�𝑐𝑝,𝑖𝜌𝑖𝐿𝑖� 
(3.5) 

 

 
𝑑𝑇𝑖
𝑑𝑡

=
ℎ𝑖(𝑇𝑖𝑛 − 𝑇𝑖) −

𝑘𝑖
𝐿𝑖

 (𝑇𝑖 − 𝑇𝑖+1)

𝑐𝑝,𝑖𝜌𝑖𝐿𝑖
 

(3.6) 
 
 

 
 𝑖𝑛 𝑎𝑏𝑜𝑣𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑖 = 1  

 
For the middle layers the material also has capacitance and therefore heat storage 

capacity of the material is taken in to account. The heat balance equation will be ; 

 𝑞𝑐𝑜𝑛,1 = 𝑞𝑐𝑜𝑛𝑑,2 +  𝑞𝑠𝑡𝑜𝑟𝑒𝑑 

 

(3.7) 

 𝑘𝑖
𝐿𝑖

 (𝑇𝑖−1 − 𝑇𝑖) =
𝑘𝑖+1
𝐿𝑖+1

 (𝑇𝑖 − 𝑇𝑖+1) +  
𝑑𝑇𝑖
𝑑𝑡

�𝑐𝑝,𝑖𝜌𝑖𝐿𝑖 + 𝑐𝑝,𝑖+1𝜌𝑖+1𝐿𝑖+1 � 
(3.8) 

 
 

 𝑤ℎ𝑒𝑟𝑒 𝑖 = 2, 3, … . . , (𝑁 − 1)  
 

For outer layer the equation for heat energy is; 

 𝑞𝑐𝑜𝑛𝑣,𝑁 = 𝑞𝑐𝑜𝑛𝑑,𝑁−1 +  𝑞𝑠𝑡𝑜𝑟𝑒𝑑 

 

(3.9) 

 
ℎ𝑜𝑢𝑡(𝑇𝑖 − 𝑇𝑜𝑢𝑡) =

𝑘𝑖
𝐿𝑖

 (𝑇𝑖−1 − 𝑇𝑖) + 
𝑑𝑇𝑖
𝑑𝑡

�𝑐𝑝,𝑖𝜌𝑖𝐿𝑖� 
(3.10) 
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Each wall layer is considered as a lumped element and modelled separately in 

Simulink. Each wall layer has its own capacitance to store heat energy and also has 

resistance to resist the heat energy flow.  

Figure  3-8 shows the temperature of indoor air, outdoor air and the different layers of 

the wall model. The indoor air and outdoor air temperature were kept constant at 

22oC and 5oC respectively. The initial temperature for layers was taken as 0oC and 

the layer closer to indoor air comes very close to indoor air temperature. The plaster 

layer reached to the equilibrium temperature very quickly because of the low thermal 

conductivity while concrete has high thermal conductivity and took almost 1 day to 

reach to the equilibrium temperature. The last layer was of 0.1m of brick and its 

temperature remained closer to outside air temperature of 5oC.  

 

Figure  3-8: Wall layer temperatures 

3.5 Heat Pump model 
A heat pump is a device that transfers thermal energy from a lower temperature 

(Source) to a higher temperature (Sink). It reverses the natural flow of thermal 

energy. The operating cycle of a heat pump is shown in Figure  3-9. It consists of four 

components; 

• a compressor, 

• a condenser, 

• an expansion valve, and 

• an evaporator. 
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The condenser is used to convert the refrigerant from its gaseous state into the liquid 

form, while the evaporator is used to convert the refrigerant from liquid to gaseous 

state. The refrigerant in its gaseous state is pressurized in the compressor. It is 

compressed by extra mechanical work (Wnet). This highly pressurized and high 

temperature fluid is then fed into a condenser where it releases its heat (Qout) and 

changes into liquid. Then, it enters into the expansion valve and changes into a low 

pressure and low temperature liquid. In this state the refrigerant is fed into the 

evaporator, where it gains energy (Qin) and changes into a gaseous state. Detailed 

information can be found in Moran et al., 2006. 

 Model 1 3.5.1
The efficiency of the heat pump is calculated by its coefficient of performance (COP). 

COP is the ratio of the heat transferred to the amount of the work done to the 

compressor. The COP can be approximately calculated by using the temperatures of 

the hot zone (water side in this case) and the cold zone (air side in this case).  

 𝐶𝑂𝑃 = 𝐾 ×
𝑇𝑐,𝑜𝑢𝑡

𝑇𝑐,𝑜𝑢𝑡 − 𝑇𝑒,𝑜𝑢𝑡
 (3.11) 

Where K is the efficiency coefficient of the compressor and is assumed as 0.4 (Van 

Schijndel et al., 2003). 

 

Figure  3-9: Schematic Diagram of heat Pump 

Different methods are used to model an air source heat pump. Chi et al., 1982 

described a heat pump transient analysis computer program. The program used first-

order differential equation to describe heat and mass flow. The type of detail 

modelling is beyond the scope of this research. Li et al., 2010 suggested that a 
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simple equation fit model can be used to study the performance of a solar assisted 

air source heat pump system. The heat pump model developed Van Schijndel et al., 

2003 is used as model 1. The model has dynamic elements but the process is 

modelled as steady state process. The heat pump under study is an air source heat 

pump. Figure  3-9 shows the operating cycle and two external cycles. The air cycle is 

attached to the evaporator while the water cycle is attached to the condenser. It is 

assumed that the temperature of liquid leaving the condenser denoted as 𝑇𝑐,𝑜𝑢𝑡 at 

point 1 is equal to the temperature of the water going into the water tank denoted as 

𝑇𝑤_𝑡𝑎𝑛𝑘_𝑖𝑛  (buffer tank). Similarly it is also assumed that the temperature of the 

refrigerant feeding into the evaporator denoted by 𝑇𝑒,𝑖𝑛  at point 2 is equal to the 

temperature of air coming into the evaporator denoted by 𝑇𝑎𝑖𝑟,𝑖𝑛. 

On the basis of these assumptions; 

𝑇𝑐,𝑜𝑢𝑡 = 𝑇𝑤_𝑡𝑎𝑛𝑘_𝑖𝑛  and 𝑇𝑒,𝑖𝑛 = 𝑇𝑎𝑖𝑟,𝑖𝑛 

Based on equation 3.11, further approximation of COP has been done by Van 

Schijndel et al., 2003.  

 𝐶𝑂𝑃 = 𝑄̇𝑜𝑢𝑡
𝑊𝑛𝑒𝑡
�  (3.12) 

By applying heat energy gained by the evaporator, heat transferred by the 

condenser and dynamics of condenser and evaporator, this lead to a model given in 

below equations; 

 
𝑇̇𝑒,𝑜𝑢𝑡=

−𝑚̇𝑒1𝐶𝑟𝑇𝑒,𝑖𝑛 + 𝑚𝑒1̇ 𝐶𝑟𝑇𝑒,𝑜𝑢𝑡 − (𝐶𝑂𝑃 − 1)𝑊̇
𝐶𝑒𝑚𝑒

 
(3.13) 

 
𝑇̇𝑐,𝑜𝑢𝑡=

𝑚̇𝑐1𝐶𝑟𝑇𝑐,𝑖𝑛 − 𝑚𝑐1̇ 𝐶𝑟𝑇𝑐,𝑜𝑢𝑡 + 𝐶𝑂𝑃𝑊̇
𝐶𝑐𝑚𝑐

 
(3.14) 

Equations (3.11), (3.13) and (3.14) are used as a heat pump model which is 

implemented in Simulink. The detail model equations are given in appendix A from 

equations A.1 to A.10. 

From above it is concluded that the COP of the heat pump depends on the outside 

air temperature and the condenser outflow temperature. The heat pump operates 

between two different mediums (air and water), which have very different heat 
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capacities. Air has less capacity than water, and for this reason the mass flow rate 

on the evaporator side is assumed to be higher than on the condenser side. 

The above model did not give promising results when compared to the limited data 

that were available from the heat pump manufacturer (NIBE) (Figure A-1). The 

response of the above model was also very fast as compared to the other elements 

of the system e.g. building model, which means that it slows the simulation down by 

forcing a short time step for the global integration algorithm. The comparison is 

shown in Figure  3-10 below. The COP values were close at larger temperature 

differences but the values were very different at low temperature differences 

between tank and air.  

 

Figure  3-10: Manufacturer COP and model COP plot 

From the above result it is concluded that this heat pump model (equations 3.11, 

3.13 and 3.14) is not suitable for this study. 

 Model 2 3.5.2
In the second method to calculate the COP of the heat pump four other factors are 

considered i.e. 𝛼 , 𝛽 , 𝑢𝑇𝑃  and 𝑢𝐸𝑃 . 𝛼  is the thermal efficiency coefficient of the 

compressor, 𝛽 is the recovery of losses into heat, 𝑢𝑇𝑃 is the thermal coefficient on 

the condenser side and 𝑢𝐸𝑃  is the thermal coefficient on the evaporator side. 

𝑢𝑇𝑃 and 𝑢𝐸𝑃 incorporates the resistances of air and water on cold and hot mediums 

of the heat pump. The COP equation will be given by following equations; 



 

52 
 

 𝐶𝑂𝑃 = 𝛼 �
𝑇𝐻

𝑇𝐻 − 𝑇𝐶
� + 𝛽 (3.15) 

 (𝑇𝐻 − 𝑇𝐶)𝐶𝑂𝑃 = 𝛼𝑇𝐻 + 𝛽(𝑇𝐻 − 𝑇𝐶) (3.16) 

By taking air and water resistances into account; 

 𝑇𝐻 = 𝑇𝑇 + 𝑢𝑇𝑃 × 𝐶𝑂𝑃 (3.17) 

 𝑇𝑐 = 𝑇𝐸 − 𝑢𝑒𝑃 × (𝐶𝑂𝑃 − 1) (3.18) 

 𝑇𝐻 − 𝑇𝐶 = 𝑇𝑇 − 𝑇𝐸 + (𝑢𝑇 + 𝑢𝐸)𝑃 × 𝐶𝑂𝑃 − 𝑢𝐸𝑃 

 

(3.19) 

By simplifying, this gives a quadratic equation; 

  (𝑢𝑇 + 𝑢𝐸)𝑃 × 𝐶𝑂𝑃2

+ (𝑇𝑇 − 𝑇𝐸 − 𝑢𝐸𝑃 − 𝛽(𝑢𝑇 + 𝑢𝐸)𝑃

− 𝛼𝑢𝑇𝑃)𝐶𝑂𝑃 − 𝛼𝑇𝑇
− 𝛽(𝑇𝑇 − 𝑇𝐸 − 𝑢𝐸𝑃) = 0 

(3.20) 

The above quadratic equation can be solved for COP. Different calculations are 

made to find the nearly fit model for the heat pump. In the Figure  3-11 different 

calculations are shown with different values of 𝛼, 𝛽 and 𝑢𝐸𝑃. 

 Model 3 3.5.3
The model 2 shows better results as compared to the model 1. Another method is 

tried below to find a much better model than the model 2. It can be seen that the 

curve found by the plot of inversing ideal COP and manufacturer's COP gives better 

results than the other COP curves. The plots of COP data from different methods are 

shown in Figure  3-11 and the inverse plot of both ideal COP and manufacturer's 

COP is shown in the Figure  3-12. The1/ideal COP values at different environmental 

air temperatures and tank temperature are on the x-axis and 1/Manufacturer's COP 

are on the y-axis. The equation used as COP calculation is also given below; 

 𝑦 =  29.278𝑥2  −  4.8281𝑥 +  0.4328 (3.21) 

The above equation is used as the heat pump model. The equation has an R2 value 

of 0.9893, which is the coefficient of determination and is used to find out how 

accurate the equation will predict the future outcomes. In this case the value of R2 is 

very close to 1 which means that the regression line fits the data very well. The 

remaining small deviations can be attributed to differences in efficiency at different 

temperatures. 
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Figure  3-11: COP plots from different methods 

 

Figure  3-12: Inverse plot of Ideal COP vs Manufacturer COP 
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Figure  3-13: Inverse plot of Alpha =0.4, Beta 0, Resistances zero vs manufacturer COP 

3.6 Solar thermal collector model 
Flat plate collectors are used to heat up the water in the heating tank. The useful 

energy from the solar panel is calculated by using the mathematical model proposed 

by Duffie et al., 1991.  

The solar radiation is captured by the solar panel and used to heat up water. With a 

solar radiation 𝐼 (𝑊/𝑚2) covering the solar panel of an area 𝐴𝑐  (𝑚2), the energy 

received by the solar collector is given by; 

 𝑄𝑟 = 𝐼.𝐴𝑐 (3.34) 

It is known that not all of energy received by the solar collector is used to raise the 

temperature of water, since some of the radiation is reflected back into the sky. Only 

part of the radiation is absorbed by the solar plate. The conversion factor 𝜏𝛼1 

indicates the percentage of solar radiation which is absorbed by the solar collector 

and transmitted into the cover of panel. Therefore the energy received by the solar 

collectors is given by; 

 𝑄𝑟 = 𝜏𝛼1(𝐼.𝐴𝑐) (3.22) 

There is also an energy loss from the solar collector surface when the temperature of 

the solar panel is higher than the surroundings. This loss is given by; 

 𝑄𝑙 = 𝑈𝐿𝐴𝑐 (𝑇𝑐 − 𝑇𝑎) (3.23) 

Therefore the rate of useful energy gained by the solar collector is given by; 

y = 4.6884x2 - 1.9355x + 0.4336 
R² = 0.9892 
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 𝑄𝑈 = 𝑄𝑟−𝑄𝑙 = 𝜏𝛼1(𝐼.𝐴𝑐) − 𝑈𝐿𝐴𝑐 (𝑇𝑐 − 𝑇𝑎) 

 

(3.24) 

The useful energy is also measured by the amount of the energy carried by the fluid; 

 𝑄𝑈 = 𝑚𝐶𝑝(𝑇𝑜 − 𝑇𝑖) (3.25) 

It is difficult to define the average collector temperature in equation (3.25), therefore 

a factor called “the collector heat removal factor (𝐹𝑅 )” is given by the following 

equation; 

 
𝐹𝑅=

𝑚𝐶𝑝(𝑇𝑜 − 𝑇𝑖)
𝐴𝑐 [𝜏𝛼1𝐼 − 𝑈𝐿(𝑇𝑐 − 𝑇𝑎)]

 
(3.26) 

The useful energy from the collector is measured by multiplying  𝐹𝑅with  𝑄𝑈 . The 

useful energy is; 

 𝑄𝑈 = 𝐹𝑅𝐴𝑐 [𝜏𝛼1𝐼 − 𝑈𝐿(𝑇𝑐 − 𝑇𝑎)] 

 

(3.27) 

The equation 3.27 is called “Hottel-Whillier-Bliss equation” and is used as a collector 

model in Simulink. The values of 𝐹𝑅𝜏𝛼1  and 𝐹𝑅𝑈𝐿  are taken as 0.68 and 4.90 

(W/m2)/oC respectively. The model of the solar panel used in Simulink is shown 

below in Figure  3-14. The output of the model is the energy gained from solar 

radiation and this energy is added into the heating tank as heat input. 

 

Figure  3-14: Simulink model of solar thermal collector 

3.7 Energy Equations and tank model 
In this section different heat transfer equations will be presented. The equations are 

based on energy balance and energy flow, by assuming an average temperature 

equal to Tb, Th and TH for buffer tank, heating tank and hot water tank respectively.  
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Figure  3-15: Modes of the system 

The heat transferred from the heat pump into the buffer tank is; 

 𝑄̇𝑜𝑢𝑡 = 𝑊̇𝐶𝑂𝑃 (3.28) 

Where 𝑄̇𝑜𝑢𝑡 is the energy output from the condenser and 𝑊̇ is the power input. The 

heat transfer between the buffer tank and the hot water tank is given by; 

 𝑄̇ = 𝑚̇𝐶𝑝 (𝑇𝑏 − 𝑇𝐻) (3.29) 

 

There is an energy use caused by the withdrawal of hot water, as cold water is fed 

into the tank. It is assumed that the cold water has a constant temperature of 15oC 

and the hot water in the hot water tank temperature is at 55oC. The heat transfer 

between the buffer tank and the heating tank is; 

 𝑄̇ = 𝑚̇𝐶𝑝 (𝑇𝑏 − 𝑇ℎ) (3.30) 

The solar energy input in the solar tank is given in the equation 3.27. The water 

tanks are modelled by assuming that the water inside the tanks mixes properly and 

there is no temperature difference across the tank height. The second assumption is 

that the heat capacity of the tank is the heat capacity of the volume of the water 

inside the tank. The heat losses from the tanks are also considered and the losses 

from buffer tank and heating tank are added as the heat gain by the room air i.e. it is 

assumed that the tanks are placed in the bedroom. The hot water losses are added 

into the heat gain by the heat tank water. A Simulink diagram of the buffer tank is 

shown in Figure  3-16. The heat energy in kW is supplied through the heat pump and 

the integrator  1
𝑠
 changes the tank temperature over the time. The T_Env is the 

bedroom air temperature.  
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Figure  3-16: Simulink diagram of tank model 

The model of the system describes the relationship between plant inputs and outputs. 

Below is the focus on the model of the system and its linearization. The model 

obtained by linearizing the plant model is a continuous-time state space model but 

the model predictive controller uses a discrete-time state space model therefore the 

details of the modelling shown below are given in discrete-time s-s form.  

3.8 State - space Model of the system dynamics 
In this research a linearized, state space and discrete model of the plant is 

considered. According to Maciejowski, 2002, the state space model of the system 

generally can be written in the following form; 

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) (3.31) 

 𝑦(𝑘) = 𝐶𝑦𝑥(𝑘) (3.32) 

 𝑧(𝑘) = 𝐶𝑧𝑥(𝑘) (3.33) 

In the above equations 𝑥 is the state vector of the system with l-dimensions, 𝑢 is an 

m dimensional input vector, 𝑦  is a ny-dimensional vector of measured outputs 

whereas 𝑧 is the vector of outputs which are to be controlled (nz dimensions). 𝑘 is the 

time step. In this thesis it is assumed that 𝑦 =  𝑧 and 𝐶 will be used for both 𝐶𝑦 and 

𝐶𝑧. The model predictive control action is done at time step k by first obtaining output 

measurements 𝑦(𝑘) then computing the optimal plant input 𝑢(𝑘) and then applying 

𝑢(𝑘)  to the plant. This means there is some delay in obtaining the output 

measurement and then applying 𝑢(𝑘) , therefore there is no direct feed-through 

between 𝑢(𝑘) and 𝑦(𝑘) and this can be seen in equation 3.32. In practice controlled 

output 𝑧(𝑘) depends on 𝑢(𝑘) and the equation 3.33 can be written as; 

 𝑧(𝑘) = 𝐶𝑧𝑥(𝑘) + 𝐷𝑧𝑢(𝑘) (3.34) 
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The equation 3.34 can complicate the computational process of optimal 𝑢(𝑘). This 

complication can be avoided by introducing another vector 𝑧̃ and is given by the 

following equation; 

 𝑧̃(𝑘) = 𝑧(𝑘) − 𝐷𝑧𝑢(𝑘) (3.35) 

The above equation means that the controlled outputs depend on states only without 

any direct feed-through from the inputs 𝑢(𝑘). 

3.9 Linear Model 
In most of the control strategies a plant model is used at design and analysis stage 

(off-line). In model predictive control the model of the plant is directly used in the 

control algorithm and the resulting output signals are directly applied to the real plant. 

Therefore it is important to have an appropriate and good model that represents the 

actual plant, and to achieve a fast evaluation of the model. In reality every system 

has some form of nonlinearities. If a plant has a state vector 𝑋 then according to 

nonlinear differential equation (Maciejowski, 2002); 

 𝑑𝑋
𝑑𝑡

= 𝑓 (𝑋,𝑈, 𝑡) (3.36) 

In the above equation 𝑋 is the state of the plant and U denotes vector of inputs. If the 

plant is at some initial state of 𝑋 = 𝑋𝑂 and with initial input 𝑈 = 𝑈𝑂 and if there is 

small change in both state and input i.e. 𝑋 = 𝑋𝑂 + 𝑥 and 𝑈 = 𝑈𝑂 + 𝑢 and assuming 

both 𝑥 and 𝑢 are very small then; 

 𝑑𝑋
𝑑𝑡

= 𝑓 (𝑋𝑂 + 𝑥,𝑈𝑂 + 𝑢, 𝑡) (3.37) 

The above equation can be written as  

 𝑑𝑋
𝑑𝑡

≈ 𝑓 (𝑋𝑂,𝑈𝑂 , 𝑡) +
𝜕𝑓
𝜕𝑋

│(𝑋𝑂,𝑈𝑂,𝑡) 𝑥

+
𝜕𝑓
𝜕𝑈

│(𝑋𝑂,𝑈𝑂,𝑡) 𝑢 

(3.38) 

In the equation 3.51 higher terms of x and u are neglected. The terms 𝜕𝑓
𝜕𝑋
│(XO,UO,t) 

and 𝜕𝑓
𝜕𝑈
│(XO,UO,t) denote the Jacobian matrices and are matrices of partial derivatives. 

These Jacobian matrices can be denoted by 𝐴𝑐 and 𝐵𝑐 respectively. As 𝑋 = 𝑋𝑂 + 𝑥 

and 𝑋𝑂  is a value of 𝑋, therefore 𝑑𝑋
𝑑𝑡

= 𝑑𝑥
𝑑𝑡

 and the linearized model of the plant will be; 
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 𝑑𝑥
𝑑𝑡

≈ 𝐴𝑐𝑥 + 𝐵𝑐𝑢 + 𝑓 (𝑋𝑂,𝑈𝑂 , 𝑡) (3.39) 

And if (𝑋𝑂,𝑈𝑂) is an equilibrium point then 𝑓 (𝑋,𝑈, 𝑡) will be zero and the linear state-

space model of the system will be (Maciejowski, 2002); 

 𝑑𝑥
𝑑𝑡

= 𝐴𝑐𝑥 + 𝐵𝑐𝑢 (3.40) 

This is a continuous linear time invariant (LTI) state-space model. The linmod 

function of the MATLAB software is used to obtain a linearized model of the non-

linear system. Both inputs and outputs are specified in the Simulink. To obtain the 

matrix A of the system model, the input is set to a specified value and the states x of 

the system are perturbed about the operating point. For the matrices B,C and D the 

states are set to the operating points and the inputs u are perturbed. The following 

operating points are considered to find out the linearized model of the system; 

[𝑢1  𝑢2  𝑢3  𝑢4  𝑢5  𝑢6]  =  [0.20  0.03  0.12  1  0.10  0.20]  
 

[𝑢7  𝑢8  𝑢9  𝑢10  𝑢11  𝑢12]  =  [5  2  0.1  0.1  0.1  0] 
whereas 

𝑢1,𝑢2,𝑢3,𝑢4,𝑢5  and 𝑢6 are the electrical energy input, inner valve, diverter, solar pump 

input, fan coil in bedroom and fan coil unit in living room input respectively. The 

inputs u7 to u12 denote the disturbances of the system; 𝑢7  is the outside 

environmental temperature, 𝑢8  is the water consumption in l/h, 𝑢9  is the solar 

radiations in kW/m2, 𝑢10 is the energy gain in bedroom, the energy gain in living 

room is denoted by 𝑢11 and 𝑢12 is a spare disturbance for future use to reduce the 

time of modelling future distance if there is any. The system's linearised continuous-

time state-space model is given in the Appendix B and has 22 states. The linear 

model was obtained by using a first principles non-linear model of the plant except 

for the heat pump where an appropriate model has been found that gives a good 

match with the manufacturer's data.  

3.10  Model verification 
The Simulink model is verified by initially using constant input values to find the 

response of the system (Figure  3-17). The system was simulated for 5 days until the 

outputs became stable. The system was then modelled by introducing a step input 

signal of the heat pump on  day 9 and as expected the tank 1 (buffer tank) 
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temperature started to increase as it is directly connected to the heat pump, and also  

the other tank and room air temperature started to rise (Figure  3-18). This test was 

applied with different settings by using some inputs to zero and changing others. The 

system model behaved as was expected and the energy was contained within the 

system. 

 

Figure  3-17: Constant inputs response of the model 
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Figure  3-18: Step input response of the model 

3.11  Summary 
The goal of this chapter was to develop a suitable model of a solar system combined 

with an air source heat pump and also a model of a two-zoned building. The building 

model that has been developed in this chapter is a lumped model and the layers of 

wall, roofs etc are considered as lumps. The heat pump model also shows good 

agreement with the manufacturer's data available for coefficient of performance.  The 

system model is verified by using some step inputs and it was made sure that the 

model behaves accordingly. The model was linearized at operating points of the 

system.  It can be concluded that the model developed in this chapter is simple, 

accurate enough to be used for testing of different control strategies, and is also 

computationally efficient.   
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Chapter 4 Control Strategies    
4.1 Introduction 
This chapter focuses on the control strategies for a solar heating system combined 

with a heat pump. The aim is to test different control strategies for the indoor heating 

and hot water system that reduce energy consumption and make effective use of 

solar radiation when available. Three control strategies are investigated and applied 

to a solar heating and hot water system combined with an air source heat pump. 

Their performance is evaluated based on the results of computer simulations. Each 

controller is initially applied to a solar system combined with a heat pump connected 

to a single tank. Two basic tests are carried out for this plant i.e. with and without 

disturbance (solar radiation). Later on four climatic cases are simulated for the solar 

system combined with a heat pump. The performance of these controllers for 

different disturbances is investigated.  

4.2 Control Objectives 
There are two control objectives of the control problem. The first objective is to 

minimize the energy cost for heating and hot water. This can be achieved by using 

night-time electric tariffs which are cheaper as compared to daytime tariffs, and also 

by maximizing the use of available solar energy. Buildings use a considerable 

amount of energy and unfortunately the peak demand of building energy 

consumption occurs during the daytime, which makes the electricity consumption at 

the peak time higher than the average consumption level. This means that the power 

generation capacity has to be at least equal to the peak demand. The most effective 

way to tackle this problem is to store energy during the off-peak period and use it 

during the peak period which is known as load shifting. The second control objective 

is to provide better thermal comfort to the occupants of the building. To achieve 

these room air temperatures has to be maintained at a set point. 

4.3 Scenarios 
To compare the effectiveness of the MPC controller to alternative control schemes, 

several scenarios are simulated. The weather data used for the simulations is for the 

city of London. The normalized domestic hot water consumption data is taken from 

Defra, 2008, as shown in Figure  4-1. The water consumption was monitored in 
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different houses in the UK and the values given are normalized values. The building 

used in this research is smaller than an average UK house but the reason of using 

this data is that it is used to benchmark different controllers. Lower electricity price is 

considered during the night time for 7 hours from midnight to 7am (the Economy 7 

(E7) tariff promises 7 hours of cheap electricity, but it does not specify exactly when 

these are).  

 

Figure  4-1: Water consumption in l/hr for 3 Days 

The water consumption, solar radiations and outside environmental temperature are 

considered as disturbances. This means the predicted changes can be used for 

accurate predictions within the model predictive controller. The electricity price is 

considered a time-varying weight, which again is known in advance.  

The simulation strategy is shown in Figure  4-2. Four different weather conditions 

were simulated and were combined with three control strategies: on-off, PI and MPC. 

In case A, the simulations were performed by considering one cold day in the middle 

of two medium temperature days. Case B was simulated with one sunny day in 

between two days having medium solar radiations. In case C the middle was taken 

as a hot day and for case D the middle day was a cloudy day.  
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Figure  4-2: Simulation strategy 

Three control strategies were evaluated i.e. on-off, PI and model predictive 

controllers to deal with the control objectives discussed above. 

4.4 On-Off controller 
The on-off controller is the simplest type of controller. The controllable device (the 

heat pump in this case) is turned on and off according to the sign of some tank 

temperature error as given by following equation; 

 𝑒𝑟 = 𝑇𝑟 − 𝑇𝑇 (4.1) 

Where, 𝑒𝑟  is the error between reference temperature ( 𝑇𝑟 ) and current tank 

temperature (𝑇𝑇). The controller output is either on or off with no medium controller 

state. An element of hysteresis can be introduced to avoid rapid switching of the 

controller. The main advantage of the on-off controller is that it is a simple controller 

and easy to implement. It is a feedback controller, it is typically very robust and it 

does not contain any information about the plant dynamics.  

 Initial testing 4.4.1
Before implementing any control strategy to the system under study, a simple 

system is considered to understand the behaviour of the system while using different 

control strategies. The simple system consists of a heat pump and a tank. Solar 

radiations are taken as a disturbance in this system. The results obtained by 

controlling this simple plant with an on-off controller are shown in Figure  4-3. The 

controller was implemented by using a relay block in Simulink. In order to prevent 
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frequent 'on-off' of the heat pump, a hysteresis of 2oC was also included in the 

controller operation. It will allow for a certainly small error to develop before the 

controller switches the heat pump on or off. While this leads to an oscillation of the 

temperature within a band around the set point, it can significantly reduce losses and 

wear related to frequent switching of the heat pump. 

The set point temperature of the tank was set at 55oC but at the beginning of the 

simulation the tank temperature was set at 60oC. Figure  4-3 illustrates that the 

controller was turning the heat pump on and off in a set pattern when there was no 

disturbance in the system i.e. no solar radiation input. The switch on and off points 

are ±2oC below and above the set point temperature. The controller was able to turn 

on the heat pump when the temperature became 53oC and was turning it off when 

the temperature was 57oC. The temperature drop was due to the heat loss from the 

tank to the outside environment. The energy cost with this controller to maintain the 

tank temperature at 55oC was £2.206 for 3 days.   

The second simulation was performed by introducing solar radiation (kW) as 

disturbance as shown in Figure  4-4. The heat pump was turned ON at 12:00 due to 

the tank temperature (output) reaching switch-on point. This also happened at 

around 23:00 and 29:30. The occurrence of strong solar radiation on day 2 increased 

the tank temperature to 72oC. The controller did not switch ON the heat pump after 

31:30 because after that time the tank temperature did not hit the switch ON point. 

This case resulted in a lower energy cost of £0.3775 for all 3 days due to the use of 

free solar energy.  
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Figure  4-3: Simple plant on-off control without disturbance 

 

Figure  4-4: Simple plant on-off control with disturbance 
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Below are the results obtained for four cases by applying on-off controller to the solar 

heating system combined with heat pump. For all simulation cases, the solar 

collector pump is switched on only when the solar radiations are of 0.1kW or more. 

 Case A 4.4.2
The case A simulations for an on-off controller are presented in Figure  4-5 and 

Figure  4-6. From the control results plot (Figure  4-6) it is observed that the on-off 

controller took about 12 hours to bring the hall temperature to the set point 

temperature of 22oC. The air temperature in the bedroom took about 3 hours to 

reach to the desired set point temperature (18oC). The longer time taken by the hall 

air was caused by the higher heat loss due to the presence of a window. A higher 

heating tank temperature could be set to shorten the heating up period. 

As discussed earlier the on-off controller operates between the switch-on and switch-

off points. The switch on and off points for tank temperatures were -2oC and +2oC 

respectively to that of the set point temperature and for room air temperatures they 

were -1oC to +1oC respectively. In the figures T1, T2 and T3 represents buffer tank, 

hot water tank and heating tank temperatures respectively. Figure  4-6 depicts the 

temperatures fluctuating between the upper and lower limit of the temperature 

tolerance. The heat pump was used throughout the day without taking the night 

tariffs into account. The heat pump was switched ON whenever it was required (drop 

in tank temperatures) which means the controller does not forecast and only 

performs the control action on the current control variable values.  The tank 2 

temperature (T2 Temp) changed less frequently as compared to T1 and T3 

temperatures because of the lower demand for hot water during specific hours. After 

24 to 31 hours the T2 temperature dropped very slowly because the water 

consumption during these hours was small as shown in Figure  4-1, and again during 

the period from 36 to 40 hours etc.  
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Figure  4-5: On-Off controller inputs and disturbances (Case A) 

 

Figure  4-6: On-Off control results (Case A) 

 Case B 4.4.3
The simulation results with a sunny day in between 2 medium solar radiation days 

are shown in Figure  4-7 and Figure  4-8. The heat pump was repeatedly switched ON 

and OFF at the beginning of the simulation because of the drop in room air 

temperatures. There was an increase in the tank 2 temperature from the hour 34:00 

until 44:00 because of the availability of the solar radiation. The controller did not 

predict any solar radiation disturbance, and so the temperature in tank 2 reached a 

maximum of 55oC due to solar input. The solar radiation also caused an increase in 

bedroom and hall air temperatures. The bedroom air temperature continuously 

increased and remained above the upper switch ON limit because of the lower heat 

loss due to the absence of a window. The heat pump was switched ON less 

frequently during day 2 (30:00 to 44:00) because of the lesser energy demand. The 
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only energy demand during these hours was for hot water and there was sufficient 

solar radiation available to cope with the heating demand of the system.  

 

Figure  4-7: On-Off controller inputs and disturbances (Case B) 

 

Figure  4-8: On-Off control results (Case B) 

 Case C  4.4.4
The results for case C are shown in Figure  4-9 and Figure  4-10. The heat pump was 

switched ON and OFF repeatedly throughout the simulation. The frequency of its 

turning ON decreased during days 2 and 3 because of the availability of the solar 

energy and hence reduced electrical energy requirement. There was an increase in 

tank 3 temperature (T3 Temp) from 30:00 to 44:00 due to it being a hot day. An 

increase in room temperatures was also noticed due to energy gain through walls, 

roofs, and window. From 25:00 onwards the bedroom air temperature did not come 

back to its set point temperature of 18oC because it takes much longer to lose 

energy through the fabric as compared to the window (in the case of the hall).  
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Figure  4-9: On-Off controller inputs and disturbances (Case C) 

 

Figure  4-10:On-Off control results (Case C) 

 Case D 4.4.5
In Case D the heat pump (as in previous cases) used more energy at the beginning 

of the simulation to bring the room temperatures to the required set points. During 

the cloudy day there was not enough radiation to heat the water, however the 

ambient temperature was high with a maximum value of 18oC at 41:00. This high 

temperature on day 2, resulted in an increase of the bedroom's air temperature from 

25:00 hr. The time lag can also be seen in Figure  4-12: it took a long time for the 

bedroom air temperature to increase following a rise in the outside temperature.  In 
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contrast, the hall air temperature increased when there was an increase in solar 

radiation (e.g. at 38:00).  

 

Figure  4-11:On-Off controller inputs and disturbances (Case D) 

 

Figure  4-12: On-Off control results (Case D) 
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4.5 Proportional Integral controller 
According to Haines, 1988, the most commonly used controller for a heating system 

is the proportional integral (PI) controller. A PI controller is one of the most reliable 

control strategies but it requires more careful parameter selection to obtain optimum 

performance. The choice of PI control parameters depends very much on the system 

dynamics. The controller used here is a discrete-time PI controller and its output is 

given by the following transfer function in time domain; 

 
𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖 � 𝑒(𝑡)𝑑𝑡

𝑡

0
 

(4.2) 

In the above equation 𝑘𝑝 and 𝑘𝑖 are the proportional and integral gains respectively. 

The two gain values are the tuneable parameters and need careful adjustment for 

the controller to give a good performance and a stable response. The PI controller 

calculates an 'error' value as the difference between a measured output and a 

desired set point. Mathematically the error can be written as; 

 𝑒 = 𝑇𝑟 − 𝑇𝑖 (4.3) 

in which 𝑒  is the control error, 𝑇𝑟  is the reference temperature (the required 

temperature of the hot water tank) and 𝑇𝑖 is the current temperature of the hot water 

tank.  

In PI control, there are times when the controller experiences large control error due 

to the system limits, and this can cause the integral part of the controller to 

accumulate a very large value, causing a long settling time. This can occur for 

example if the water tanks are required to heat up during the night to store energy 

and use it during the day. This means that at the beginning of the night the control 

error will be large and the controller will operate at maximum power for a significant 

period of time to bring the error back to zero. During this period, the integral term of 

the controller continues to integrate and this will cause the controller to overshoot. 

Due to the integral term, the valve will still be fully opened even when the hot water 

tank temperature has reached its reference value. This changes the sign of the error, 

and it will eventually de-accumulate the integral term but it may take a long time to 

settle. This problem is known as integral windup and a number of anti-windup 

mechanisms are available to avoid this from happening (Hwi-Beom et al., 2012).  
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The anti-windup mechanism used in this work is known as the clamping method. In 

this method the controller stops the integrations when the sum of the control block 

components (in Simulink) is more than the output limits and the integrator output and 

controller block input have same signs. The integrator component of the PI control 

resumes integration when the sum of the control block components (in Simulink) is 

more than the output limits and the integrator output and controller block input have 

opposite signs. The advantage of this scheme is that it is very simple, it reliably 

prevents windup, and it does not impact on the nominal operation and convergence 

(MathWorks, 2013). 

 

Figure  4-13: Clamping circuit (MathWorks, 2013) 

The clamping circuit in the above figure determines whether to continue the 

integration or not. A saturation block is also included in the PI controller to control 

signal output values. As all inputs of the system have an operating range of 0 to 1, 

this is implemented by using a saturation block. The saturation block will limit any 

controller output to this range. It is not strictly necessary to include it in the controller, 

since the limit is usually applied by the plant, but it is helpful in this case to identify if 

the limit has been reached. This is achieved by comparing the limited with the 

unlimited output – any deviation is indicative of an active limit, and this is used to 

stop integration. 

The Forward Euler method, also known as the Forward rectangular or left hand 

approximation is used as an integrator method to find the output of the integrator. 

This method is used when the sampling time is small e.g. 60 seconds. For large 

sampling times this method can result in an instability of the system. In Simulink a 

continuous time block is used and this method is one of the methods available for 
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continuous blocks. The resulting output of the integrator block is given by the 

following equation using the Forward Euler method (Ascher et al., 1998); 

 𝑦(𝑛) = 𝑦(𝑛 − 1) + 𝐾 × 𝑇 × 𝑢(𝑛 − 1) (4.4) 

Where,  𝑦(𝑛) is the output at given step 𝑛, 𝑢 is the input, 𝑇 is the integrator sampling 

time and 𝐾 is the gain. A time of 60 seconds was selected as the sampling time for 

the PI controller. This is a very short time step compared to the dynamics of the 

system, which means that the integration error should be negligible. 

The simple system was controlled by using a PI controller with and without 

disturbances. The results are shown in Figure  4-14. The PI controller without 

disturbance performed very well and the minimum temperature for the tank was 

54.1oC, which is very close to the reference temperature of 55oC. The energy cost 

was £3.2837 for three days. In Figure  4-15 a simulation was performed by including 

solar radiation as disturbance and using a PI controller to control the tank 

temperature. The heat pump was used during the first and third days. There was no 

electrical energy consumed during the second day due to the availability of the solar 

energy. In Figure  4-15, the heat pump remained switched OFF until the tank 

temperature reached 53oC at 57:00, after which the heat pump was switched ON by 

the PI controller to raise the temperature of the tank. In Figure  4-15, the tank had a 

maximum temperature of 69oC at 45:00. The energy cost for this simulation was 

found to be £1.2876 for 3 days.  
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Figure  4-14: Simple plant PI control without disturbance 

 

Figure  4-15: Simple plant PI control with disturbance 
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 Case A 4.5.1
In simulations of case A using a PI controller, the heat pump was used continuously 

throughout the simulation period (Figure  4-16). From 12:00 to 18:00 and 55:00 to 

68:00 it used very little electrical energy. The PI controller had not predicted any 

energy gain in the system because of the solar energy input. Still, because it is a 

feedback controller, after receiving current values of tank temperatures, it reduces 

the heat pump setting to the minimal amount of electrical energy required to maintain 

the right temperature. So the controlled variables remained nearly constant at their 

desired set point for most of the time. The hall air temperature took 9 hours to reach 

the desired set point temperatures, and the bedroom takes approximately 3 hours. 

There were some changes in the tank temperatures because of the high solar 

energy input i.e. 12:00 to 17:00 and 62:00 to 66:00.  

 

Figure  4-16: PI controller inputs and disturbances (Case A) 
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Figure  4-17: PI control results (Case A) 

 Case B 4.5.2
For the sunny day scenario (case B), the PI controller used less electrical energy 

during the daytime. Initially the heat pump used more energy because of the initial 

temperature drop of hall and bedroom air temperatures. The heat pump used less 

energy during the sunny day 30:00 to 44:00 not because the PI controller had 

predicted a sunny day, but in response to the increased tank temperatures. This 

trend can also be seen from 61:00 to 66:00. There was an increase in T3 

temperature from 36:00 to 44:00 and 62:00 to 66:00 because of the availability of 

high solar energy. The air temperatures of the rooms (Figure  4-19) remained 

approximately constant from 09:00 (hall air temperature) and 03:00 (bedroom air 

temperature) until 36:00. At 36:00 there was an increase in the air temperatures 

because of the solar gain. 
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Figure  4-18: PI controller inputs and disturbances (Case B) 

 

Figure  4-19: PI control results (Case B) 

 Case C 4.5.3
The PI controller made the heat pump use more energy at the beginning of the 

simulation in order to bring up the room air temperatures to their set-point 

temperatures. The heat pump used less energy between 12:00 to 15:00 but it started 

to use more energy after that due to the drop in the tank temperature until 19:00. At 

32:00, the temperature of tank 3 (T3) increased because of the solar radiations and it 

caused the heat pump to run at lower settings. At 56:00, the drop in the temperature 

of tank 2 made the heat pump signal to increase. As the temperature neared the set 

point, the control began to increase the input signal in order to stabilize the 

temperature without solar energy. The bedroom and hall air took 3 and 9 hours 

respectively to reach the desired set point temperature and remained constant until 

the high solar gain pushed them above the set point. The hall air temperature 
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became steady again at 50:00 but the bedroom temperature did not come back to 

the set point temperature because of the high thermal inertia (lower energy loss).   

 

Figure  4-20: PI controller inputs and disturbances (Case C) 

 

Figure  4-21: PI control results (Case C) 

 Case D 4.5.4
The case D results for the PI controller are shown in Figure  4-22 and Figure  4-23. 

The control results show that the outputs were kept by the PI controller at the 

required set point temperatures for most of the time. The temperature of tank 3 

increased at 12:00, 38:00 and 62:00 due to increase in the solar radiation. At these 

hours the heat pump consumption also dropped and the heat pump was operating at 
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lower settings. A small change in bedroom air temperature was also noticed because 

of the heat gain through the fabric.  

 

 

Figure  4-22: PI controller inputs and disturbances (Case D) 

 

Figure  4-23: PI control results (Case D) 

4.6 Comparison of On-Off and PI controllers 
Both the on-off and PI controllers performed well and were able to maintain the 

temperatures close to their set points. The on-off controller was operating between 

switch ON and OFF points and this made the temperatures fluctuate between switch 

ON and OFF values. Throughout the scenarios, the PI controller operated the heat 

pump at lower settings and tried to minimize the control error. Both these controllers 

did not use night-time cheaper tariffs and also load shifting was not observed at 
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night-time. The on-off controller does not need tuning and is very easy to implement. 

In contrast, the PI controller needs tuning of its parameters. Both controllers have a 

slow response time and took approximately 12 hours to bring the hall air temperature 

to its set point. In the coming section, to overcome the shortcomings of these two 

controllers, an advanced control strategy is implemented.  

4.7 MPC Structure 
The basic structure of the model predictive controller (MPC) is shown in Figure  4-24. 

The model gets data from past inputs and past outputs and combines this data with 

potential future inputs to simulate how the system will respond. The model then 

delivers predicted outputs for the future time step. This predicted output is compared 

with a reference trajectory to determine the deviation of the systems. These future 

errors are then fed into an optimizer, which tries to minimize the operating cost 

function. In order to satisfy constraints on outputs, inputs and states of the system, 

the optimizer tries different sequences of future inputs, which are fed back into the 

main model for evaluation. 

Once the optimization has converged, and the best sequence of control inputs has 

been found, the first step of these is applied to the real system. At the next time step, 

the process is repeated using the new measurement. This leads to what is known as 

“receding horizon optimization”.  

 

Figure  4-24: Basic structure of MPC (Source Camacho et al., 2004) 
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 MPC Strategy 4.7.1

 

Figure  4-25: MPC strategy (Source Camacho et al., 2004) 

Step 1 

The future control signals are optimized to minimize an objective function. The 

objective function aims to keep the outputs as close as possible to the reference 

trajectory. This optimization is performed using backwards simulation. 

Step 2 

The model predicts the future outputs for a known prediction horizon N at each time 

step 𝑡  using forward simulation. These predicted outputs depend on past inputs, 

system state, and (initial) future control signals and disturbances.  

Step 3 

The limits of the system are checked, and if they are violated, changes are applied to 

make sure that they are satisfied. Several different optimization strategies exist for 

this step, but they all require some amount of iteration between the continuous 
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optimization of the control inputs and the discrete optimization of the limits at each 

time step. This step is the main reason that a long time horizon (and especially a 

long control horizon) can make the MPC problem very difficult to solve, because the 

limits have to be considered at each time step and therefore the total number of 

limits is much higher than first it seems.  

Step 4 

Once the solution is found, the first step of the control input is sent to the process. All 

further steps are discarded, because at the next sampling instant 𝑦(𝑡 + 1) is already 

known, the prediction horizon can be increased, and a more accurate control input 

can be calculated by repeating from step 1. 

 Cost function 4.7.2
The ability of the MPC control approach to define a detailed objective function makes 

this control strategy one of the most flexible advanced control strategies. The model 

predictive control makes use of a model of the system to obtain the control signal by 

minimizing this objective function. The aim of the objective function is to make sure 

that future output values should follow a reference signal reasonably closely, and 

that this is achieved with a minimal control effort. The objective function of a model 

predictive controller typically has the following structure; 

 
𝐽(𝑘) = � 𝑄(𝑖)�𝑦(𝑘 + 𝑖|𝑘) − 𝑦𝑟(𝑘 + 𝑖|𝑘)�

2
𝑁2

𝑖=𝑁1

+ �𝑅∆𝑢(𝑘)�𝛥𝑢(𝑘 + 𝑖|𝑘)�
2

𝑁𝑢

𝑖=1

+ �𝑅𝑢(𝑘)(𝑢(𝑘 + 𝑖|𝑘) − 𝑢�)2
𝑁𝑢

𝑖=1

 

(4.5) 

In the above equation 𝑁1 and 𝑁2 are the minimum and maximum cost horizons and 

𝑁𝑢 is the control horizon. The coefficients 𝑄, 𝑅∆𝑢 and 𝑅𝑢 are the weights for output, 

input change rate and input respectively; these are the main tuning parameters. 

These parameters are adjusted to get satisfactory dynamic performance of the 

system. It is worth noting that 𝑄, 𝑅∆𝑢 and 𝑅𝑢 can change over time, and this is used 

to reflect the impact of changing energy prices.    
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The two purposes of the cost function are; 

Target behaviour: The cost function can be used to specify a preference on 

behaviours e.g. in this case minimum energy or thermal comfort level of the 

occupants.   

Stability: The cost function is used to stabilize the system. The quadratic structure is 

selected as it forms a Lyapunov function for the closed loop system and hence will 

tend to increase the stability of the system. However, due to the finite cost horizon, 

stability cannot be guaranteed under all circumstance. This is not an issue in this 

application, because the system is already stable. 

 Constraints 4.7.3
Model predictive control has the ability to include constraints in the MPC formulation. 

The optimization part of the MPC strategy handles these constraints directly and this 

is one of the key strengths of MPC. MPC constraints can be physical limitations, for 

instance valves cannot be operated at more than 100%, or temperature limits on the 

tank temperatures. The constraints can also be time varying constraints e.g. the 

temperature and thermal comfort level in the hall during day and night will be 

different. The constraints can be on the inputs, the input change rate, the outputs or 

states. The constraints used in this work are linear constraints and can be given by 

the following kind of equation; 

 𝑢𝑚𝑖𝑛,𝑘  ≤ 𝑢𝑘 ≤ 𝑢𝑚𝑎𝑥,𝑘 (4.6) 

Linear constraints are the most commonly used constraints, because they are 

comparatively easy to resolve. Still, introducing constraints into the MPC problem 

can make the optimization problem considerably more complex to solve. The system 

has the following constraints on tank temperature; 

Table  4-1: Tank temperature limits 

Output Lower Limit Upper Limit 

Buffer tank temperature 40oC 70oC 

Hot tank temperature 40oC 65oC 

Heating tank temperature 30oC 65oC 

 



 

85 
 

 System Definition 4.7.4
Figure  4-26 shows the basic control scheme for the current research. The energy 

price, occupancy prediction and weather prediction are the time varying external 

conditions. Together with the temperature measurements, these form the inputs to 

the controller. The plant model, system constraints, cost function and objective 

function are defined as the parts of the MPC controller. For every time step these 

parameters are combined and converted into an optimization problem, which then 

determines the output for the next time step. In the simulations the model predictive 

controller is using a current value as predicted value and it assumes no change in 

environmental conditions. 

 

Figure  4-26: Model predictive controller scheme 

Initially, the simple plant was simulated by using a sampling time of 900 seconds, 

control horizon of 48 steps (12hr) and a prediction horizon of 96 steps (24hr). The 

simulation took a significant amount of computation time despite the fact that a very 

simple model was used. The number of steps in the horizon was identified as the key 

problem. Therefore, the time step was increased to 3600sec, which leads to a 

prediction horizon of only 24 steps. Cigler et al., 2012 addressed the important issue 

of prediction horizon length. It was found that the longer prediction horizon resulted 

in longer computational time.  
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A comparison of the results in Figure  4-27 with Figure  4-30 does not show any 

strong differences. The energy cost of the smaller time step was £1.586 whereas for 

3600sec sampling time the cost was £1.5541 for three days. There was very small 

difference in the evaluation of the cost function which means that the longer 

sampling time was adequate. It has to be mentioned that the smaller time step will 

respond faster to changes in the system variables, and limits will be applied to more 

time steps, whereas the longer time step means that limits are only enforced every 

hour. This can be seen in the following results: in the case of the 900sec sampling 

time the tank lower limit did not go below 40oC whereas for the 3600sec time the 

tank temperature became 39oC for a short period. This effect was exacerbated by 

modelling errors, mainly due to the linearization of the plant model because the 

controller does not adjust the settings until the next sampling time.  

Overall, the differences between both simulation results were very small, and energy 

use was also nearly the same.  Therefore to speed up the simulation a sampling time 

of 3600sec (1hr) was selected for all MPC simulations. The house and the tank 

system showed predominantly slow dynamics and this fact also supported the use of 

the larger time step.  

 

Figure  4-27: MPC without disturbance and sampling time 900, horizon 1=48, horizon 2=96 
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The results in Figure  4-28 show the effect of increasing the state weight. In previous 

simulations a weight on 1 × 10−8 was selected for the tank temperature, but in this 

case it was increased to 1. As can be noticed the heat pump was initially switched 

OFF until the temperature became 50oC, after that the heat pump was switched ON 

and the temperature was kept very close to the set point of 55oC. From 17:00 the 

heat pump remained switched ON to a setting of 0.45 in order to maintain the tank 

temperature.  

One objective for this system was to use night-time electricity by shifting the heating 

load to the night period. Increasing the weight on the tank temperature prevented 

this effect from happening, because the necessary deviations in tank temperature 

would lead to a penalty that is much higher than the reduced electricity cost. 

Consequently, the electricity cost increased from £1.50 (in case of 1 × 10−8 weight) 

to £3.2765 (for weight=1). It was decided that a low weight of 1 × 10−8 was more 

beneficial, and this was used for all further simulations. 

 

Figure  4-28: MPC without disturbance and sampling time 3600, horizon 1=24, horizon 2=24, weight on 
tank 1=1 
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 Plant Dynamics 4.7.5
The system model is the most important part of the simulation, since the 

performance of the model predictive controller depends on the accuracy on the 

model of the plant. The modelling of the whole system was carried out in Simulink 

and a linearized plant model was used for the controller as previously discussed (see 

section 3.9). 

As discussed in previous sections, the control horizon is an important optimization 

parameter. Figure  4-29 shows the heat pump signal for the solar heating system 

combined with a heat pump, for two different control horizons (12 hours and 24 

hours) while keeping the prediction horizon as 24 hours. The results with a 24 hour 

control horizon were clearly superior, and this was for two reasons. Firstly, the longer 

control horizon can take into account the slower dynamics of the system (such as 

thermal energy stored in the walls), and it can give a better indication of future cost. 

Secondly, the electricity tariff changes on a daily rhythm, and only the 24 hour 

horizon allows the planning of the load shifting for the full day ahead. The overall 

energy cost reduction achieved by the longer control horizon was 0.5788% for a 

simulation of three days. Due to this benefit, the 24 hour control horizon was chosen 

for further studies.  

 

Figure  4-29: Heat pump signal at different control horizons 

The MPC control simulation results for a simple plant are shown in Figure  4-30 and 

Figure  4-31. This case was simulated by using a sampling time of 3600 seconds, a 

control horizon of 24 steps and a prediction horizon of 24 steps. The result for the 
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disturbance free case show that the heat pump did not use any electrical energy until 

the tank temperature dipped just below the lower limit. The tank temperature range 

was set at 40oC to 70oC. The weight on the tank temperature was set at 1 × 10−8 , 

which is very small weight, which means that the limits will dominate the behaviour. 

The temperature breached the lower limit by a small value (1oC), which was a 

consequence both of the penalization of limit violation and model inaccuracies. The 

tank temperature was maintained at approx. 39.5oC until the night-time tariff period 

came in and the controller used the maximum electrical energy to store the heat 

energy in the tank. The simulation results of the simple plant with disturbance show 

that the controller used the heat pump only when the temperature became less than 

the lower limit (40oC). The heat pump remained switched OFF before and after that 

period as the tank temperature did not fall below the lower limit. The energy cost for 

three days for the without disturbance case was £1.50 and for the disturbance case, 

as the controller used solar energy, the cost decreased to £0.0324. 

 

Figure  4-30: MPC simple plant results without disturbance 
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Figure  4-31: MPC simple plant results with disturbance 

The simulation results obtained for different simulation scenarios by using MPC are 

discussed in the following sections. In all simulation cases the solar pump was 

turned ON when the solar radiation was more than 0.1kW, as this is the approximate 

threshold for a positive energy gain. 

 Case A 4.7.6
The simulation of case A was performed by considering a cold day in between two 

medium temperature days as shown in Figure  4-33. The medium day had maximum 

radiations of 0.6kW and the cold day had a maximum of 0.2kW of radiations as 

shown in the Figure  4-32. The initial temperatures of tank 1, tank 2, tank 3, bedroom 

air and hall air were set at 55oC, 50oC, 40oC, 18oC and 22oC respectively. The 

bedroom air and hall air temperatures dropped initially because at the beginning of 

the simulation the wall layer temperatures were all set to 0oC, causing the rooms to 

cool down initially. The model predictive controller took approximately 3 hours to 

bring the room air temperatures to the set point temperature of 18oC in the bedroom 

and 22oC in the hall as shown in Figure  4-33. The heat pump signals are shown in 
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Figure  4-32 and it is evident that the heat pump used more energy at the beginning 

of the simulation because this was necessary to heat up the walls, and to take the 

benefit of the night time cheap electricity. The tank temperatures started to drop after 

the cheap electricity hours were finished. The heat pump used very little electrical 

energy during the day, as it was used only at low settings. The heat pump used more 

cheaper electrical energy during the night time between 25:00 to 30:00 and 48:00 to 

51:00. The heat pump usage during the day was limited, and it was restricted to 

times when it was required i.e. during the low radiation days. This can be seen 

during the second day and third day. The heat pump used little energy during the 

third day between 54:00 to 68:00, it was even switched off for few hours during that 

day. On the other hand during the second day the heat pump consumed more 

energy because of the low solar radiation. The heat pump also remained switched 

OFF during the night time between 50:00 to 55:00 because the tank temperature 

reached its maximum limits and MPC forced the heat pump to be switched OFF in 

order to stay within the temperature limit constraint.  

One of the objectives is to reduce energy cost via load shifting by storing heat 

energy generated during the night time, which can then be used during the day time 

when electricity is more expensive. This was evident during the time 24:00 to 30:00 

and from 48:00 to 52:00, during these hours the MPC stored the energy in the tanks, 

which was then used during the day time. The last peak in the graph of 'T1 Temp' 

and 'T2 Temp' was because the tank temperatures dropped below the lower limits. 

Therefore, MPC used maximum energy to heat up the tanks. The room air 

temperatures were maintained close to the required set points of 18oC and 22oC in 

the bedroom and hall respectively. Any deviations were caused by modelling 

inaccuracies, which cannot be completely compensated with the long time period of 

3600s. 
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Figure  4-32: Model predictive controller inputs and disturbances (Case A) 

 

Figure  4-33: MPC control results (Case A) 
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 Case B 4.7.7
This simulation was performed by considering a sunny day (with high radiation 

intensity) in between two medium radiation intensity days. The heat pump signal 

shown in Figure  4-34 shows that initially it used more energy to heat up the rooms 

(night time tariffs). During 7:00 to 24:00 it used little electrical energy. During night 

time between 24:00 to 31:00, although the night time tariffs were in to action, the 

heat pump used again little electrical energy because the model predictive controller 

can anticipate the effect of the strong radiation day that was coming up. There was 

no need to store heat energy in the tanks, and in fact it was better to keep them cool 

in order to create capacity for the solar energy. From 31:00 to 32:00 the heat pump 

was switched OFF and was used at low settings during the rest of the day. During 

the third night i.e. 48:00 to 55:00 the heat pump was again used at low settings 

because of the prediction of the future available solar energy, and it remained 

switched OFF from 56:00 to 59:00. 

 The control results are given in Figure  4-35, the figure shows that the tanks were 

initially charged with energy resulting in their temperature rise because of the energy 

demand in the rooms. The bedroom and hall air temperatures initially dropped 

because of the initialization of the wall layers at 0oC. After 18:00 the tank 

temperatures become nearly constant until 36:00. At 36:00 a rise in the tank 3 

temperature was noticed because of the solar energy. As the solar collectors were 

connected to tank 3 only, therefore a rise of temperature in that tank was noticed. 

The room air temperatures remained constant except during the sunny day, where 

there was an increase in the air temperature above set point. 

There are a few interesting differences in the details. It would be expected that the 

MPC controller would use the prediction of the weather to proactively cool the rooms 

just before the high solar input, but this does not seem to be happening. Only a small 

difference is noticeable in the bedroom, but it is not very pronounced. Secondly, it 

would be physically possible to circulate the hot water from the heating tank back 

into the buffer tank and from there into the hot water tank. the MPC did not achieve 

this because the linear model did not account for the reverse heat flow. So this is an 

interesting opportunity to enhance the controller in order to manage further energy 

savings.
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Figure  4-34: Model predictive controller inputs and disturbances (Case B) 

 

Figure  4-35: MPC control results (Case B) 

 Case C 4.7.8
Figure  4-36 and Figure  4-37 show the simulation results of the model predictive 

controller for case C. The high energy consumption of the heat pump at the 

beginning of the simulation was required to meet the energy demand. The time 

between 24:00 to 31:00 has a cheaper night tariffs, but due to the prediction of a 

strong radiation day the heat pump was only used at lower settings. This happened 

again during the night-time tariff period 48:00 to 55:00. The heat pump was only 

used to heat up the hot water tank, which is necessary because it is the only heat 

source for tank 2. The tank 3 temperature reached a maximum of 48oC during the 

second day because of the availability of solar energy. During the second day, the 
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rise in the hall air temperature was quicker than the bedroom air temperature 

because of the presence of the window. The bedroom was better shielded from the 

solar input, and this caused the long delay before the observed increase in air 

temperature there. 

 

Figure  4-36: Model predictive controller inputs and disturbances (Case C) 

 

Figure  4-37: MPC control results (Case C) 

  Case D 4.7.9
The case D simulation results are shown in Figure  4-38 and Figure  4-39. The heat 

pump was again used heavily at the beginning of the simulation. From 18:00 the 

controller kept the tank temperatures to the lower limits. The controller did not use 

night time electricity to heat up the tanks as in the previous cold case. The reason is 

that although there was no solar radiation during the day 2, it did have a high air 

temperature. In the knowledge of a high temperature day, the controller predicted 

that the energy demand would be low and therefore the controller did not use the 
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night-time electricity to store the heat energy. At 58:00 the controller made the heat 

pump run at full capacity because the tank temperatures reached their lower limit. 

During the next time step the tank temperatures decreased below the lower limit. At 

that point the controller decided to turn the heat pump ON to raise the tank 

temperatures again. It would have been more efficient to use night time electricity a 

few hours earlier.  

 

Figure  4-38: Model predictive controller inputs and disturbances (Case D) 

 

Figure  4-39: MPC control results (Case D) 
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night-time electricity to bring the room air and tank temperatures to their set points. 

There was a further rise in MPC energy cost during the night time e.g. during 24:00 

to 30:00. This means that the MPC was doing the load shifting. Whereas, for 

conventional control strategies the cost increased throughout the simulation time. 

The conventional control tried to maintain the temperatures close to set point 

temperatures with no effort to use night-time electricity or perform load shifting. The 

overall cost of the MPC for three days was lower than the other two controllers. A 

similar trend could be seen for the integrated heat pump signal. The model predictive 

controller used more heat pump signal during the night time. The MPC also used HP 

during the day 2 due to less availability of solar energy. The overall energy 

consumption of MPC was more than the other two controllers, however by using 

more of the heat pump for heating purposes meant that the energy had been 

decarbonised. The use of a heat pump is considered as one of the lowest carbon 

heating options available. The energy cost, heat energy and energy consumption for 

the three controllers (discussed) is given in Table A-1. The MPC had more energy 

consumption for three days of simulation than other two controllers but it had lower 

energy costs. 

 

Figure  4-40: Integrated cost 
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Figure  4-41: Integrated HP signal 

The hall air temperature shows that MPC took less time to bring the hall air 

temperature close to the set point. The MPC responded quickly to the heat loss 

through the window, which is a large disturbance in the hall area. 

Figure  4-42 shows that for case A, the MPC used more night time electricity than the 

PI and on-off controllers. The MPC energy cost was 12.24% less than the PI 

controller and 8.92% less than the on-off controller.  

 

Figure  4-42: Energy price in £ for case A 
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4.9 Summary 
In this chapter, three different control strategies (On-Off, PI and model predictive 

control) have been developed and implemented on a solar heating system combined 

with a heat pump. Both a very simple model and the full model with four weather 

scenarios were simulated for each controller. Simulation results for a simple plant 

showed that the model predictive control was able to handle the disturbance 

(radiations) very well and was using night time electricity in the absence of radiations.  

For the solar system combined with a heat pump, 4 different environmental 

conditions were simulated. Irrespective of disturbances, the PI and On-Off controllers 

always tried to maintain the set point temperature, whereas the MPC utilized the 

freedom of a range of tank temperatures to reduce electricity cost by using night time 

electricity where appropriate. Overall, the MPC used the heat pump at lower settings 

during the day time, but at higher settings during the night. The load was shifted to 

off peak time and energy was stored in the water tanks, which was then used during 

the peak load time. This led to a slightly lower energy cost, but also slightly higher 

overall energy consumption. The model predictive controller also dealt very well in 

terms of integrating predictions of external variables (disturbances).  

The use of a linear model led to a manageable computational time, as long as the 

control horizon was reasonably short. A control horizon of 10 was solved in seconds, 

a 24 control horizon was still feasible, but more than 40 steps were making the 

simulations very slow on a powerful computer (causing it to become slower than real 

time). The computation time also increased when system limits were relevant 

compared to situations where all states were clear of the limits.  
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Chapter 5 Thermal comfort based 
control 

5.1 Introduction 
The present chapter investigates the problem of designing and simulating a model 

predictive controller that is based on perceived thermal comfort. The predicted mean 

vote (PMV) and percentage people dissatisfied (PPD) modelling is covered in this 

chapter. The model predictive controller is compared with a conventional controller 

(PI) and it is extended to control for PMV. Two cases for each controller are 

simulated in which the room air temperature and predicted mean vote (PMV) are 

used as control variable.  

Generally, thermal comfort in buildings is evaluated by using the indoor operative 

and mean radiant temperatures (ISO7730, 2005). In simple words the operative 

temperature is the average temperature of the air and the mean radiant temperature 

is the weighted mean temperature of the surrounding surfaces (ASHRAE, 2005). In 

this research only these two temperatures are considered as changing parameters 

and the 4 parameters (indoor air velocity, indoor air humidity, clo value and 

metabolic rate) are assumed as constant. Values of 0, 0.1m/sec and 1628mbar were 

considered for work, indoor air velocity and vapour pressure respectively. The 

metabolic rate and clo values for occupants in the hall and bedroom are given in 

Table  5-1. The occupants in the bedroom were assumed to be wearing sleepwear 

with a sweater and socks on and it was assumed that one occupant was sleeping 

while the other was seated quietly. In the hall, one occupant was considered as 

resting (reclining) and the other as seated quietly.  

Table  5-1: Met and clo values (Sources: CIBSE guide A and ASHRAE standard 55-2004) 

  

Hall Bedroom 
Occupant 

1 
Occupant 

2 
Occupant 

1 
Occupant 

2 
Metabolic rate 
(Met) 0.8 1.1 0.7 1 
Clo Value (Clo) 1 1 1.38 1.38 
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The equation for PMV was found by using the MATLAB script. The script was run 

and it was found out what indoor and radiation temperatures resulted in a PMV close 

to zero e.g. for the occupant 1 in bedroom, for both the temperatures equal to 18oC, 

the PMV was 0.0111. This PMV was minimum that was obtained for all same 

combinations of temperatures. By keeping radiation temperature fixed at minimum 

PMV temperature the indoor air temperature was varied to find out the PMV curve 

for air temperature. The same procedure for repeated for PMV curve for radiation 

temperature. For occupant 1 in bedroom both the equations are; 

For indoor air temperature; 

 𝑦 = 0.1147𝑥 − 2.0587 (5.1) 

For radiation temperature; 

 𝑦 = 0.1067𝑥 − 1.9034 (5.2) 

In the above two equations, y is the PMV and x is the temperature. The same 

method was used to evaluate PMV equations for other occupants in hall and 

bedroom. The plot for the hall occupant is shown in Figure  5-2 and for other 

occupants in the Figure A-2 and Figure A-3 in Appendix A. 

 

Figure  5-1: PMV plot for bedroom occupant 1 
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Figure  5-2: PMV plot for hall occupant 1 

Fanger, 1970 also introduced another term known as predicted percentage 

dissatisfied (PPD) to determine the number of potential complainers in a thermal 

environment in which human are exposed. PPD is given by the following equation; 

 𝑃𝑃𝐷 = 100 − 95exp −(0.03353.𝑃𝑀𝑉4

− 0.2179.𝑃𝑀𝑉2) 

(5.3) 

This equation was plotted against PMV as shown in Figure  5-3. As it was assumed 

that most of the thermal parameters were in the thermal comfort range i.e. the 

velocity, humidity etc, it was decided to plot the PPD until 50% as there was less 

chance of having 100%PPD with the mentioned assumptions. The curve is 

asymmetric so the polynomial reduced to 𝑦 = 20.647𝑥2. In this equation y is the PPD 

and x is the PMV. This factor of 20.647 was used as the weighting factor in the 

model predictive controller on heater input signals to control PMV of the rooms. The 

PPD is more than 0 as it is not possible to satisfy everybody at the same time.  
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Figure  5-3: PMV vs PPD 

5.2 Control Objectives 
The objectives of this control problem are to use cheap night-time electricity tariffs to 

store heat energy in the tanks, to optimize the heat pump operation and provide 

better thermal comfort environment to the occupants during the occupied period. The 

other criterion to select better control strategy is the energy cost during the 3 days of 

the simulation time. In order to run the simulation an assumption of uniform air 

temperature in the bedroom and hall was made; 

Two simulation cases were performed by using PI and model predictive controllers; 

the first one was based on temperature control while the second case was 

performed by using occupant's PMV as controlled variable. The schematic layouts of 

temperature and PMV based control are shown in Figure  5-4 and Figure  5-5 

respectively. In temperature based control room air temperature was used for control 

purposes and an error was calculated by subtracting the current air temperature from 

the set point temperature values and this error was then fed into the controller. In 

PMV based controller a PMV model was used to calculate the thermal sensation of 

the occupants and then used for controlling the indoor thermal environment. In 

chapter 4, the room air temperatures were maintained to their set points throughout 

the simulation. In this chapter occupancy patterns were introduced in the hall and 

bedroom areas. The hall has occupancy between 14:00 to 21:00 while bedroom has 

occupancy between 22:00 to 8:00.  
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Figure  5-4: Temperature based control layout 

 

Figure  5-5:PMV based control schematic layout 

5.3 Conventional comfort based control 
In order to identify a reference performance for a comfort based control strategy, a 

conventional approach was first developed. The conventional control strategy was 

based on a proportional-plus-integral (PI) controller. The weather data used for the 

simulations was a cold day in between two partly overcast days.  

 Temperature based PI control 5.3.1
The first case simulation results are shown in Figure  5-6 and Figure  5-7. At the 

beginning of the simulation the heat pump remained switched OFF due to the higher 

tank temperatures. External environmental conditions (temperature and solar 

radiation), internal heat gains and occupancy patterns acted as disturbances. At 

each time step the PI controller compared current room temperature with the 

reference temperature and the resulting error is applied to the controller. Reference 

set points of 18oC and 22oC were used for the bedroom and hall air temperatures. 

During unoccupied period a temperature of 13oC was used as reference temperature. 
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The tank temperatures in Figure  5-6 remained almost constant after 9am of day 1. 

Some small drops can be seen in tank temperatures and then the heat pump signal 

was increased by the controller to maintain it to the reference value. Figure  5-7(a) 

shows that the controller was able to maintain the air temperatures to their set points 

during the occupancy period. There was a stronger drop in the hall temperature 

during the unoccupied period as compared to the bedroom temperature because of 

the presence of the window. The heat loss was more in the hall than in the bedroom.. 

The hall temperature on the afternoon of day 2 took time to reach the reference 

temperature because of the low radiations and higher losses in the hall. The PI did 

not use night time electricity to get benefit of night time cheaper electric tariffs and to 

store energy. Overall the PI controller performed well in terms of keeping the 

temperatures to the desired values.  

 

Figure  5-6: Control inputs and tank temperatures 
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Figure  5-7: Room temperatures and PMV 

 PMV based PI control 5.3.2
In this simulation case the controller took current PMV value and compared it with a 

reference PMV value to calculate an error. A reference PMV value of 0 was used 

during the occupied period whereas for the unoccupied period it was taken as -3. In 

Figure  5-8(a) the tank temperatures for PMV based PI controller remained same as 

they were in the previous case. However there are some irregularities in the room 

temperature and PMV values. As there were losses through the window and also the 

system had complex dynamics, therefore it looked hard for PI controller to maintain a 

constant PMV value of 0. The controller after getting the error tried to bring it to zero 

by switching On or Off the room heater, which directly changed the temperature of 

the room and this resulted in change in radiation temperature. Although there were 

irregularities in the PMV results in Figure  5-9(b), still the PMV of the rooms were in 

the acceptable range of ±0.5. 
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Figure  5-8: Control inputs and tank temperatures 

 

Figure  5-9: Room temperatures and PMV 
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5.4  Model predictive comfort based control: 
 A model predictive control developed for the system which was based on controlling 

room temperature in first case and then on a PMV basis is discussed in following 

sections. The architecture of a thermal comfort based MPC is shown in Figure  5-10.  

 

Figure  5-10: Model predictive control system architecture for thermal comfort case 

The selection of MPC tuning parameters is crucial for the better operation of the 

controller.  Below the focus is on the selection of weights on tank temperatures, 

weight on input change rate and control horizon. 

  Selection of tank weights and input rate weight  5.4.1
To obtain the objectives mentioned previously, reasonable weights have to be 

selected for outputs and rate of change of inputs. One part of the cost function is to 

minimize the weighted sum of the controller adjustments to the inputs, according to 

following equation; 
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𝑆∆𝑢(𝑘) = �𝑅∆𝑢(𝑘)�𝛥𝑢(𝑘 + 𝑖|𝑘)�

2
𝑁𝑢

𝑖=1

 
(5.4) 

Where 𝑁𝑢  is the control horizon, 𝛥𝑢(𝑘 + 𝑖|𝑘)  is the predicted adjustment in the 

manipulated variable and 𝑅∆𝑢(𝑘) is the weight of that adjustment (rate of change of 

input) also known as the rate weight. The rate weight penalizes the incremental 

change rather than the collective value. Increasing the rate weight means that the 

controller will make more cautious and smaller adjustments or moves. Figure  5-11 

shows results of hall PMV for different 𝛥𝑢 weights. It can be seen that during the 

occupied period all three weights performed similarly but during the unoccupied 

period the behaviour was different. The weights on output (PMV) changed with time 

and were more during the occupied than the unoccupied period. A weight of 0 on 𝛥𝑢 

showed that the controller was not making cautious moves. This resulted in a 

sluggish behaviour as shown in the PMV results e.g. during 11:00 of day 1 and the 

early hours of day 3. A larger weight of 0.1 made the controller to be more careful 

and that is the reason why the PMV during the unoccupied period could only reach -

2 approx. at 3am on day 2. A weight of 0.03 shows promising results, the PMV was 

reduced more than the other two weights during the unoccupied period. A lower 

value of PMV during the unoccupied periods means that the heating was switched 

OFF during those times and therefore saving more energy. This is also evident from 

the hall heater plot (Figure  5-12), the results of weight of 0.03 shows less use of 

energy. On the basis of these results a weight of 0.03 was selected for hall and 

bedroom heating inputs.  

 

Figure  5-11: PMV results for different hall 𝜟𝒖 weight simulations 
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Figure  5-12: Hall heater input for different hall 𝜟𝒖 weight simulations 

The MPC also minimizes the weighted sum of manipulated variable deviation from 

its nominal value, according to the following equation; 

 
𝑆𝑢(𝑘) = �𝑅𝑢(𝑘)(𝑢(𝑘 + 𝑖|𝑘) − 𝑢�)2

𝑁𝑢

𝑖=1

 
(5.5) 

In the above equation 𝑅𝑢(𝑘) is the input weight and 𝑢� is the nominal value of the 

input. In all simulation cases a weight of 1 for heat pump input and a penalty of 0 

was selected for other inputs. In the case when a sustained disturbance or set point 

change occurs, the manipulated variable must deviate for such a situation and a 

weight of 0 is selected. A non-zero weight forces the input back towards its nominal 

value. This was desirable in the case of the heat pump situation so that the heat 

pump performs according to the model presented in Chapter 3.  

A penalty (weight) on outputs shows the accuracy with which each output must track 

its set point. The controller predicts the deviations of each output from its set point 

over the prediction horizon.  

 
𝑆𝑦(𝑘) = � 𝑄(𝑖)�𝑦(𝑘 + 𝑖|𝑘) − 𝑦𝑟(𝑘 + 𝑖|𝑘)�

2
𝑁2

𝑖=𝑁1

 

 

(5.6) 

Where 𝑁1 and 𝑁2 are the minimum and maximum cost horizons, 𝑦𝑟 is the reference 

for output and 𝑄 is the weight on the output. One of the objectives of the controller 

was to store heat energy during the night-time and to use it during the daytime. A 
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larger weight on tank means that the controller will always keep the tank 

temperatures to set point temperatures and will minimize equation 5.22. This would 

not result in the storing of heat energy during the night and the controller will use 

more energy during the day as well to maintain the tank temperatures. In order to 

store heat during the night-time, two small weights were applied and suitable weight 

was selected based on the use of night-time electricity and low energy cost. The 

maximum use of night-time electricity will mean that the controller will store energy 

during the night. Figure  5-13 shows that a weight of 9 × 10−4 forced the heat pump 

to use more night-time electricity than 1 × 10−8  weight. The heat pump was also 

used more during the day time (higher electricity tariffs) with a weight of 1 × 10−8 

resulting in a high energy cost. The Figure  5-14 shows the buffer tank temperature at 

different tank temperature weights. The buffer tank temperatures are plotted 

because it was directly connected to the heat pump. The controller with a weight of 

9 × 10−4 increased the tank temperature during the night and on the second night 

the temperature reached to a value of 58oC; whereas the lower weight did not store 

a considerable amount of energy during the night-time. The lower weight also made 

the controller use the heat pump during the day which was not desirable. Based on 

these criteria a weight of 9 × 10−4 was selected as the weight on tank temperatures.  

 

Figure  5-13: Heat pump signal for different tank temperature weights 
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Figure  5-14: Buffer tank temperature for different tank temperature weights 

  Selection of sampling time 5.4.2
The selection of the control horizon is another important factor in the MPC 

formulation. The system was simulated with a sampling time of 900 seconds and 

also with a 3600 seconds sampling time. The lower sampling time took a significant 

amount of computational time and the whole 3 day simulation took about 24 hours. 

By increasing the sampling time the key problem of computational time was solved 

and the simulation time was reduced to approximately 15 minutes. The other reason 

for selecting the large sampling time was that it did take into account the slower 

dynamics of the system and gave a better indication of the future. The smaller time 

steps (900sec) mean that the variable limits will be applied to more time steps, which 

makes the simulation process to slow down. Figure  5-15 shows that the simulation 

by considering larger control steps used more heat pump during the night. 

Figure  5-16 shows the buffer tank temperature for two scenarios. The smaller time 

step simulation used more energy as compared to the larger time step simulation. 

The lower time steps controller stored more energy during the night-time. However, it 

also used more electrical energy during the daytime, as the heat pump was used 

more during the daytime as well because the controller was checking for limits more 

frequently and whenever these were violated it turned on the heat pump. The energy 

cost for larger control steps was £ 3.1175, whereas for the other case it was £2.922. 

There was a small difference in the price and the only difference was because of 

more energy usage during the daytime.  
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Figure  5-15: Heat pump input signal for 900 and 3600 sec sampling time 

 

Figure  5-16: Buffer tank temperature for 900 and 3600 sec sampling time 
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5.5  Results 

  Temperature based control 5.5.1
In the first simulation, MPC was applied to control the room air temperature. The 

room air temperature had a weight of 1 during the occupied period and a weight of 0 

during the unoccupied period. The PMV values had a weight of 0 throughout the 

simulation period. This means that the model predictive controller will make more 

effort to keep the room air temperature to its set point during the occupied period. 

The heat pump signal shown in Figure  5-17(a) shows that the controller used night-

time lower electricity tariffs to store the heat energy in the tanks. The rise in tank 

temperature during the night can be seen in the Figure  5-17(b). At the beginning of 

the simulation the tank 1 and tank 2 temperatures became lower than their lower 

limit of 40oC; this is because this time was considered to be the settling time for the 

controller. Figure  5-18(a) indicates that the controller maintained the bedroom air 

temperature to 18oC and the hall temperature to 22oC during the occupied period. 

There was a rise in the hall temperature during the night before day 3. This time was 

the unoccupied period for the hall and this rise in the air temperature was because 

the controller used night-time electricity tariffs to rise the hall temperature. The PMV 

values were not equal to zero during the occupied period but were in the acceptable 

range of ±0.5. 
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Figure  5-17: Control inputs and tank temperatures 

 

Figure  5-18: Room temperatures and PMV 
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  PMV based control 5.5.2
The second case scenario was simulated by using PMV as the controllable outputs 

and having no penalty on room air temperatures. The PMV value had a weight of 

20.64 as discussed in 5.7, which was chosen to make it comparable to the weights 

on room air temperature used in previous section. The controller used more night-

time electricity and stored heat energy in the tanks (Figure  5-19). There was an 

increase in the heat pump signal at 15:00 of day 2 because the tank 3 temperature 

was about to violate the lower limit. So the controller decided to increase the tank 

temperature by using the heat pump as it was a cloudy day and having little solar 

radiation. The bedroom PMV (Figure  5-20b) remained very close to 0 throughout the 

simulation. As the hall has a window, and therefore heat losses made it more 

challengeable to control thermal comfort of the hall area, the controller (still) kept the 

hall PMV close to zero during occupancy. The rise in the PMV during the third night 

was because the controller used night-time electricity tariffs to increase the hall PMV 

and stored energy in the fabric. 

 

Figure  5-19: Control inputs and tank temperatures 
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Figure  5-20:Room temperatures and PMV 

 

Figure  5-21: Energy price in £ 

5.6   Summary 
In this chapter, two control strategies were developed for the space heating of a two 

zone building. Two scenarios were simulated for each strategy; a temperature based 

and a PMV based. In the PMV scenario, the comfort sensation of the occupants was 

quantified by a predicted mean vote and was considered as the control variable. Air 

00 06 12 18 24 06 12 18 24 06 12 18 24
0

5

10

15

20

25

Day 1 Day 2 Day 3Time (hr) (a)

Te
m

pe
ra

tu
re

s 
( °

C
)

Room Temp and Radiation Temp

 

 
Bed Temp
Hall Temp
Rad Bed
Rad Hall
Bed occu
Hall occu

00 06 12 18 24 06 12 18 24 06 12 18 24
-3

-2

-1

0

1

2

3

Day 1 Day 2 Day 3Time (hr) (b)

P
M

V

PMV and Occupancy period

 

 

PMV bed
PMV hall
Bed occu
Hall occu



 

118 
 

radiation and air temperatures were used to calculate the predicted mean vote and 

the remaining four parameters were considered as constant.  

Figure  5-21 shows the energy price for both the controllers and for both scenarios. 

The MPC has used less energy than the PI controller in both simulation cases. The 

control strategy based on PMV used more energy for slightly better comfort. The 

MPC used night-time electricity to store heat energy in the tanks. The MPC also 

increased the hall temperature during the night-time to get the benefit of cheap 

electricity and heat up the hall air. Both the control strategies satisfied the objective 

of maintaining a better thermal comfort environment during the occupied period.   
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Chapter 6 Investigation of Model 
and Objective function Mismatches 

6.1 Introduction 
This chapter focuses on the unexpected results obtained in chapter 5, especially on 

the situations where the MPC controller did not perform quite as well as expected. 

The first part of this chapter addresses the issue of model mismatch – the fact that 

the model used for MPC is different from reality or from the simulation model. The 

aim is to establish how significant this model mismatch is for the performance of the 

controller. The second part of the chapter explores the formulation of the objective 

function, and whether it should be more closely aligned with the energy consumption 

measure. NSGA II, a multi-criteria optimization algorithm, is used to study the 

difference in performance between a linear and quadratic cost function (objective 

function mismatch). 

6.2 Linear model and nonlinear model predictive control 
The model predictive controller solves an online optimization problem by relying on a 

model to identify optimal process inputs. At each time step, the optimization control 

algorithm attempts to determine the plant dynamics by finding a sequence of control 

inputs which satisfy the control specifications. The first step of control inputs is 

applied to the plant and the whole process is repeated for the next control interval.  

A model can never accurately represent reality in all its details. Even the simulation 

model is an abstraction of reality, although it is expected to reflect the key behaviour 

with reasonable accuracy. The MPC approach used in this thesis is based on a 

linearized model derived from this simulation model. The linearized model cannot 

represent non-linear effects, such as the effect of temperature differences on the 

effectiveness on the water pumps, or the performance characteristics of the heat 

pump. This means that the MPC controller cannot take into account these factors.  

One possible solution to this problem is to use a nonlinear plant model, however the 

disadvantage of using a nonlinear model is that then the optimization problem is no 

longer convex (having one global minimum). The loss of convexity is a serious issue 

for online applications since it requires much more involved algorithms to find a 
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solution, and much longer computation times. It is therefore not considered suitable 

for practical applications, and even in the laboratory it would require an expert in 

non-linear optimization methods to implement (Camacho et al., 2004).  

The approach used here to analyse the effect of model mismatch is shown in Figure 

6.2. The top block diagram shows the application of the MPC controller with a linear 

model to the non-linear simulation model, which gives rise to the model mismatch. 

The easy solution is to use the existing MPC controller, but instead of applying it to 

the non-linear simulation model, it is applied to the very same linearized model as 

shown in Figure 6.1. This removes the non-linear effects completely from the 

simulation, and therefore eliminates the issue of model mismatch (Figure 6.2b).  

Figure  6-3 shows the results of a linear plant model in the MPC controller when 

applied to a non-linear simulation model. This approach suffers from the model 

mismatch shown in Figure  6-2(a). The control results (Figure  6-3) show that the 

model predictive controller has used night-time electricity and also tried to raise the 

tank temperatures during the night-time to store heat energy (as discussed 

previously in Chapters 4 and 5). The problem under investigation here is to find the 

effect of mismatch between the model used in MPC and the model used in the 

simulation. 

In contrast, a simulation is performed which uses the same linearized model as used 

in the MPC. As shown in Figure  6-2(b), this approach has no mismatch. The 

simulation results in Figure  6-4 are the result of a linear simulation model and there 

is no mismatch between the MPC model and simulation. These results are much 

smoother, they have no sign of non-linear effects, and the controller makes much 

better use of night-time electricity, increasing the tank temperatures to their upper 

limits. It could be said that this simulation represents a perfect scenario of 

maximizing load shifting to minimize energy cost. However, it has to be remembered 

that this simulation is using a severely simplified model, so the controller is not 

actually solving the same problem as before. It is conceivable that load shifting is 

easier in a linear system than it is in the complex non-linear heating system studied 

here. On the other hand the results do show that the non-linear effects are a 

significant problem for the MPC controller.  
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Figure  6-1: Linear plant model schematic 

 

Figure  6-2: Different model setup schematics 
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Figure  6-3: Model predictive control results with non-linear model 

 

Figure  6-4: : Model predictive control results with linear model 
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The results given in Figure  6-5 and Figure  6-6 show the thermal comfort based 

control results. In Figure  6-5, during the night before day 2 the controller does not 

increase the hall temperature to get benefit from night-time electric tariffs. This is 

another result which occurs due to the non-linearities in the system. The linear MPC 

simulation using a linear model (Figure  6-6) shows that the control does heat up the 

hall air temperature on night 2. The other thing that has to be noted is that in 

Figure  6-6 PMV and room air temperatures are very smooth as compared to the 

results in Figure  6-5. The reduced control performance achieved there is again a 

result of the model mismatch due to non-linearites. 

 

Figure  6-5: PMV and room air temperature results for non-linear model 
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Figure  6-6: PMV and room air temperature results for linear model 

Due to the use of a linear model, the MPC cannot anticipate non-linear effects, as 

they are not contained in the model. The evidence above demonstrates that these 

effects are significant, as the simulation with the linear model gives smoother and 

better results. The most important non-linear effects are the effectiveness of the 

COP of the heat pump due to changes in the tank temperature and the heat transfer 

depending on temperature difference.  

The hall and bedroom air temperature predictions as generated by the MPC are 

plotted in Figure  6-7 for the linear simulation. Initially, the prediction graphs are very 

scattered due to the initial settling of the system and the controller. The plot also 

shows that the controller will always try to use the night-time electricity, and it stores 

some of the energy in the hall. The predicted temperatures during the occupied 

period converge strongly towards the set point, but they show much more variation 

during unoccupied periods. The reason is that the controller has a weight (penalty) 

during the occupied period whereas the penalty during the unoccupied period is zero 

and the controller has no incentive to maintain a certain temperature. Compared with 

Figure  6-8, which contains the predictions resulting from the non-linear simulation 
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model, there are clear differences. Due to the model mismatch the controller is not 

able to predict the future behaviour accurately. This means that predictions are not 

realized as accurately, and they have to be changed a lot more to adjust to the 

simulation model. Even during the occupancy period the temperature predictions are 

not fully converged and this is a clear sign of model mismatch. 

 

Figure  6-7: Predictions of hall air and bedroom air temperatures for linear simulation model case 
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Figure  6-8: Predictions of hall air and bedroom air temperatures for non-linear simulation model case 

6.3 Genetic Algorithms 
To analyse the objective function mismatch further and with better comparability, a 

further method is investigated and was applied to the non-linear model. This problem 

cannot be solved using a quadratic programming algorithm as used by MPC, and 

instead a genetic algorithm known as a non-dominated sorting genetic algorithm 

(NSGA-II) is applied to the system.  

Genetic algorithms (GA) were introduced by John Holland in 1970, and they are 

based on the principle of evaluation modelled after the mechanics of Darwin's natural 

selection theory. Genetic algorithms are used as optimization tools. Unlike other 

approaches, genetic algorithms do not provide one exact solution, but a collection of 

approximate solutions, which are known as a population. This method is applied to 

find the best global solution to the optimization problem. Each feasible solution in the 

population is called an individual and is encoded by a binary string called 

chromosomes. The population in each iteration is called a generation. The fitness of 

any individual in a generation is measured by the objective function and the objective 

function gives an idea of how individuals have performed in the given problem 

domain (Caldas et al., 2003).  
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A genetic algorithm has three stages that are applied to each generation and 

solution: reproduction, crossover and mutation. These operators control the next 

generation to give a closer approximation of the optimal solution. The probability of 

an individual for reproduction depends on its fitness value. A crossover operator is 

used for taking two solutions (parents) and creating a new individual (child solution). 

Mutation is used to maintain genetic diversity from one generation to the next. It 

involves randomly changing gene values in a solution to look for a better solution in 

the solution space (Caldas et al., 2003). 

Genetic Algorithms are initiated by a starting population which often consists of 

random solutions for a given problem, evaluates them and applies the above 

mentioned genetic operators. This process generates a new generation with a higher 

level of fitness than the previous generation. This cycle is repeated for a number of 

generations which are set by the user. The number of generations depends on the 

complexity of the problem (Sahu et al., 2012). The GA's operation and its basic 

operators are shown in Figure  6-9. In recent years elaborate versions of these 

operators are available but the basic idea remains the same. 

 

Figure  6-9: Basic GA operation and its operators Source: Sahu et al., 2012 

A multi-objective GA is applied here to the problem to find an optimal solution for the 

problem. Below the focus is on the NSGA II description and its application to the 

control problem.  

 NSGA II 6.3.1
NSGA II is applied to find the best global solution to the optimization problem. NSGA 

II is used for multi-objective optimization problems and the control problem here has 
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two objectives to meet i.e. energy consumption and thermal comfort. The key stage 

of NSGA II is the selection process, which takes into account more than one 

objective function. Also it finds the optimal solution over a pareto curve to find a 

compromise between the objectives. For these reasons NSGA II is more feasible for 

this problem. The NSGA II was first developed by Deb et al., 2002.  

 

Figure  6-10: NSGA-II procedure (Source: Deb et al., 2002) 

The procedure NSGA II uses to find population generation 𝑃𝑡+1 from 𝑃𝑡 is shown in 

Figure  6-10. Initially, a combined population of parents and offsprings (by 

recombination and mutation) is formed (𝑅𝑡 = 𝑃𝑡 + 𝑄𝑡 ). The size of 𝑅𝑡  is equal to 

𝑃𝑡 ∪ 𝑄𝑡 and is of size 2𝑁. The population 𝑅𝑡 is sorted based on non-domination. The 

elitism is ensured by including all the previous and current populations in the 𝑅𝑡. The 

resulting solution F1 is the best among all other solutions and is emphasized more 

than any other solution in the combined population. If the resulting solution F1 has a 

size smaller than 𝑁, then for next population 𝑃𝑡+1, all members of F1 are selected 

and the remaining members are selected from the subsequent non-dominated fronts 

in the order of their rankings. The sorting of the last solution which is to be 

accommodated e.g. F3 in above is done by using the crowded-comparison operator. 

The crowding distance is measured as the distance of the biggest cuboid containing 

the two solutions, which are neighbours to each other of the same non-dominating 

front in the objective space. The solution with higher crowding distance is selected 

for the next solution. The next step is to apply crossover and mutation to generate an 
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offspring solution. The new generated population 𝑃𝑡+1  is now used for selection, 

crossover and mutation to create a new generation.  

For this current problem by using the system model, the deviations in temperatures 

and energy cost are determined. A pareto curve for NSGA II is shown in Figure  6-11. 

NSGA II tool gives a well spread out result on the pareto curve. A penalty is imposed 

on the cost outputs, in this case penalties of 0.1 and 1 are used for tank 

temperatures and room air temperature respectively. After the calculation of all 

objective functions of all strings, the solutions are classified into various non-

dominated fronts. The crowded tournament selection operator is used to compare 

two solutions and return the winner of the tournament according to two 

characteristics: a non-dominated front in the population and a local crowding 

distance. The first attribute makes sure that the chosen solution lies on a better local 

crowding distance whereas, the second attribute ensures a better spread among the 

solution (Deb et al., 2002).   

 

Figure  6-11: NSGA II pareto curve 

6.4 Quadratic vs Linear Objective Function  
NSGA-II also offers the opportunity to study a wider range of objective functions. The 

objective function used in this thesis is a quadratic one, because the solution 

algorithm depends on quadratic programming. The objective function of the 

quadratic programming is given in 
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(6.1) 

 where 𝑁1 and 𝑁2 are the minimum and maximum cost horizons and 𝑁𝑢 is the control 

horizon. The 𝑄 and 𝑅 are the weights for outputs and inputs respectively. The terms 

in the objective  �𝑢(𝑘 + 𝑖|𝑘)�
2
 is the energy cost and �𝑦(𝑘 + 𝑖|𝑘) − 𝑦𝑟(𝑘 + 𝑖|𝑘)�

2
 is 

the thermal comfort. An alternative version of the MPC problem uses a linear 

objective function. The linear objective function is much more efficient than the 

quadratic function. The objective function for linear programming is now 
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+ �𝑅(𝑘)|𝑢(𝑘 + 𝑖|𝑘)|
𝑁𝑢

𝑖=1

 

(6.2) 

In the above objective function, the absolute values of the output error and the 

absolute values of the control increments are taken instead of their square values. 

The behaviour of both the objective functions is illustrated in Figure  6-12. This figure 

shows a problem with two decision variables 𝑥1 and 𝑥2 and the thick lines show the 

linear inequality constraints with the feasible solution being the interior of the region 

bounded by these lines. The dashed lines are the constant cost contours. For the 

linear objective function problem the cost increases as one moves upwards in the 

figure, whereas for quadratic case the cost increases as one moves out of the centre 

of the ellipse. The optimal solution for the linear objective function problems always 

lies on at least one constraint; it is expected to lie on the intersection of two 

constraints as shown in the figure. For the quadratic objective function problem the 

optimal solution behaves differently. The optimal solution is on one of the constraints. 

In a situation when the centre of the ellipse lies within the feasible solution then the 

optimal solution will not be on any constraints, rather it will be in the centre of ellipse. 

(Maciejowski, 2002). 
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Figure  6-12: Constraints and cost contours for linear objective function (left) and quadratic objective 
function (right) problems. Source Maciejowski, J. 2002 

 

The method used to solve linear objective function problems is called linear 

programming (LP) whereas for quadratic function problems the method used is 

known as quadratic programming (QP). The one reason for using the linear objective 

is that it can be solved more quickly than the quadratic objective function and there is 

more experience in solving linear objective problems both in commercial and 

industrial environments. However, with the advancement in computers and software, 

the importance of this reason is decreasing rapidly (Maciejowski, 2002). The use of 

the linear objective function for load function is feasible as it will give more load 

shifting during the night-time, but for thermal comfort it will give more temperature 

deviations which is not a requirement of the given control problem. The larger 

deviations in room air temperature are undesirable because occupants will complain 

about the indoor environment. For thermal comfort the quadratic objective is a good 

choice. This is demonstrated in Figure  6-13. 
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Figure  6-13: Linear and quadratic objective functions 

The other reason for using LP programming in predictive control is that the resulting 

behaviour of the controller is different from the QP. The LP problems always find a 

solution at the intersection of the constraints. In the case of QP problems the solution 

can be off constraints, on a single constraint and sometimes, which is very rare, it 

can be at an intersection of constraints (Maciejowski, 2002). 

Both programming methods have their own merits. In the case where it is more 

profitable to run a system with the plant at the intersection of several constraints and 

the system model is reasonably accurate, then the use of an LP method is more 

appropriate than the quadratic programming. However it is not advisable to hold the 

plant at the real constraints. There should always be some margin for unavoidable 

violation of constraints. Such constraint violations can arise due to errors in the 

model and measurement and/or unexpected disturbances. For such cases the QP 

solution will be more feasible to use. The disadvantage of LP is that it is only used 

when the system has constraints, for unconstraint problems the LP would not be 

able to find the solution and the solution can be at infinity (Maciejowski, 2002). 

MATLAB MPC tool box does not support the linear objective function whereas the 

NSGA II does support any objective function that can be implemented. The domain 

objectives are a mix of both forms – the energy cost is a linear sum of the heat pump 

use, while the PMV is reflected accurately by a quadratic measure of the 
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temperature deviation. This means a more practical objective function would be a 

combination of both:  

 

 
𝐽(𝑘) = � 𝑄(𝑖)�𝑦(𝑘 + 𝑖|𝑘) − 𝑦𝑟(𝑘 + 𝑖|𝑘)�

2
𝑁2

𝑖=𝑁1

+�𝑅(𝑘)|𝑢(𝑘 + 𝑖|𝑘)|
𝑁𝑢

𝑖=1

 

(6.2) 

A quadratic objective is used for the temperature deviations and for energy cost a 

linear weight is used. 

 Results 6.4.1
Figure  6-14 shows the results obtained by taking energy cost as the linear objective 

function. It shows that the linear cost have a pareto curve which can give the same 

temperature deviation but with less energy cost. The energy cost difference is small 

but by using the linear objective function it does help in reducing the energy cost.  

The mean temperature deviation plot is shown in Figure  6-15. This figure shows how 

much it will cost if someone decides to reduce the mean temperature deviation or 

how much it will save by increasing the temperature deviations. 

 

Figure  6-14: Feasible solution obtained after 200 generations for LP and QP 
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Figure  6-15: Mean temperature deviations and energy cost for linear and quadratic costs 

6.5 Summary 
In this chapter a comparison has been made to find out the effects of mismatch 

between the linear model and non-linear model. The simulations were performed by 

using a linear MPC applied to a non-linear system model and the same MPC to a 

linear system model. It was found out the MPC with the linear system model has 

used more night-time electricity and has also increased the tank temperatures to 

their maximum limits during the night. As all processes do contain non-linearities, the 

non-linear model performed less efficiently as compared to the linear case, but 

considering all the non-linearities this non-linear system model also performed well. 

The difference between quadratic and linear programming was also highlighted in 

this chapter by using a genetic algorithm called NSGA II. It was shown that the linear 

objective function has a slightly lower cost than the one from quadratic objective 

function. However, the QP solution was smoother than the LP solution.  
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Chapter 7 Conclusion and future 
work 

7.1 Summary and conclusions 
In the developed countries, energy consumption in buildings accounts for 20-40% of 

the final energy consumption. It has been increasing at a rate of 0.5-5% per annum. 

In 2004, the proportion of energy consumption in UK buildings was 39%, which is 

significant amount of energy (Pérez-Lombard et al., 2008). In order to reduce this 

energy consumption, the UK government is also committed to generating 15% of the 

country's energy from renewable energy. Different studies were conducted to find out 

the energy consumption cost of heat pump systems and it was found out that the 

electricity consumption price was cheaper than the conventional boiler system. The 

use of solar thermal collectors is also gaining popularity and they are used in 

combination with heat pumps. Although much of the work has been done to study 

the cost benefit of such systems, very little research has been done on the control of 

such systems. The control system is an important part of any HVAC or renewable 

energy system and is an important component of low energy buildings.  

It was found in the literature that the solar collectors alone were unable to meet the 

heating requirement of dwellings and therefore an additional energy source was 

always needed. In this research different control strategies of a solar heating system 

combined with a heat pump were studied. The heating system of a building is 

challenging to control due to variations in the outside environmental conditions and 

indoor thermal comfort demands. The aim of the study was to develop an optimal 

control strategy for the mentioned system. A building consisting of two zones was 

considered and the wall, roof and floor were modelled by considering capacitance 

and resistances. This method took into account the time-varying effect of the building. 

The heat pump was modelled by using three different methods. The first method was 

to model the heat pump by using basic thermodynamic laws. The obtained model did 

not give promising results when compared with the limited available data from the 

manufacturer. It was also concluded that the response of the system was very fast 

as compared to the other elements of the system e.g. building model. This appeared 

to slow down the simulation by forcing a short time step for the global integration 
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algorithm. The second method was to calculate the COP of the heat pump by 

considering four factors; thermal efficiency of the compressor, heat recovery of 

losses into heat, thermal coefficient on condenser side and thermal coefficient on 

evaporator side. It was found that the curve created by plotting the inverse of the 

ideal COP and the manufacturer's COP gave better results and was used as a heat 

pump model. The solar collector was modelled by using a single mathematical 

equation which is known as "Hottel-Whillier-Bliss equation".  

Two conventional control strategies (PI and on-off controllers) and model predictive 

controller were applied to the system. Four different scenarios were simulated to 

analyse how these controllers behaved under different conditions. The PI and on-off 

controllers irrespective of disturbances performed well to maintain the tank 

temperatures and room air temperatures to their required set points. However, these 

control strategies did not consider the lower night-time electricity tariffs and so did 

not store energy during the off-peak demand period. The MPC performed well and 

used night-time electricity and also stored energy into the tanks during the night and 

used it during the day. The overall energy cost of the MPC was lower than the other 

two controllers, but the total energy consumption was slightly higher. The simulations 

were performed by using a linear internal model for MPC to control a non-linear 

model of the system.  

It was also pointed out that a longer control horizon step was making the simulation 

slow down on a powerful computer. System limits also contributed to the longer time 

taken to perform a simulation scenario. This means that a longer control horizon step 

at this stage of the computing era is not feasible but in the next 10 years this could 

be possible to implement. 

Comfort affects the quality of building and it is necessary to provide comfort to 

building occupants. To provide comfort in indoor environment, it is often compulsory 

to increase energy cost. Therefore a smart control system is needed which can save 

energy cost and can also provide better indoor environment. Control strategies for 

the space heating of a building in which the thermal comfort, as quantified by 

predicted mean vote (PMV) as a control variable, were also developed. PI and model 

predictive controller were used to control the room air temperature and also PMV of 

the occupants. The model predictive controller dealt well with the disturbances and 
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was able to predict the occupancy pattern. The MPC performed smartly and heated 

the hall area during the night-time to store heat energy in the fabric even when there 

was no occupancy, by using night-time electricity.  

Most real processes would contain some form of non-linearities and effects that may 

not be captured in a model. This issue was analysed and it was found that the 

controller works much better with a linear model than with the more accurate non-

linear model. This is evident from the results in Figure  6-7 and Figure  6-8, which 

shows that the MPC was able to predict well and accurately when there was no 

mismatch between the models, and the model mismatch was clearly reducing the 

performance during the non-linear simulation model. The non-linear model is very 

close to the real system considered here, while the linear model is a significant 

simplification. In the absence of the model mismatch the MPC used more night-time 

electricity to increase the tank temperatures. 

A genetic algorithm called NSGA II was used to analyse the mismatch caused by 

using different objective functions. The linear objective function did reduce the 

energy cost of the system but the quadratic objective function gave much smoother 

results.  

The system is most suitable for residential market and the results highlight the 

importance of advanced controls for combined solar and heat pump systems in order 

for the system to operate efficiently and maintain good thermal comfort in the 

building. As the energy prices are predicted to increase significantly there is need for 

better comfort with lower energy consumption.  

In summary, the investigation of performance of Model Predictive Control, and in 

particular its application to a solar heating system combined with heat pump, led to 

two conclusions. As the model of the plant used for control purpose was a non-linear 

one it cannot be recommended to be applied by the non-control engineers due to 

complex system dynamics. Secondly, for a simple linear plant model, MPC proved to 

be a strong and effective solution. The model predictive controller was able to tackle 

all the disturbances and was also predicting the occupancy well. However, It was not 

able to use lower night-time electricity tariffs to its full potential, and this shortfall can 

be explained by the model mismatch caused by the linearization.  



 

138 
 

7.2 Limitations of the research 
Although this research work has looked into the developing and simulating model 

predictive controller and benchmarking with conventional controllers, there are some 

limitations. As discussed in headings  4.7.4,  4.7.5 and  5.4.2, the MPC used more 

computational time and using longer horizon was a serious limitation. This means 

the developed controller has to be implemented by using a powerful 

computer/hardware.  

The model used in MPC was a linearized model of the system. The linearized model 

was unable to represent the non-linear effects and therefore causing model 

mismatch. This issue was discussed in detail in heading  6.2. This linear model 

requirement did not match the heat transfer between the tanks. The error increases 

as the tank temperature deviate from the nominal values used for linearization, and 

the effect on temperature stability is exacerbated by the long cycle time of the MPC 

controller. It may be possible to reduce this issue by using energy transfer rate rather 

than mass flow rate as a control input. Alternatively, an underlying control structure 

with faster response time could limit the effect on room temperatures. The use of 

right form of objective function was another limitation of this research. It was found 

that linear objective was more suitable for energy cost than the quadratic cost. This 

limitation was addressed by using NSGA II in heading  6.4.    

7.3 Future work 
• A method to predict the future disturbances should be developed so that 

these can be used to address disturbances in real time. 

• The study investigated thermal comfort based control by considering only two 

variables to calculate the PMV of the system while keeping the other four 

factors constant. For thermal comfort control these four factors i.e. air 

humidity, occupant’s activity, clothing and room air velocity should be 

embedded into the control algorithm. 

• An improved linearization approach should be investigated. The linearization 

around a given point cannot guarantee the correct prediction of the system 

when the operating point digresses greatly. The effect was seen when the 

temperature of tank become outside the range covered by COP model. 

Therefore, the controller does not try to keep the tank temperature low unless 



 

139 
 

this goal is explicitly included in the cost function. One of the main limitations 

of MPC was found to be the use of a linear model requirement which did not 

match the heat transfer between the tanks. The error increases as the tank 

temperature deviates from the nominal values used for linearization, and the 

effect on temperature stability is exacerbated by the long cycle time of the 

MPC controller. It might be possible to reduce this issue by using energy 

transfer rate rather than mass flow rate as a control input. Alternatively, an 

underlying control structure with faster response time should be analysed that 

could limit the effect on room temperatures.  

•  It is expected that a simple model of building should have been helpful to 

reduce the time taken by the simulation and also for getting the same or even 

better results. Future work needs to be done with a simple building model with 

the wall having two material layers. 

• The MATLAB toolbox only supports the quadratic objective function, therefore 

another toolbox should be used to quantify the benefits that can be achieved 

by using linear objective functions. The other toolbox should use the linear 

objective function into the MPC algorithm. 

• A cascaded control scheme should be investigated that may give better 

control and can use the benefits of both modern controllers (MPC) and 

conventional controllers (PI). 
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Appendix A  
 

 
Figure A-1: Manufacturer's data for heat pump 
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Table A-1: Energy price, heat energy and energy consumption 

Case A 

Controllers 
Energy Price 

(£) 
Heat Energy 

(𝑘𝑊) 
Energy Consumption 

(𝑘𝑊) 
On-Off 5.469 202.6 55.86 
PI 5.676 208.4 57.26 
MPC 4.938 203.7 58.56 

Case B 

Controllers 
Energy Price 

(£) 
Heat Energy 

(𝑘𝑊) 
Energy Consumption 

(𝑘𝑊) 
On-Off  3.595 144.6 37.64 
PI 3.77 148.8 38.55 
MPC 3.391 144.4 38.89 

Case C 

Controllers 
Energy Price 

(£) 
Heat Energy 

(𝑘𝑊) 
Energy Consumption 

(𝑘𝑊) 
On-Off  3.331 134.4 34.78 
PI 3.512 139.9 36 
MPC 3.13 133.7 36.46 

Case D 

Controllers 
Energy Price 

(£) 
Heat Energy 

(𝑘𝑊) 
Energy Consumption 

(𝑘𝑊) 
On-Off  3.88 157.6 40.63 
PI 4.028 160.9 41.24 
MPC 3.872 156.7 43.05 
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Figure A-2: PMV plot for bedroom occupant 2 

 

Figure A-3: PMV plot for occupant 1 

 

Heat Pump model 1 derivation: 

From equation 3.12; 

 𝑄̇𝑜𝑢𝑡 = 𝑊̇𝐶𝑂𝑃 (A.1) 
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The energy balance gives: 

 𝑄̇𝑜𝑢𝑡 = 𝑊̇ + 𝑄̇𝑖𝑛 (A.2) 

   

 𝑄̇𝑖𝑛 = 𝑊̇(𝐶𝑂𝑃 − 1) (A.3) 

the rate of heat energy gained by the evaporator from the air cycle is given by; 

 𝑄𝑒̇ = 𝑚𝑒1̇ 𝐶𝑟(𝑇𝑒,𝑖𝑛 − 𝑇𝑒,𝑜𝑢𝑡) (A.4) 

And the thermodynamics of the evaporator are 

 𝐶𝑒𝑚𝑒𝑇̇𝑒,𝑜𝑢𝑡 = 𝑄𝑒̇ − 𝑄̇𝑖𝑛 (A.5) 

 𝐶𝑒𝑚𝑒𝑇̇𝑒,𝑜𝑢𝑡 = 𝑄𝑒̇ −𝑊 (̇ 𝐶𝑂𝑃 − 1) (A.6) 

For the condenser the heat transferred in the water cycle is 

 𝐶𝑒𝑚𝑒𝑇̇𝑒,𝑜𝑢𝑡 = 𝑄𝑒̇ −𝑊 (̇ 𝐶𝑂𝑃 − 1) (A.7) 

 𝑄̇𝑐 = 𝑚𝑐1̇ 𝐶𝑟(𝑇𝑐,𝑜𝑢𝑡 − 𝑇𝑐,𝑖𝑛) (A.8) 

Similarly from the dynamics of condenser, 

 𝐶𝑐𝑚𝑐𝑇̇𝑐,𝑜𝑢𝑡 = 𝑄̇𝑜𝑢𝑡 − 𝑄𝑐̇ (A.9) 

 𝐶𝑐𝑚𝑐𝑇̇𝑐,𝑜𝑢𝑡 = 𝑊̇𝐶𝑂𝑃 − 𝑄𝑐̇ (A.10) 
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Appendix B State-Space model 
𝐴 =     

 𝑥1 𝑥2 𝑥3 𝑥4 
𝑥1 −0.02171 0.00724 0.01214 0 
𝑥2 0.001829 −0.002265 0 0 
𝑥3 0.001829 0 −0.002265 0 
𝑥4 0 0 0 −0.02177 
𝑥5 0 0 0 0.001829 
𝑥6 0 0 0 0.001829 
𝑥7 7.97 × 10−6 0 0 0 
𝑥8 0 0 0 0 
𝑥9 1.82 × 10−5 0 0 2.427 × 10−5 
𝑥10 0.0008649 0 0 0 
𝑥11 1.42 × 10−5 0 0 0 
𝑥12 0 3.64𝐸 × 10−5 0 0 
𝑥13 0 0 0 0 
𝑥14 0 0 3.64 × 10−5 0 
𝑥15 0 0 0 0 
𝑥16 0 0 0 0.0005561 
𝑥17 0 0 0 1.42 × 10−5 
𝑥18 0 0 0 0 
𝑥19 0 0 0 0 
𝑥20 0 0 0 0 
𝑥21 0 0 0 0 
𝑥22 0 0 0 0 

 

 𝑥5 𝑥6 𝑥7 𝑥8 
𝑥1 0 0 0.0001734 0 
𝑥2 0 0 0 0 
𝑥3 0 0 0 0 
𝑥4 0.00724 0.01214 0 0 
𝑥5 −0.002265 0 0 0 
𝑥6 0 −0.002265 0 0 
𝑥7 0 0 −0.0001321 2.39 × 10−5 
𝑥8 0 0 2.39 × 10−5 3.19 × 10−5 
𝑥9 0 0 7.28 × 10−5 6.07 × 10−6 
𝑥10 0 0 0 0 
𝑥11 0 0 0 0 
𝑥12 0 0 0 0 
𝑥13 0 0 0 0 
𝑥14 0 0 0 0 
𝑥15 0 0 0 0 
𝑥16 0 0 0 0 
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𝑥17 0 0 0 0 
𝑥18 3.64 × 10−5 0 0 0 
𝑥19 0 0 0 0 
𝑥20 0 3.64 × 10−5 0 0 
𝑥21 0 0 0 0 
𝑥22 0 0 0 0 

  

 𝑥9 𝑥10 𝑥11 𝑥12 
𝑥1 0.0005202 0.0003374 0.000728 0 
𝑥2 0 0 0 0.0004359 
𝑥3 0 0 0 0 
𝑥4 0.0006936 0 0 0 
𝑥5 0 0 0 0 
𝑥6 0 0 0 0 
𝑥7 9.569 × 10−5 0 0 0 
𝑥8 7.974 × 10−6 0 0 0 
𝑥9 −0.0001333 0 0 0 
𝑥10 0 −0.001309 0 0 
𝑥11 0 0 −4.78 × 10−5 0 
𝑥12 0 0 0 −3.971 × 10−5 
𝑥13 0 0 0 0.0001237 
𝑥14 0 0 0 0 
𝑥15 0 0 0 0 
𝑥16 0 0 0 0 
𝑥17 0 0 0 0 
𝑥18 0 0 0 0 
𝑥19 0 0 0 0 
𝑥20 0 0 0 0 
𝑥21 0 0 0 0 
𝑥22 0 8.264 × 10−5 0 0 
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 𝑥13 𝑥14 𝑥15 𝑥16 
𝑥1 0 0 0 0 
𝑥2 0 0 0 0 
𝑥3 0 0.0004359 0 0 
𝑥4 0 0 0 0.000217 
𝑥5 0 0 0 0 
𝑥6 0 0 0 0 
𝑥7 0 0 0 0 
𝑥8 0 0 0 0 
𝑥9 0 0 0 0 
𝑥10 0 0 0 0 
𝑥11 0 0 0 0 
𝑥12 3.286 × 10−6 0 0 0 
𝑥13 −0.002382 0 0 0 
𝑥14 0 −3.971 × 10−5 3.286 × 10−6 0 
𝑥15 0 0.0001237 −0.002382 0 
𝑥16 0 0 0 −0.0008539 
𝑥17 0 0 0 0 
𝑥18 0 0 0 0 
𝑥19 0 0 0 0 
𝑥20 0 0 0 0 
𝑥21 0 0 0 0 
𝑥22 0 0 0 5.537 × 10−5 

 
    

 

 𝑥17 𝑥18 𝑥19 𝑥20 𝑥21 𝑥22 
𝑥1 0 0 0 0 0 0 
𝑥2 0 0 0 0 0 0 
𝑥3 0 0 0 0 0 0 
𝑥4 0.000728 0 0 0 0 0 
𝑥5 0 0.0004359 0 0 0 0 
𝑥6 0 0 0 0.0004359 0 0 
𝑥7 0 0 0 0 0 0 
𝑥8 0 0 0 0 0 0 
𝑥9 0 0 0 0 0 0 
𝑥10 0 0 0 0 0 0.0004444 
𝑥11 0 0 0 0 0 0 
𝑥12 0 0 0 0 0 0 
𝑥13 0 0 0 0 0 0 
𝑥14 0 0 0 0 0 0 
𝑥15 0 0 0 0 0 0 
𝑥16 0 0 0 0 0 0.0002978 
𝑥17 −4.78 × 10−5 0 0 0 0 0 
𝑥18 0 −3.971 × 10−5 3.286 × 10−6 0 0 0 
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𝑥19 0 0.0001237 −0.002382 0 0 0 
𝑥20 0 0 0 −3.971 × 10−5 3.286 × 10−6 0 
𝑥21 0 0 0 0.0001237 −0.002382 0 
𝑥22 0 0 0 0 0 −0.000138 
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B= 
      

 
𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 𝑢6 

𝑥1 0 0 0 0 0.05247 0 
𝑥2 0 0 0 0 0 0 
𝑥3 0 0 0 0 0 0 
𝑥4 0 0 0 0 0 0.06087 
𝑥5 0 0 0 0 0 0 
𝑥6 0 0 0 0 0 0 
𝑥7 0.01137 −0.00399 −0.01196 0 0 0 
𝑥8 0 0.003987 0 0 0 0 
𝑥9 0 0 0.009102 −0.00019 −0.001836 −0.00213 
𝑥10 0 0 0 0 0 0 
𝑥11 0 0 0 0 0 0 
𝑥12 0 0 0 0 0 0 
𝑥13 0 0 0 0 0 0 
𝑥14 0 0 0 0 0 0 
𝑥15 0 0 0 0 0 0 
𝑥16 0 0 0 0 0 0 
𝑥17 0 0 0 0 0 0 
𝑥18 0 0 0 0 0 0 
𝑥19 0 0 0 0 0 0 
𝑥20 0 0 0 0 0 0 
𝑥21 0 0 0 0 0 0 
𝑥22 0 0 0 0 0 0 

 

 
𝑢7 𝑢8 𝑢9 𝑢10 𝑢11 𝑢12 

𝑥1 0.0005722 0 0 0.01734 0 0 
𝑥2 0 0 0 0 0 0 
𝑥3 0 0 0 0 0 0 
𝑥4 0.0007548 0 0 0 0.01734 0 
𝑥5 0 0 0 0 0 0 
𝑥6 0 0 0 0 0 0 
𝑥7 7.770 × 10−6 0 0 0 0 0 
𝑥8 0 −3.721 × 10−5 0 0 0 0 
𝑥9 1.189 × 10−5 0 0.00165 0 0 0 
𝑥10 0 0 0 0 0 0 
𝑥11 3.362 × 10−5 0 0 0 0 0 
𝑥12 0 0 0 0 0 0 
𝑥13 2.259 × 10−3 0 0 0 0 0 
𝑥14 0 0 0 0 0 0 
𝑥15 2.259 × 10−3 0 0 0 0 0 
𝑥16 0 0 0 0 0 0 
𝑥17 3.362 × 10−5 0 0 0 0 0 
𝑥18 0 0 0 0 0 0 
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𝑥19 2.259 × 10−3 0 0 0 0 0 
𝑥20 0 0 0 0 0 0 
𝑥21 2.590 × 10−3 0 0 0 0 0 
𝑥22 0 0 0 0 0 0 
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𝐶 =        
 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 
𝑦1 0.1568 0.0784 0.0784 0 0 0 0 
𝑦2 0.1554 0.078 0.078 0 0 0 0 
𝑦3 0 0 0 0.1497 0.075 0.075 0 
𝑦4 0 0 0 0.1483 0.0743 0.0743 0 
𝑦5 0 0 0 0 0 0 1 
𝑦6 0 0 0 0 0 0 0 
𝑦7 0 0 0 0 0 0 0 
𝑦8 1 0 0 0 0 0 0 
𝑦9 0 0 0 1 0 0 0 

 

 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12 𝑥13 𝑥14 
𝑦1 0 0 0 0 0 0 0 
𝑦2 0 0 0 0 0 0 0 
𝑦3 0 0 0 0 0 0 0 
𝑦4 0 0 0 0 0 0 0 
𝑦5 0 0 0 0 0 0 0 
𝑦6 1 0 0 0 0 0 0 
𝑦7 0 1 0 0 0 0 0 
𝑦8 0 0 0 0 0 0 0 
𝑦9 0 0 0 0 0 0 0 

 

 𝑥15 𝑥16 𝑥17 𝑥18 𝑥19 𝑥20 𝑥21 
𝑦1 0 0 0 0 0 0 0 
𝑦2 0 0 0 0 0 0 0 
𝑦3 0 0 0 0 0 0 0 
𝑦4 0 0 0 0 0 0 0 
𝑦5 0 0 0 0 0 0 0 
𝑦6 0 0 0 0 0 0 0 
𝑦7 0 0 0 0 0 0 0 
𝑦8 0 0 0 0 0 0 0 
𝑦9 0 0 0 0 0 0 0 

 

 𝑥22 
𝑦1 0 
𝑦2 0 
𝑦3 0 
𝑦4 0 
𝑦5 0 
𝑦6 0 
𝑦7 0 
𝑦8 0 
𝑦9 0 



 

164 
 

 

𝐷 = 
       

 
𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 𝑢6 𝑢7 

𝑦1 0 0 0 0 0 0 0 
𝑦2 0 0 0 0 0 0 0 
𝑦3 0 0 0 0 0 0 0 
𝑦4 0 0 0 0 0 0 0 
𝑦5 0 0 0 0 0 0 0 
𝑦6 0 0 0 0 0 0 0 
𝑦7 0 0 0 0 0 0 0 
𝑦8 0 0 0 0 0 0 0 
𝑦9 0 0 0 0 0 0 0 

 

 
𝑢8 𝑢9 𝑢10 𝑢11 𝑢12 

𝑦1 0 0 0 0 0 
𝑦2 0 0 0 0 0 
𝑦3 0 0 0 0 0 
𝑦4 0 0 0 0 0 
𝑦5 0 0 0 0 0 
𝑦6 0 0 0 0 0 
𝑦7 0 0 0 0 0 
𝑦8 0 0 0 0 0 
𝑦9 0 0 0 0 0 

 

 

Input groups:                     

       Name           Channels    

    Manipulated     [𝑢1,𝑢2,𝑢3,𝑢4,𝑢5,𝑢6] 

     Measured      [𝑢7,𝑢8, 𝑢9,𝑢10,𝑢11,𝑢12] 

                                  

Output groups:                    

      Name          Channels      

    Measured    [𝑦1,𝑦2,𝑦3,𝑦4, 𝑦5,𝑦6,𝑦7,𝑦8,𝑦9] 

                                  

Continuous-time state-space model. 



 

165 
 

Appendix C Simulink Models 

 

Figure C- 1: Simulink model of the bedroom 
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Figure C- 3: Simulink model of wall 

Figure C- 2: Simulink model of air 

2
Loss

1
Surface

In

Out
T

Temp2

In

Out
T

Temp1

In

Out
T

Temp

In

Out
Flow

Flow2

In

Out
Flow

Flow1

In

Out
Flow

Flow0

In

Out
Flow

Flow

K*u

Areas

2
Env. Temp

1
Bed Temp

2
Loss

1
Bed Temp

1
s

Temp

-K-

Insulation
in kW/K

-K-

Capacity
in K/kWs

2
Env. Temp

1
Heat

Env  Temp in C

Temperature in CHeat in kW Rate



 

167 
 

 

 

 

Figure C- 4: COP model of the heat pump 
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Figure C- 5: Connection between HP, solar collector and tanks 
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Figure C- 6: Energy flow model of heating system and living spaces 
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Figure C- 7: Model predictive controller with system model 
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onventional control strategies
oad  shifting
olar energy

operation  of the  heat  pump,  integrating  the available  solar  energy,  and  by  shifting  electricity  consumption
to  the  cheaper  night  time  tariff.  Models  of  conventional  controller  on–off  and a multi-variable  model
predictive  control  (MPC)  are  developed  and  used  for  several  different  climatic  conditions.  The  results
showed  that  the  model  predictive  controller  performed  best  by  providing  better  comfort,  consuming
less  electric  energy  and  better  use of cheap  night  time  electricity  by load  shifting  and  storing  heat  energy
in  the  heating  tank.
. Introduction

According to the International Energy agency [1] the primary
nergy use has grown by 40% from 1994 to 2004. Overall there
s an average energy and CO2 increase of 2% and 1.8% each year
espectively. The main source of energy consumption in the domes-
ic sector is space heating, which accounted for 60% of the total
omestic energy consumption in 2011. Water heating accounted
or 18%, lighting 19% and cooking for a 3% [2] of a typical household
ills. Currently, the use of solar thermal collectors combined with
eat pump systems is becoming popular due to their low electrical
ost. A heat pump is mainly used to increase the temperature of hot
ater generated by the solar collectors. It is acknowledged that the

olar heating systems are challenging to control due to the swings
n day to day and season to season energy flows and also the vary-

ng thermal comfort demands. The control system is an important
omponent of any renewable system and is critical for increasing
he performance of such systems.
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The long-term performance of a combined solar collector and
heat pump system was  studied by Huang et al. [3] and was found
that its electricity price was  cheaper than conventional gas sys-
tem. The performance of a solar-assisted heat pump water heating
system was monitored by Hawlader et al. [4]. They showed that
the performance of the system is influenced significantly by col-
lector area, speed of the compressor, and solar irradiation. The
performance of a combined solar water heater and heat pump was
investigated by Nutaphan et al. [5] using a simulation program. The
economical mass of hot water in the storage tank and the refrigerant
mass flow for optimum operation of the system were investigated.
Predictive control strategies are well known in building control
research [6]. An MPC  is used for chillers to optimally store the ther-
mal  energy in the tanks by using the predictions of the building
load and outside weather conditions [7]. In another study a detailed
building model is applied for building predictions [8]. Model predic-
tive control has also been used for reducing peak electricity demand
in building climate control [9]. Different predictive control strate-
gies for a solar hot water system with non-predictive strategies are
compared by Grünenfelder et al. [10]. It is shown in simulation that
for a small storage tank, the predictive control saves energy cost

when compared with non-predictive strategies. A weather predic-
tor based on observed weather data is used by Henze et al. [11–13].
The system under study uses active and passive building thermal
storage systems. Building heating systems using MPC  with weather
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Fig. 1. Solar system combi

rediction have shown to save between 15% and 28% of the energy
onsumption [14].

This  paper will investigate the performance of a combined solar
hermal collector and heat pump system. To control the system, a
onventional (on–off) and an advanced control system (MPC) are
imulated and the energy saving and load shifting of the controllers
re compared. Mathematical model of the building and heating
ystem is developed to predict the future behaviour of the whole
ystem according to the outdoor weather conditions and occupancy
attern of the building.

.  Experimental heating system

The full size solar system and the heat pump are installed at the
chool of Civil and Building Engineering of Loughborough Univer-
ity. It consists of a solar panel, a heat pump and three accumulator
anks. The buffer tank is heated up with the help of a heat pump and
hen it is required this hot water is transferred into either the heat-

ng tank or the hot water tank. The heating tank is also connected to
he solar thermal collector. During the night, when electric tariffs
re low, the heat pump can be used to heat up all the tanks.

A  general schematic diagram of the system is shown in Fig. 1.
he heat pump is connected to the buffer tank.

The main components of the system are described below.

.1.  Accumulation system

The  accumulation system consists of three tanks. The first tank
s the buffer tank for the heat pump, and it has a capacity of 300 l.
t is heated by the heat pump, and it can supply hot water to the
ther two tanks as required. The hot water tank is connected to
he buffer tank, it has a capacity of 300l, and it is located inside the
eating tank. The heating tank is of 450 l capacity, and it provides
ot water to the room fan coil units for heating.

.2. Solar collector

Solar  collectors are used to collect solar radiations and to raise
he water temperature of the heating tank. It is the preferred energy

ource of the system, because it uses only a minimal amount of elec-
ricity to power the circulation pump. The solar collector consists
f 2 flat plate collectors 2 m2 in area each, covering a total area of

 m2.
ith heat pump schematic.

2.3. Heat pump

The  installed system is a single stage air source heat pump. It
is the only way  to heat the hot water tank, and it can be used as
an auxiliary energy source for the heating tank when necessary.
The heat pump is directly connected to the buffer tank. The rated
electric power of the heat pump is 6 kW,  but the actual power con-
sumption may  be lower, and the delivered thermal power is higher
due to the additional energy drawn from the heat source.

The  single heat pumps are unable to modulate their output
power during low load conditions, which could lead to overheating
of the fluid loop. In order to solve this problem, the buffer tank is
required in between the load loop and the heat pump.

3.  Modelling

The system model is important for both the controller design,
and for validation. The performance of a model based controller
depends to a good part on the accuracy of the plant model. The
nonlinear model of the whole system is implemented in Simulink,
and a linearised plant model is used to formulate the optimisation
problem [15,16].

The  building was  modelled by considering wall layers as lumped
components and considering each layer as a thermal resistor and
a thermal capacitor. The tanks are modelled as heat stores with
a known thermal capacity. The development of heat pump model
was based on curve fitting to manufacturer’s data.

3.1. Building

The building under consideration is a two room building; a hall
and a bedroom. However the hot water and heating energy con-
sumption is based on a typical house [17]. The hall has a south
facing and a window on the south facing window. The dimensions
of both the rooms are 4.27 m × 4.57 m and they are 2.44 m high. The
schematic layout of the building is shown in Fig. 2.

A  typical construction element consists of different layers of dif-
ferent materials. All the external walls and roof are considered of

the same basic construction. The model used by Gustafsson [18] is
applied here. The Building materials and properties of the exter-
nal walls, roof and partition wall between hall and bedroom are
summarised in Table 1.
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Table 1
Building model specifications.

Thickness in
m

Thermal  conductivity in
W/Km

Density in
kg/m3

Wall/roof
Brick 0.1 0.84 1700
Polystyrene 0.0795 0.034 35
Concrete 0.1 0.51 1400
Plaster 0.013 0.025 900

Partition wall
Gypsum  0.025 0.25 900

e
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Author's Per
Air 0.1 0.15 (Km2/W)  (resistance) 1.204
Gypsum 0.025 0.25 900

The building construction is divided into number of layers and
ach layer is modelled separately. The advantage of this method
s that it takes into account the time varying effect of heat moving
rom the inside to the outside of the building, and this is essential to

odel the correct response of the room air and radiation temper-
ture to a change in heating. Solar gain was only considered in the
all area as it has the window. The fabric solar heat gain through the
alls and roofs is considered as negligible because of the low ther-
al  conductivity of the construction. Each layer of the construction

s modelled separately in Simulink and considered as a single lump
lement. A wall with N layers can be seen in Fig. 3.

The  heat transferred from indoor air to the wall can be summa-
ised in the following equation:

conv = qcond + qstored (1)

stored is the stored heat energy inside the wall layer or heat energy
f lumped capacitance.

in (Tin − Ti) = ki

L
(Ti − Ti+1) + dTi

dt

(
cp,i�iLi

)
(2)
i

dTi

dt
=

hi (Tin − Ti) −
(

ki/Li

)
(Ti − Ti+1)

cp,i�iLi
(3)

Fig. 2. Building layout.

Fig. 3. Wall di
ildings 63 (2013) 138–146

where i = 2, 3,. . .,  (N − 1) i = 1.
For  middle layers the material also has capacitance and there-

fore heat storage capacity of the material is taken into account. The
heat balance equation is:

qcon,1 = qcond,2 + qstored (4)

where  i = 2, 3,. . .,  (N − 1).

ki

Li
(Ti−1 − Ti) = ki+1

Li+1
(Ti − Ti+1) + dTi

dt

(
cp,i�iLi + cp,i+1�i+1Li+1

)
(5)

For  outer layer the equation for heat energy is:

qconv,N = qcond,N−1 + qstored (6)

hout (Ti − Tout) = ki

Li
(Ti−1 − Ti) + dTi

dt

(
cp,i�iLi

)
(7)

In  the above equations it is assumed that the wall, roof and floor
are divided into N layers with different properties and in Eq. (7)
i = N.

3.2. Solar panel and water tanks

A flat plate collector is used to heat up the heating tank. The use-
ful energy from the solar panel is calculated by using the following
equation [19];

QU = FRAc[�˛I − UL(Tc − Ta)] (8)

The  water tanks are modelled by assuming that the water inside
the tanks mixes properly and there is no temperature stratifica-
tion across the tank height. The second assumption is that the heat
capacity of the tank is the heat capacity of the volume of the water
inside the tank. The heat losses from the tanks are also considered
and the losses from the buffer tank and the heating tank are added
as the heat gain by the room air i.e. it is assumed that the tanks are
placed in the bedroom. The hot water losses are added into the heat
gain by the heat tank water.

3.3.  Heat pump

Several  models for the heat pump Coefficient of Performance
(COP) were tested. Initially an existing model developed from first
principles was used [20], but this model did not give a good match
when its COP results were compared with the data supplied by the
manufacturer.

As a second step, the dynamics of the absorber and condenser
were eliminated in favour of a quasi-stationary model. This leads
to a model with only four remaining factors shown in Table 2.

sonal Copy
This  leads to a quadratic equation for the effective COP:

(uT + uE) P × COP2 +
(

TT − TE − uEP − ˇ (uT + uE) P − ˛uT P
)

COP

−  ˛TT − ˇ (TT − TE − uEP) = 0 (9)

visions.
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Table  2
Heat  pump parameters.

 ̨ Thermal efficiency coefficient of compressor

 ̌ Recovery share of losses into heat
uT P Thermal coefficient on condenser side

C
fi
w
t
u

y

w
(

t
o
m
h

Author's Pers
uE P Thermal coefficient on evaporator side

The above quadratic equation was then used to calculate the
OP of the heat pump. Several methods were used to find the best
t to the existing data, but none of them provided a good match. It
as found that plotting the inverse of the ideal COP vs the inverse of

he actual COP provides a good fit. This plot was then approximated
sing a quadratic function:

 = 29.278x2 − 4.8281x + 0.4328 (10)

here x is the inverse of ideal COP and y is the inverse of actual
manufacturer’s) COP.

It  can be seen that the resulting curve gives better results than

he previous methods. The plots of COP data from different meth-
ds are shown in Fig. 4 and the inverse plot of both ideal COP and
anufacturer’s COP is shown in the Fig. 5. The quadratic equation

as an R2 value of 0.9893, which is the coefficient of determination

Fig. 4. COP plots from d

Fig. 5. Inverse plot of ideal a
ildings 63 (2013) 138–146 141

and  is used to find out how accurate the equation will predict the
future outcomes. In this case the value of R2 is very close to 1 which
means that the regression line fits the data very well. It can be con-
cluded that this very simple model provides a good match with the
experimental data, and this cannot be said for the two previous
models of the heat pump.

3.4.  Controllers

Below is a brief overview and comparison of the on–off and MPC
strategies that are used for the experimental heating systems.

3.4.1.  On–off controller
The  on–off controller is the simplest type of controller. The con-

trollable device e.g. heat pump in this case is turned on and off at
certain thresholds. These are set according to a tank temperature
error as given by

er = Tr − TT (11)

in which er is the error between reference temperature Tr and cur-

onal Copy
rent tank temperature TT. The controller output is turned on when
the error er exceeds a positive threshold, and it remains on until
er exceeds a negative threshold. The main advantage of the on–off
controller is that it is simple and easy to implement. It is a feedback

ifferent methods.

nd manufacturer COP.
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Fig. 6. Model predictive controller scheme.
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ontroller that does not contain any information about the plant
ynamics.

.4.2. Model predictive controller (MPC)
MPC is a class of computer algorithms that utilizes process mod-

ls to predict future behaviour of a plant. The control signal is
btained by minimizing an objective function in real time [21].
he main difference in the various methods is the way  the prob-
em is translated into the mathematical model, and how this is
olved numerically [22]. The main ideas behind predictive control
ethods are,

Explicit  use of a model to predict the process output at future
time  instant (horizon).
Obtaining  control signal by minimizing an objective function.
Using  a receding horizon strategy, where at each time step
the  horizon is moved to cover the same period into the
future.

In  MPC  the model obtains data from past inputs and past outputs
nd combines this data with future inputs to create a prediction of
uture output values. The predicted outputs are compared with a
eference trajectory to determine future output errors. These future
rrors are then used to calculate an objective function based on
ontrol inputs and output errors. The objective function is fed into
ptimizer, which tries to find a cost optimal solution while still sat-
sfying constraints on the system. The optimiser returns the optimal
nputs together with the predicted behaviour and cost. Due to the
eceding horizon approach, only the first input is implemented, and
urther steps are discarded in favour of an updated optimisation
esults based on the additional information available at the next
ime step.

The  ability of an MPC  controller to define and predict objec-
ive function makes this control strategy one of the most advance
ontrol strategies. The model predictive control makes use of the
ystem model to obtain the control signal as a minimisation of the

bjective function. The aim of the objective function is to repre-
ent the compromise between fast and strong control action, which
ypically increases costs, and quick and accurate following of the
eference trajectory. Therefore both input values and output errors
are  penalized. A typical objection function of model predictive
control is defined by the following equation:

J (k) =
ny∑

i=1

wy
i+1(y (k + i + 1|k) −  r (k + i + 1|k))2

+
nu∑

i=1

w�u
i (�u (k + i|k))2

+
nu∑

i=1

wu
i

(
u (k + i|k) −  utarget (k + i|k)

)2
(12)

In the above equation, wy
i+1, w�u

i
and wu

i
are non-negative

weights  of output, rate of change on input and input variables. The
weights can be time varying, and this is used to represent chang-
ing electricity prices according to a night time electricity tariff. In
the multi-variable case, non-negative (symmetric) quadratic forms
can be used as weights, although many implementations only sup-
port diagonal matrices. For the simulations, the prediction horizon
is set to 24 h to cover a complete cycle of daily temperature and
electricity cost variations.

Fig.  6 shows the basic control scheme used for the research. The
energy price, occupancy prediction and weather prediction are the
time varying external conditions. Together with the temperature
measurements, these form the inputs to the controller. The plant
model, system constraints, cost function and objective function are
defined as the parts of the MPC  controller. For every time step
these parameters are combined and converted into an optimiza-
tion problem, which then determines the output for the next time
step.

Model predictive control has the ability to include constraints
into the MPC  formulation. MPC  constraints can be physical limita-
tions, or they can be used to constrain the operation of the system
to most efficient condition. The constraints used in this paper are
linear constraints that take the following form:
umin,k ≤ uk ≤ umax,k

xmin,k ≤ xk ≤ xmax,k

(13)
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Linear constraints are most commonly used constraints. Only
imple linear weights are used here in an attempt to keep the com-
lexity of the optimization problem manageable.

. Simulation results

To  compare the effectiveness of the MPC  controller to conven-
ional on–off control scheme, two scenarios with London location
re simulated. The water consumption data is based on existing
ata [17]. Night time electricity price is considered from midnight
o 7 am in the morning.

The  water consumption, solar radiations and outside environ-
ental temperature are considered as disturbances that are known

n advance. The electricity price is also known in advance and is
onsidered as a time varying weight.

Simulations were performed by considering one cold day in the
iddle of two medium temperature days (Case A) and a sunny day

n between of two days having medium solar radiations (Case B).
he building was simulated using Integrated Environmental Solu-
ions (IES) in order to obtain the total indoor heat gains.
.1.  Results: Case A

The  results for Case A are shown in Figs. 7 and 8. The initial air
emperatures of both the bedroom and hall were 18 ◦C and 22 ◦C.

Fig. 8. MPC control r
 results Case A.

The  air temperatures dropped initially because the wall layers tem-
peratures are initialised to 0 ◦C, and they take time to heat up.
The on–off controller (Fig. 7) took 9 h to bring the hall air tem-
perature to a steady value whereas the MPC  controller (Fig. 8)
took approximately 3 h to bring the air temperature to the refer-
ence temperature of 22 ◦C. Throughout the day with MPC  better
temperature control and thermal comfort in the building are also
maintained.

The first objective of the control problem was to minimize the
energy consumption by using night time electric tariffs, which
are cheaper as compared to day time tariffs and also by using
available solar energy. The model predictive controller uses more
night time electricity while on–off controller uses less night time
electricity. From 24:00 to 31:00 (midnight to 7:00 am day 2)
MPC has used more energy than on–off by taking advantage of
cheaper tariffs. MPC  then switched off the heat pump when it
anticipated that day time electric tariffs are coming into action
as can be seen in Fig. 8. MPC  also used a minimal amount
of electricity to keep the tanks water temperature at desired
level.

The on–off controller could not take electric tariffs into account

and therefore uses more energy during the day time. After the ini-
tial settling period, the on–off controller keeps the temperatures
between upper and lower limits, which lead to a typical limit cycle
shown in Fig. 7.

esults Case A.
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Fig. 9. On–off control results Case B.

Fig. 10. MPC  control results Case B.

Author's Personal Copy
Fig. 11. Energy price in
 pounds per day.
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The second control objective was to do load shifting by using
ifferent control strategies. The model predictive controller does

oad shifting as can be seen in MPC  control results, Fig. 8. The
PC started storing heat energy during the night at 24:00 and

aised the temperature in the buffer tank (T1) and hot water tank
T2) temperatures. The load shifting was stopped when the low
lectric tariffs were ended at 31:00 and 55:00 (at 7:00 am day 2
nd 3) which resulted in heat pump being used at lower settings
uring the next days. The high buffer tank temperature at 57:00,
hown in Fig. 8, is resulted from the high water consumption at that
ime.

The energy over time for Case A showed that the MPC  achieves
 lower electricity cost than the on–off controller. The MPC  was
ble to switched off the heat pump at few points e.g. from 59:00 to
4:00 h (11 a.m. –4 p.m. day 3). The MPC  used more energy at the
eginning of the simulation because the room temperature became

ower and controller used night time electricity. By using more
nergy at the beginning MPC  took less time to bring room air to

 steady value than the on–off controller.

.2. Results: Case B

The  second case simulations were performed by using one sunny
ay in the middle of two less sunny days. The results shown in
igs. 9 and 10, demonstrated that both controllers were able to
aintain the temperatures at desired level. The rise in heating tank

emperature (T3) at 36:00 h (12 p.m. day 2) is because of the strong
olar radiation which has caused the temperature to exceed the
eference temperature. Both controllers have used less energy com-
ared to Case A, as the heating demand is less because of the sunny
ay.

The results for on–off controller Fig. 9 shows that tank fluctu-
tions of the temperature in the tanks are less than the room air
emperature’s fluctuations, due to higher temperature range for
he tanks.

The MPC  has used less energy during the second day and the
nergy used is only to heat up the hot water tank as the heat
ank has enough energy because of the solar energy as shown in
ig. 10.

The simulation results shown in Fig. 11 demonstrated that the
PC saved about 9% of the energy cost. This is mainly due to the fact

hat model predictive controller used cheaper night time electricity
nd heat pump was used at low settings or even was  turned off
uring the day time.

The  on–off strategy is the easiest to apply, as it does not require
ny tuning and requires essentially no computation. The MPC  con-
roller on the other hand has a number of requirements: it needs

 plant model, selected weights, and it also needs measurements
nd predictions of external parameters.

. Conclusions

Overall the model predictive controller proved to have a greater
otential in the area of load shifting and use of renewable energy.
he simulation results showed that the MPC  consumed less energy
han the on–off controller. The model predictive controller also
sed cheaper night time electricity and the heat pump was used at

ow settings or even was turned off during the day time. The room
emperatures maintained at the desired level and the set points
chieved very quickly. Overall the MPC  controller maintained good
hermal comfort in the building.

Author's Pe
One of the main limitations of MPC  was found to be the
se of linear model requirement which did not match the heat
ransfer between the tanks. The error increases as the tank tem-
erature deviate from the nominal values used for linearization,

[

[

ildings 63 (2013) 138–146 145

and  the effect on temperature stability is exacerbated by the long
cycle time of the MPC  controller. It may  be possible to reduce
this issue by using energy transfer rate rather than mass flow
rate as a control input. Alternatively, an underlying control struc-
ture with faster response time could limit the effect on room
temperatures.

The second limitation was  that the MPC  controller could not
optimise secondary (nonlinear) effects, because they are not con-
tained in the model. The most important one is the change in
effectiveness of the heat pump (COP) due to changes in the tank
temperature. Therefore, the controller does not try to keep the tank
temperature low unless this goal is explicitly included in the cost
function.

In general, the system is most suitable for residential market
and the results highlight the importance of advanced controls for
combined solar and heat pump systems in order for the system to
operate efficiently and maintain good thermal comfort in the build-
ing. As the energy prices are predicted to increase significantly there
is need for better comfort with lower energy consumption. The
MPC controller demonstrated to maintain better thermal comfort
and less temperature fluctuation as well as saving over 9% energy
use.
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Abstract:  This paper investigates different control strategies for a solar heating and hot water system combined with a 

heat pump. The goal is to minimise the amount of electricity used for heating and hot water. UK buildings consume a 

considerable share for primary energy, and the government has committed to generate 20% of the country's energy from 

renewable sources by 2020. The paper considers a heating system for a small dwelling, for which a dynamic lumped 

parameter model is derived. The aim of the controller is to reduce electricity costs by optimising the operation of the heat 

pump, integrating the available solar energy, and by shifting electricity consumption to the cheaper night time tariff. Three 

types of controllers are tested under two different environmental conditions: a simple on-off controller, a set of classic PI 

controllers, and a multi-variable model based predictive control (MPC). Both on-off and proportional integral (PI) controllers 

were able to maintain the tanks and room temperatures to the desired set-point temperatures however did not make use of 

night time electricity. The results showed that the model predictive controller performed best. It reduces the energy cost and 

makes use of cheap night time electricity (load shifting) by storing heat energy in the heating tank.  

 

Keywords:  Model predictive control, heat pump, control strategies, load shifting, solar energy. 

1 Introduction 
The rapid increase in global energy consumption is a key 
concern of today's world. According to International 
Energy agency [1], the primary energy use has grown by 
40% from 1994 to 2004. There is an average increase of 
2% in energy and 1.8% in the CO2 emissions. The main 
source of energy consumption in the domestic energy 
sector is space heating, which was the 60% of the total 
domestic energy consumption in 2011[1]. Water heating 
accounted for 18%, lighting 19% and cooking for a 3% 
[2]. Currently, the use of solar thermal collectors 
combined with heat pump systems is becoming popular 
due to their low electrical cost. A heat pump is mainly 
used to increase the temperature of hot water generated 
by the solar collectors. The control system is an 
important component of any heating, ventilation and air 
conditioning (HVAC) system and is critical for low 
energy buildings. It is also acknowledged that the heating 
systems are challenging to control, due to varying outside 
environmental conditions and indoor thermal comfort 
demands.  
Different advanced control strategies are used for 
building control systems. A number of studies have been 
compiled to compare control methods for energy 
management and comfort in buildings [3]. A control 
strategy for optimal control of active and passive thermal 
storage inventory is presented by Liu et al [4]. It was 
concluded that a simulated reinforcement technique [5] 
can achieve 8.3% energy saving in an experiment test 
because the thermal storage of the building is only 
partially utilized. A model-free method can be used to 
tune a supervisory controller for a low energy building 
system [6].  
Predictive control strategies are well studied in building 
control research [7]. An MPC can optimize the use of 
chillers by storing the thermal energy in the tanks based 
on predicted building load and weather conditions [8]. In 

another study a detailed building model is applied for 
building predictions [9]. Model predictive control has 
also been used for reducing peak electricity demand in 
building climate control [10]. 
Building heating systems using MPC with weather 
prediction have shown to save between 15% and 28% of 
the energy demand [11]. Different predictive control 
strategies for a solar hot water system with 
non-predictive strategies are compared by Grünenfelder 
et al [12]. It is shown in simulation that for a small 
storage tank, the predictive control saves energy cost 
when compared with non-predictive strategies. A 
weather predictor based on observed weather data is used 
by Henze et al [13-15]. The system under study uses 
active and passive building thermal storage systems.  
An MPC strategy for an intermittently heated radiant 
floor heating system has been shown experimentally to 
save 10 % to 12 % of energy during winter period [16]. 
An MPC controller applied to a large university building 
has achieved to energy savings of 17% to 24%. [17]. It is 
found that a proper identification of the building model is 
crucial for designing a good model predictive controller.  
In another study by Paris et al. (2010) [18], three control 
schemes are compared: a conventional PID, a 
combination of proportional integral and derivative 
controller (PID) and fuzzy logic controller (FLC), and a 
combination of PID and MPC. Compared to the baseline 
PID controller, the PID-MPC scheme saved 26.9% of 
fossil energy, and PID-FLC still recorded a saving of 
9.8%.  
This paper focuses on the control strategies for a solar 
heating system combined with a heat pump. A 
mathematical model of the system is developed to predict 
the future behaviour of the whole system according to the 
outdoor weather conditions and occupancy pattern of the 
building. The aim is to investigate advanced control 
strategies for the heating and hot water system that 
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reduce the energy cost and make effective use of solar 
radiation.  

2 Full size experimental heating 
system1 
The solar system and the heat pump are installed at 
the School of Civil and Building Engineering of 
Loughborough University as an experimental rig. It 
consists of a solar panel, a heat pump and three 
accumulator tanks. The buffer tank is heated up with 
the help of heat pump and when required this hot 
water is transferred either to the heating tank or to 
the hot water tank. The heating tank is also 
connected with the solar thermal collector, which 
provides the preferred solar energy source. The heat 
pump is intended to be used only if the solar energy 
is not sufficient, and then it is planned to use the 
cheaper night time electricity to heat up the tanks.  
A general schematic diagram of the system is shown 
in Fig. 1. The heat pump is connected to the buffer 
tank to compensate for the intermittent operation.  
The main components of the system are described 
below. 

2.1  Accumulation system 
The accumulation system consists of three tanks 
(Fig. 1). The buffer tank is for the heat pump, and it 
has a capacity of 300l. It gets heated by the heat 
pump, and it can supply heat to the other two tanks 
as required. The hot water tank is connected to the 
buffer tank, it has a capacity of 300l, and it is 
located inside the heating tank. The heating tank is 
450l large, and provides hot water to the room fan 
coil units for heating.  

2.2 Solar collectors 
Solar collectors are used to collect solar radiations 
and to raise the temperature of the heating tank. It is 
the preferred energy source of the system, because it 
uses only a minimal amount of electricity to power 
the circulation pump. The solar collector consists of 
2 flat plate collectors 2𝑚2 in area each, covering a 
total area of 4𝑚2. 

2.3 Heat pump 
The installed system is a single stage air source heat 
pump. It is the only way to heat the hot water tank, 
and it can be used as an auxiliary energy source for 
the heating tank when necessary. The heat pump is 
directly connected to the buffer tank. The rated 
electric power of the heat pump is 6kW, but the 
actual power consumption may be lower, and the 
delivered thermal power is higher due to the 
additional energy drawn from the heat source.  
The heat pump is unable to reduce the output power 
during low load conditions. It is therefore operated 
intermittently, and the buffer tank is used to smooth 
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the temperature variations caused by this mode of 
operation.  

3 Building and system modeling 
The system model is important for both the 
controller design, and for validation purposes. The 
performance of a model based controller depends to 
a good part on the accuracy of the plant model. The 
nonlinear model of the whole system is 
implemented in Simulink, and a linearised plant 
model is used to formulate the optimal control 
problem. 
The building was modelled by considering wall 
layers as lumped components. Each layer is 
modelled as a thermal resistor and a thermal 
capacitor. The tanks are modelled as heat stores 
with a known thermal capacity. The development of 
heat pump model was based on curve fitting to the 
performance data released by the manufacturer. 

3.1  Building 
The building under consideration is a two room 
building consisting of a hall and a bedroom. The 
hall has a south facing wall with a window in it. 
The dimensions of both the rooms are 
4.27m*4.57m and they are 2.44m high. The reason 
for selecting a two zone building is that both zones 
have different uses and therefore different set-point 
temperatures, occupancy periods and activity 
levels. One of the goals of the project is to 
determine how the control strategies respond to the 
demands in these two zones.  
The building construction is divided into number of 
layers and each layer is modelled separately. The 
advantage of this method is that it takes into 
account the time varying effect of heat moving 
from the inside to the outside of the building, and 
this is essential to model the correct response of the 
room air and radiation temperature to a change in 
heating input. The building was simulated using a 
detailed model in the software package Integrated 
Environmental Solutions (IES) in order to obtain 
the total indoor heat gains. Solar gain was only 
considered in the hall area as it is the only room 
with a window (Fig. 2). The fabric solar heat gain 
through the walls and roofs is considered as 
negligible because of the low thermal conductivity 
of the construction. Each layer of the construction 
is modelled separately in Simulink and considered 
as a single lump element. 

3.2  Heat Pump 
Several models for the heat pump were tested. 
Initially an existing dynamic model developed 
from first principles was tried [19], but this model 
did not give a good match when its coefficient of 
performance (COP) results was compared with the 
data supplied by the manufacturer.  
As a second step, the dynamics of the absorber and 
condenser were eliminated in favour of a 
quasi-stationary model. This leads to a model with 
only four remaining parameters as shown in Table 
1.
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Fig. 1  Solar System Combined with Heat Pump Schematic
 

 Fig. 2  Solar gains through window 
 
Table 1  Heat pump Parameters 

 
 
 
 
 

 
 

 

 

 

𝛼 Thermal efficiency coefficient of compressor 
𝛽   Recovery share of losses into heat  
𝑢𝑇 𝑃  Thermal coefficient on condenser side  
𝑢𝐸  𝑃  Thermal coefficient on evaporator side 
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This approach leads to a quadratic equation for the 

effective COP. Different ways to fit the parameters to 

the available data were tried, but none of them 

provided a good match. 

The third approach is to follow an inductive method 

and is based on analysis of the available data. It was 

found that plotting the inverse of the ideal COP vs the 

inverse of the actual COP provides a nearly smooth 

relationship. This plot was then approximated using a 

quadratic function:  

 y =  29.278x2  −  4.8281x 

+  0.4328 

(1) 

where x is the inverse of ideal COP and y is the 

inverse of actual (manufacturer's) COP.  

3.3  Solar panel and water tanks 

A flat plate collector is used to heat up the heating 

tank. The useful energy from the solar panel is 

calculated by using the following equation [20]; 

 𝑄𝑈 = 𝐹𝑅𝐴𝑐 [𝜏𝛼𝐼 − 𝑈𝐿(𝑇𝑐 − 𝑇𝑡)]  (2) 

The water tanks are modelled by assuming that the 

water inside the tanks mixes properly and there is no 

temperature stratification across the tank height. The 

second assumption is that the heat capacity of the tank 

is the heat capacity of the volume of the water inside 

the tank. The heat losses from the tanks are also 

considered and the losses from the buffer tank and the 

heating tank are added as the heat gain by the room air 

i.e. it is assumed that the tanks are placed in bedroom. 

The hot water losses are added into the heat gain by 

the heat tank water. 

4 Selected control strategies 

Below is a brief overview and comparison of the 

selected control strategies that are used for the 

experimental heating systems.  

4.1  On-off controller 

The on-off controller is the simplest type of 

controller. The controllable device (heat pump) is 

turned on and off at certain thresholds. These are set 

according to a tank temperature error as given by  

 𝑒𝑡 = 𝑇𝑡 − 𝑇𝑇 (3) 

in which 𝑒𝑡  is the error between reference 

temperature 𝑇𝑡  and current tank temperature 𝑇𝑇 . 

The controller output is turned on when the error 

𝑒𝑡  exceeds a positive threshold, and it remains on 

until 𝑒𝑡  exceeds a negative threshold. The main 

advantage of the on-off controller is that it is simple 

and easy to implement. It is a feedback controller that 

does not contain any information about the plant 

dynamics. Separate controllers of similar structures 

are used to control the room temperature.  

4.2  PI controller 

According to Haines [21] the most commonly used 

control for heating system is the PI controller. It 

provides better control of the dynamics of the system, 

but it requires more precise parameter selection. In this 

study, a discrete time PI controller is used, derived 

from the standard control law in the Laplace domain: 

 
𝐺(𝑠) = 𝑘𝑝 +

𝑘𝑖
𝑠  

(4) 

𝑘𝑝  and 𝑘𝑖  are the proportional and integral gain 

parameters, which are tuneable to the dynamics of the 

system under control. Given that the system 

demonstrates low pass behaviour, a simple PI 

controller tuning method can be applied.  

The PI controller has a continuous power output, while 

the heat can only be either fully on or off. Therefore 

the PI controller is used to specify the average power 

of the heat, which will be switched on and off as 

required to meet the commanded power. This 

switching is not simulated in order to keep the 

simulation simple.  

4.3  Model predictive controller (MPC) 

Both of the above control strategies use single input 

and single output (SISO) controllers. A heating 

system is a multiple input and multiple output system 

(MIMO) with coupling effects between the different 

inputs, and these are not taken into account by a SISO 

approach. As a full model based MIMO approach, a 

model predictive control (MPC) is used here. It is 

easy to apply to a MIMO system, and it finds the best 

control strategy based on the dynamic behaviour of 

the system as predicted by the model.  

MPC is control methodology that utilize a process 
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model to predict future behaviour of a plant. The 

control signal is obtained by minimizing an objective 

function in real time [22]. The main difference 

between implementations is the way the problem is 

translated in to the mathematical model, and how this 

is solved numerically. 

In MPC the model obtains data from past inputs and 

past outputs to find the current system state. This is 

combined with future inputs to create a prediction of 

future output values. The predicted outputs are 

compared with a reference trajectory to determine 

future output errors. These future errors are then used 

to calculate an objective function based on control 

inputs and output errors. The objective function is fed 

into optimizer, which tries to find a cost optimal 

solution while still satisfying constraints on the 

system. The optimiser returns the optimal inputs 

together with the predicted behaviour and cost. A 

receding horizon approach is used, which means that 

only the first input of the sequence is implemented, 

and further steps are discarded in favour of updated 

optimisation results based on the additional 

information available at the next time steps.  

4.3.1  Cost function 

The ability of an MPC controller to predict system 

behaviour and limits makes this control strategy one 

of the most advance control strategies. The model 

predictive control makes use of the system model to 

obtain the control signal as a minimisation of the 

objective function. The aim of the objective function 

is to represent the compromise between low effort 

(which is cheap, but leads to a slow response) and 

quick and accurate following of the reference 

trajectory. Therefore both input values and output 

errors are penalized. A typical objection function of 

model predictive control is defined by the following 

equation: 

 𝐽(𝑘)

= �𝑤𝑖+1
𝑦 �𝑦(𝑘 + 𝑖 + 1|𝑘)

𝑛𝑦

𝑖=1

− 𝑟(𝑘 + 𝑖 + 1|𝑘)�2

+ �𝑤𝑖∆𝑢�𝛥𝛥(𝑘 + 𝑖|𝑘)�2
𝑛𝑢

𝑖=1

+ �𝑤𝑖𝑢
𝑛𝑢

𝑖=1

�𝑢(𝑘 + 𝑖|𝑘)

− 𝑢𝑡𝑡𝑡𝑡𝑡𝑡(𝑘 + 𝑖|𝑘)�
2
 

(5) 

In the above equation, wi+1
y , wi

∆u and wi
u  are 

non-negative weights of output, rate of change on 

input and input variables. The weights can be time 

varying, and this is used in this application to 

represent changing electricity prices according to a 

day and night time electricity tariff For the 

simulations, the prediction horizon is set to 24 hours, 

to cover a complete cycle of daily temperature and 

electricity cost variations. 

Fig. 3 shows the basic control scheme used for the 

research. The energy price, occupancy prediction and 

weather prediction are the time varying external 

conditions. Together with the temperature 

measurements of the tanks and within the house, 

these form the available information to the controller. 

The plant model, system constraints, cost function 

and objective function are defined as the parts of the 

MPC controller. For every time step these form an 

optimization problem, which then determines the 

control inputs for the plant at the next time step.  

4.3.2  Constraints 

Model predictive control has the ability to include 

constraints into the MPC formulation. MPC 

constraints can be physical limitations, or they can be 

used to constrain the operation of the system to the 

most efficient condition. The constraints used in this 

paper are single variable constraints that take the 

following form: 

 umin,k  ≤ uk ≤ umax,k 

xmin,k  ≤ xk ≤ xmax,k 

(6) 
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Fig. 3  Model predictive control scheme  

This is the easiest form of constraints, and it is 

commonly used with MPC problems. More 

complex limits are avoided (e.g. limits that depend 

on twovariables at the same time) in an attempt to 

keep the complexity of the optimization problem 

manageable.  

5 Selected control strategies 

To compare the effectiveness of the advanced MPC 

controller to the simpler alternatives, two scenarios 

are simulated. The weather data is for London. 

Water consumption data is based on existing data 

taken from Defra [23]. The lower electricity price is 

assumed to be in effect for 7 hours from midnight 

to 6am in the morning (this is in slight variation of 

the E7 tariff, which promises a 7 hour period, but 

does not specify the exact timing).  

The water consumption, solar radiations and 

outside environmental temperature are considered 

as disturbances that are known in advance. The 

electricity price is a time varying weight, and since 

it is regular it is also known in advance.  

Two scenarios are simulated. In case A, one cold 

day is considered in the middle of two mild days. 

The second scenario (case B) is a sunny day in 

between of two mild days. The middle day is 

changed to investigate the effect of the weather on 

the temperature distribution of the system, and to 

show the effect of the prediction element included 

in the MPC controller. The use of different weather 

scenarios is to analyse how different controller 

behaves with change in weather data. 

5.1  Results: Case A 

The results for Case A are shown in Figs. 4-6. The 

labels T1, T2 and T3 denote buffer tank, hot water 

tank and heating tank temperatures. The initial air 

temperatures of both the bedroom and hall were 

18oC and 22oC. The air temperatures dropped 

initially because the wall layers temperatures are 

initialised to 0oC, and they take time to heat up. 

Both PI (Fig. 4) and on-off controller (Fig. 6) took 

9 hours to bring the hall air temperature to a steady 

value whereas the MPC controller (Fig. 5) took 

approximately 3 hours to bring the air temperature 

to the reference temperature of 22oC.  

One objective of the control problem was to 

minimize the energy cost by using night time 

electric tariffs which are cheaper as compare to day 

time tariffs. The model predictive controller uses 

more night time electricity while the PI controller 

uses much less night time electricity. From 

midnight of day 1 to 6:00 of day 2, the MPC 

controller has used more energy than the PI 

controller, taking advantage of cheaper tariff. This 
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leads to a significant increase in the tank 

temperatures during the night, a strong sign of 

energy being stored. The MPC controller then 

switched off the heat pump when the higher day 

time electric tariff comes into action as can be seen 

control input graph of Fig. 5. It mainly relies on the 

energy stored in the tanks, using only a minimal 

amount of electricity to keep the tank temperatures 

above the lower limit. One deviation from this 

objective is the strong use of the heat pump for a 

short period at 10:00 on day 3. Closer investigation 

of the optimisation reveals that this is applied in 

order to avoid the lower limit on T3, which is 

encountered unexpectedly due to model errors 

between the linear model used on the controller and 

the non-linear model used for the simulation.  

Neither the PI controller nor the on-off controller 

takes electric tariffs into account (which is in line 

with their simple design). As a consequence, they 

use more energy during the day time. After the 

initial settling period, the PI controller maintains 

very steady temperatures throughout the system. 

The on-off controller keeps the temperatures 

between upper and lower limits, which lead to the 

typical limit cycle characteristic of a switching 

controller. 

 
Fig. 4  PI control results Case A 

 

00 06 12 18 24 06 12 18 24 06 12 18 24
0

0.2

0.4

0.6

0.8

1

Day 1 Day 2 Day 3
Time (hr) (a)

C
on

tro
lle

r I
np

ut
s

Control Inputs

 

 
HP
Solar Radiations
Elec Price

00 06 12 18 24 06 12 18 24 06 12 18 24
0

10

20

30

40

50

60

Day 1 Day 2 Day 3
Time (hr) (b)

Te
m

pe
ra

tu
re

s

Control Results

 

 
T1
T2
T3
Bed
Hall
Env.Temp



International Journal of Automation and Computing 00(0), Month 20XX 

 
Fig. 5  MPC control results Case A 

 

Fig. 6  On-off control results Case A 
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5.2  Results: Case B 

The second scenario simulates a particularly sunny 

day in the middle of two mild days. It is used to 

judge how effective a control strategy is at making 

use of solar radiation in order to reduce the 

electrical consumption. The results for all 

controllers are shown in Figs. 7-9, and they all 

maintain the room temperatures at the desired level. 

All simulations show a rise in the temperature of 

tank 3 and a rise of the hall temperature during day 

2 – this is caused directly by the strong solar 

radiation (in a typical use the occupant would use 

natural ventilation to reduce the temperature based 

on comfort level). All controllers compensate for 

this by cutting the heating input to the minimum 

required for maintaining hot water, and this means 

that the energy cost is significantly reduced 

compared to the previous scenario.  

There are a few interesting differences in the 

details. It would be expected that the MPC 

controller would use to the prediction of the 

weather to proactively cool the rooms just before 

the high solar input, but this does not seem to be 

happening. Only a small difference is noticeable in 

the bedroom, but it is not very pronounced. 

Secondly, it would be physically possible to 

circulate the hot water from the heating tank back 

into the buffer tank and from there into the hot 

water tank. None of the controllers achieve this– 

the simple controllers because they are not designed 

to do so, and the MPC controller because the linear 

model does not account for reverse heat flow. So 

this is an interesting opportunity to enhance the 

controller in order to manage further energy 

savings. 

Still, MPC uses slightly less energy than the other 

two controllers during the second day.  This 

energy is used only to heat up the hot water tank as 

the heat tank has enough energy because of the 

solar energy as shown in Fig. 8. The results for 

on-off controller Fig. 9 shows that tank 

temperature's fluctuations are less than the room air 

temperature's fluctuations, due to higher 

temperature range for the tanks. 

The energy cost analysis showed that the MPC has 

a lower energy cost than the PI and on-off 

controllers. The model predictive controller 

achieves this by using more electricity at night, 

making use of the cheaper night time tariff and 

using low power settings during the day time. For 

case A, the MPC energy cost was 12.24% less than 

the PI controller and 8.92% less than the on-off 

controller. During case B simulations, the MPC 

energy cost was 10.05% and 5.674% less than the 

PI and on-off controller. In Fig. 10 it is shown that 

for Case A simulations, the MPC has used more 

night time electricity than the other two controllers.  
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Fig. 7  PI control results Case B 

 

Fig. 8  MPC control results Case B 
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Fig. 9  On-off control results Case B 

 
Fig. 10  Night time energy price in pounds 
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linearized version of it. This causes a model 

mismatch between the controller and the real model, 

leading to some suboptimal controller action. The 

error increases as the tank temperature deviate from 

the nominal values used for linearization, and the 

effect on temperature stability is exacerbated by the 

long cycle time (1h) used for the MPC controller. It 

may be possible to reduce this issue by controlling 

energy transfer rate rather than mass flow rate, or by 

implementing an underlying control layer. However, 

both solutions significantly complicate the 

modelling of system limits for the MPC controller.  

The second limitation was that because the MPC 

controller only has a linear model of the plant, it 

cannot use non-linear effects for load shifting. This 

limits for example the use of solar energy, because it 

does not get transferred back into the other tanks.  

However, despite these two limitations of MPC, 

overall the model predictive controller proved to 

have a greater potential in the area of load shifting 

and use of renewable energy. The computational 

complexity is reasonably low, and it is even suitable 

for online implementation on affordable embedded 

control hardware.  
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Appendix 
Nomenclature 
 
𝐹𝑅            collector heat removal factor 
𝑄𝑈   useful energy gain, 𝑊 

𝑇𝑐   collector average temperature, ℃ 

𝑇𝑎   ambient temperature, ℃ 

𝛼   absorption factor of solar collector 

𝜏   transmittance factor of solar collector 

𝐴𝑐   area of solar collector, 𝑚2 

𝐼   solar radiation intensity, 𝑊/𝑚2 

𝑈𝐿   collector overall heat loss coefficient, 𝑊/𝑚2 

𝑀𝑀𝑀   model predictive control 

𝑃𝑃𝑃   proportional integral and derivative controller 

𝐹𝐹𝐹   fuzzy logic controller 

𝐻𝐻𝐻𝐻  heating, ventilation and air conditioning 

𝐶𝐶𝐶   coefficient of performance 
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State space model 
𝐴 =     

 𝑥1 𝑥2 𝑥3 𝑥4 
𝑥1 −0.02171 0.00724 0.01214 0 
𝑥2 0.001829 −0.002265 0 0 
𝑥3 0.001829 0 −0.002265 0 
𝑥4 0 0 0 −0.02177 
𝑥5 0 0 0 0.001829 
𝑥6 0 0 0 0.001829 
𝑥7 7.97 × 10−6 0 0 0 
𝑥8 0 0 0 0 
𝑥9 1.82 × 10−5 0 0 2.427 × 10−5 
𝑥10 0.0008649 0 0 0 
𝑥11 1.42 × 10−5 0 0 0 
𝑥12 0 3.64𝐸 × 10−5 0 0 
𝑥13 0 0 0 0 
𝑥14 0 0 3.64 × 10−5 0 
𝑥15 0 0 0 0 
𝑥16 0 0 0 0.0005561 
𝑥17 0 0 0 1.42 × 10−5 
𝑥18 0 0 0 0 
𝑥19 0 0 0 0 
𝑥20 0 0 0 0 
𝑥21 0 0 0 0 
𝑥22 0 0 0 0 

 

 𝑥5 𝑥6 𝑥7 𝑥8 
𝑥1 0 0 0.0001734 0 
𝑥2 0 0 0 0 
𝑥3 0 0 0 0 
𝑥4 0.00724 0.01214 0 0 
𝑥5 −0.002265 0 0 0 
𝑥6 0 −0.002265 0 0 
𝑥7 0 0 −0.0001321 2.39 × 10−5 
𝑥8 0 0 2.39 × 10−5 3.19 × 10−5 
𝑥9 0 0 7.28 × 10−5 6.07 × 10−6 
𝑥10 0 0 0 0 
𝑥11 0 0 0 0 
𝑥12 0 0 0 0 
𝑥13 0 0 0 0 
𝑥14 0 0 0 0 
𝑥15 0 0 0 0 
𝑥16 0 0 0 0 
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𝑥17 0 0 0 0 
𝑥18 3.64 × 10−5 0 0 0 
𝑥19 0 0 0 0 
𝑥20 0 3.64 × 10−5 0 0 
𝑥21 0 0 0 0 
𝑥22 0 0 0 0 

  

 𝑥9 𝑥10 𝑥11 𝑥12 
𝑥1 0.0005202 0.0003374 0.000728 0 
𝑥2 0 0 0 0.0004359 
𝑥3 0 0 0 0 
𝑥4 0.0006936 0 0 0 
𝑥5 0 0 0 0 
𝑥6 0 0 0 0 
𝑥7 9.569 × 10−5 0 0 0 
𝑥8 7.974 × 10−6 0 0 0 
𝑥9 −0.0001333 0 0 0 
𝑥10 0 −0.001309 0 0 
𝑥11 0 0 −4.78 × 10−5 0 
𝑥12 0 0 0 −3.971 × 10−5 
𝑥13 0 0 0 0.0001237 
𝑥14 0 0 0 0 
𝑥15 0 0 0 0 
𝑥16 0 0 0 0 
𝑥17 0 0 0 0 
𝑥18 0 0 0 0 
𝑥19 0 0 0 0 
𝑥20 0 0 0 0 
𝑥21 0 0 0 0 
𝑥22 0 8.264 × 10−5 0 0 
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 𝑥13 𝑥14 𝑥15 𝑥16 
𝑥1 0 0 0 0 
𝑥2 0 0 0 0 
𝑥3 0 0.0004359 0 0 
𝑥4 0 0 0 0.000217 
𝑥5 0 0 0 0 
𝑥6 0 0 0 0 
𝑥7 0 0 0 0 
𝑥8 0 0 0 0 
𝑥9 0 0 0 0 
𝑥10 0 0 0 0 
𝑥11 0 0 0 0 
𝑥12 3.286 × 10−6 0 0 0 
𝑥13 −0.002382 0 0 0 
𝑥14 0 −3.971 × 10−5 3.286 × 10−6 0 
𝑥15 0 0.0001237 −0.002382 0 
𝑥16 0 0 0 −0.0008539 
𝑥17 0 0 0 0 
𝑥18 0 0 0 0 
𝑥19 0 0 0 0 
𝑥20 0 0 0 0 
𝑥21 0 0 0 0 
𝑥22 0 0 0 5.537 × 10−5 

 
    

 
 𝑥17 𝑥18 𝑥19 𝑥20 𝑥21 𝑥22 
𝑥1 0 0 0 0 0 0 
𝑥2 0 0 0 0 0 0 
𝑥3 0 0 0 0 0 0 
𝑥4 0.000728 0 0 0 0 0 
𝑥5 0 0.0004359 0 0 0 0 
𝑥6 0 0 0 0.0004359 0 0 
𝑥7 0 0 0 0 0 0 
𝑥8 0 0 0 0 0 0 
𝑥9 0 0 0 0 0 0 
𝑥10 0 0 0 0 0 0.0004444 
𝑥11 0 0 0 0 0 0 
𝑥12 0 0 0 0 0 0 
𝑥13 0 0 0 0 0 0 
𝑥14 0 0 0 0 0 0 
𝑥15 0 0 0 0 0 0 
𝑥16 0 0 0 0 0 0.0002978 
𝑥17 −4.78 × 10−5 0 0 0 0 0 
𝑥18 0 −3.971 × 10−5 3.286 × 10−6 0 0 0 
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𝑥19 0 0.0001237 −0.002382 0 0 0 
𝑥20 0 0 0 −3.971 × 10−5 3.286 × 10−6 0 
𝑥21 0 0 0 0.0001237 −0.002382 0 
𝑥22 0 0 0 0 0 −0.000138 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



International Journal of Automation and Computing 00(0), Month 20XX 

B= 
      

 
𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 𝑢6 

𝑥1 0 0 0 0 0.05247 0 
𝑥2 0 0 0 0 0 0 
𝑥3 0 0 0 0 0 0 
𝑥4 0 0 0 0 0 0.06087 
𝑥5 0 0 0 0 0 0 
𝑥6 0 0 0 0 0 0 
𝑥7 0.01137 −0.00399 −0.01196 0 0 0 
𝑥8 0 0.003987 0 0 0 0 
𝑥9 0 0 0.009102 −0.00019 −0.001836 −0.00213 
𝑥10 0 0 0 0 0 0 
𝑥11 0 0 0 0 0 0 
𝑥12 0 0 0 0 0 0 
𝑥13 0 0 0 0 0 0 
𝑥14 0 0 0 0 0 0 
𝑥15 0 0 0 0 0 0 
𝑥16 0 0 0 0 0 0 
𝑥17 0 0 0 0 0 0 
𝑥18 0 0 0 0 0 0 
𝑥19 0 0 0 0 0 0 
𝑥20 0 0 0 0 0 0 
𝑥21 0 0 0 0 0 0 
𝑥22 0 0 0 0 0 0 

 

 
𝑢7 𝑢8 𝑢9 𝑢10 𝑢11 𝑢12 

𝑥1 0.0005722 0 0 0.01734 0 0 
𝑥2 0 0 0 0 0 0 
𝑥3 0 0 0 0 0 0 
𝑥4 0.0007548 0 0 0 0.01734 0 
𝑥5 0 0 0 0 0 0 
𝑥6 0 0 0 0 0 0 
𝑥7 7.770 × 10−6 0 0 0 0 0 
𝑥8 0 −3.721 × 10−5 0 0 0 0 
𝑥9 1.189 × 10−5 0 0.00165 0 0 0 
𝑥10 0 0 0 0 0 0 
𝑥11 3.362 × 10−5 0 0 0 0 0 
𝑥12 0 0 0 0 0 0 
𝑥13 2.259 × 10−3 0 0 0 0 0 
𝑥14 0 0 0 0 0 0 
𝑥15 2.259 × 10−3 0 0 0 0 0 
𝑥16 0 0 0 0 0 0 
𝑥17 3.362 × 10−5 0 0 0 0 0 
𝑥18 0 0 0 0 0 0 



M. W. Ahmad et al. / Preparation of Papers for International Journal of Automation and Computing 

𝑥19 2.259 × 10−3 0 0 0 0 0 
𝑥20 0 0 0 0 0 0 
𝑥21 2.590 × 10−3 0 0 0 0 0 
𝑥22 0 0 0 0 0 0 
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𝐶 =        
 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 
𝑦1 0.1568 0.0784 0.0784 0 0 0 0 
𝑦2 0.1554 0.078 0.078 0 0 0 0 
𝑦3 0 0 0 0.1497 0.075 0.075 0 
𝑦4 0 0 0 0.1483 0.0743 0.0743 0 
𝑦5 0 0 0 0 0 0 1 
𝑦6 0 0 0 0 0 0 0 
𝑦7 0 0 0 0 0 0 0 
𝑦8 1 0 0 0 0 0 0 
𝑦9 0 0 0 1 0 0 0 

 
 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12 𝑥13 𝑥14 
𝑦1 0 0 0 0 0 0 0 
𝑦2 0 0 0 0 0 0 0 
𝑦3 0 0 0 0 0 0 0 
𝑦4 0 0 0 0 0 0 0 
𝑦5 0 0 0 0 0 0 0 
𝑦6 1 0 0 0 0 0 0 
𝑦7 0 1 0 0 0 0 0 
𝑦8 0 0 0 0 0 0 0 
𝑦9 0 0 0 0 0 0 0 

 
 𝑥15 𝑥16 𝑥17 𝑥18 𝑥19 𝑥20 𝑥21 
𝑦1 0 0 0 0 0 0 0 
𝑦2 0 0 0 0 0 0 0 
𝑦3 0 0 0 0 0 0 0 
𝑦4 0 0 0 0 0 0 0 
𝑦5 0 0 0 0 0 0 0 
𝑦6 0 0 0 0 0 0 0 
𝑦7 0 0 0 0 0 0 0 
𝑦8 0 0 0 0 0 0 0 
𝑦9 0 0 0 0 0 0 0 

 
 𝑥22 
𝑦1 0 
𝑦2 0 
𝑦3 0 
𝑦4 0 
𝑦5 0 
𝑦6 0 
𝑦7 0 
𝑦8 0 
𝑦9 0 
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𝐷 = 
       

 
𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 𝑢6 𝑢7 

𝑦1 0 0 0 0 0 0 0 
𝑦2 0 0 0 0 0 0 0 
𝑦3 0 0 0 0 0 0 0 
𝑦4 0 0 0 0 0 0 0 
𝑦5 0 0 0 0 0 0 0 
𝑦6 0 0 0 0 0 0 0 
𝑦7 0 0 0 0 0 0 0 
𝑦8 0 0 0 0 0 0 0 
𝑦9 0 0 0 0 0 0 0 

 

 
𝑢8 𝑢9 𝑢10 𝑢11 𝑢12 

𝑦1 0 0 0 0 0 
𝑦2 0 0 0 0 0 
𝑦3 0 0 0 0 0 
𝑦4 0 0 0 0 0 
𝑦5 0 0 0 0 0 
𝑦6 0 0 0 0 0 
𝑦7 0 0 0 0 0 
𝑦8 0 0 0 0 0 
𝑦9 0 0 0 0 0 

 
 
Input groups:                     
       Name           Channels    
    Manipulated     [𝑢1,𝑢2,𝑢3,𝑢4,𝑢5,𝑢6] 
     Measured      [𝑢7,𝑢8,𝑢9,𝑢10,𝑢11,𝑢12] 
                                  
Output groups:                    
      Name          Channels      
    Measured    [𝑦1,𝑦2, 𝑦3, 𝑦4, 𝑦5,𝑦6, 𝑦7,𝑦8,𝑦9] 
                                  
Continuous-time state-space model. 

 



 

 

  
Abstract—This paper presents a simple simulation of solar water 
heating system. This system is controlled by a simple ON/OFF 
controller. The simulations were performed in TRNSYS 
environment. This paper also addresses the application of model 
predictive control (MPC) to control the temperature of a solar heating 
system combined with heat pump. The main objective of this work 
will be to maximize the use of solar energy collected by solar 
collector. The controller will reject disturbances caused by solar 
radiations. 

 
 
Keywords— Model predictive control; solar radiations; solar 
heating system; heat pump 

.  

I. INTRODUCTION 
HE limited reserves of oil and interests of environment 
protection and energy efficiency have led the research 
direction towards renewable energy resources (RES). 

Energy is considered as a primary source of wealth generation 
and is also a significant factor of economic growth of any 
country. The energy resources can be divided into three 
categories (i) Fossil fuels, (ii) Renewable Energy resources 
and (iii) Nuclear resources (Demirbas, 2000). Kalogirou 
(2004) mentioned Renewable energy resources (RES) as 
alternative sources of energy. In last two decades a significant 
research has been carried out in the field of RES and systems. 
By the end of 2001 the total capacity of installed of RE 
(Renewable Energy) system was 9% of the total electricity 
generation (Sayigh, 2001). 

 
 
Model predictive control has gained a considerable attention in 
last few decades, both within the industry and the research 
(Camacho et al, 1999).  
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Model predictive control: 
MPC originated in the late seventies and has developed very 
considerably. MPC is a class of computer algorithms that 
utilize process model to predict future outcome/response of a 
plant. The control signal is obtained by minimizing objective 
function (Qin et al, 2002) .Camacho et al (1999) mentioned 
the main ideas behind predictive control methods as; 

• Explicit use of a model to predict the process output 
at future time instant (horizon). 

• Obtaining control signal by minimizing an objective 
function. 

• Using receding strategy, at each instant the horizon is 
moved towards the future.  

MPC is a methodology rather than a single technique. The 
main difference in the various methods is the way the problem 
is translated in to the mathematical model. MPC technology is 
used in different areas; including chemical industry, food 
processing, power plants, petroleum, automotive, and 
aerospace (Van den boom et al, 2010). MPC is referred as a 
member of controller’s family, which uses explicit and 
identifiable model. The main reason of MPC popularity is its 
ability to give high performance control systems, which are 
capable of operating without expert supervision for long time 
(Garcia et al, 1989). 

II. PLANT DESCRIPTION: 
The plant is located at Civil and Building Engineering 

laboratories, Loughborough University, UK. The system 
consisted of solar collector, two buffers storage tanks and a 
heat pump. The general scheme of the plant is shown in figure 
(1). The system is arranged in parallel arrangement. The 
reason for installing this system as parallel system is that 
Freeman et al (1979), Chandrashekar et al (1982), Mitchell et 
al (1978), Marvin et al (1976) and Hatheway et al (1981) 
studied the performance of different solar assisted heat pump 
systems and it is shown that parallel systems are better in 
performance from series systems and also parallel systems is 
slightly better than dual system. 
 
(a) Solar Collector: 
 
The main source of energy is solar radiation. Solar collector is 
used to collect solar heat energy. 
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(b) Buffer tanks: 
The system has two storage tanks. One tank is attached to solar 
collector loop while the second one is the load tank. 

 

(c) Heat Pump 
 

 
Figure 1: Solar assisted air source heat pump (Source: 
Li et al, 2009) 
 
The system shown in figure 1 is solar assisted air source 
heat pump (SA-ASHP). The main source of energy is 
through solar radiations. On cloudy and during night time 
when there is not enough solar radiation then heat pump is 
used for auxiliary energy.  

III. MODEL DEVELOPMENT: 
Duffie et al (1991) calculated the useful energy from solar 
collector 

qs= Ac[ITFR(ατ)-FRUL(Tst-Ta)]         (1) 
 
Heat balance on storage tank: 
The heat balance heat equation on pre heating solar loop 
storage tank is given by following equation; 

 
Heat stored in storage tank= Heat added –heat removed 
 
ρCpVst dTst/dt=Solar energy+ buffer tank energy – to 
radiators (load)- heat loss 
The energy supplied to radiators is given by; 
Energy to radiators= qLs= mLCp (Tst-TR)     (2) 
 
The heat loss from tank to environment; 
Heat loss to environment= qstl= UstAst (Tst- Ta)  (3) 

 
Kulkarni et al (2007) proved that for cylindrical tanks the 
surface area of tank can be related to its volume, height and 
diameter. 
Ast=1.845 (2+h/d) Vst

2/3           (4) 
By combining equations 1, 2, 3 and 4, the heat stored by the 
preheating storage tank is given by; 

 
ρCpVst dTst/dt= Ac[ITFR(ατ)-FRUL(Tst-Ta)] - mLCp (Tst-TR)  

- UstAst (Tst- Ta)        (5) 
 

Heat pump equations: 
 

Li et al (2009) noted that the thermal energy absorbed by 
the water is equal to the heat released by the condenser 
as:Qc= Qwater= Cpmw (Twout-Twin)         (6) 

 
Kaygusuz (1995) estimated the relationship between 
heat released by condenser by heat pump and ambient 
temperature by using manufacturer’s data; 
Qc= 18.45- 0.101Ta+ 6.508*10-5Ta

2- 5.044*10-7Ta
3 

                     (7) 
By putting value of Qc from equation from 7 in to 
equation 6, Twout

 by changing volume flow rate, 
As  
mw=ρV                  (8) 

IV. TRNSYS: 
Trnsys is a transient system simulation program. Trnsys 
stands for “transient simulation program”. It was 
developed by the University of Wisconsin (Klein, 
1996). Trnsys is written in fortan-77. After identifying 
system components, these components are connected. 
Each component in trnsys is represented by a box; this 
box requires a number of constant parameters, inputs 
(which are time dependent) and outputs (time 
dependants). 
In this paper a simple simulation was run in trnsys 
environment. A system used for solar water heating was 
modeled and simulated. The system was consisted of a 
solar collector, a storage tank, pump, an ON/OFF 
controller, diverters and tee joints, load profile type. 
The connection between these components is shown in 
figure 2. Birmingham (UK) weather data was selected 
for this case and simulations were performed for the 
months of May, June and July. The radiations received 
by solar thermal collector are shown in figure 3. The 
controller used in this case study was a simple ON/OFF 
feedback controller. The outlet temperature from 
storage tank is shown in figure 4. It was found that the 
temperature varied between 57 OC to 100 OC.  
 

 
Figure 2: Flow diagram of solar heating system 



 

 

 
Figure 3: Radiations received by solar collector 

 
Figure 4: Outlet temperature of storage tank 

 
 
 
  



 

 

V. MATLAB: 
The use of Matlab is increasing in different fields. Now 
a days is not only used for computing/mathematical 
applications, it is also used in different other fields such 
as control engineering, fluid mechanics, mechanical 
vibrations, etc. in the research area of built environment 
its use has also been increased. Matlab/simulink is used 
for different applications for example pipe sizing, 
building energy management systems and their control 
strategies, indoor air quality, control of renewable 
energy systems and their feasibility analysis, design of 
controller for HVAC applications, etc.  
Model Predictive control tool box™ consisted of 
different set of functions for designing and analyzing 
model predictive controller. A MPC controls a system 
(plant) by combining a prediction and control 
strategies. Constraints are always considered in 
designing MPC, these constraints can be e.g. opening 
limit of actuators. Model predictive control toolbox™ 
has both GUI (Graphic user interface) and command 
syntax to help user.  
In future MPC toolbox of matlab will be used to 
develop and analyze model predictive control for solar 
assisted heat pump system and then results will be 
compared with the simple ON/OFF controller. 

VI. COUPLING TRNSYS AND MATLAB /SIMULINK: 
Riederer et al (2009) presented a paper on coupling 

matlab and trnsys. It was mentioned that the types in trnsys 
are implemented as DLL files. This means that trnsys 
component can be implemented using any programming 
language which is capable to compile DLLs. Trnsys 
components can be imported in to simulink. The connection 
between simulink block represents the connection between 
trnsys types.  

Trnsys and Matlab will be coupled to model water 
heating system and model predictive controller. 

VII. CONCLUSION: 
It has been concluded that the system give us good results as 
for as temperature is concerned, the average output 
temperature was around 70OC.  The main problem was that 
the temperature varied much. Therefore in future MPC 
controller will be designed and analyzed to overcome this 
problem.  

 

VIII. FUTURE WORK: 
In future different renewable systems have to be modeled in 
trnsys environment and then these models will be 
transferred into simulink. MPC controller will be developed 
in simulink and then different systems will be analyzed on 
the basis on energy consumption and thermal comfort 
requirements. After designing and analyzing model 
predictive control this control will be implemented on a test 
rig in the department of Civil and Building Engineering, 
Loughborough University, Loughborough, UK.  
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Nomenclature: 
Ac solar collector area (m2) 
Ast surface area of preheating solar tank (m2) 
Cp specific heat of water (J/kg OC) 
d diameter of preheating solar tank (m) 
FR heat removal factor of solar collector 
h height of preheating solar tank (m) 
IT solar radiation intensity on tilted surface (W/m2) 
mL load mass flow rate (kg/s) 
mw circulation water flow rate (kg/s) 
qLs load met by solar energy (W) 
qs useful solar heat gain (W) 
qstl storage heat loss of preheating solar tank (W) 
Qc heat discharged by condenser (W) 
Qw heat absorbed by hot water (W) 

Ta ambient air temperature (OC) 

 
 
TR cold water temperature (OC) 
Tst hot water temperature in preheating solar tank (OC) 
Tw water temperature (OC) 
UL overall heat loss coefficient of solar collector (W/m2 

OC) 
Ust heat loss coefficient of preheating solar tank (W/m2 

OC) 
Vst storage volume of preheating solar tank (m3) 
Vw storage volume of load water tank (m3) 
 
Greek symbols 
ατ product of transmittance and absorptance 
ρ water density (kg/m3) 

 



 

 

  
Abstract—This paper presents an overview of climate conditions 
and Government policies for renewable energy systems for 
reducing green house gas emissions. A detailed literature review 
of Model predictive control is also carried out. It is found out that 
no research has been made to control solar assisted heat pump by 
using Model predictive control (MPC). It is also found out that 
Phase Change Materials (PCM) can show positive effect on the 
performance of Building and building’s energy consumption. The 
active phase change systems are controlled by conventional 
control systems. However in order to enhance PCM system’s 
performance MPC can be used and will be analysed in near future.  
 
Keywords— Model predictive control; Phase Change 
materials; Solar assisted heat pump. 
 

I. INTRODUCTION 
 
In general, the major environmental concerns of many 
airport buildings have been noise, air quality, soil and water 
quality, sustainability and impact on habitat and wild life 
management (Oh, 2006). However, in recent years, the 
emissions of Green house gases and their impact on 
environment has gained equal attention as one of the main 
environmental concerns. According to Pejovic et al (2008) 
aviation industry contributes to Green house gases (GHG) 
emissions from aircraft in air and on ground and also 
through the energy used in airport buildings. It was 
estimated that in 2005 the total UK emissions from 
aviations industry were 37.5 million tones of CO2 
representing 6.3% of U.K’s total emissions. Climate change 
is a global problem and is one of the very silent issues of the 
world. Now a days climate change and air quality are the 
main concerns of UK government. Hulme et al (2002) 
mentioned in their report on UK climate impact program 
(UKCIP) that climate is referred as the average weather that 
is experienced over a long period of time, typically 30 
years. In response to natural causes, the world’s climate has 
changed a lot. Global climate is affected both by human and 
natural factors. Human can affect global climate by 
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releasing green house gases –like methane and CO2- into the 
atmosphere. These gases absorb heat that is radiated from 
the Earth’s surfaces and thus global temperature is increased 
by warming atmosphere. Natural causes include volcanic 
eruption, changes in the Earth’s orbit and interaction 
between the oceans and the atmosphere. 
This increase in green house gases emission and global 
temperature has made the government to focus on using 
renewable energy systems. 
In 2008, Commission of the European Communities set two 
key targets; 

a) Greenhouse gases emission has to be reduced by at 
least 20 percent by 2020. 

b) 20 percent of energy has to be produced from 
renewable energy sources by 2020. 

This can be achieved by using renewable energy system and 
integrating them with Phase change materials and 
controlling these systems in a better way.  

Model predictive control: 
Model predictive control has gained a considerable 

attention in last few decades, both within the industry and 
the research (Camacho et al, 1999).  
MPC originated in the late seventies and has developed very 
considerably. MPC is a class of computer algorithms that 
utilize process model to predict future outcome/response of 
a plant. The control signal is obtained by minimizing 
objective function (Qin et al, 2002) .Camacho et al (1999) 
mentioned the main ideas behind predictive control methods 
as; 

• Explicit use of a model to predict the process 
output at future time instant (horizon). 

• Obtaining control signal by minimizing an 
objective function. 

• Using receding strategy, at each instant the horizon 
is moved towards the future.  

MPC is a methodology rather than a single technique. The 
main difference in the various methods is the way the 
problem is translated in to the mathematical model. MPC 
technology is used in different areas; including chemical 
industry, food processing, power plants, petroleum, 
automotive, and aerospace (Van den boom et al, 2010). 
MPC is referred as a member of controller’s family, which 
uses explicit and identifiable model. The main reason of 
MPC popularity is its ability to give high performance 
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control systems, which are capable of operating without 
expert supervision for long time (Garcia et al, 1989). 

II. HISTORY OF MODEL PREDICTIVE 
CONTROL 

The history of model predictive control can be traced back 
to 1970’s. Richalet et al (1978) proposed a model to control 
processes. They described applications of this method 
(Model Predictive Heuristic control). Later on this method 
was known as Model Algorithmic control. In 1979 two 
engineers (Cutler and Ramakter) from Shell came with the 
idea of Dynamic Matrix Control. In both of these 
techniques, an explicit dynamic model was used to predict 
effects of future outcomes on the outputs. That’s why it is 
known as Model predictive control. 
The above two researches were very closely related to 
minimum time optimal control and to linear programming. 
This relation was recognised by Zadeh et al (1962). The 
core of all MPC algorithms is known as moving horizon 
principle; this principle was proposed by Propoi (1963). In 
1978 and 1979, MPC became very popular in chemical 
process industries. Different work has been done on 
adaptive control ideas. It was tried to keep future value 
close to the reference. Generalized predictive control was 
developed by Clarke et al (1987). This method uses ideas 
from generalized minimum variance (GMV). 
Morari (1994) formulated model predictive control in state 
space context. This allows to generate more complex 
problems e.g. systems with non-deterministic disturbances 
and noise in the measured variables. Lee et al (1994) 
developed a MPC technique, which was based on step 
response model. In this model state estimation techniques 
were used. It was shown that state estimation technique 
from stochastic optimal control can be used to predict 
without additional complications. Bitmead et al (1990) in 
their book analyzed inherent characteristics of many MPC 
algorithms. By using state-space relationships Mohtadi 
(1986) proved some stability theorems. He also studied the 
influence of filter polynomials on robustness improvement. 
The lack of stability for finite horizon receding was also 
pointed out. Because of this drawback new research area 
was focused in early nineties.  
Two methods named as CRHPC by Clarke et al (1991) and 
SIORHC by Mosca et al (1990) were developed and were 
proved to be stable. The problem of stability of constrained 
receding horizon control problem was tackled by Rawlings 
et al (1993), Rossiter et al (1996) and Zheng et al (1994). 
New results have found by campo et al (1987) and 
Allwright (1994) by using robust control approaches. MPC 
is still a developing technique of control, still there is a lot 
to be developed e.g. optimization of objective functions for 
the worst case of the uncertainties.  
 

III. LITERATURE REVIEW: 
Model predictive control has been used in both industries 

and academic research. In this section a review will be made 

on the application of model predictive control for different 
solar plants and air conditioning systems. 
Zhang et al (2006) described a way to tackle supervisory 
control problem of different systems. This work was carried 
out on a prototype building, with photovoltaic array, solar 
air and water heating, a biomass boiler and a stratified 
thermal storage. The control problem was for every system 
to decide whether to use energy directly, store it or waste it 
in the environment. Different models of systems were 
selected and implemented in simulink®. Evolutionary 
Control algorithm was used to optimize control strategy. 
The results were compared for both BEMS and MPC. In 
winter using BEMS, the energy consumption was 24.8% 
more as compared to MPC, while in spring 47.8% more 
energy was consumed. In summer, this consumption of 
energy became more. It was concluded that MPC with 
evolutionary Algorithm can be used for better control. 
Núñez-Reyes et al (2005) applied model predictive 
controller to control the temperature in a solar air 
conditioning plant. Smith predictor was used in this 
controller and in order to reject disturbances caused by solar 
radiations and the auxiliary gas heater, a feed forward 
control action was included in this smith predictor. 
Previously, a PID controller was installed to control the 
inlet temperature of the absorption machine. This PID 
controller was unable to reject the disturbance in the inlet 
temperature due to oscillation in the gas heater temperature. 
A three input and one output model was identified. The 
experimental results showed that smith predictor is an 
appropriate way to increase the robustness and its tuning is 
also very simple. It also achieved a good performance in 
both set-point tracking and rejection of disturbances. Farkas 
et al (2005) developed a model predictive controller for 
solar plant operation. This plant model was based on energy 
balances. The developed model was the internal part of the 
controller. Internal model control uses the advantages of 
different unconstrained MPC schemes, easy online tuning 
and good performance. It was showed that the internal 
model control performed very well with short control time 
and no overshooting. A study to design model predictive 
controller to smooth the output power from a wind farm was 
carried nu Khalid et al (2010). They focussed to optimize 
the battery storage system. Model predictive control theory 
was applied to combine wind power prediction system with 
battery storage system. This control action was consisted on 
two stages i.e. prediction of wind speed and direction and 
secondly prediction of power output. Predicted power 
output was obtained by converting predicted wind speed. 
This controller performed well under practical constraints 
and achieved maximum ramp rate. 
A research of model-based optimal control of hybrid power 
generation was carried out by Zervas et al (2008). This 
hybrid power generation system consisted of photovoltaic 
arrays, electrolyser, metal hydride tanks and proton 
exchange membrane fuel cells. Hybrid energy systems store 
energy efficiently. A neural network model was used to 
predict the global solar irradiations and then energy 
produced by solar array was estimated. Finally, MPC was 



 

 

used to get an optimal control strategy. The fundamental 
rolling horizon principle of MPC was used to develop 
decision strategy. The proposed model was proved to be 
very useful tool for decision making.  
A robust model predictive control strategy was developed 
by Huang et al (2009). This control strategy was to improve 
the performance of air conditioning systems. First order 
time-delay model with uncertain time delay and system 
gains were used to describe air-conditioning processes. The 
uncertainties in time-delay and system gains were 
formulated by using uncertainty prototype. A typical 
Variable-Air-volume (VAV) system was used for this 
research. LMI (Linear Matrix Inequality) was employed to 
design this controller. Model predictive control strategy was 
tested and then was compared with the performance of the 
conventional strategy (PI). It was found that for MPC the 
outlet temperature followed the supply air temperature when 
there was a sudden step change. In case of PI, it performed 
well but the output response was not very fast. Robust 
analysis was also performed and MPC strategy responded 
very quickly to the disturbances. The results showed that 
MPC had much more robustness than conventional PI 
algorithm control. Kolokotsa et al (2008) combined model 
predictive controller with a BEMS (Building Energy 
Management System). The main purpose of the overall 
system was to predict the indoor environmental conditions 
and to take appropriate actions, in order to satisfy indoor 
environmental conditions and minimizing energy 
consumption. State vector was defined as; 
x(k)=[CO2 in (k) RH in (k) T in (k) E in (k)] 
where CO2 in (k) is the indoor Carbon dioxide concentration, 
RH in (k) is the indoor relative humidity, T in (k) is the 
indoor temperature and E in (k) is the indoor illuminance. 
and control vector was defined as; 
u(k)= [W(k) L(k) S(k) AC(k)]T 
Where S is shading output, W is window opening, AC is air 
conditioning output, and L is lighting output, the variables 
were modeled by using bilinear approach, which is simple 
and an extension of linear modeling approach. The 
controller was designed to minimize the performance index 
J(k), which was aimed to keep the variable as much close as 
possible to the set points. It was found that system’s 
response to the variable was very fast and stable. 

IV. MODEL PREDICTIVE IN BUILDING 
SERVICES ENGINEERING: 

Henze et al (2005a, 2005b) experimentally analyzed MPC 
for active and passive building thermal storage inventory. A 
real time experimental implementations were carried out 
using 24h future horizon and a 1-h controller time step. 
Trnsys software was used for building model and Matlab for 
central purposes. They noticed some technical problems, 
but overall this approach was very successful. In their other 
research (Henze et al (2004) , they also found out the 
importance of forecasting on model predictive controller. 
Determination of optimal start time for heating was 
addressed by researchers from Honeywell control systems 
Ltd and the University of Strathclyde (Clarke et al, 2002). 

They came with some concerns between control system and 
simulation tools (ESP-r) and optimizer. 
Kummert et al (2005a, 2005b) studied optimal control of 
passive solar building with night setback. They made an 
attempt to minimize energy consumption. A linear S-S 
(steady-space) representation was used and quadratic 
programming was done for optimization.  
 

V. FUTURE WORK: 
Zhu et al (2009) reviewed energy performance of buildings 
with phase change materials (PCM). They concluded that 
PCM has positive effects on the performance of buildings 
and energy consumption. They also concluded that active 
PCM energy systems conventional control was used. In 
order to maximize the performance of PCM system 
optimum control has to be used.  
This project is focused on airport environment. In this 
project investigation of Control of Phase change material 
energy systems for terminal buildings will be carried out. In 
order to implement Model predictive control on PCM 
energy systems, it has been decided to develop MPC for 
solar energy hot water system assisted with heat pump.. The 
layout diagram of the system is shown in figure 1.  

Figure 1: Layout diagram of the system 
 
 
 
 



 

 

 
Figure 2: Explanation of components of figure 1 

 
 
The main objective of the control for above system will be 
to use maximum of solar energy, predicting outdoor weather 
conditions and load and to minimize the use of heat pump. 
This controller will compensate all the disturbances in 
outside weather. Also from literature review it has been 
showed that no solar system assisted with heat pump is 
controlled with the help of MPC.  
In order to implement MPC on PCM energy system, first 
this controller will be designed for solar assisted heat pump 
for water heating. For this purpose this system will be 
modeled in TRNSYS and then TRNSYS model will be 
coupled with matlab.  The controller will be designed in 
Matlab. The same TRNSYS model system will be 
experimentally installed and with the help of XPC target 
toolbox of Matlab this experimental setup will be controlled 
by Model predictive controller. 
The phase change material energy system will be designed 
in trnsys and then MPC will be developed in Matlab. All 
these system will be analysed on the basis of energy 
consumption. 

VI. COUPLING TRNSYS AND MATLAB /SIMULINK: 
Trnsys is a transient system simulation program. Trnsys 

stands for “transient simulation program”. It was developed 
by the University of Wisconsin (Klein, 1996). Trnsys is 
written in fortan-77. After identifying system components, 
these components are connected. Each component in trnsys 
is represented by a box; this box requires a number of 

constant parameters, inputs (which are time dependent) and 
outputs (time dependants). 

The use of Matlab is increasing in different fields. Now a 
days is not only used for computing/mathematical 
applications, it is also used in different other fields such as 
control engineering, fluid mechanics, mechanical vibrations, 
etc. in the research area of built environment its use has also 
been increased. Matlab/simulink is used for different 
applications for example pipe sizing, building energy 
management systems and their control strategies, indoor air 
quality, control of renewable energy systems and their 
feasibility analysis, design of controller for HVAC 
applications, etc.  
Model Predictive control tool box™ consisted of   different 
set of functions for designing and analyzing model 
predictive controller. A MPC controls a system (plant) by 
combining a prediction and control strategies. Constraints 
are always considered in designing MPC.  
These two software tools will be used to carry out this 
research. Trnsys will be used to model solar heating system 
and then PCM system. These two systems will be controlled 
by MPC with the help of Matlab. 

VII. CONCLUSION: 
The Government goal of using renewable energy systems 
and reducing carbon emissions has made to think about 
other energy options. In this paper general view of climate 
condition has been sketched. Government targets of 
reducing carbon emissions can also be achieved by using 
better control of building systems. Model predictive control 
is a control algorithm, which is used to control very simple 
as well as very complex problems. This includes systems 
with long delay times, unstable systems. MPC deals 
multivariable problem very easily. MPC has shown very 
promising results in controlling different solar and air 
conditioning plants. MPC will be used to control solar 
assisted heat pump and PCM systems. 
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Abstract— This paper describes the setup and model of a 
solar panel combined with a heat pump system for domestic 
hot water and heating. The system has been built at the 
School of Civil and Building Engineering of Loughborough 
University. Solar collectors provide clean and renewable 
energy, while the heat pumps can provide energy efficient 
and environmentally friendly heat when necessary. This 
paper describes the layout of the experimental system, the 
model development based on first energy principles and 
initial simulation results. Local weather data is used to 
check the working of the model. The current controller 
controls the flow of hot water into the tanks based on 
current measurements only. The objective of future work is 
to apply model predictive control (MPC) to this system. 

Keywords- domestic heating, heat pump, solar collectors, 
energy modelling, model predictive control (MPC). 

I. INTRODUCTION 

All our energy sources are derived from solar energy.  
Wood, Oil and natural gas were originally produced 
through photosynthesis and complex chemical reactions. 
Fossil fuels are the result of chemical reactions in 
decaying vegetation under high temperatures and 
pressures over long periods of time [1]. The main 
advantage of solar energy is that it is clean and can be 
delivered without pollution.  
Solar collectors have a wide variety of applications, such 
as solar water heating, space heating and cooling, solar 
refrigeration, solar thermal power plants, solar 
desalination etc. In solar water heating systems the main 
component is the solar collector, which absorbs energy 
and transfers it to the working fluid. Integrated collector 
systems use part of the tank as a solar collector. The 
disadvantage of this system is the thermal losses from the 
tank [2]. Solar energy systems can be used for hot water 
generation. In this application a heat exchanger is used 
between the solar collector and the hot water tank, which 
allows the use of antifreeze solutions in the solar collector 
loop [3].  
Air source heat pumps are devices which transfer energy 
from air at low temperature to a tank at high temperature. 
The use of a heat pump for space heating and hot water 
generation is gaining popularity day by day because of its 
low energy consumption compared to other equipment 
[4], [5], [6]. The heat pump operates best at low 
temperature differences, when the coefficient of 
performance (COP) is high and the required energy low 
[7].  

The solar radiation is not available during night times and 
on cloudy days. Therefore, solar collectors can be 
combined with a heat pump in such a way that in times of 
low solar radiation the heat pump is used instead. The 
heat pump can also benefit from cheap night time 
electricity when combined with a thermal storage.   

II. PLANT DESCRIPTION

The solar assisted heat pump system is installed at the 
School of Civil and Building Engineering of 
Loughborough University as an experimental rig. It 
consists of a solar panel, a heat pump and accumulators. 
Solar panels are used for heating when feasible, and the 
heat pump is used for heating when solar irradiation is 
insufficient (cloudy weather, night), and it is used for the 
domestic hot water purposes. The heat pump has a power 
capacity of 6kW.  

Figure 1: Heat pump combined solar system. (a) Heating 
Tank (b) Diverter (c) Valve (d) Controller and (e) Buffer 
tank 

The main components of the system are shown in figure 
1. In figure 1(a) the heating tank is shown, which 
encapsulates the hot water tank (not visible). In figure 1 
(b) the diverter is shown, which diverts the flow from the 
buffer tank to the heating tank or the hot water tank. 
Figure 1(c) is the valve which regulates the flow from the 
buffer tank to the other two tanks. Figure 1(d) is the 
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current controller which controls the heat pump, diverter 
and valves. The figure 1(e) is the buffer tank which is 
connected to the heat pump. 
A general schematic diagram of the plant is shown in 
figure 2. In figure 2 the main components of the system 
can be observed. The heat pump is connected to the 
buffer tank. The plant uses two different energy sources: 
the solar collector and the electric air source heat pump. 
Both of these can be used together or separately for the 
heating tank. 
The mixing valve M1 allows water to flow from the 
buffer tank (heat pump tank) into the heating tank or hot 
water tank, while the diverter D1 diverts the flow to either 
or both of these tanks. The valve M2 allows water to 
bring energy into the heating tank or to take it back to the 
solar collectors. 

Figure 2: Plant Scheme 

Table 1: Tank capacity 

Tank Sizes 
Buffer Tank 300litres 
Hot water Tank 300litres 
Heating Tank 450litres 

The objective for the system is to supply hot water for 
heating and domestic hot water at the required 
temperatures. The control object is to minimize the cost 
of electric energy for the heat pump. If the solar 
irradiation is low the heat pump can be used, but the 
desired solution is to operate the heat pump during the 
night when the energy tariffs are low. The preferred 
energy is of course solar energy. Since the solar radiation 
cannot be controlled, it is considered as a measured 
disturbance here.  

III. SYSTEM DESCRIPTION 
The main components of the system are described here. 

A. Accumulation system: 
         The accumulation system consists of three 
tanks. The hot water tank is inside the heating tank. The 

heating tank is 450L and hot water tank is 300L of 
capacity. The third tank is the buffer tank and is 300L. It 
is connected to the heat pump and supplies hot water to 
other two tanks when it is required.  

B. Solar Collector: 
Solar collectors are used to collect sole radiations and to 
raise the temperature of water of the heating tank. It uses 
solar energy to raise the water temperature and is the 
primary energy source of the system. It consists of 2 flat 
plate collectors 2m2 in area each. 

C. Heat Pump: 
The installed heat pump uses air as a heat source. It is the 
auxiliary source of the energy for the heating tank, but it 
is the main (only) energy source for the hot water tank. 
The heat pump is directly connected to the buffer tank. 
The rated electric power of the heat pump is 6kW.  

The system variables are shown in figure 3 and are 
explained below; 

Figure 3:  Inputs, Disturbances and Outputs 

D.  Manipulated variables: 
• M1 allows the connection between buffer tank 

and other two tanks. 
• M2 allows the heating tank and solar collector. 
• D1 diverts flow to either hot water tank or 

heating tank 
• Heat pump On/Off switch 
• Heater On/Off Switch to heat the indoor 

environment. 

E. Output Variables: 
• All tank temperatures 
• Solar collector output temperature or useful 

energy from the collector. 
• Energy consumed by the heat pump 

F. System disturbances: 
• Outside Environmental temperature 
• Solar irradiations 
• Domestic hot water consumption 
• Tanks temperature 

G. House:  
The house modelled in the Simulink is a semi-detached 
house, which consists of lounge, kitchen, dining room,   
hall and three bedrooms. The design data used for the 
calculation of the heating load is a Birmingham location 



as taken from CIBSE (Chartered Institute of Building 
Services Engineers) guidelines. While calculating the 
thermal capacity, the effective capacity of the outer walls 
is assumed to be 50% of its total capacity. The wall is 9'' 
in thickness and it is assumed that the average wall 
temperature is half way between the inside and outside 
temperature.  

Figure 4: House plan 

Table 2: House model specifications 

House model specifications 

Outer walls construction 0.2286m brick 

Inner walls construction 0.1143m brick 

Floor Solid concrete

Outer walls U-value 2.2 W/m2 OC

Inner walls U-value 2.2 W/m2 OC

Height of the walls  2.44m 

Fabric loss in winter 5.880 kW 

Infiltration loss 2.296 kW 

Outside design conditions -5.5 OC for Birmingham 

IV. MATHEMATICAL MODELLING OF THE SYSTEM:
The mathematical model of the whole system is 
developed and implemented in Simulink. 

A.  Heat Pump: 
      A heat pump is a device that transfers thermal energy 
from a lower temperature (Source) to a higher 
temperature (Sink). It reverses the natural flow of thermal 
energy. The operating cycle of heat pump is shown in 
figure. It consists of four components; 

• a compressor, 
• a condenser, 
• an expansion valve, and 
• an evaporator. 

The condenser is used to convert the refrigerant from its 
gaseous state into the liquid form, while the evaporator is 
used to convert the refrigerant from liquid to gaseous 
state. The refrigerant in its gaseous state is pressurised in 
the compressor. It is compressed by extra mechanical 
work (Wnet). This high pressurised and high temperature 
fluid is then fed into condenser where it releases its heat 
(Qout) and changes into liquid. Then, it enters into the 
expansion valve and changes into low pressure and low 
temperature liquid. In this state the refrigerant is fed into 
the evaporator, where it gains energy (Qin) and changes it 
into gaseous state. Detailed information can be found in 
[8]. 
The efficiency of the heat pump is calculated by its 
coefficient of performance (COP). COP is the ratio of the 
heat transferred to the amount of the work done to the 
compressor. 

(A) 

Where K is the efficiency coefficient of the compressor 
and is assumed as 0.4. 

Figure 5: Schematic Diagram of heat Pump 
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(15) 

The useful energy is also measured by the amount 
of the energy carried by the fluid; 

(16) 
It is difficult to define the average collector 
temperature in equation (15), therefore a factor 
called “the collector heat removal factor (FR)” is 
given by the following equation; 

(17) 

The useful energy from the collector is measured 
by multiplying FR with QU. The useful energy is; 

(18) 

The above equation is called “Hottel-Whillier-Bliss 
equation” and is used as a collector model in 
Simulink. 

C. Energy equations: 
In this section the different heat transfer equations 
will be presented. The equations are based on 
energy balance and energy flow. By assuming an 
average temperature equal to Tb, Th and TH for 
buffer tank, heating tank and hot water tank 
respectively.  

Figure 6: Modes of the system 

The heat transferred from the heat pump into the 
buffer tank is; 

(19)
Where  is the energy output from the 
condenser and  is the power input. The heat 
transfer between buffer tank and hot water tank is 
given by; 

(20)
There is an energy use caused by the withdrawal of 
hot water, as cold water is fed into the tank. It is 
assumed that the cold water has a temperature of 15 
OC and the hot water tank temperature is 55OC. The 

heat transfer between the buffer tank and the 
heating tank is; 

(21)
The solar energy input in the solar tank is given in 
the equation 18.

V. SIMULATION RESULTS:

The simulation is performed by considering the 
data given in figures 8, 9 and 10. In figure 9 two 
COPs are shown; one is from manufacturer data 
and the second one is from the Simulink model. 
The difference between these COPs is caused by 
the assumption of an ideal thermodynamic process 
in the Simulink model (Section IV), which is 
compensated by a higher temperature gradient in 
the air heat source. A better selection of parameters 
should lead to a closer match.  

The water consumption is considered as a 
measured disturbance and the data is taken from 
[10] and is shown in the figure 8. The 
environmental temperature and solar radiations are 
shown in figures 9 and 10. This data is collected on 
the roof of the School of Civil and Building 
Engineering and is for July month (Courtesy of 
Shen Wei). This data was used to test the model.

Figure 7: Coefficient of performance 

Figure 8: Water daily consumption 

The simulation results are shown in figures 11 and 
12. The simulation was performed by running heat 
pump at half of its electrical ratings (3kW), with 
the valve fully open, and the diverter switched to 
the hot water tank. It can be seen in figure 12 that 
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the only heat the heating tank gets is the solar 
radiation, plus a small amount of heat lost from the 
hot water tank through its isolation inside the 
heating tank. 

Figure 9: Outside Temperature 

Figure 10: Solar Radiations 

Figure 11: Tanks temperatures 

Figure 12: Heating tank Temperature 

It can be seen in the figure 11 that the hot water 
tank temperature follows the buffer tank 
temperature closely. In a complementary situation 
with a different diverter setting, the same can be 
seen for the heating tank. Either way the energy is 
contained within the system as expected. The main 
energy loss in the system is through the walls into 
the environment.  

The temperature in figure 11 touches the value of 
200. This is of course unrealistic, and caused by the 
linear model of the tanks and the high heat pump 
setting. Once the system is controlled, such high 
temperatures can be avoided by choosing 
appropriate set-points.  

VI. CONCLUSIONS:
A model of a heating system consisting of a heat 
pump and a solar panel has been developed. Initial 
simulations are performed using Loughborough 
weather data. It is concluded that the system is 
working according to the expectations, reflecting 
the energy flows between the tanks as caused by 
opening valve and diverter.  
In future work, a model predictive controller 
(MPC) will be designed, which will be able to 
make use of predicted future weather data and 
changing electricity prices. The goal is to use the 
heat pump during the night time when the electric 
tariff is low, and to store the heat energy in the 
tanks so that it can be used throughout the day. It 
will also be used to predict how the solar radiation 
heats up the heating tank.  
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Abstract— Buildings consume a considerable amount of energy. This paper presents a model 

predictive control (MPC) strategy and two conventional control strategies (On-Off and PI) for a 

solar system assisted by heat Pump. This type of setup is used mainly for domestic hot water 

and heating purpose. This research is in response to the UK government's commitment to 

produce 20% of country's energy from renewable sources by 2020. The aim of the controller 

is to reduce electric consumption and to provide better thermal comfort of the occupants. The 

MPC controller uses cheaper night time electricity to store heat energy in the water tanks and 

uses this later in the day, when it is required. The MPC controller also anticipates any future 

hot day and then tries to use solar radiations to heat up the water. In this paper mathematical 

model of the heat pump and lumped model of the building is also presented.  Three control 

strategies i.e. MPC, PI and On-Off are compared and it is concluded that model predictive 

controller provided the best performance.  

Keywords- Model predictive controller, Heat Pump, Thermal comfort, Conventional control 

strategies, Solar radiations. 

I. INTRODUCTION  
The rapid increase in world’s energy use is one of the main concerns of today’s world. This 

energy use has high environmental impacts such as depletion of ozone layer, global warming, 

climate change etc. According to IEA (International Energy Agency) the primary Energy has 

grown by 49% in the last two decades (1984-2004) and the CO2 emission has been increased 

by 43% [1]. It was also shown by the IEA that there is an average increase of 2% in energy 

and 1.8% in the CO2 emissions. All our energy sources are derived from solar energy.  Wood, 

Oil and natural gas were originally produced through photosynthesis and complex chemical 

reactions. Fossil fuels are the result of chemical reactions in decaying vegetation under high 

temperatures and pressures over long periods of time [2]. The main advantage of solar 

energy is that it is clean and can be delivered without pollution.  

Solar collectors have a wide variety of applications, such as solar water heating, space 

heating and cooling, solar refrigeration, solar thermal power plants, solar desalination etc. In 

solar water heating systems the main component is the solar collector, which absorbs energy 

and transfers it to the working fluid. Integrated collector systems use part of the tank as a 

solar collector. The disadvantage of this system is the thermal losses from the tank [3]. Solar 

energy systems can be used for hot water generation. In this application a heat exchanger is 

mailto:M.W.Ahmad@lboro.ac.uk
mailto:M.M.Eftekhari@lboro.ac.uk
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used between the solar collector and the hot water tank, which allows the use of antifreeze 

solutions in the solar collector loop [4].  

Air source heat pumps are devices which transfer energy from air at low temperature to a 

tank at high temperature. The use of a heat pump for space heating and hot water generation 

is gaining popularity day by day because of its low energy consumption compared to other 

equipment [5], [6], [7]. The heat pump operates best at low temperature differences, when the 

coefficient of performance (COP) is high and the required energy low [8].  

The solar radiation is not available during night times and on cloudy days. Therefore, solar 

collectors can be combined with a heat pump in such a way that in times of low solar radiation 

the heat pump is used instead. The heat pump can also benefit from cheap night time 

electricity when combined with a thermal storage. The main idea behind using model 

predictive control in this work is that this control strategy can predict outside weather 

conditions and occupancy pattern in the building. This strategy also predict any future hot 

sunny day and then can use maximum free energy during the day i.e. solar energy and also 

can predict the electricity prices and uses electricity during the night.  

Model predictive control (MPC) originated in the late seventies and has developed very 

considerably. MPC is a class of computer algorithms that utilize process model to predict 

future outcome/response of a plant. The basic structure of MPC is shown in figure 1. The 

model gets data from past input and past outputs and combines this data with future inputs. 

The model then gives predicted output for the time step. This predicted output is combined 

with reference trajectory to give future errors to the systems. These future errors are then fed 

into optimizer, which enforces constraints on future predicted outputs and also minimizes the 

operating cost functions.  Optimizers gives future predicted inputs which are fed back into 

main model. A generic framework of MPC problem in finite-horizon is given by following 

problem: 

 J(xo) = minu0,…..,uN−1
∑ lk (xk, uk)     Cost FunctionN−1
k=0      (i) 

The above equation is the cost function of the problem and is subject to following; 

(xk, uk)  ∈  Xk ∗  Uk          Constarints (ii) 

xo = x                                 Current state (iii) 

 

 xk+1 = f(xk, uk) (iv) 

 

In the above equations N is the prediction horizon, Xk and Uk are the sets of constriants for 

state xk and inouts uk respectively at time step k. The cost funtion and constraints are the 

main components of model predictive control design. The controller uses current state as the 

initial state for prediction of the future inputs.   
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II. PLANT DESCRIPTION 
The solar assisted heat pump system is installed at the School of Civil and Building 

Engineering of Loughborough University as an experimental rig. It consists of a solar panel, a 

heat pump and accumulators. 

Solar panels are used for heating when feasible, and the heat pump is used for heating when 

solar irradiation is insufficient (cloudy weather, night), and it is used for the domestic hot water 

purposes. The heat pump has a power capacity of 6kW.  

The main components of the system are shown in figure 2. In figure 2(a) the heating tank is 

shown, which encapsulates the hot water tank (not visible). In figure 2(b) the diverter is 

shown, which diverts the flow from the buffer tank to the heating tank or the hot water tank. 

Figure 2(c) is the valve which regulates the flow from the buffer tank to the other two tanks. 

Figure 2(d) is the current controller which controls the heat pump, diverter and valves. The 

figure 2(e) is the buffer tank which is connected to the heat pump. 

A general schematic diagram of the plant is shown in figure 3. In figure 3 the main 

components of the system can be observed. The heat pump is connected to the buffer tank. 

The plant uses two different energy sources: the solar collector and the electric air source 

heat pump. Both of these can be used together or separately for the heating tank. 

The mixing valve M1 allows water to flow from the buffer tank (heat pump tank) into the 

heating tank or hot water tank, while the diverter D1 diverts the flow to either or both of these 

tanks. The valve M2 allows water to bring energy into the heating tank or to take it back to the 

solar collectors. 

The objective for the system is to supply hot water for heating and domestic hot water at the 

required temperatures. The control object is to minimize the cost of electric energy for the 

heat pump. If the solar irradiation is low the heat pump can be used, but the desired solution 

is to operate the heat pump during the night when the energy tariffs are low. The preferred 

energy is of course solar energy. Since the solar radiation cannot be controlled, it is 

considered as a measured disturbance here.  

 

III. SYSTEM DESCRIPTION 
The main components of the system are described here. 

A. Accumulation system: 

 The accumulation system consists of three tanks. The hot water tank is inside the heating 

tank. The heating tank is 450L and hot water tank is 300L of capacity. The third tank is the 

buffer tank and is 300L. It is connected to the heat pump and supplies hot water to other two 

tanks when it is required.  

B. Solar Collector: 

Solar collectors are used to collect sole radiations and to raise the temperature of water of the 

heating tank. It uses solar energy to raise the water temperature and is the primary energy 

source of the system. It consists of 2 flat plate collectors 2m2 in area each. 
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C. Heat Pump: 

The installed heat pump uses air as a heat source. It is the auxiliary source of the energy for 

the heating tank, but it is the main (only) energy source for the hot water tank. The heat pump 

is directly connected to the buffer tank. The rated electric power of the heat pump is 6kW.  

The system variables are shown in figure 4. 

D. Manipulated variables: 

• M1 allows the connection between buffer tank and other two tanks. 

• M2 allows the heating tank and solar collector. 

• D1 diverts flow to either hot water tank or heating tank 

• Heat pump On/Off switch 

• Heater On/Off Switch to heat the indoor environment. 

E. Output Variables: 
• All tank temperatures 

• Solar collector output temperature or useful energy from the collector. 

• Energy consumed by the heat pump 

F. System disturbances: 

• Outside Environmental temperature 

• Solar irradiations 

• Domestic hot water consumption 

• Tanks temperature 

G. Building:  

The building under consideration is a two rooms building; a hall and a bedroom. The hall has 

a south facing and a window on the south face. The dimensions of both the rooms are 

4.27*4.57 and 2.44m high. The schematic layout of the building is shown in figure 5. The 

design data for the location of Birmingham is used for the calculation of the heating load and 

is taken from CIBSE (Chartered Institute of Building Services Engineers) guidelines. The 

building schematic and properties of the construction are given in figure 5 and table 1 

respectively.  

IV. MATHEMATICAL MODELLING OF THE SYSTEM: 
The mathematical model of the whole system is developed and implemented in Simulink. 

A.  Heat Pump: 

      A heat pump is a device that transfers thermal energy from a lower temperature (Source) 

to a higher temperature (Sink). It reverses the natural flow of thermal energy. The operating 

cycle of heat pump is shown in figure. It consists of four components; 

• a compressor, 

• a condenser, 
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• an expansion valve, and 

• an evaporator. 

The condenser is used to convert the refrigerant from its gaseous state into the liquid form, 

while the evaporator is used to convert the refrigerant from liquid to gaseous state. The 

refrigerant in its gaseous state is pressurised in the compressor. It is compressed by extra 

mechanical work (Wnet). This high pressurised and high temperature fluid is then fed into 

condenser where it releases its heat (Qout) and changes into liquid. Then, it enters into the 

expansion valve and changes into low pressure and low temperature liquid. In this state the 

refrigerant is fed into the evaporator, where it gains energy (Qin) and changes it into gaseous 

state. Detailed information can be found in [9]. 

The efficiency of the heat pump is calculated by its coefficient of performance (COP). COP is 

the ratio of the heat transferred to the amount of the work done to the compressor. 

 

 COP = K ∗
Tc,out

(Tc,out − Te,out)
 

 

(A) 

Where K is the efficiency coefficient of the compressor and is assumed as 0.4.

Below the focus is on the dynamic heat pump model developed in [10]. The heat pump under 

study is an air source heat pump. Figure 6 shows the operating cycle and two external cycles. 

The air cycle is attached to the evaporator while the water cycle is attached to the condenser. 

It is assumed that the temperature of liquid leaving the condenser denoted as Tc,out at point 1 

is equal to the temperature of the water going into the water tank denoted as Tw_tank_in (buffer 

tank). Similarly it is also assumed that the temperature of the refrigerant feeding into the 

evaporator denoted by Te,in at point 2 is equal to the temperature of air coming into the 

evaporator denoted by Tair_in. 

On the basis of these assumptions we have; 

Tc,out = Tw_tank_in  and Te,in = Tair_in 

Based on equation 1, further approximation of COP has been done by [9]. 

 COP = Q̇out
Wnet
�  (1) 

From equation 1; 

 Q̇out = ẆCOP 

 

(2) 

The energy balance gives: 

 Q̇out = Ẇ + Q̇in 

 

(3) 

 

 Q̇in = Ẇ(COP − 1) (4) 

The rate of heat energy gained by the evaporator from the air cycle is given by [11]; 
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 Qė = me1̇ Cr(Te,in − Te,out) (5) 

And the thermodynamics of the evaporator are 

 CemeṪe,out = Qė − Q̇in (6) 

 

 CemeṪe,out = Qė − W (̇ COP − 1) 

 

(7) 

For the condenser the heat transferred in the water cycle is 

 CemeṪe,out = Qė − W (̇ COP − 1) 

 

(8) 

 

 Q̇c = mc1̇ Cr(Tc,out − Tc,in) 

 

(9) 

Similarly from the dynamics of condenser, 

 CcmcṪc,out = Q̇out − Qċ  

 

(10) 

 

 CcmcṪc,out = ẆCOP − Qċ  

 

(11) 

Rearranging these equations leads to 

 
Ṫe,out=

ṁe1CrTe,in − me1̇ CrTe,out − (COP − 1)Ẇ
Ceme

 
(B) 

 

 
Ṫc,out=

ṁc1CrTc,in − mc1̇ CrTc,out + COP ∗ Ẇ
Ccmc

 

 

(C) 

Equations A, B and C are used as a heat pump model which is implemented in Simulink. 

From above equations it can be concluded that the COP of the heat pump depends on the 

outside air temperature and the condenser outflow temperature. The heat pump operates 

between two different mediums (air and water), which have very different heat capacities. Air 

has less capacity than water, and for this reason the mass flow rate on the evaporator side is 

assumed higher than on the condenser side. The COP results found from the above equation 

did not match with the limited data that was available from the manufacturer as shown in the 

figure 7. Therefore the above model of heat pump was not suitable for this study. 

In the second method to calculate the COP of the heat pump four other factors are 

considered i.e. α, β, 𝑢𝑇𝑃 and 𝑢E𝑃. Whereas α thermal efficiency coefficient of compressor, β 

is the recovery of losses into heat, 𝑢𝑇𝑃 is the thermal coefficient on condenser side and 𝑢E𝑃 

is the thermal coefficient on evaporator side. 𝑢𝑇𝑃 and 𝑢E𝑃 incorporates the resistances of air 

and water on cold and hot mediums of the heat pump. The COP equation will be given by 

following equations; 
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 COP = 𝛼 �
𝑇𝐻

𝑇𝐻 − 𝑇𝐶
� + 𝛽 

 

(12) 

By taking air and water resistances into account; 

 TH − TC = TT − TE + (uT + uE)P ∗ COP − uEP 

 

(13) 

By Simplifying the above equation we have; 

 (uT + uE)P ∗ COP2 + (TT − TE − uEP − β(uT + uE)P −

αuTP)COP − αTT − β(TT − TE − uEP) = 0  

 

(14) 

The above quadratic equation can be solved for COP. In the figure 8 different calculations are 

shown with different values of α, β and uEP and one calculation by taking inverse of ideal 

COP and manufacture's COP and plotting them against each other.  The results given by plot 

of inverse of ideal COP and manufacture's COP gives better results than the others and is 

considered as the heat pump model.  

B. Solar Collector Model: 

Flat plate collector is used to heat up the heating tank. The useful energy from the solar panel 

is calculated by using the mathematical model proposed by [4].  The energy used in the solar 

panel is solar energy. The solar radiation is captured by the solar panel and used to heat up 

water. With a solar radiation I (W/m2) covering the solar panel of an area Ac (m2), the energy 

received by the solar collector is given by; 

 Qr = I. Ac (15) 

It is known that not all of energy received by the solar collector is used to raise the 

temperature of water, since some of the radiation is reflected back in to the sky. Only part of 

the radiation is absorbed by the solar plate. The conversion factor τα indicates the percentage 

of solar radiations which is absorbed by the solar collector and transmitted into the cover of 

panel. Therefore the energy received by solar collector is given by; 

 Qr = τα(I. Ac) (16) 

There is also an energy loss from the solar collector surface when the temperature of solar 

panel is higher than the surroundings. This loss is given by; 

 

 Ql = ULAc (Tc − Ta) (17) 

Therefore the rate of useful energy gained by the solar collector is given by; 

 QU = Qr−Ql = τα(I. Ac) − ULAc (Tc − Ta) 

 

(18) 

The useful energy is also measured by the amount of the energy carried by the fluid; 

 QU = mCp(To − Ti) (19) 
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It is difficult to define the average collector temperature in equation (15), therefore a factor 

called “the collector heat removal factor (FR)” is given by the following equation; 

 

 
FR=

mCp(To − Ti)
Ac [ταI − UL(Tc − Ta)]

 
(20) 

 

The useful energy from the collector is measured by multiplying FR with QU. The useful energy 

is; 

 QU = FRAc [ταI − UL(Tc − Ta)] 

 

(21) 

The above equation is called “Hottel-Whillier-Bliss equation” and is used as a collector model 

in Simulink. The values of FR* τα is taken as 0.68 and value of FRUL is 4.90 (W/m2)/OC. 

 

C. Energy equations: 

In this section the different heat transfer equations will be presented. The equations are 

based on energy balance and energy flow. By assuming an average temperature equal to Tb, 

Th and TH for buffer tank, heating tank and hot water tank respectively.  

The heat transferred from the heat pump into the buffer tank is; 

 Q̇out = ẆCOP (22) 

Where Q̇out is the energy output from the condenser and Ẇ is the power input. The heat 

transfer between buffer tank and hot water tank is given by; 

 Q̇ = ṁCp (Tb − TH) (23) 

There is an energy use caused by the withdrawal of hot water, as cold water is fed into the 

tank. It is assumed that the cold water has a temperature of 15 OC and the hot water tank 

temperature is 55OC. The heat transfer between the buffer tank and the heating tank is; 

 

 Q̇ = ṁCp (Tb − Th) (24) 

The solar energy input in the solar tank is given in the equation 21. 

D. Building Modelling: 

Following is the modelling of the building using Simulink and equations used to develop the 

building model. All the external walls and roof are considered of same construction. The 

building is modelled as lumps because it takes into account the time changing behaviour of 

the building. 

It is assumed that there are two modes of heat transfer to and through the wall i.e. one 

dimensional conduction and convection. The 1-D conduction heat transfer can be derived by 

using Fourier’s law given by equation 25. 

 qcond = −kA
dT
dt

 (25) 
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In above equation dT
dt

 is the rate of change of temperature, k is the thermal conductivity and A 

is the area of the heat transfer section. 

The heat transfer between solid and gas or liquid is known as convection and can be 

described by the equation 26.  

 qconv = hA(T1 − T2) (26) 

In figure 9 a typical wall divisions are shown, Ti is the inside temperature, T1 is the 

temperature of first layer, ………,TN is of the Nth layer and To is the outside temperature.  

The heat transferred from indoor air to the wall can be summarized in the following equation; 

 qconv = qcond +  qstored (27) 

qstored is the stored heat energy inside the wall layer or heat energy of lumped capacitance.  

 
dTi
dt

=
hi(Tin − Ti) −

ki
Li

 (Ti − Ti+1)

cp,iρiLi
 

(28) 

 

 

 

 in above equation i = 1  

 

For middle layers; 

 ki
Li

 (Ti−1 − Ti) =
ki+1
Li+1

 (Ti − Ti+1) +  
dTi
dt

�cp,iρiLi + cp,i+1ρi+1Li+1 � (29) 

 

 

 where i = 2, 3, … . . , (N − 1)  

For outer layer the equation will be; 

hout(Ti − Tout) =
ki
Li

 (Ti−1 − Ti) +  
dTi
dt

�cp,iρiLi� 
(30) 

Each wall layer is modelled separately in Simulink. 

 

V. SIMULATION RESULTS: 
 

The water consumption is considered as a measured disturbance, which can be predicted in 

advance by using model predictive control. The data is taken from [12] and is shown in the 

figure 10. The figure 11 shows the temperature of tank 1 (Buffer tank). The reference signal is 

a step signal and it is set as to use night time electricity and to store the heat energy during 

night. As can be seen that the model predictive controller gives better results. The MPC 

performance tracking of the reference signal is superior than the PI and on-off controllers. The 

model predictive controller takes less time to reach to the set point than other two control 

strategies, also there is less fluctuations in the MPC controlled temperature readings.  

The second simulation was performed to find out whether the heat pump is using the night 

time electricity when the electricity cost is lower. Three days were simulated, two with low 

radiation rates and the third day with high radiation level. In figure 12 the red graph is the 

radiations in kW/m2 and heat pump signal is shown by blue curve. It is evident that controller 
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was shifting the load to the night. The first two days are cloudy days with low radiation level. 

In the first two days the controller has used the heat pump during the day to meet the hot 

water and heating demand of the building. In the third day the controller has predicted a very 

hot sunny day and the heat pump use during the day is almost zero and the heat pump was 

switched off during most of the third day. The heat pump was used during the night and also 

on the third day when the radiations level was high the controller did not switched ON the 

heat pump and the energy was supplied through the solar thermal collector. Another 

simulation was performed with one cold day and two hot days i.e. low solar radiations day and 

high solar radiations day respectively. This simulation was performed to find out the weather 

prediction ability of the model predictive controller. In the figure 13 the heat pump is using 

more electricity during the first day and very little on day two and three. It does uses more 

electrical energy during the night. The controller predicts the upcoming hot days and it can be 

seen that at the beginning of day 2 and 3 the use of heat pump is minimized by the controller. 

it can be concluded that the controller did predicted the weather changes and used very less 

electrical energy on two hot days as compared to the cold day.  

VI. CONCLUSIONS: 
A model of a heating  and hot water system consisting of a heat pump and a solar panel has 

been developed. Initial simulations are performed using Loughborough weather data. It is 

concluded that model the system is working according to the expectations and a good match 

of the heat pump is also found. A detailed building model is also presented.  

Model predictive control proved to have good performance than the other control strategies. 

From this paper it is also concluded that model predictive gave better reference tracking 

capability and also uses night time electricity efficiently. Model predictive control also shifted 

load to the night to save some energy and store heat energy during the night. However, the 

model predictive control needs some extra effort  and getting the accurate model of the 

system is the crucial part of the controller. Once the model of the system is found, the 

controller tuning is much easier than the PI controller.  

In future these three control strategies will be tested for different environmental conditions and 

energy consumption will be analysed. All these control strategies will be implemented to on 

the basis of thermal comfort of the indoor environment. The cost function used in this paper is 

a quadratic cost function and did not used the heat pump during the night time as it was 

expected. In future a linear weight for this formulation will be analysed. The linear 

programming (LP) gives totally different results than the quadratic programming problem 

(QP). The LP method always gives solutions at the intersection of the constraints whereas QP 

solutions can be on intersection of constraints, on a single constraint or off constraints. It is 

expected that for this problem LP method is more suitable to get better use of heat pump and 

to shift the building heating and hot water loads to the night. Model predictive control strategy 

also depends on the right selection of input and output weights i.e. how much to penalized the 

input or output of the system if it deviates from the limits or set point. The effect of different 

weights will be analysed in near future.       
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Figure 1: Basic Structure of MPC (Source Camacho et al., 1998 [13]) 

 
 
 
 
 
 
 
 
 
 

 
Figure 2: Heat pump combined solar system. (a) Heating Tank (b) Diverter (c) 

Valve (d) Controller and (e) Buffer tank 
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Figure 3: Plant Scheme 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Inputs, Disturbances and Outputs 
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Figure 5: House plan 

 

 

 
 
 

 

 

Figure 6: Schematic Diagram of heat Pump 
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Figure 7: Heat Pump COP Model 1 

 

 

Figure 8: Heat Pump COP Model 
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Figure 9: Wall divisions 

 
 
 
 
 
 
 
 

 

Figure 10: Water daily consumption 
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Figure 11: Step response of the controller for buffer tank 

 
 
 
 
 

 

Figure 12: Use of night time electricity 
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Figure 13: Weather prediction 

 
 
 
 
 
 
 
 
 

Wall/Roof 
  

Thickness 
(m) 

Thermal conductivity (W/m.K) Density (kg/m3) 
 

  
 

Brick 0.1 0.84 1700  
Polystyrene 0.0795 0.034 35  

Concrete 0.1 0.51 1400  
Plaster 0.013 0.025 900  

Partition 
Wall    

  

Gypsum 0.025 0.25 900  
Air 0.1 0.15 (Resistance) m2K/W 1.204  

Gypsum 0.025 0.25 900  
 

Table 1: House model specifications 
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