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Abstract—Energy maximising controllers (EMCs), for wave
energy converters (WECs), based on linear models are attractive
in terms of simplicity and computation. However, such (Cummins
equation) models are normally built around the still water level
as an equilibrium point and assume small movement, leading to
poor model validity for realistic WEC motions, especially for the
large amplitude motions obtained by a well controlled WEC. The
method proposed here is to use an adaptive algorithm to estimate
the control model in realtime, whereby system identification
techniques are employed to identify a linear model that is most
representative of the actual controlled WEC behaviour. Using
exponential forgetting, the linear model can be continuously
adapted to remain representative in changing operational condi-
tions. To that end, this paper presents a novel adaptive controller
based on a receding horizon pseudospectral formulation.

The paper also demonstrates the implementation of the adap-
tive controller inside a computational fluid dynamics (CFD)
based numerical wave tank (NWT) simulation. The adaptive
controller will create the best linear model, representative of
the conditions encountered in the fully nonlinear hydrodynamic
CFD simulation. Using CFD presents a method to evaluate the
adaptive controller within a realistic simulation environment,
allowing the convergence and adaptive properties of the present
control scheme to be tested.

A test case, considering a heaving point absorber, is presented
and the adaptive controller is shown to perform well in
irregular sea states, absorbing more power than its non-adaptive
counterpart. The optimal trajectory calculated by the adaptive
model is seen to have a smaller motion and power take-off (PTO)
forces, compared to those calculated by the non-adaptive linear
control model, due to the increased amount of hydrodynamic
resistance estimated by the adaptive model, as identified from
the nonlinear viscous CFD simulation.

Index Terms—Adaptive Control, Hydrodynamic Modelling,
Wave Energy Conversion, Numerical Wave Tank, OpenFOAM
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I. INTRODUCTION

The design of EMCs for WECs is challenging, for example:

1) WECs are correctly described by complex nonlinear

equations, which are difficult to estimate

2) The models which describe WECs vary considerably in

structure across different WEC types

3) The resonant behaviour of controlled WECs challenges

small-signal linearisation around the equilibrium

Typically [1]–[5], a linear WEC model is determined based on

Cummins equation [6], with the nonparametric hydrodynamic

parameters determined using boundary-element computational

tools, such as WAMIT or Nemoh. Such models assume small

movement around an equilibrium point, corresponding to still

water conditions. However, this assumption is challenged,

since the ideal WEC behaviour is characterised by significant

motion, especially when driven into resonance with the inci-

dent waves by the EMC [8], [46]. Furthermore, WEC hydrody-

namics are typically characterised by nonlinearities, including

viscous damping effects and nonlinear Froude-Krylov forces,

where the nature and comparative extent of these nonlinearities

vary considerably from device to device [9].

While some nonlinear WEC models have been incorporated

into model-based WEC controllers (for example, see [10]–

[12]), nonlinear control solutions are not without their prob-

lems. Although a nonlinear model structure is more likely to be

a better representation of the true WEC dynamics, the control

solution is often difficult, including the required solution of a

nonconvex optimisation problem [11], [12].

The computational simplicity of WEC controllers based

on linear models remains attractive and some progress has

been made towards the determination of linear representative

models which, although not explicitly taking nonlinear dy-

namic structures into account, attempt to articulate the best

linear approximation to the device behaviour under realistic

conditions. For example, in [13], representative linear models

are determined from device behaviour measured in a CFD

NWT. One important conclusion of the study in [13] is that

the optimal linear parameters are sensitive to the magnitude

of the WEC oscillations.

A. Adaptive control

Considering the desirability of WEC controllers based on

linear models, yet the need to capture nonlinear WEC be-

haviour under controlled conditions, this paper proposes an

adaptive controller, which tunes the parameters of a linear

WEC model, based on measured WEC responses. A receding-

horizon pseudospectral optimal controller uses this linear

model to determine the optimal velocity trajectory which ob-

serves the WEC physical constraints, and a lower-level back-

stepping controller implements the velocity-following control

loop [14]. The adaptive WEC model utilised by the controller

is initialised with parameters determined from a boundary-

element solver (Nemoh) and the model parameters are recur-

sively adapted using a recursive least squares (RLS) algorithm.

The parameter updating enables both initial model tuning, as
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well as continual model adaptation, to ensure relevance to any

resulting changes in the dynamic WEC behaviour due to:

• Changing sea states

• Varying mooring dynamics due to slow drift motions of

the WEC and changing tidal elevation [15]

• Marine growth on the WEC

• Green water on the WEC, or water leakage into the WEC

• Non-critical subsystem failure [16]

The ability of the control model to adapt in response to

such changes, and remain representative of the actual WEC

dynamics, has the potential to increase the controller perfor-

mance across the variable conditions encountered by a WEC

throughout its operational lifetime.

B. Numerical wave tank evaluation

A further novel contribution of this study, is the use of

a CFD-based NWT as an evaluation tool for the adaptive

WEC controller. The CFD simulation environment ensures the

maximum fidelity in the calculation of the WEC response,

capturing important nonlinear hydrodynamic effects, such as

viscous damping and nonlinear Froude-Krylov forces, which

have pronounced relevance for a controlled WEC [8], [46].

Additionally, the CFD NWT provides a realistic simulation

model which is different from the control model, allowing

the convergence and adaptive properties of the present control

scheme to be tested.

The implementation of the adaptive controller in the NWT,

allows the controller to operate interactively with the CFD

simulation and update its internal model, using system iden-

tification techniques on measured data of its own behaviour

[17]. This has evolved from earlier work, where representative

linear [13] and nonlinear [18]–[21] hydrodynamic models are

identified using measured responses from WEC experiments

performed in CFD based NWTs. The present adaptive control

case, extends this by identifying the models online within the

CFD simulation.

C. Outline of paper

The paper is divided into seven sections. The field of adap-

tive control is discussed in Section II, and the application of

adaptive control towards wave energy conversion is reviewed.

Section III then presents the proposed adaptive receding

horizon pseudospectral controller (ARHPC) for WEC energy

maximisation. A description is given of; the basic linear model

employed, the fundamental control calculations to implement

an optimal constrained control, the velcity-profile-following

backstepping controller, and the adaptation algorithm.

The use of a CFD based NWT as an evaluation tool for

the adaptive control of WECs is presented in Section IV,

along with implementation details of the CFD NWT and the

online ARHPC - NWT interaction. A test case, showcasing a

preliminary evaluation of the ARHPC in the NWT, is presented

in Section V. A discussion of the keypoints of the paper is

given in Section VI, and conclusions are drawn in Section

VII.

II. ADAPTIVE CONTROL OF WAVE ENERGY CONVERTERS

An adaptive controller can modify its behaviour in response

to changes in the dynamics of the system and/or in the char-

acter of the excitations. Adaptive controllers can be defined

as “a controller with adjustable parameters and a mechanism

for adjusting the parameters” [22]. Research grew in the early

1950s, motivated by design of autopilots for aircraft [23], and

has continued since, including applications analogous to wave

energy, such as vibration energy harvesting [24] and wave

absorption in a wave tank/flume [25].

Adaptive control enables estimation of uncertain, unknown

or time-varying parameters on-line using measured system

signals. The requirements of the measured signals for identi-

fication of a WEC model are discussed in [26], with regard to

the amplitude and frequency range that the signals must span,

to provide information rich data from which the dynamical

behaviour of the system can be identified. Fortunately, a

controlled WEC receives persistent excitation, thus is well

suited for on-line model identification during its normal op-

eration. The estimation of parameters can be performed on

a self-tuning or adaptive basis. Self-tuned parameter values

converge on fixed values, whereas adaptive parameter values

are continually estimated with stronger bias towards recent

data.

Adaptive control has been applied to the field of wave

energy. An early study is given by the authors in [27], who

apply their initial work in [25] successfully to an oscillating

water column WEC. The adaptive controller is based on a

Kalman filter frequency tracking algorithm, that provides an

on-line estimation of the ”instantaneous wave frequency”. The

adaptive controller is shown to compare favourably with more

conventional open-loop systems.

A comparison of selected adaptive control strategies for

WECs, such as gain scheduling and extremum-seeking adap-

tion, is presented in [4]. [1] discusses that optimal causal

control is only a viable approach if the controller parameters

adapt to changes in the sea state, showing the necessity of

gain-scheduling in accordance with changes in the spectral

content and propagatory direction of the sea state. Techniques

can be framed in an indirect adaptive control context, in

which the optimal LQG controller is continually adapted to

an updated identified model based on measured output data.

This is analogous to adaptive tuning techniques proposed in

prior studies [28], in which control parameters are modified in

response to detected changes in wave period and amplitude.

The simple and effective real-time controller in [28] drives

the WEC motion in phases with the wave excitation force,

and ensures amplitude constraints are obeyed, by tuning one

single parameter of direct physical meaning.

[29] show how the control strategy applied to point

absorbers in heave, can be effectively tuned according to the

changes in the incident waves. The aim is to maximize the

average power extraction at each given wave, while limit-

ing the value of the instantaneous power. [30] apply this

control approach, adapting the resistive and reactive PTO
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force components on a wave-to-wave basis. The reactive

component, while improving average power extraction, can

result in excessive over rating of the PTO. [31] shows how a

convenient tradeoff between high-power extraction and viable

electrical device rating can be achieved by a proper choice

of the WEC control strategy. Its effectiveness in increasing

the average power extraction while respecting the PTO peak

power constraint, is proved by computer simulations in both

regular and irregular waves.

[32] presents wave prediction and fuzzy logic control of

WECs in irregular seas, where the short term resistive and

reactive components of the PTO force are Fuzzy Logic based

control designed according to online wave prediction. [33],

[34] also employ adaptive Fuzzy Logic based control for

the resistive and reactive components of the PTO force. The

resistive and reactive components of the PTO force are adapted

using reinforcement learning in [16], and maximum power

point tracking (MPPT) in [35]. MPPT is also used in [36] to

adapt the resistive component of the PTO force only.

[37] deals with uncertainties in control model parameters,

by using adaptive control to improve the approximation to

system parameters, such as: mass, viscous damping coefficient,

hydrostatic stiffness, the radiation impulse-response and the

exciting force impulse-response functions.

III. THE ADAPTIVE RECEDING HORIZON

PSEUDOSPECTRAL CONTROLLER

The structure of the control algorithm can be divided into

three parts, depicted in Fig. 1. The main part considers

the optimal trajectory determination (under path constraints),

using a receding-horizon pseudospectral control (RHPC) [14],

leading to the optimisation of a quadratic problem. The second

part, then determines the control force to apply on the system

to follow the given reference trajectory, from the RHPC. A

backstepping method is employed to realise the trajectory

tracking task, due to inherent control model/CFD simulation

mismatch. The third part, working in parallel, adapts the linear

control model in real time, using a standard recursive least

square (RLS) algorithm. The linear control model allows fast

calculation of the optimal control trajectory via standard tools

for the optimisation of quadratic problems.

Parameter 

identification

Optimal

control

Trajectory

tracking
WEC

Linear control 
model

Optimal trajectory Control force

Fig. 1. Simplified diagram of the control algorithm structure

A. Optimal control

The optimal control generates a trajectory that maximises

a given cost function, while respecting path constraints over

a given control horizon. In the present application, the cost

function corresponds to the energy absorbed by the WEC,

and path constraints are typically amplitude and/or force

limitations. Several control strategies are commonly employed

in order to derive the optimal trajectories that the system

should follow, such as model predictive control (MPC) [38],

or pseudospectral control [5]. In the present study, the optimal

control algorithm is based on a RHPC [14].

1) Receding horizon pseudospectral control: The state and

control variables are approximated by their truncated series on

a given set of orthogonal functions on a fixed control horizon

I = [t, t + T0], where t is time and T0 the control horizon

over which the energy absorption is maximised.

∀t ∈ I, f(t) ≈ fN (t) =

N
∑

i=1

f̃iφi(t) = Φ(t)f̃ (1)

with,

f̃i =

∫

I

φi(t)f(t)dt (2)

Note that the function f(t) in Eq. (1) could either be

a control or a state variable. fN (t) is a truncated series

that approximates the initial function as a finite sum of

weighted basis functions, Φ(t) = {φi(t)}
N

i=1
. The vector,

f̃ = [f̃1, . . . , f̃N ]T , contains the projections of f(t) onto

the basis functions. In the present work, the basis functions

chosen for the optimal control are half-range Chebyshev

Fourier functions, defined in [39], and employed in a RHPC

in [14].

The performance function maximised by the control algo-

rithm corresponds to the absorbed energy over the control

horizon I ,

J = −

∫

I

v(t)u(t)dt (3)

where v(t) is the velocity of the WEC system and u(t)
corresponds to the control force applied to the WEC, generated

by a PTO system. Replacing the state and control variable by

their truncated series, we obtain the following evaluation of

the cost function,

J ∝ −ṽ
T
ũ (4)

Since all the basis functions are orthogonal, the cost function

is directly proportional to the sum of the product of the

projections of the velocity ṽi and the control force ũi. This

leads to a convex optimisation problem; a strength of this

linear control formulation.

While maximising the cost function J , the control algo-

rithm must ensure that the dynamical equations describing
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the system behaviour are satisfied by the state and control

variables involved in the control calculation, i.e. the position,

velocity and control force projections, represented by x̃, ṽ and

ũ, respectively. The two differential equations describing the

system dynamics are:

dx(t)

dt
= v(t) (5)

which links position and velocity, and

(m+µ∞)
dv(t)

dt
+

∫ t

0

Kr(t−τ)v(τ)dτ+Shx(t) = Fex(t)+u(t)

(6)

which is the Cummins’ equation [6] derived from a linearised

version of Newton’s second law of motion applied to the

WEC. Here, m and µ∞ are the proper mass and the infinite

frequency added mass of the system, Kr(t) is the kernel

function involved in a convolution product with the velocity,

representing a linearised version of the radiation force, Sh is

the hydrostatic stiffness, while Fex(t) is a linearised expres-

sion of the excitation force generated by unperturbed incoming

waves onto the WEC’s hull, at its equilibrium position.

Expressed in terms of residuals, and replacing each state

and control variables by the truncated series, we obtain the

following linear equations:

r1(t) = Φ(t) [Dx̃− ṽ]

r2(t) = Φ(t) [((m+ µ∞)D+R)ṽ + Shx̃− ũ] . . .

+Fr(t)− Fex(t)

where D is the differential matrix defined in [40], R is the

radiation matrix defined in [14], corresponding to the radiation

force generated by the velocity over the control horizon I .

Fr(t) is the radiation force generated by past value of the

velocity affecting the control horizon. For more details on the

RHPC algorithm, the reader may refer to [14] and [41].

Path constraints, such as control force or position excur-

sion limits, can be easily taken into account by the RHPC

algorithm. For example, in order to avoid any slamming

phenomenon that could occur if the device comes out of

the water, as can happen when applying complex-conjugate

control without position constraints, the relative position of

the body with respect to the actual free surface is restrained

to be smaller than a given geometrical parameter H ,

|Φ(t)x̃− η(t)| ≤ H (7)

The control algorithm needs to maximise the cost function

J , bring the residuals r1 and r2 to zero and ensure the

satisfaction of linear inequality constraints. The optimisation

problem is quadratic and is solved using the quadprog

function in MATLAB. The optimisation problem is re-solved

for every new control horizon I .

2) Control model interpretation and initialisation: The

Cummins’ equation used in the RHPC is expressed in terms

of state and control variable projections and is evaluated at

each collocation point, tk, as

Φ(tk)

(

G

[

x̃

ṽ

]

− ũ

)

= Fex(tk)− Fr(tk) (8)

Rewriting the matrix G as the combination of two sub-

matrices M and N, operating only with the projections of

position and velocity, x̃ and ṽ, respectively,

Φ(tk)

(

[M,N]

[

x̃

ṽ

]

− ũ

)

= Fex(tk)− Fr(tk) (9)

and then, by developing the linear equation of the system,

we obtain:

∑

i

∑

j

mij x̃iφj(tk) +
∑

i

∑

j

nij ṽiφj(tk) = F (tk) (10)

where F (t) = u(t) + Fex(t) − Fr(t) represents the sum of

the control, excitation and past velocity generated radiation

forces acting on the device. The two double sums can be seen

as a projection of the position and velocity onto given kernel

functions, m and n, respectively, such that

∑

i

∑

j

mij x̃iφj(t) =

∫

I

mN (t, τ)xN (τ)dτ (11)

∑

i

∑

j

nij ṽiφj(t) =

∫

I

nN (t, τ)vN (τ)dτ (12)

where mN (t, τ) =
∑

i

∑

j mijφi(τ)φj(t) and nN (t, τ) =
∑

i

∑

j nijφi(τ)φj(t). The equation of motion is then trans-

formed in a Fredholm integral equation of the first kind, as:

∫

I

mN (t, τ)xN (τ)dτ +

∫

I

nN (t, τ)vN (τ)dτ = F (t) (13)

From Cummins’equation, the initial kernel functions mN
0

and nN
0

can be written as follows:

mN
0
(t, τ) = Shδ(t− τ) (14)

nN
0
(t, τ) = (m+ µ∞)δ̇(t− τ) +Kr(t− τ) (15)

where δ and δ̇ correspond, respectively, to the Dirac delta

function and its first derivative. This illustrates the ability of

the model formulation to represent the standard Cummins

equation. The control model parameters can be initialized

from Eqs. (14) and (15), using hydrodynamic parameter

values, Sh, µ∞ and Kr(t), obtained from a BEM solver such

as WAMIT or Nemoh.
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B. Parameter identification

The model in Eq. (8), based on the definition of the matrix

G, is updated at each TRLS time-step, using on a standard

RLS algorithm [42]. The RLS algorithm will try to reach the

best kernel functions, mN and nN from Eq. (13), to satisfy

the equation of motion of the system. At a given RLS time

step p, the linear model is updated in the following manner:

θ = [x̃T , ṽT ]T (16)

e(p) = d(p)− θTGT (p− 1) (17)

r(p) = P(p− 1)θ/(λ+ θTP(p− 1)θ) (18)

P(p) = λ−1
(

P(p− 1)− r(p)θTP(p− 1)
)

(19)

G(p) = G(p− 1) + e(p)r(p) (20)

where the matrix P is initialised as P(0) = p0I (where I

represents the identity matrix). The vector d is the measured

outputs that the linear model should emulate, which in this

case is the projection of the sum of the excitation, radiation

and control forces. λ is the forgetting factor, allowing a self-

tuning control (λ = 1) or an adaptive control (0 < λ < 1).

C. Tracking trajectory

Since the simulation model is different from the control

model, and generates nonlinear fluid forces, a backstepping

method is employed to make the system follow the optimal

trajectory determined by the RHPC. This follows the gen-

eral robust hierarchical structure in [43], while backstepping

employing feedback linearisation is shown to have good

robustness properties in [44]. The backstepping control is

based on a linear Cummins’ equation type WEC model. Since

the Cummins’ equation is a second order partial differential

equation, backstepping control involves two error functions

V1(t) and V2(t) which need to be Lyapounov stable:

V1(t) =
1

2
e2
1
(t) (21)

where e1(t) = x(t)−xref (t) is the error between the measured

WEC position, x(t), and the reference trajectory, xref (t), and

V2(t) = V1(t) +
1

2
e2
2
(t) (22)

where e2(t) = v(t)−vref (t) is the error between the measured

WEC velocity, v(t), and the reference trajectory, vref (t).
Thus, by differentiating V2(t) and using Cummins’ equation,

the control force FPTO(t) is defined to achieve Lyapounov

stability for V1(t) and V2(t), as

FPTO(t) = −(m+ µ∞)(e1(t)− ẍd(t) + τ2e2(t)) . . .

+Shx(t) +

∫ t

0

Kr(t− τ)v(τ)dτ − Fex(t)

where τ1 and τ2 are constants (in s−1) defining the rate of

convergence of V1(t) and V2(t) and ẋd(t) = vref (t)−τ1e1(t)
is an intermediate variable related to the desired velocity.

For more details on the implementation of the backstepping

method, the reader may refer to [14].

IV. NUMERICAL WAVE TANK SIMULATION OF THE

ADAPTIVE CONTROLLER

A NWT provides a cost effective means of device ex-

perimentation and evaluation. Developing an economically

competitive WEC requires early device optimisation using

numerical tools [45]. An economically competitive WEC will

likely employ an EMC, therefore, evaluating EMC perfor-

mance in a NWT can prove useful.

Classically, EMC evaluation has relied on linear model sim-

ulations. However, the increased amplitude of WEC dynamics

under controlled conditions challenge the validity of the small

amplitude linearising assumptions of such models [8], [46].

CFD, on the other hand, has a greater range of validity when

simulating large amplitude WEC motions, by considering

nonlinear effects such as viscosity and time-varying wetted

body surface area. Consistent with the observations in [47], the

results in [13] show that increasing the amplitude of the WECs

operation away from its zero amplitude equilibrium state, leads

to a divergence between a linear hydrodynamic model and

a CFD simulation. Specifically, the levels of hydrodynamic

damping experienced by a WEC are seen to increase as the

amplitude of operation increases. Therefore, evaluating an

EMC with a linear model will likely result in predictions of

unrealistically large WEC motions and energy capture due to

an underestimation of the hydrodynamic damping on the WEC

[8].

The CFD based NWT provides a fully nonlinear hydro-

dynamic simulation, allowing the convergence and adaptive

properties of the present control scheme to be tested. The

ARHPC will create the best linear control model represen-

tative of the conditions encountered in the nonlinear simula-

tion. The identification of parametric hydrodynamic models,

from input/output data obtained from CFD experiments, has

been demonstrated in [17]–[21]. The present adaptive control

scheme takes this system identification approach a step further,

by identifying the models online within the simulation. The

CFD based NWT provides an useful tool for developing the

ARHPC and other adaptive EMCs.

A. Implementation

The NWT is implemented using the open source CFD

software, OpenFOAM, as detailed in [48]. This type of

NWT has previously been used for evaluating the controlled

operation (Proportional-Integral (PI) control [8] and latching

control [7]) of a heaving sphere point absorber type WEC. A

similar implementation methodology is employed here, with

the addition of the OpenFOAM simulation being coupled with

MATLAB, to allow calculation of the optimal control.

The adaptive controller, in this paper, is implemented using

MATLAB, and therefore requires a communication pipe with

the OpenFOAM simulation. This is achieved following a

similar procedure described in [50], where mooring forces

are calculated via a MATLAB interface and are applied to

an OpenFOAM simulation of a moored WEC. In the present

application, the MATLAB interface is used to calculate the

PTO force via the ARHPC algorithm.
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B. Simulation structure

The global architecture of the control algorithm and its sim-

ulation environment is shown in Fig.2. The control algorithm

can be decomposed into three distinct stages running with

individual time-steps:

• The backstepping controller (Green) is contained as a

routine within the NWT simulation, and updates the

control force at each CFD time step ∆tCFD. The motion

reference trajectory, providing the input to the back-

stepping controller, is defined by its projections onto

the orthogonal set of basis functions, and thus can be

easily estimated at any given instant without the need

of interpolation, simplifying the connection of high-level

(MATLAB) and low-level (OpenFOAM) control environ-

ments.

• The ARHPC (Red) computes the reference trajectory

iteratively at a regular time-step, ∆tPS . The solution of

the reference trajectory projection maximises the energy

absorption, while ensuring path constraints.

• The adaptive algorithm (Blue) updates the linear model

of the system at a regular time-step ∆tRLS . The updated

linear model is then stored and used by the RHPC to

find the reference trajectory. The choice of ∆tRLS is

important, in that it must be chosen short enough to allow

good tracking of changes in a linear representative model

corresponding to sea state variations, while not so short

as to attempt instantaneous tracking of the nonlinearities.

The excitation force (White) must be estimated over the

future control horizon T0. Different methods are available for

the excitation force prediction, and the NWT provides a tool

for evaluating the sensitivity of an EMC to the error in that

prediction. In the present paper, the effect of the excitation

force prediction is removed, and the ARHPC is evaluated

under the assumption of perfect knowledge of the incident

wave series. The incident wave series is first created in an

empty NWT, and the free surface elevation (FSE) measured

at the location corresponding to the WEC centre of mass. The

WEC is given the FSE measurements and then placed in the

NWT with the same wave series simulated.
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Adaptive

controljmodel
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Fig. 2. Global architecture of the control algorithm and the CFD simulation

V. TEST CASE

An illustrative example of the ARHCP simulated in a NWT

is given in this section. The test case is described in Section

V-A and then the results presented in Section V-B.

A. Description

1) WEC: The test case considers a relatively simple WEC:

a spherical buoy, constrained to heave motion only, equipped

with an ideal PTO capable of providing/extracting bidirec-

tional power to/from the heaving buoy, see Fig.3-(a). The mass

density of the WEC is half of the water density (1020kgm−3),

so that the sphere is 50% submerged at equilibrium. The non-

uniform cross-sectional area of the sphere, results in nonlinear

Froude-Krylov forces, for the large variations in wetted surface

typically manifest under controlled conditions.

The sphere has a 0.1m radius and 0.61s natural period;

representing a scaled down version of a realistic WEC, chosen

to reduce the required NWT computation time. The differences

in run times, for CFD simulations of model and full scale

WECs, is discussed in [52]. The smaller WEC, and shorter

wave lengths, require less mesh cells in the NWT spatial

discretisation (shown in Fig. 3-(b)). The shorter wave period

allows more wave cycles per simulation time.

2) Tank: The NWT has a length and width of 10m, filled

with 3m of water, and the WEC is located in the centre of

the tank at the free surface (note a symmetry plane bisects the

NWT, reducing the simulated tank width to 5m). Waves are

generated at one end of the tank, and absorbed at the other end,

using the relaxation method implemented in the waves2Foam

toolbox [51]. A post process view of the dynamic pressure

in the NWT is Fig. 3-(c) illustrates the wave creation and

absorption in the different ends of the tank.

Fig. 3. (a) Schematic of the WEC (b) Cross section of the mesh, fluid volumes
(water=red, air=blue) and WEC at equilibrium in the NWT (c) Post Process
view of the dynamic pressure in the NWT during the OpenFOAM simulation.

3) Input waves: An input wave series representing a JON-

SWAP spectrum, consisting of 100 frequencies non-uniformly

distributed between 0 and 2Hz with random phases, and a

peak period of 1s, is employed (see Fig. 4). Note the peak

period differs from the natural period of the WEC, 0.61s.
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Fig. 4. Measured free surface elevation (FSE) at the centre of the tank.

4) Tests: Two tests are presented; Test 1 and Test 2. In

both tests, the input wave conditions created in Fig. 4 are

used for the WEC simulation, implementing both an adaptive

and a constant control model.

Test 1 investigates the adaptation of the linear ARHPC to the

nonlinear conditions in the NWT simulation. The parameter

adaptation will be monitored as it evolves throughout the

simulation. The ARHPC performance is measured against the

same controller using constant model parameters only. The test

(NWT, WEC and input wave series), is exactly the same as

presented in [8], excepting the use of a proportional-integral

(PI) controller in [8]. The ARHPC performance will therefore,

also be compared against these PI control results.

The PI controller, shifts the WEC natural frequency by

changing the system reactance with the PTO force, to resonate

the WEC with the input wave spectrum. The proportional and

integral to the velocity terms are tuned to achieve complex

conjugate impedance matching. In this case, impedance

matching is approximated, by matching the resistive term

with the WEC radiation damping at the peak wave period and

matching the WEC natural period with the peak wave period

using the reactive term [53]. For the PI controller in [8], the

integral term had a stiffness parameter value of −197N/m
for the reactive force component, and the proportional term

had a damping parameter value of 6.22Ns/m for the resistive

force component.

Test 2 investigates the ability of the ARHPC to adapt to

changes in the WEC physical parameters. In this test the

WEC mass is increased by 10% in the CFD simulation.

Increasing WEC mass may occur in reality, due to marine

growth or water leakage into the WEC hull for example.

5) Control settings: The value for the various control

parameters used by the ARHPC, and its non-adaptive

counterpart, are listed in Table I.

TABLE I
CONTROL SETTING VALUES USED IN THE TEST CASE EXAMPLES.

Parameter Symbol Value

Control horizon T0 2s

RLS update period ∆tRLS 0.2s

Optimal trajectory update period ∆tPS 1ms

RLS forgetting factor λ 0.995
P initialisation p0 1
Number of basis functions N 7
Geometrical constraints H 0.1m

6) Model initialisation: Choosing seven basis functions

for the RHPC controllers, leads to a linear control model,

G, comprising two 15 × 15 submatrices, M and N. Using

hydrodynamic parameters calculated from the BEM solver

Nemoh, the parameter values for M and N are initialised using

Eqs. (14) and (15), respectively, and are displayed in Fig. 5.

The matrix M can be seen to be diagonal, with the non-zero

parameters equal to the hydrostatic stiffness Sh. The matrix N

contains parameters related to both velocity and acceleration

dependent forces, with the upper left and lower right quadrants

relating to the velocity terms, and the upper right and lower

left quadrants relating to the acceleration terms.
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Fig. 5. Initialisation of the M and N matrices

7) CFD settings: While care is taken to ensure realistic

simulations, extensive verification and validation producing

quantitative measures of the error, as described in [54], is not

undertaken for this preliminary demonstration of the ARHCP

evaluation in the NWT. Instead a pragmatic approach, using

a qualitative mesh convergence study is employed, ensuring

both a grid-independent solution and a reasonable run time.
Testing of the wave creation and absorption followed pro-

cedures detailed in [55], resulting in a vertical mesh resolution

of 5mm around the free surface. The mesh around the WEC is

then examined, as depicted in Fig. 6, where M1 uses the base

mesh with a nonuniform first cell thickness of maximum value

5mm, and M2 and M3, use refinement layers to achieve a

uniform first cell thickness of 3mm and 1mm, respectively.

The graph in Fig. 6, of the resulting WEC motion for the

three different mesh setups, shows that the refined mesh M2
gives the same results as the even further refined mesh M3,

and therefore M2 is used for the subsequent simulations. A

total of 882,000 cells are used in the NWT. The laminar

simulations use an adjustable time stepping approach, ensuring

a maximum Courant number of 0.9, resulting in timesteps,

∆tCFD = O(10−4s).

Fig. 6. Mesh convergence study.
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B. Results

1) Test 1: The performance of the ARHPC versus its non-

adaptive counterpart is shown in Fig. 7, which plots the WEC

(a) displacement, (b) PTO force and (c) energy absorption

for the input wave series in Fig. 4. The adaptive algorithm

is initiated after 3s, and Fig. 7 shows that both controllers

perform identically for the first 3s. The performance of the

two controllers then begin to diverge after the parameters of

the adaptive control model start to be updated. The model

adaptation leads to the ARHCP calculating an optimal tra-

jectory with smaller amplitude displacement and PTO forces,

yet yielding more energy than the controller with a constant

control model.
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Fig. 7. Results of the adaptive RHPC versus the constant RHPC

Fig. 8 shows the total change in parameter values, for the

M and N matrices, at T = 30s. The diagonal entries of

M, whose parameters correspond to Sh, are seen to change

due to the adaptive algorithm. Fig. 9-(a) plots the evolution

of the first three diagonal entries, showing a decrease in

parameter values once the adaptation begins. A decrease in the

adaptive models representation of Sh makes sense physically,

considering that the value of Sh for the considered sphere

is maximum at its equilibrium position and decreases when

the sphere moves in or out of the water. The adaptive model

parameters therefore update to a linear average of the reduced

Sh values encountered while the sphere is away from its

equilibrium. Similarly, Fig. 9-(b) shows the evolution of the

first three diagonal entries of the matrix N, which correspond

to pure damping forces, and in this case, the parameter values

increase with the adaptation. These parameters are initialised

considering linear radiation forces, but due to the additional

viscous damping forces in the NWT, the adaptive model

increases its linear representation of the total damping forces.
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Fig. 8. Changes to parameters in the M and N matrices
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The ARHPC is compared against the PI controller in Fig.

10. The results show that the ARHPC absorbs about 50% more

energy than the PI control over the last 20s of the simulation.
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Fig. 10. Results of the adaptive controller versus the PI controller

2) Test 2: Similar relative performance, between the adap-

tive and constant controllers, were observed in this test as in

Test 1. Also similar changes to the adaptive model parameters

were observed. An interesting result concerning this test is

shown in Fig. 11, comparing the results of the constant

controller in Test 1 and Test 2. Although the parameter values

of the constant control model in Test 2 misrepresents the WEC

mass by 10%, the total energy absorbed is the same as in

Test 1. The misrepresentation of the WEC inertia results in

more reactive power being added and removed from the WEC

controller each cycle, but the overall absorbed power remains

the same.
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Fig. 11. Comparison of the constant controller results when the WEC mass
is increased by 10% in the CFD simulation versus the Test 1 results.
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VI. DISCUSSION

Comparing the performance of the ARHCP and its non

adaptive counterpart, the results demonstrate the improved per-

formance of the optimal controller, when the control model ac-

curately represents the WEC hydrodynamic resistance. When

optimal PTO control is considered as an impedance match-

ing exercise, the optimal PTO force matches the complex-

conjugate of the WEC mechanical impedance, described in

[53], [56]. The optimal PTO force is therefore dependent on

an accurate measurement of, (1) the excitation force, and (2)

the resistive term of the WEC’s total mechanical impedance.

The results presented in this paper have focussed on using

adaptive system identification techniques to optimise the con-

trol model’s estimation of (2). The linear control model repre-

sentation of the resistive hydrodynamic forces, was adaptively

increased by the ARHPC to account for added hydrodynamic

resistance in the NWT simulation (due to viscous effects such

as drag and vortex shedding). Correspondingly, the optimal

trajectory calculated by the ARHPC decreased in amplitude,

due to the adapted control model predicting increased amounts

of energy dissipation for large velocities.

An interesting result to come from Test 2, is the lack of

sensitivity to the control model estimate of the inertia terms.

This result agrees with the findings in [56], showing the

dominating influence of the WEC mechanical resistance on

the optimal control impedance, compared with the mechanical

reactance terms. The results in Fig. 11 show that incorrect

control model knowledge of the true WEC mass, results in

a temporary loss of absorbed energy during part of a cycle,

but then a later retrieval of the energy, in such as way that

the overall average power absorption is the same as if the

controller had perfect knowledge of the WEC mass. However,

this does assume a 100% efficient PTO system, where no para-

sitic energy dissipation occurs during the bi-directional power

flow between the WEC and energy storage/grid. However, if

PTO losses and/or constraints are considered, then the sen-

sitivity towards accurate knowledge of the WEC mechanical

impedance, inherent to the optimal controller, increases.

The relative comparison between the different controller

performances, in Fig 10, is for the case of a scaled down

version of a particular type of WEC. At full scale, or

for different WEC types, the relative importance of various

nonlinear hydrodynamic effects may differ. The results for

the particular case presented, show the proposed ARHPC

outperforming the other two controllers (when provided with

exact future knowledge of the incident wave series). However,

if the PI control parameters had also been adapted online,

or if a different WEC type was tested, then different relative

controller performances may have been observed. The NWT

can be used as an evaluation tool, to assess the performance

of different controller settings for different cases of WECs.

The NWT allowed the ARHPC to be tested and the perfor-

mance appears promising. The tests suggest that the ARHPC

could be performed in real-time for a real WEC, due to the

quick linear optimisation in the RHPC algorithm and the rela-

tively simple RLS algorithm for model parameter adaptation.

The ARHPC parameter adaptation is seen to behave well, and

resulted in a net positive effect for the control.

The results shown herein were for a simplified version of

the real wave energy problem. For example, the WEC was

a single body object, artificially restrained to heave motion,

the mooring and PTO dynamics were ignored, and extensive

verification and validation was not performed. To be a valuable

evaluation tool for WEC performance, the NWT should match

as close to reality as possible. Continual development of the

NWT is therefore an active research focus, and future work

endeavours to provide high fidelity simulations of all relevant

physical effects of WEC operation, such as coupling PTO and

mooring [50] models to the NWT simulation.

VII. CONCLUSION

Enabling a EMC to adapt, based on measured data from

the WEC operation, allows improved control performance.

Due to uncertainty in system parameters, or parameter values

changing with time, the EMC can use system identification

techniques to build more accurate control models, that better

describe the actual WEC dynamics in the current conditions.

This paper focussed on the performance of a linear con-

trol model in a nonlinear simulation. Better optimisation

techniques are available for EMCs based on linear models,

compared to those based on nonlinear models. The results

here show the ability of a ’best fit’ linear model in capturing

relevant nonlinear effects, such as viscous damping.

A CFD NWT is shown to be a useful evaluation tool

for adaptive controllers. the implementation of the adaptive

control algorithm can be challenged, and debugged, in a

simulation environment capable of capturing nonlinear hydro-

dynamic behaviour. The performance of the adaptive control

can be easily assessed and compared against other results.
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