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Literature part 

 

1 Introduction 

 

Model predictive control (MPC) was first advocated in the late seventies by (Richalet, Rault et 

al. 1976), but it was preceded by necessary concepts such as optimality that were discussed for 

example by (Bellman 1957) and (Lee, Markus 1967). A closely related methodology called 

generalized predictive control was developed in the eighties by (Clarke, Mohtadi et al. 1987) 

and others.  

 

Model predictive control has experienced explosive growth especially in the process industry, 

where it has proved to be a highly successful method of multivariable control. This success is 

mostly due to the fact that the MPC is conceptually simple and able to control complex 

multivariable systems. (Mayne 2014) 

 

Industrial processes must be reliable, profitable, and safe. Processes rely on automation, which 

increases the vulnerability to faults. A fault is a failure of a control or process element that 

affects the behavior of the plant. The fault could be for example a faulty sensor or a stuck 

valve, and it can cause physical damage to equipment, increased energy usage, process 

downtime, and hazard to environment or personnel. Because of this, research into fault 

detection and diagnosis, and fault tolerant control systems have received much attention in 

recent years.  

 

The Tennessee Eastman process (Downs, Vogel 1993) is a simulated complex industrial process. 

It is based on a real process and its properties were modified for use as a test problem. It can 

be used to study applications such as plant-wide control strategy, multivariable control, 

predictive control, and diagnostics.  
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The focus of this thesis is the design and evaluation of the performance of a MPC, which can 

later be combined with fault detection and diagnosis methods and reconfigured into fault 

tolerant control for a complex industrial processes.  

 

The thesis consists of separate literature and experimental parts. The literature part introduces 

the important aspects of both MPC and fault tolerance in Chapters 2 and 3. Chapter 4 

introduces some examples of the previous work in the field. In the experimental part the 

Tennessee Eastman process is described in Chapter 5. Chapter 6 describes the implementation 

of the MPC. Chapters 7 and 8 show the dynamic behavior of the process, and the effect of 

faults. Chapter 9 presents a summary of the experimental part and Chapter 10 outlines the 

main findings and conclusions.  

 

 

2 Receding horizon principle and model predictive control 

 

 

The term MPC does not describe a specific control strategy, but rather any type of control that 

uses a process model for calculation of the control signal (Camacho, Bordons 2007). Instead of 

a laborious offline computation to obtain a control law (𝑢 = 𝑘(𝑥)), the MPC solves online a 

constrained dynamic optimal control problem.  

 

The different MPC methods lead to controllers with the same basic structure and adequate 

degrees of freedom. All predictive controllers have the following ideas to varying degrees: 

- The explicit use of a process model for prediction of the process outputs 

- The calculation of the control sequence that minimizes the objective function 

- Receding horizon control. 

These methods differ from each other only in the model they use to describe the process and 

its disturbances, and the objective function to be minimized. (Camacho, Bordons 2007) 
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Receding horizon control (RHC) is a concept where the optimization problem is solved over a 

number of future samples at the current time, and the first step of the resulting control law is 

implemented on the system. This is repeated at every instant the controller is run. (Park, Lee et 

al. 1999) The optimized control sequence is an open loop control, but it becomes closed loop 

because only the first element is applied, and every new instant has new measurements from 

the process. (Seron, Goodwin et al. 2003) See Figure 1. 

 

The main advantage of receding horizon over infinite horizon control is its ability to handle 

constraints on the inputs, states, or outputs of the system. The constraints are treated simply 

as conditions that must be satisfied in solving the optimization problem. This makes it 

particularly suitable for time-varying systems and has been a key feature for its success in 

industry. (Park, Lee et al. 1999, Seron, Goodwin et al. 2003)  

 

 

Fig. 1. Receding Horizon control (Charitopoulos, Dua 2016) 

 

Model predictive control has several advantages over other control methods, these include: 

- its attractiveness to personnel with limited control knowledge (the concept is intuitive 

and the controller easy to tune) 

- its suitability for a wide variety of processes, from simple to complex dynamics, and 

even long delays and instability 

- its suitability for multivariable processes 
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- its intrinsic ability to compensate for dead times 

- its ability to use feed forward control to compensate for measured disturbances 

- its ability to handle constraints 

- its openness which allows for new extensions and applications. 

(Camacho, Bordons 2007) 

 

However, as is always the case, the MPC also has drawbacks:  

- Derivation of the controller: In MPC the control law is usually easy to implement and 

does not require rigorous computation, but deriving it is often very complex in 

comparison with classical PID controllers.  

o In a process with unchanging dynamics, the controller can be derived 

beforehand, but with adaptive control it has to be done at every calculation.  

o If the MPC also has constraints, the required amount of computation is even 

higher.  

o Modern computing power negates most effects of this drawback, but it should 

be kept in mind that the computers used in the process industry are often not 

operating at their best. Process computers may also need to perform tasks 

other than control (alarms, recording, communications, etc.). (Camacho, 

Bordons 2007) 

- Requirement for an accurate model: The design algorithm is independent of the model, 

but it is based on previous knowledge of it. It is fairly obvious that any benefits to be 

obtained by using MPC depend on the accuracy of the model. Even small discrepancies 

between the model and the process can cause issues.  (Camacho, Bordons 2007) 

The process model is discussed further later in this chapter. 

 

All predictive controllers have the same basic methodology, and they differ only in their 

implementation of the main elements. (Camacho, Bordons 2007, Ogunnaike, Ray 1994) These 

elements are: 

1. Specification of the reference trajectory 𝑤(𝑡 + 𝑘), which can be a step or a smooth 

approximation to the set-point. 
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2. The process outputs are predicted to a prediction horizon N at each time instant t 

when there are no further control actions. The predicted outputs 𝑦̂(𝑡 + 𝑘|𝑡) where 

𝑘 = 1 … 𝑁 depend on all past inputs and outputs up to time t. 

3. The future control signals 𝑢(𝑡 + 𝑘|𝑡), 𝑘 = 0 … 𝑁 − 1 are calculated to optimize a 

predetermined criterion. The objective of the optimization can be for example to 

minimize the deviation between the reference trajectory and the predicted outputs, or 

to minimize the required control effort. In some cases, an explicit solution can be found 

(quadratic criterion, linear model, no constraints), but usually an iterative optimization 

method is needed. 

4. The first control signal 𝑢(𝑡|𝑡) is applied to the process, and the following signals are 

rejected, because the calculation uses the receding horizon method and the previous 

steps are repeated at each sampling instant.  

 

The basic structure of the controller is shown in Figure 2. The model is used for the output 

prediction, and the optimizer is used calculate the control signals.  

 

 

Fig. 2. Basic structure of MPC (Camacho, Bordons 2007) 
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2.1 Process model for the MPC 
 

According to (Denn 1986) “A mathematical model of a process is a system of equations whose 

solution, given specified input data, is representative of the response of the process to a 

corresponding set of inputs.” 

 

The model has a crucial role in the MPC. The model needs to be able to describe the process 

dynamics sufficiently to accurately predict the outputs, while remaining simple enough to 

implement. Model predictive control is not a specific technique but rather a set of different 

methods, so the model can be of several forms. For example an impulse or step response 

model, or a state space model. The different models have different ways of representing the 

relationship between the measurable inputs and the outputs. The inputs can be considered 

either manipulated variables or measurable disturbances. The measurable disturbances are 

compensated by feedforward action. The process can also have disturbances that are not 

measurable, or noise in the measurements, and these can be taken into account with 

disturbance models. The models used by the controller are usually separated into the process 

model and the disturbance model, which are both necessary for successful control. (Camacho, 

Bordons 2007) 

 

A basic rule in modeling is not to estimate values that are already known. There are different 

levels of prior knowledge used in creating models, and these levels are called by colors: 

- White-box models 

- Gray-box models 

- Black-box models 

(Sjöberg, Zhang et al. 1995) 

 

A white-box model is a model that is entirely constructed from prior knowledge of the system’s 

underlying physical, chemical, and thermodynamic processes. Models like this are also referred 

to as first-principles models. For complex industrial processes these are often expensive and 

difficult to develop, but they have become increasingly common. (Sjöberg, Zhang et al. 1995) 

(Maciejowski 2002) 
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A black-box model is a model where no prior knowledge of the process is available or used 

(Sjöberg, Zhang et al. 1995). The modeling is done by performing tests on the process. These 

tests involve stimulating the process with known signals (steps, multi-sines, etc.) and measuring 

the plant outputs. Alternatively, the data can be historical data from running the process. From 

this data the model can be obtained by system identification. There are several different 

techniques for this ranging from simple curve-fitting to complex statistically based methods. 

Models obtained this way are called black box models. They describe only the input-output 

behavior and tell nothing of the internal structure of the process. (Maciejowski 2002) 

 

A grey-box model is a hybrid of white- and black-box models. They are created when some 

insight is available, but there are parameters that will require estimation. Sjöberg, Zhang et al. 

(1995) divide these into two subcases. Physical modeling means building a model on physical 

grounds, with a number of parameters estimated from data. An example could be a state-space 

model with specific structure and order. Semi-physical modeling means using physical insight 

to suggest specific nonlinear combinations of the data. These combinations are then used akin 

to black-box modeling. (Sjöberg, Zhang et al. 1995) 

 

2.2 Tuning the controller 
 

All predictive controllers have adjustable parameters such as weights, horizons, disturbance 

model, observer dynamics, and reference trajectory. Adjusting these parameters is called 

tuning the controller. Tuning can be done based on theorems, but is more commonly based on 

previous experience. Model predictive control uses feedback for the same reason all controllers 

do; to combat the effects of uncertainty. What should be remembered is that feedback should 

always be treated with caution. This is because improperly used feedback can turn a stable 

system into an unstable one. (Maciejowski 2002) 
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2.2.1 Horizons  
 

The horizons that need to be chosen for MPC are prediction horizon 𝑁 and control horizon 𝑁𝑢. 

The length of the prediction horizon affects the stability of the system. A small 𝑁 responds fast, 

but the robustness of the system suffers. If a longer horizon is chosen, the system’s dynamic 

response will be slower and more stable, but the computational burden will increase. 

Therefore, the chosen prediction horizon should be a compromise between speed and stability. 

(Jiang, Jutan 2000) 

 

The control horizon 𝑁𝑢 also requires compromise. A longer horizon increases the controlling 

scope, but decreases the robustness and stability. Tuning this parameter is usually done by trial 

and error because no general method for it exists. This value is also often left as a so-called safe 

value because it could be close to an optimal value and changing it unnecessarily might even 

result in instability.  (Jiang, Jutan 2000) 

 

2.2.2 Weights 
 

One tuning method is control weighting. There are several ways of using it. For example, 

increasing the weights on the control moves compared to the weights on the tracking errors 

reduces the control activity. Increasing them indefinitely would reduce the control activity to 

zero, which would essentially mean switching off the feedback control. Therefore with a stable 

plant, a stable closed-loop system can be obtained by sufficiently increasing the control 

weights. However, the higher the weights, the slower the system responds to disturbances. For 

an unstable system increasing the weights too much will result in an unstable closed-loop 

system. (Maciejowski 2002) 

 

2.2.3 Disturbance model and observer dynamics 
 

Two important choices for tuning are disturbance model and observer dynamics. To achieve 

offset-free tracking in a system with constant output disturbances, the poles of the disturbance 

model must become the poles of the controller. This is an example of a phenomenon called 
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Internal Model Principle. Suppose a disturbance that won’t decay to zero affects the system; 

this can often be approximated by sinusoidal, ramp or constant signals in practice. In this case, 

the feedback controller can only compensate for the disturbance perfectly if the disturbance 

signal poles are among the controller poles. In other words, the controller’s internal model 

must have the same structure as the disturbance. This is the reason a disturbance model is 

added to the controller. (Maciejowski 2002) 

 

The function of the observer is to filter the measured outputs before they affect the controller. 

Choosing the dynamics of the observer affects the system’s response to disturbances. 

Deadbeat dynamics give a fast response, but some magnitudes of disturbance can then lead to 

frequent saturation of actuators. Therefore, it is sometimes better to choose a slower 

response, and reserve the saturation of actuators for exceptionally large disturbances. 

Especially in cases with an appreciable amount of measurement noise, it is usually better to use 

slower dynamics, to achieve some low-pass filtering of the measurement noise. (Maciejowski 

2002) 

 

2.3 Process optimization with MPC 
 

The optimizer is the part of the controller that calculates the future control actions. It does this 

by minimizing the cost function. In the case of a quadratic cost function, the minimum can be 

found explicitly as a linear function of the reference trajectory and past inputs and outputs. 

However, in cases with constraints or nonlinearity, the cost function must be minimized 

numerically. (Camacho, Bordons 2007) The optimizer also needs to keep track of the prediction 

error, which is the difference between the measured process output 𝑦(𝑘)) and the predicted 

output 𝑦̂(𝑘). The error is updated on every calculation and used to correct future predictions. 

(Ogunnaike, Ray 1994) 

 

Different MPC algorithms use different cost functions to acquire the control law. The general 

goal is for the future output (y) to follow the reference signal (w), while the control effort (∆𝑢) 

is penalized. Equation 1 describes the general form of the cost function. (Camacho, Bordons 

2007) 
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𝐽(𝑁1, 𝑁2, 𝑁𝑢) = ∑ 𝛿(𝑗)[𝑦̂(𝑡 + 𝑗|𝑡) − 𝑤(𝑡 + 𝑗)]2 + ∑ 𝜆(𝑗)[Δ𝑢(𝑡 + 𝑗 − 1)]2𝑁𝑢
𝑗=1

𝑁2
𝑗=𝑁1

 (1) 

 

where 𝑁1 and 𝑁2 are the cost horizons (minimum and maximum), 𝑁𝑢 is the control horizon, 

and 𝛿(𝑗) and 𝜆(𝑗) are the coefficient (sequences) that consider the future outputs of the 

process. The cost horizons define the limits of the sample times where it is advantageous for 

the output to match the reference. A high value of 𝑁1 means that the early instants are not 

important, for example processes with dead time or inverse response. The maximum cost 

horizon 𝑁2 always has a higher value than the control horizon 𝑁𝑢. The coefficients can be for 

example used to find an exponential weight along the horizon: 𝛿(𝑗) = 𝛼𝑁2−𝑗, where by 

choosing a value for 𝛼 the smoothness or tightness of the control can be given (the more the 

first errors are penalized, the tighter the control).  

 

The reference trajectory 𝑤(𝑡 + 𝑘) was mentioned briefly earlier, and is also considered in the 

cost function. This is an advantage of predictive control, and it is especially useful in cases 

where the evolution of the reference 𝑟(𝑡 + 𝑘) is known beforehand. Such applications include 

robotics and batch processes. Noticeable performance improvement can also be achieved in 

cases where the reference is constant, when the instant of the change in its value is known. 

The reference trajectory is usually a smooth approximation of the reference instead of 

following the actual reference. (Camacho, Bordons 2007) 

 

2.4 Additional aspects to consider 
 

In reality all processes have constraints that have to be taken into account in the minimization 

of the cost function. The constraints can be caused by a variety of things. Actuators have 

limited fields of action (e.g. a valve is limited by totally closed and totally open), safety and 

environmental reasons limit allowable tank levels, flows in pipes, and process pressures and 

temperatures. The operational conditions are often determined by the intersection of 

particular constraints, so the system will be operating close to the boundaries. Adding 
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constraints to the cost function makes the minimization more complex so the solution has to 

be obtained numerically. (Camacho, Bordons 2007) 

 

Most processes are nonlinear at least to some degree. In many cases this does not cause any 

problems since the process is operated at a steady state and can be approximated as a linear 

process. However, there are processes that either spend long periods of time away from the 

steady state or have transient dynamics during the whole operation. There are also processes 

where the nonlinearity is so severe that it must be taken into account even in steady state 

operation. The concept of MPC causes no problems with the use of nonlinear models, provided 

that a sufficiently accurate model can be found. Though it should be kept in mind that a 

mathematical model of a real process is never perfect. For effective control, the models require 

simplifying assumptions to ensure sufficient speed for the calculation of the control actions. 

Control models are always approximations of the real process.  (Camacho, Bordons 2007) 

 

Because the model is not exact and external disturbances can affect the process, the controller 

needs feedback. The feedback is used to ascertain that the model predictions are accurate and, 

as will be discussed later, to recognize when faults occur in the process. (Camacho, Bordons 

2007)  

 

 

3 Fault tolerant control 

 

Industrial processes are faced with increasing requirements for reliability, profitability, and 

safety. These processes rely on highly automated controllers. Automation in itself, however, 

increases the vulnerability of the process to various faults. (Gani, Mhaskar et al. 2007) Often 

encountered faults are the failures of key control or process elements. These failures affect the 

performance of the plant, but can also lead to critical problems and risk of instability and 

breakdown. The faults can be for example a faulty sensor, a stuck valve, a burned-out 

thermocouple, or a broken transducer. (Mahmoud, Xia 2013) According to (Gani, Mhaskar et al. 

2007) faults can cause  
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- physical damage to equipment 

- increased use of energy and raw materials 

- process downtime, which will result in production losses 

- hazard to the environment and plant personnel. 

 

These increasing demands have motivated significant amounts of research into fault detection 

and diagnosis (FDD), and fault tolerant control (FTC). A fault tolerant control system (FTCS) is a 

system that can maintain stability and a level of performance even during faults in the system. 

(Jiang, Yu 2012) The performance of the process is relative to the failure severity. This is an 

advantage compared to conventional control systems, where even a minor fault can cause 

breakdown.  (Mahmoud, Xia 2013) Fault tolerance is exceedingly important in safety critical 

systems such as aircraft, industrial plants (with hazardous materials), and space vehicles. The 

achievable performance of an FTCS depends on the redundancies available in the control 

system, and on the design approach used. FTCSs are classified into two categories based on 

how they employ the redundancies. These categories are active FTCS and passive FTCS, which 

differ only in their design methods to reach the same control objective. Both approaches lead 

to similar results considering the main control objectives, but their distinctive design methods 

lead to certain unique properties, which will be discussed later in this chapter. (Jiang, Yu 2012)  

 

A prerequisite of (active) fault tolerant control is the detection and isolation of faults. Existing 

methods for the design of fault-detection filters include those using plant data and those using 

process models. The methods using plant data use statistical and pattern recognition, and use 

the analyzed data to calculate indicators to detect faults. (Gani, Mhaskar et al. 2007) Both types 

of methods have been extensively studied in existing literature and, will not be discussed 

within this thesis.  

 

According to Jiang & Yu (2012) “The main objectives of an FTCS are to preserve the stability of 

the overall system and to maintain an acceptable level of performance in the event of system 

component malfunctions.” These component failures are divided into two types. First, those 

that are anticipated during the design stage, and second, those that only occur during the 

operation of the system. This part of the chapter discusses two different approaches to 



  
 

 
 

21 
 

handling faults. A passive approach to fault-tolerance means making the system failure-proof 

for a specifically defined set of faults at the design stage; this is done by built-in system 

redundancies. An active approach means responding to failures by reconfiguring the remaining 

elements online to ensure the necessary control capabilities. (Jiang, Yu 2012) 

 

3.1 Passive fault tolerance 

 

In passive fault tolerant control systems (PFTCS), the controllers are designed to be robust 

against a set of previously known faults, and they are fixed. The advantage to this approach is 

that it does not require an FDD component nor reconfiguration of the controller. The 

disadvantage is its limited capabilities for fault tolerance. The controller in a PFTCS remains 

fixed for the entire duration of the process operation. It should be able to sustain the designed 

system performance, even when a fault occurs. (Mahmoud, Xia 2013) The scheme is called 

“passive” because no additional control actions need to be taken. The main idea of a PFTCS is 

to obtain a controller in the intersection of all admissible solutions. There are several limiting 

situations for a PFTCS where no single intersection for all solutions can be found. This may lead 

to the necessity of optimality sacrifices even during normal operation. The architecture of a 

PFTCS is shown in Figure 3. (Jiang, Yu 2012)  

 

 

Fig. 3. Architecture of a passive FTCS. Adapted from (Jiang, Yu 2012) 

 

3.2 Active fault tolerance 

 

In active fault tolerant control systems (AFTCS), the controller reacts to faults by actively 

reconfiguring its actions to maintain the stability and satisfactory performance for the system. 

There are several terms that essentially describe an AFTCS, such as self-repairing, 
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reconfigurable, restructurable, and self-designing. The AFTCS consistently has the same basic 

components: a fault detection and diagnosis (FDD) scheme, a restructurable controller, and a 

mechanism for the restructuring. (Mahmoud, Xia 2013) Since there are three main components 

to the AFTCS, there are also three design objectives for the system. 

1. The development of an FDD system that provides accurate and timely information 

about any faults that occur in the system.  

2. The reconfiguration of the control scheme to maintain the stability and acceptable 

performance of the closed-loop system. 

3. The assignment of the restructured controller into the system smoothly. 

The architecture of an AFTCS is shown in Figure 4. (Jiang, Yu 2012) 

 

 

Fig. 4. Architecture of an active FTCS. Adapted from (Jiang, Yu 2012) 

 

The AFTCS considers both normal and fault cases. It is assumed that for each case there is an 

admissible solution space, and in that space, a controller. The existence of an optimal solution 

within this space depends on the constraints of the process and the optimization techniques 

used. In a fault case, when a solution is found, the controller is reconfigured to compensate for 

the effects of the fault. The search algorithm for the solution can be made to find the optimal 

solution. However, it is often better to settle for a sufficient but sub-optimal controller, 
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because obtaining the optimal solution requires more time. The controller must react to faults 

fast, so the time for finding the solution is limited. (Jiang, Yu 2012) 

 

Though the concept sounds simple in theory, in practice there are issues that can decrease the 

ability of the controller to perform as desired. Problems can be caused for example by the 

accuracy of fault detection and the time it takes, and the time it takes to obtain and assign the 

new controls. The fault detection depends on the type of the faults, and the selected FDD 

methods. The AFTCS only has a limited time frame to react to faults, because faults can often 

render the process or system unstable. The time between the occurrence of the fault and the 

system becoming unstable is referred to as critical reaction time. If in practice the AFTCS takes 

longer to reconfigure itself than the critical reaction time, the process will become 

unrecoverable. Figure 5 shows both situations. 𝑇𝑐  refers to the critical reaction time, 𝑇𝑓 is the 

time the fault occurs, and 𝑇𝑟 is the time the FDD and control reconfiguration take. (Jiang, Yu 

2012) 

 

In a general case of fault tolerant control the term reconfiguration refers to reacting to faults 

by switching off the faulty part of the process, and attempting to achieve desirable 

performance with the remaining control options (Blanke, Kinnaert et al. 2003). In the MPC case 

of this thesis, reconfiguration refers to changing the model in reaction to faults.   

 

Once the fault has been detected and identified, the controller needs to be reconfigured. This 

can be thought of as model matching. The desired performance is known, and can be used to 

determine the dynamical properties that should be produced by the new controller. Essentially 

this means that the new closed-loop system should still match the model of the non-faulty 

process. (Mahmoud, Xia 2013) 

 

In this general example of controller reconfiguration, the closed-loop system consists of a linear 

plant and a state-feedback controller 𝑢(𝑘) = −𝐊𝑥(𝑘), and combined these give the model of 

the system. For a faulty system, the new state-feedback controller 𝑢(𝑘) − 𝐊𝑓𝑥(𝑘) should be 

obtained so that the system behaves like the nominal loop. The new controller is applied to the 
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system to minimize the difference between the dynamical properties of the non-faulty and 

faulty plant. (Mahmoud, Xia 2013) 

 

 

Fig. 5. Critical reaction time of an AFTCS; top: 𝑇𝑟 < 𝑇𝑐, bottom: 𝑇𝑟 > 𝑇𝑐. Adapted from (Jiang, 

Yu 2012) 

 

 

4 Industrial and simulation examples of MPC and FTC 

 

This chapter introduces three industrial or simulation examples. The first is a basic simulation 

example of a two CSTR system. The second introduces previous work from the Aalto University 
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Process Automation and Control research group, especially in the area of industrial 

dearomatization. The third section is an example of fault tolerant control using AI.  

 

4.1 Basic CSTR example 

 

This section introduces a two-tank example from (Mhaskar, Liu et al. 2013). Another popular 

example in fault tolerant control literature is the three-tank process, which the reader can 

familiarize themselves with from for example (Blanke, Kinnaert et al. 2003) or (Noura, Theilliol 

et al. 2009). 

 

(Mhaskar, Liu et al. 2013) demonstrate the application of a fault detection and isolation, and 

reconfiguration method for two continuous stirred tank reactors (CSTRs) operating in series. 

Consider these CSTRs to be well mixed and non-isothermal reactors, where three irreversible 

exothermic reactions take place in parallel. The reactions are of form 𝐴
𝑘1
→ 𝐵, 𝐴

𝑘2
→ 𝑈, 𝐴

𝑘3
→ 𝑅, 

and the schematic of the system can be seen from Figure 6. In the reactions, A is the reactant, 

B is the main product, and U and R are byproducts. The input to the first reactor is pure A, and 

the output is fed to the second reactor. The second reactor also has a feed of pure A. Using 

standard modelling assumptions, the model of the process is described by equations 2–5. 

(Mhaskar, Liu et al. 2013) 

  

𝑑𝑇1

𝑑𝑡
=

𝐹0

𝑉1
(𝑇0 − 𝑇1) + ∑

−∆𝐻𝑖

𝜌𝑐𝑝
𝑅𝑖(𝐶𝐴1, 𝑇1)3

𝑖=1 +
𝑄1

𝜌𝑐𝑝𝑉1
     (2) 

𝑑𝐶𝐴1

𝑑𝑡
=

𝐹0

𝑉1
(𝐶𝐴0 − 𝐶𝐴1) − ∑ 𝑅𝑖(𝐶𝐴1, 𝑇1)3

𝑖=1       (3) 

𝑑𝑇2

𝑑𝑡
=

𝐹0

𝑉2
(𝑇1 − 𝑇2) +

𝐹3

𝑉2
(𝑇03 − 𝑇2) + ∑

−∆𝐻𝑖

𝜌𝑐𝑝
𝑅𝑖(𝐶𝐴2, 𝑇2)3

𝑖=1 +
𝑄2

𝜌𝑐𝑝𝑉2
   (4) 

𝑑𝐶𝐴2

𝑑𝑡
=

𝐹0

𝑉2
(𝐶𝐴1 − 𝐶𝐴2) +

𝐹3

𝑉2
(𝐶𝐴03 − 𝐶𝐴2) − ∑ 𝑅𝑖(𝐶𝐴2, 𝑇2)3

𝑖=1     (5) 

 

where 𝑅𝑖(𝐶𝐴𝑗, 𝑇𝑗) = 𝑘𝑖0 exp (−
𝐸𝑖

𝑅𝑇𝑗
) 𝐶𝐴𝑗, for 𝑗 = 1, 2. 𝑇 is the temperature of the reactor, 𝐶𝐴 is 

the concentration of A, 𝑄 is the rate of heat exchange, and 𝑉 is the volume of the reactor. The 

subscripts 1 and 2 refer to reactors 1 and 2. ∆𝐻𝑖 is the enthalpy, and 𝐸𝑖  is the activation energy, 
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where 𝑖 = 1, 2, 3. 𝑐𝑝 and 𝜌 are the heat capacity and density of the fluid. (Mhaskar, Liu et al. 

2013) 

 

 

Fig. 6. A schematic of two CSTRs operating in series (Mhaskar, Liu et al. 2013) 

 

When 𝑄1 = 0, CSTR 1 has three steady-states: two stable and one unstable. When 𝑄2 = 0, the 

unstable steady-state of CSTR 1 corresponds to two stable and one unstable steady-state for 

CSTR 2. The objective of the control is to stabilize the unstable steady-states. If the system 

contains actuator failures, the following manipulated inputs are considered: 

- 𝑄1, the rate of heat into CSTR 1 

- 𝑇0 − 𝑇0
𝑠, the temperature of the feed to CSTR 1 

- 𝐶𝐴0 − 𝐶𝐴0
𝑠 , the reactant concentration of the feed to CSTR 1 

- 𝑄2, the rate of heat into CSTR 2 

- 𝑇03 − 𝑇03
𝑠 , the temperature of the feed to CSTR 2 

- 𝐶𝐴03 − 𝐶𝐴03
𝑠 , the reactant concentration of the feed to CSTR 2. 

 

The above inputs could be used in different combinations to stabilize the reactors by using 

temperature and concentration measurements from the reactor (full state-feedback). In the 

primary control configuration four inputs are used: 𝑄1, 𝑄2, 𝐶𝐴0, and 𝐶𝐴03. In the case of a 
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partial failure, the fault needs to be detected and isolated, and a fall-back control configuration 

needs to be activated to maintain stability.  

 

4.2 Active fault tolerant control for an industrial dearomatization process 

 

The Aalto University Process Automation and Control research group has studied both fault 

tolerant control and model predictive control extensively in the past decade. While this thesis 

does not directly follow from any previous study, this section introduces some of them briefly.  

 

(Kettunen, Jämsä-Jounela 2006) developed a fault tolerant MPC with embedded fault detection 

and isolation (FDI) for the heavy oil fractionator process of the Shell Control Problem (SCP). The 

SCP was introduced in (Prett, Morari 1987). The system uses different types of FDI methods to 

achieve fault tolerance with MPC: Principal Component Analysis (PCA), Partial Least Squares 

(PLS), and Subspace Model Identification (SMI). The FDI methods were tested by simulating 

drift and bias faults in a process measurement. Based on these methods, two FTC systems were 

successfully implemented. The simulation results show that the methods are effective in 

countering the faults. The authors note that the process was simulated, and tests with real 

process data may not be as neat. (Kettunen, Jämsä-Jounela 2006) 

 

 The complex industrial dearomatization process LARPO (Neste Oil, Naantali refinery) has 

gathered several studies. Worth a mention are at least (Sourander, Vermasvuori et al. 2009), 

(Kettunen, Jämsä-Jounela 2011) and the dissertation (Kettunen 2010). The process includes 

two trickle-bed reactors that are used to remove aromatic compounds, a distillation column for 

controlling end product specifications, heat exchangers, separation drums, a filling plate 

stripper, and some other process equipment for supplementary tasks. The control objective is 

to maintain the quality of the distillation column bottom product. (Kettunen, Jämsä-Jounela 

2011) 

 

The studies (Kettunen 2010) and (Kettunen, Jämsä-Jounela 2011) introduce three data-based 

FTC methods, and validate them on a simulation of the LARPO process. (Sourander, 

Vermasvuori et al. 2009) created a system with FDI and a logic for choosing predefined FTC 
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actions. This system was tested and validated both on the simulation and online in the actual 

process in the refinery. The fault tolerance in the online validation was tested by manipulating 

the analyzer results to cause artificial faults similar to normally occurring ones. (Sourander, 

Vermasvuori et al. 2009) All presented FTC systems performed as expected and required.  

 

(Zakharov, Yu et al. 2014) present a dynamic prognosis algorithm for use in choosing the most 

suitable controller reconfiguration without using a Lyapunov function. Dynamic prognosis 

means predicting process variable trajectories under distributed model predictive control 

(DMPC). It is performed when several configuration candidates are proposed after a fault has 

been diagnosed. Its task is to check whether the candidate configuration is able to achieve the 

new operating conditions while maintaining acceptable performance during the transition. The 

computation burden of the algorithm is reasonable with the assumption that the non-faulty 

subsystems remain as they are. The dynamic prognosis in DMPC aims to improve the 

applicability of existing FTC methods to large-scale systems. 

 

4.3 Fault Tolerant Control using other methods 

 

Simani et al. (2016) introduced a fault detection and compensation method for a hydroelectric 

system. They used Takagi-Sugeno (TS) fuzzy prototypes as nonlinear filters to acquire a 

prediction of the faults affecting the system. The FTC scheme used for the system was a MPC 

whose inputs were the predicted fault signals and the reference. The basic approach to obtain 

the control strategy was not dependent on the considered model. The first step was to use the 

fuzzy identification method to derive the FDD module. Next, the fault compensation strategy is 

formulated as an MPC that uses the reconstructed fault to obtain the optimized control law. In 

other words, the FDD module provides the fault estimation, which the MPC treats as a 

disturbance to be compensated. The overall strategy for fault accommodation is shown in 

Figure 7. (S. Simani, S. Alvisi et al. 2016) 

 

In a fault-free situation, the MPC acts as a nominal controller, and handles the objectives and 

constraints of the system. When a fault occurs, the MPC uses the fault reconstruction by the 

FDD to compensate for the effect of the fault, and to essentially hide the fault from the overall 
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system. In some fault cases, the nominal objectives cannot be achieved within the constraints, 

and the MPC can switch to degraded values for the objectives or update the constraints. (S. 

Simani, S. Alvisi et al. 2016) 

 

 

Fig. 7. Structure of the fault tolerant MPC (S. Simani, S. Alvisi et al. 2016) 

 

Simani et al. (2016) used a state-space representation of the system and a cost function that 

minimizes the difference between the reference state and the potentially faulty real state of 

the system. They used the Simulink MPC Designer Toolbox and Control Design to implement 

the control strategy. Because there is a mismatch between the model and reality, a Kalman 

filter provides the state estimations for the MPC. The structure is shown in Figure 8. (S. Simani, 

S. Alvisi et al. 2016) 

 

Fig. 8. Structure of the fault compensated MPC (S. Simani, S. Alvisi et al. 2016) 
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Experimental part 
 

The aim of the experimental part of this thesis is to design and tune a supervisory MPC for the 

Tennessee Eastman process (Downs, Vogel 1993). The purpose is to achieve a controller that 

can later be used as a reconfigurable controller in a fault tolerant control system.  

 

First, the Tennessee Eastman process, its basic PI-control strategy, and the MATLAB Simulink 

model used to simulate it are introduced. Next, the MPC is designed, implemented and tested. 

Last, the results of the testing are analyzed to ascertain the goal was reached.  

 

 

5 Tennessee Eastman Process 

 

5.1 Original process 

 

The Tennessee Eastman (TE) process was first described by Downs and Vogel (1993) of the 

Eastman Chemical Company. The process is based on a real industrial process, though the 

properties such as components and kinetics were modified for the test problem. It is a testing 

benchmark created to enable study of a wide range of applications such as plant-wide control 

strategy, multivariable control, optimization, predictive control, estimation/adaptive control, 

nonlinear control, and process diagnostics. 

 

The process consists of four reactions with four reactants (A, C, D, E) and an inert (B); these 

produce two products (G, H) and a byproduct (F). The reactions are: 

 

A(𝑔) + C(𝑔) + D(𝑔) → G(𝑙𝑖𝑞), Product 1      (6) 

A(𝑔) + C(𝑔) + E(𝑔) → H(𝑙𝑖𝑞), Product 2      (7) 

A(𝑔) + E(𝑔) → F(𝑙𝑖𝑞), Byproduct       (8) 

3D(𝑔) → 2F(𝑙𝑖𝑞), Byproduct        (9) 
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The reactions are exothermic and irreversible. Reaction eq. 6 has a higher activation energy 

and therefore the production of G is more temperature dependent. Also, in relation to reactant 

concentrations, the reactions are approximately first-order. The process consists of five unit 

operations: reactor, condenser, vapor-liquid separator, recycle compressor, and product 

stripper. (Downs, Vogel 1993) Figure 9 shows the process diagram. The process can be 

operated in six modes with three different product mass ratios (product stream from stripper). 

These modes are described in Table 1, and the setpoints of modes 1 and 3 in Table 2.  

 

Fig. 9. Diagram of the Tennessee Eastman process (S. Yin, H. Luo et al. 2014) 

 

Table 1. The process operation modes 

Mode G/H mass ratio Production rate 
1 50/50 7038 kg/h G and 7038 kg/h H (base case) 
2 10/90 1408 kg/h G and 12669 kg/h H 
3 90/10 10000 kg/h G and 1111 kg/h H 
4 50/50 maximum production rate 
5 10/90 maximum production rate 
6 90/10 maximum production rate 
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Table 2. Setpoints of the operating modes 1 and 3 

Setpoint Mode 1 Mode 3 
Production 22.89 18.04 
Stripper level 50 50 
Separator level 50 50 
Reactor level 65 65 
Reactor pressure 2800 2800 
Mole % G in product 53.8 90.09 
yA 63.1373 62.11 
yAC 51.0 47.43 
Reactor temperature 122.9 121.9 
Recycle valve 0 77.62 
Steam valve 0 1 
 

 

The reactant feeds are gaseous, and the liquid products leave the reactor as vapors. The 

reactions are catalyzed by a catalyst dissolved in the reactor’s liquid phase. Due to this, the 

catalyst doesn’t leave the reactor. The reactions are exothermic so the reactor has a cooling 

bundle to remove the heat. The reactor output is cooled to condense the products and moved 

to a vapor-liquid separator. Any remaining reactants and non-condensed components are 

recycled through a compressor back to the feed of the reactor. Condensed products go to a 

stripping column where any remaining reactants are removed. The products G and H are 

separated in a downstream unit process which is not included in this study. The byproduct and 

inert are purged primarily as a vapor from the separator.  

 

The feeds are products from other processes in the plant. Therefore, there is variation in the 

holdup available for them. Stream 3 (component E) has significant holdup available, streams 1 

and 2 (A and D) have some holdup available, and stream 4 (A and C) has little holdup available. 

Due to this, the variation in the feed streams 1, 2, and 4 should be minimized.  
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Variability in the product stream should be minimized. This is because the distillation system 

used to refine the products can’t handle fast changes. Changes of more than ±5% in flowrate of 

the product flow (8-16 h-1) or ±5 mol-% G in composition (6-10 h-1) are particularly harmful. 

 

The TE process has 12 manipulated variables and 41 measurements. These are listed in Tables 

3, 4, and 5. Some of the measured values have constraints, these are described in Table 6. 

Table 7 lists disturbances that might occur in the process. 

 

Table 3. Process manipulated variables 

Variable name Variable 
number 

Base case value 
(%) 

Low 
limit 

High 
limit 

Units 

D feed flow (stream 2)  XMV (1) 63.053 0 5811 kg/h 
E feed flow (stream 3) XMV (2) 53.980 0 8354 kg/h 
A feed flow (stream 1) XMV (2) 24.644 0 1.017 kscmh 
A and C feed flow (stream 4) XMV (4) 61.302 0 15.25 kscmh 
Compressor recycle valve XMV (5) 2.210 0 100 % 
Purge valve (stream 9) XMV (6) 40.064 0 100 % 
Separator pot liq. flow (stream 10) XMV (7) 39.100 0 65.71 m3/h 
Stripper liq. prod. flow (stream 11) XMV (8) 46.534 0 49.10 m3/h 
Stripper steam valve XMV (9) 47.466 0 100 % 
Reactor cw. flow XMV (10) 41.106 0 227.1 m3/h 
Condenser cw. flow XMV (11) 18.114 0 227.6 m3/h 
Agitator speed XMV (12) 50.000 150 250 rpm 
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Table 4. Continuous process measurements Variable name Variable number Base case value Units A feed (stream 1)   XMEAS(1) 0.25052 kscmh D feed (stream 2)  XMEAS(2) 3664.0 kg/h E feed (stream 3)   XMEAS(3) 4509.3 kg/h A and C feed (stream 4) XMEAS(4) 9.3477 kscmh Recycle flow (stream 6)  XMEAS(5) 26.902 kscmh Reactor feed rate (stream 6) XMEAS(6) 42.339 kscmh Reactor pressure   XMEAS(7) 2705.0 kPa gauge Reactor level XMEAS(8) 75.000 % Reactor temperature  XMEAS(9) 120.40 °C Purge rate (stream 9) XMEAS(10) 0.33712 kscmh Prod. separator temperature  XMEAS(11) 80.109 °C Prod. separator level XMEAS(12) 50.000 % Prod. separator pressure  XMEAS(13) 2633.7 kPa gauge Prod. separator underflow (stream 10) XMEAS(14) 25.160 m3/h Stripper level  XMEAS(15) 50.000 % Stripper pressure  XMEAS(16) 3102.2 kPa gauge Stripper underflow (stream 11)  XMEAS(17) 22.949 m3/h Stripper temperature XMEAS(18) 65.731 °C Stripper steam flow  XMEAS(19) 230.31 kg/h Compressor work  XMEAS(20) 341.43 kW Reactor cw. outlet temperature  XMEAS(21) 94.599 °C Separator cw. outlet temperature XMEAS(22) 77.297 °C 
 
Table 5. Sampled process measurements 
Reactor feed analysis (stream 6) 
Sampling Frequency [0.1h] Dead time [0.1h] Component Variable number Base case value Units A XMEAS(23) 32.188 mol% B  XMEAS(24)  8.8933 mol% C XMEAS(25) 26.383 mol% D  XMEAS(26)  6.8820  mol% E XMEAS(27) 18.776 mol% F  XMEAS(28)  1.6567  mol% 
 
Purge gas analysis (stream 9) 
Sampling Frequency [0.1h] Dead time [0.1h] Component Variable number Base case value Units A XMEAS(29) 32.958 mol% B  XMEAS(30)  13.823  mol% C XMEAS(31) 23.978 mol% D  XMEAS(32)  1.2656  mol% E XMEAS(33) 18.576 mol% F  XMEAS(34)  2.2633  mol% G XMEAS(35) 4.8436 mol% H  XMEAS(36)  2.2986  mol% 
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Product analysis (stream 11) 
Sampling Frequency [0.25h] Dead time [0.25h] Component  Variable number  Base case value  Units  D XMEAS(37) 0.01787 mol% E  XMEAS(38)  0.83570  mol% F XMEAS(39) 0.09858 mol% G  XMEAS(40)  53.724  mol% H XMEAS(41) 43 mol% 
 

Table 6. Process operating constraints  Normal operating limits Shutdown limits Process variable  Low limit  High limit  Low limit  High limit Reactor pressure none 2895 kPa none 3000 kPa  Reactor level  50% (11.8 m3)  100% (21.3 m3)  2.0 m3  24.0 m3 Reactor temperature none 150 °C none 175 °C Product separator level  30% (3.3 m3)  100% (9.0 m3)  1.0 m3  12.0 m3 Stripper base level 30% (3.5 m3) 100% (6.6 m3) 1.0 m3 8.0 m3 
 

Table 7. Process disturbances 

Variable number Process variable Type IDV (1) A/C feed ratio, B composition constant (stream 4) Step IDV (2) B composition, A/C ratio constant (stream 4) Step IDV (3) D feed temperature (stream 2) Step IDV (4) Reactor cooling water inlet temperature Step IDV (5) Condenser cooling water inlet temperature Step IDV (6) A feed loss (stream 1) Step IDV (7) C header pressure loss – reduced availability (stream 4) Step IDV (8) A, B, C feed composition (stream 4) Random variation IDV (9) D feed temperature (stream 2) Random variation IDV (10) C feed temperature (Stream 4) Random variation IDV (11) Reactor cooling water inlet temperature Random variation IDV (12) Condenser cooling water inlet temperature Random variation IDV (13) Reaction kinetics Slow drift IDV (14) Reactor cooling water valve Sticking IDV (15) Condenser cooling water valve Sticking IDV (16) Unknown Unknown IDV (17) Unknown Unknown IDV (18) Unknown Unknown IDV (19) Unknown Unknown IDV (20) Unknown Unknown 
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5.2 Existing control strategy 

 

Ricker (1996) designed a decentralized control strategy for the TE process. Downs and Vogel 

(1993) described six operating modes. In addition to these, Ricker considered the following 

points: 

- Product composition must stay within ±5 mol-% of its setpoint for amount of product G. 

- Production rate must stay within ±5 % of its setpoint for volumetric flow. Some modes 

require maximum production rate, and the system must be able to push the process to 

at least one constraint without violating other specifications or shutdown limits. 

- Liquid inventories have specified bounds. Optimal operation of the process minimizes 

the amount of liquid in the reactor. Separator and stripper inventories minimize 

variations in production rate, and have no effect on the economics of the process. 

- Reactor pressure has a high limit of 3 MPa, above which the process shuts down. 

However, optimal operation requires operation near the high limit, and the system 

must be able to control the pressure closely. 

- Some feed streams have limited availability, which causes feed variability. 

- Chemical inventories must be controlled to avoid the depletion or accumulation of any 

materials. 

- Analyzers might be temporarily out of service, but the system must still be able to 

operate. 

- Disturbance rejection. 

- The system should be able to maintain optimal operation. Either minimizing the costs 

or maximizing the production rate depending on the operating mode. 

(Ricker 1996) 

 

The process has twelve degrees of freedom. Based on the list of control goals, at least six must 

be used to control the following measured variables: 

1. production rate, 

2. mol-% of product G in product stream, 

3. reactor pressure, 

4. reactor liquid level, 
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5. separator liquid level, and 

6. stripper liquid level. 

Additionally, agitation affects heat transfer only in the reactor, and is therefore fixed at 100% 

to maximize cooling potential. As a result, there are five degrees of freedom that must be 

assigned appropriately. The recommended loops are described in Table 8. (Ricker 1996) 

 

Table 8. Loop characteristics for the Ricker (1996) control strategy; manipulated variables 

described in Table 3.  

Loop Controlled variable Manipulated variable 1 A feed rate (stream 1) XMV (3) 2 D feed rate (stream 2) XMV (1) 3 E feed arte (stream 3) XMV (2) 4 C feed rate (stream 4) XMV (4) 5 Purge rate (stream 9) XMV (6) 6 Separator liquid rate (stream 10) XMV (7) 7 Stripper liquid rate (stream 11) XMV (8) 8 Production rate 𝐹p 9 Stripper liquid level Ratio in loop 7 10 Separator liquid level Ratio in loop 6 11 Reactor liquid level Setpoint of loop 17 12 Reactor pressure Ratio in loop 5 13 Mol-% G in stream 11 𝐸adj [see thingy] 14 𝑦𝐴 [see eq] Ratio in loop 1, 𝑟1 15 𝑦𝐴𝐶  [see eq] Sum of 𝑟1 + 𝑟4 16 Reactor temperature Reactor cooling valve 17 Separator temperature Condenser cooling valve 18 Maximum reactor pressure Production index, 𝐹p 19 Reactor level override Recycle valve, XMV (5) 
 

 

5.3 Revised simulation model 
 

Ricker (2005) created an archive of MATLAB and SIMULINK compatible code for the simulation 

of the Tennessee Eastman process. Later, Bathelt, Ricker et al. (2015) noticed that simulation of 

the TE process gave inconsistent results depending on the solver used. This was an undesirable 

effect since it would require providing information about simulation settings with any 
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applications. Thus, they analyzed the existing code to find the cause and presented a revised 

model. 

 

Bathelt, Ricker et al. (2015) considered two major aspects during the revision. The structure 

and algorithms of the code had to be revised to adapt to the structure of the simulation loop. 

The model was also extended with additional outputs and new process disturbances. They 

accomplished three objectives with regard to the code. These were revision of random number 

generation and updating the disturbance process mechanism, revision of the execution of the 

function calculating current process values, and revision of the data structure of the model. 

(Bathelt, Ricker et al. 2015) 

 

The revised model has added measurements and new output groups which are introduced in 

Appendix 1. Figures 10–12 show the Simulink model. 

 

 

Fig. 10. Part of the Simulink model for Tennessee Eastman process (Mask) 
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Fig. 11. Part of the Simulink model for Tennessee Eastman process (control inputs and  process 

outputs) 

 

Fig. 12. Part of the Simulink model for Tennessee Eastman (PI controls) 
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5.4 Previous applications 
 

The Tennessee Eastman Process has been previously used to study various control methods. 

Nonlinear MPCs were studied by (Ricker, Lee 1995), (Zheng 1998), (Magni et al. 2001), and 

(Vallerio et al. 2014). (Sriniwas, ARkun 1997) designed a control strategy using input-output 

models, and (Yeh et al. 2003) used TE to study the use of neural networks in estimating process 

compositions. (Tian, Hoo 2005) used multiple model-based control, and (Karra et al. 2008) 

developed adaptive control for multivariable time-varying systems. (Assali, McAvoy 2010) and 

(Kuhl et al. 2011) studied the selection and estimation of parameters. The TE can also be 

controlled by distributed control, this was studied by (Shao, Cinar 2015) and (Li et al. 2015).  

 

Fault tolerant control is not implemented in this thesis, but previous research has been done by 

(Lennox 2004), (Yin et al. 2012), (Yin et al. 2013), and (Luppi et al. 2015). 

 

6 MPC implementation 
 

6.1 General outline 
 

This thesis focuses on the implementation and testing of an MPC that can be used as a 

reconfigurable controller to achieve fault tolerance. (Sriniwas, Arkun 1997) presented an MPC 

based on input-output models, which was used in a supervisory role to adjust the setpoints of 

the lower level PI controls. As the PI structure is used to stabilize the process, turning off the 

MPC will not destabilize the system, and it is not necessary for the MPC to manipulate all loops. 

(Sriniwas, Arkun 1997) Thus, it was decided that the MPC implemented here should supervise 

only 3–4 control loops, and that these loops should be chosen with the intention of maintaining 

performance even in the case of faults. The control loops are described in Table 8 (Chapter 5).  

 

For the MPC in this thesis, three loops were chosen to be supervised. The loops are reactor 

level (loop 11), reactor temperature (loop 16), and stripper level (loop 9). The reactor level and 

temperature loops were chosen because the reactor has the most significant effect on the 
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product. The temperature and pressure loops are naturally connected, the temperature loop 

was chosen over the pressure loop, because the behavior of the reactor pressure is 

considerably nonlinear, and the temperature loop and its faults haven’t been studied 

extensively.  

 

The Figure 13 shows the overall control scheme.  

 

6.2 MPC implementation 
 

The Simulink model used to simulate the TE process was introduced earlier in this thesis. 

Simulink also has a ready-made block for MPC controller, and Figures 14 and 15 show the 

structural changes made to the simulation model. The MPC was implemented so that its inputs 

are the constant setpoints (reference) and the process measurements, and its outputs are 

setpoints given to the PI-controllers on the lower level.  

 

The MPC was designed using MATLAB’s MPC Designer tool. Using the configuration shown in 

Figure 15, the MPC Designer was launched and the model linearized. The resulting linear model 

had 81 states. This was deemed excessive, and therefore, MATLAB’s Model Reducer tool was 

used reduce the model to 6 states. The number of states was chosen because less than 5 states 

made the system quite unstable and there was no marked improvement from more than 6 

states.  
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Fig. 13. The overall control scheme 
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Fig. 14. Simulink MPC: loops not controlled by MPC 

 

Fig. 15. Simulink MPC: loops controlled by MPC 



  
 

 
 

44 
 

MATLAB’s Model Predictive Control Toolbox includes an app, functions, and Simulink blocks for 

MPC design and simulation. It allows for specification of plant and disturbance model, 

constraints, horizons, and weights. The performance of the controller can be evaluated by 

running closed-loop simulations. (Mathworks 2017a) 

 

The MPC toolbox recognizes both numeric linear-time-invariant (LTI) models and identified 

models (System Identification Toolbox). LTI models that can be used are transfer function, state 

space, and zero-pole-gain. The controller uses a discrete-time state-space system to perform all 

calculations. Therefore, when a plant model is specified the software performs the following 

steps as needed. 

1. Conversion to state-space 

2. Discretization or resampling 

o A continuous time model is converted to discrete-time 

o A discrete time model with differing sample time is resampled 

3. Delay removal 

4. Conversion to dimensionless variables 

o Scale factors should be specified 

(Mathworks 2017b) 

 

The MPC solves a quadratic program (QP) as an optimization problem at each control interval. 

The QP problem includes a cost function, constraints, and a decision. The cost function is a 

scalar measure of controller performance that is minimized. Constraints are conditions the 

solution must satisfy due to physical bounds. The decision is the adjustments to manipulated 

variables that minimize the cost function. (Mathworks 2017c) 

 

The MPC QP solver converts the optimization problem to a general form QP problem.  

 

min
𝑥

(
1

2
𝑥𝑇𝐻𝑥 + 𝑓𝑇𝑥)         (10) 
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which is subject to the linear inequality constraints 𝐴𝑥 ≥ 𝑏 where 𝑥 is the solution vector, 𝐻 is 

the Hessian matrix, 𝐴 is a matrix of linear constraint coefficients, and 𝑏 and 𝑓 are vectors. 

These are calculated at each control interval. (Mathworks 2017d) 

 

MATLAB QP solver uses the KWIK algorithm (Schmid, Biegler 1994). The KWIK algorithm is 

robust, but certain points should be considered: 

- Linear constraints might be violated due to numerical rounding off. Violations of 

magnitude 10−6 are allowed.  

- When testing for optimal solution the toolbox uses a nonadjustable tolerance. 

- The search is an iterative process, with a preset maximum for number of iterations. 

With some configurations the default maximum might be so large the solver appears to 

stop responding. 

- Hard constraints can be infeasible, which will cause the algorithm to terminate 

immediately.  

(Mathworks 2017d) 

 

The simulation model can be run in two modes, mode 1 and mode 3 (see chapter 5). The MPC 

was tuned while running the process in mode 3, and tested in both modes. The tuning was 

done in stages.  

 

First, the effect of sample time, and prediction and control horizons was studied. The minimum 

prediction horizon 𝑁1 = 1 in all cases. Tables 9–13 show the mean values and variations of 

production cost, quality, reactor level and temperature, and stripper level with three different 

horizons and three different sample times. The sample time 0.2 was chosen, because it has the 

smallest variation in the process measurements. The horizons were chosen to be control 

horizon 𝑁𝑢 = 5 with prediction horizon 𝑁 = 8, because they showed the best response.  

 

Second, the effect of weights on the control inputs was studied. The weights were chosen to be 

0.01 for the levels and the 0.03 for the temperature. Other studied weights are not shown, 

because their results were either obviously worse or had no significant difference from the case 

with no weights.  
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Last, the performance tuning option in the MPC Designer tool was studied. However, this had 

either no effect or a detrimental one, so the values were left untouched. The nominal values 

and constraints were directly the values from the process. The final controller values are 

collected in Table 14. 

 

Table 9. Cost mean and variation with different sample times and horizons  3 / 6 5 / 8 9 / 12 
st Mean Var Mean Var Mean Var 
0.2 44.09 38.70 43.98 42.55 44.06 40.07 
0.3 43.95 46.45 43.00 43.39 44.24 43.20 
0.4 44.03 44.72 44.12 47.00 43.97 46.97 
 
Table 10. Quality mean and variation with different sample times and horizons  3 / 6 5 / 8 9 / 12 
st Mean Var Mean Var Mean Var 
0.2 90.09 2.51 90.09 2.78 90.08 2.85 
0.3 90.08 3.24 90.09 2.69 90.09 2.94 
0.4 90.08 2.91 90.07 2.56 90.07 2.95 
 
Table 11. Reactor level mean and variation with different sample times and horizons  3 / 6 5 / 8 9 / 12 
st Mean Var Mean Var Mean Var 
0.2 65.02 4.57 65.01 3.90 65.02 4.33 
0.3 64.97 4.54 65.01 4.05 64.99 4.30 
0.4 64.99 4.29 65.08 5.05 65.03 4.32 
 
Table 12. Reactor temperature mean and variation with different sample times and horizons  3 / 6 5 / 8 9 / 12 
st Mean Var Mean Var Mean Var 
0.2 121.90 0.31 121.90 0.27 121.90 0.32 
0.3 121.90 0.38 121.90 0.30 121.90 0.29 
0.4 121.90 0.28 121.90 0.30 121.90 0.36 
 
Table 13. Stripper level mean and variation with different sample times and horizons  3 / 6 5 / 8 9 / 12 
st Mean Var Mean Var Mean Var 
0.2 50.00 8.30 50.07 9.04 50.09 8.74 
0.3 49.94 9.64 50.04 10.04 50.02 9.18 
0.4 49.91 9.46 49.94 9.21 50.02 9.90 
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Table 14. Tuned values for the MPC Variable Nominal value Constraints Weights Low High Stripper level 49 % 30 % 100 % 0.01 Reactor level 65 % 50 % 100 % 0.01 Reactor temperature 122°C 0°C 175°C 0.03 Sample time 0.2 h    Prediction horizon 8    Control horizon 5    
 
 
  

7 Dynamic behavior of the process under MPC 
 

The dynamic behavior of the process under MPC was studied in two different operating modes, 

six (twelve) setpoint changes, and four process disturbances. The modes were mode 1 and 

mode 3. The disturbance cases were  

1. No disturbances, 

2. step change in A/C feed ratio, B composition constant (IDV 1), 

3. step change in B composition, A/C ratio constant (IDV 2), 

4. random variation in A, B, C feed composition (IDV 8) 

5. slow drift in reacton kinetics (IDV 13). 

The setpoint changes were step and ramp (30 hours) changes in 

1. reactor level (65% → 68%), 

2. reactor temperature (121.9℃ → 124.9℃), 

3. reactor pressure (2800𝑘𝑃𝑎 → 2830𝑘𝑃𝑎), 

4. stripper level (50% → 53%), 

5. separator level (50% → 53%), 

6. G mol-% in product (90.09% → 93.09%). 

The MPC was also tested with all disturbances introduced in Table 7 to ensure that only total 

loss of feed A would cause the system to fail.  

 

This chapter presents and analyses the most important simulation results, the plotted values of 

the three controlled variables in the studied cases. Quality and cost graphs, and the effect of 
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the process disturbances on other measurements can be found in Appendices 2 and 3. All cases 

were simulated for 72 hours, but the figures only show 30-60 hours depending on relevance.  

 

7.1 Behavior of the process with process disturbances 
 

Figures 16–20 and 21–25 show the disturbance plots (with MPC) for mode 3 and mode 1, 

respectively. The black vertical line in the figures indicates the start of the disturbance (10 

hours in all shown cases).  

 

Figure 16 shows the behavior of the process in mode 3 under the MPC with no disturbances. 

The process is steady and all variations from setpoint are within acceptable bounds.  

 

 

Fig. 16. Process behavior in mode 3 with no disturbances 

 

Figure 17 shows the behavior of the process when a step-shaped disturbance in the A/C feed 

ratio (IDV 1) occurs at 10 hours of simulation. All three controlled variables show clear 

disturbances between 15-25 hours and 30-35 hours. Variation settles back to normal levels 

after 40 hours. The variation in temperature is less than 1 degree throughout and essentially 

negligible. The variation in stripper level is not significantly larger than in the basic case. 

However, the variation in the reactor level could benefit from further study into the controller.   
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Fig. 17. Process behavior in mode 3 with step disturbance in A/C feed ratio. The vertical line 

shows start of disturbance 

 

Figure 18 shows the behavior of the process in mode 3 when a step-shaped disturbance in the 

composition of B feed (IDV 2) occurs at 10 hours of simulation. In all three variables the 

disturbance doesn’t become apparent until 20 hours of simulation. However, when it does, the 

controller cannot settle the process back down and the slow oscillation in the variables persists. 

In the case of the temperature, the variation is still under 1 degree.  

 

Figure 19 shows the behavior of the process in mode 3 when a random variation disturbance in 

the A, B, and C compositions (IDV 8) occurs at 10 hours of simulation. Because the disturbance 

is random variation, the variations in the variables occur at random intervals, but the controller 

is able to settle the process between the disturbances. 
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Fig. 18. Process behavior in mode 3 with step disturbance in B feed composition. The vertical 
line shows start of disturbance 
 
 

 
Fig. 19. Process behavior in mode 3 with random variation disturbance in A, B, C feed 
composition. The vertical line shows start of disturbance 
 
Figure 20 shows the behavior of the process in mode 3 when a drift-shaped disturbance in 

reaction kinetics (IDV 13) starts at 10 hours of simulation. Level controls behave similarly to the 

IDV 8 case with the process settling between the disturbances. The temperature doesn’t 

appear to settle, but the variation remains under 1 degree.  
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Fig. 20. Process behavior in mode 3 with drift disturbance in reaction kinetics. The vertical line 
shows start of disturbance 
 
 
The controller performs sufficiently well in mode 3 with process disturbances. The case with 

change in B composition could benefit from further tuning, but the other cases either perform 

well or would require an adaptive model. The performance in mode 1 is studied next.  

 

Figure 21 shows the behavior of the process in mode 1 under the MPC with no disturbances. As 

with mode 3, the process is steady and all variations from setpoint are within acceptable 

bounds. 

 

Figure 22 shows the behavior of the process in mode 1 when a step-shaped disturbance in the 

A/C feed ratio (IDV 1) occurs at 10 hours of simulation. Reactor level shows a slightly larger 

than normal variation between 10-25 hours. Reactor temperature and stripper level show 

larger variations between 10-35 hours. The disturbance in temperature appears large, but 

remains around 1 degree. However, the stripper level changes 10 percentage points in less 

than 10 hours which causes the production flow to remain only barely within limits. This case 

could benefit from further study. 
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Fig. 21. Process behavior in mode 1 with no disturbances 
 
 

 
Fig. 22. Process behavior in mode 1 with step disturbance in A/C feed ratio. The vertical line 
shows start of disturbance 
 
 
Figure 23 shows the behavior of the process in mode 1 when a step-shaped disturbance in the 

composition of B feed (IDV 2) occurs at 10 hours of simulation. Unlike the situation in mode 3, 

in mode 1 the variation is barely more significant than in the basic case.  
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Fig. 23. Process behavior in mode 1 with step disturbance in B feed composition. The vertical 
line shows start of disturbance 
 
 
Figure 24 shows the behavior of the process in mode 1 when a random variation disturbance in 

the A, B, and C compositions (IDV 8) occurs at 10 hours of simulation. This disturbance causes 

large variation in all three variables. The case was simulated additionally for 200 hours to 

ascertain the process remains stable. However, this situation should be studied further.  

 
Figure 25 shows the behavior of the process in mode 1 when a drift-shaped disturbance in 

reaction kinetics (IDV 13) starts at 10 hours of simulation. Similarly to the case with IDV 8 the 

variations caused by this disturbance are large, and the process was simulated for additional 

time. The variations are less severe than in the previous case, but the situation could benefit 

from further study.  
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Fig. 24. Process behavior in mode 1 with random variation disturbance in A, B, C feed 
composition. The vertical line shows start of disturbance 
 

 
Fig. 25. Process behavior in mode 1 with drift disturbance in reaction kinetics. The vertical line 
shows start of disturbance 
 
Several disturbance cases in mode 1 require or could benefit from further study. One cause of 

this is probably the fact that the model was identified in mode 3 and the process is in parts 

highly nonlinear.  
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7.2 Behavior of the process with setpoint changes 
 

Figures 26–31 show the behavior of the process when step-changes are made to setpoints. 

Figures 32–37 show the behavior of the process with ramp-changes to setpoints. The results 

shown here are for ramps of 30 hours. Other lengths were studied but had no significant 

enough difference to be described here. All figures show the three variables (reactor level, 

reactor temperature, stripper level) in both modes 1 and 3, and a mode 3 comparison of PI and 

MPC.  

 

Figure 26 shows the process behavior when a step change of +3 is introduced to the reactor 

level setpoint. Mode 1 reactor level follows the setpoint change closely. Mode 3 reactor level 

rises initially further than the setpoint, but settles within two hours. Both MPCs react faster 

than the PI. Reactor temperature has a slight spike at the time of the step for both MPCs, but 

the variation stays under 0.5 degrees. The PI control causes the stripper level to go almost out 

of constraints, both MPCs perform comparatively almost perfectly.  

 

Figure 27 shows the process behavior when a step change of +3 is introduced to the reactor 

temperature setpoint. Mode 3 reactor level has significant variation (in the setpoint) for 20 

hours after the step change; the mean remains close to the setpoint. Mode 1 reactor level 

remains steady. PI control has a large drop almost to the lower limit at the time of step, but 

otherwise settles faster than the mode 3 MPC. Reactor temperature has a brief overshoot in all 

cases, and slight oscillation (less than 1 degree change per hour) in mode 3, but follows the 

setpoint very well. Stripper level has some variation in both MPCs, mode 3 causes slow 

oscillation in setpoint. The PI control causes the stripper level to go close to both limits in the 

span of two hours. 
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Fig. 26. Step change in reactor level setpoint 
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Fig. 27. Step change in reactor temperature setpoint 

 

Figure 28 shows the process behavior when a step change of +30 is introduced to the reactor 

pressure setpoint. Reactor level in mode 3 has slow oscillation in setpoint (5 percentage 
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points). Variation in reactor temperature with both MPC appears worrying, but a study of the 

scale shows it is actually insignificant (less than 0.5 degrees). The stripper level shows no 

significant change.   

 

Fig. 28. Step change in reactor pressure setpoint; line indicates time of step 
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Figure 29 shows the process behavior when a step change of +3 is introduced to the stripper 

level setpoint. The stripper level transitions to the new setpoint smoothly. The MPCs react 

faster than the PI control. The reactor is upstream of the stripper, so a change there has no 

effect.  

 

Fig. 29. Step change in stripper level setpoint 
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Figure 30 shows the process behavior when a step change of +3 is introduced to the separator 

level setpoint. A change in the separator level causes a disturbance in the stripper with PI 

control, other cases show no significant difference. 

 

Fig. 30. Step change in separator level setpoint 
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Figure 31 shows the process behavior when a step change of +3 is introduced to the G mol-% 

setpoint. Mode 3 MPC causes fairly significant oscillation in the setpoint for all three variables 

starting 10 hours after step change. Mode 1 MPC shows no disturbance. Stripper level with PI 

control has some larger disturbances, but overall remains steady. 

 

Fig. 31. Step change in G mol-% in product setpoint 
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Figure 32 shows the process behavior when a ramp change of +3 is introduced to the reactor 

level setpoint. Reactor level smoothly follows the setpoint change in all cases. Stripper level has 

a slight downward disturbance at the beginning of the ramp, otherwise no significant effects. 

 

Fig. 32. Ramp change in reactor level setpoint 
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Figure 33 shows the process behavior when a ramp change of +3 is introduced to the reactor 

temperature setpoint. Mode 3 MPC causes the reactor level to oscillate after 20 hours of the 

ramp. Mode 1 MPC and PI control show no significant difference. Reactor temperatures follow 

the setpoint change smoothly, mode 3 MPC causes slight oscillation in setpoint after 15 hours 

of the ramp change. Stripper level shows no disturbances in any case. 

 

Fig. 33. Ramp change in reactor temperature setpoint 
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Figure 34 shows the process behavior when a ramp change of +30 is introduced to the reactor 

pressure setpoint. A slow change in the reactor pressure setpoint has no observable effect on 

the three variables in any of the cases.  

 

Fig. 34. Ramp change in reactor pressure setpoint 
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Figure 35 shows the process behavior when a ramp change of +3 is introduced to the stripper 

level setpoint. The stripper follows the ramp change well. As with the step change, the reactor 

is upstream of the stripper, and not affected by this change.  

 

Fig. 35. Ramp change in stripper level setpoint 
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Figure 36 shows the process behavior when a ramp change of +3 is introduced to the separator 

level setpoint. A slow change in the separator level setpoint has no observable effect on the 

three variables in any of the cases. 

 

Fig. 36. Ramp change in separator level setpoint 
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Figure 37 shows the process behavior when a ramp change of +3 is introduced to the G mol-% 

setpoint. In mode 3 both the reactor level and temperature show significant oscillation in 

setpoint after 15 hours of the ramp change. The stripper level also shows some oscillation after 

20 hours of the ramp change. All three variables are reasonably steady in mode 1 and with PI 

control. 

 

Fig. 37. Ramp change in G mol-% in product setpoint 
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The ramp changes to setpoints behave better than the step changes in the majority of the 

situations. The only exceptions are with mode 3 MPC, where setpoint changes to both reactor 

temperature and G mol-% cause some oscillation. The cause of this oscillation should be 

studied further. 

 

8 Effect of faults under MPC 
 

The behavior of the MPC was also studied in the case of mechanical faults. The purpose of fault 

tolerance is mainly to negate the effect of these on the process. The faults studied were  

1. variation in reactor cooling water inlet temperature (IDV 11), 

2. valve stiction in the temperature loop (IDV 14), 

3. both (IDV 11 + IDV 14) at the same time, and 

4. drift in the level sensor in the stripper. 

 

Figures 38–41 are the plots from mode 3. Figure 38 shows the process behavior when the 

disturbance 11 (random variation in reactor cooling water inlet temperature) starts at 10 hours 

of simulation. Figure 39 shows the process behavior when the disturbance 14 (stiction in the 

cooling water valve) starts at 10 hours of simulation. Figure 40 shows the process behavior 

when the disturbances 11 and 14 both start at 10 hours of simulation. Figure 41 shows the 

process behavior when a sensor drift fault starts at 10 hours of simulation.  

 

Figures 42–45 are the plots from mode 1. Figure 42 shows the process behavior when the 

disturbance 11 starts at 10 hours of simulation. Figure 43 shows the process behavior when the 

disturbance 14 starts at 10 hours of simulation. Figure 44 shows the process behavior when the 

disturbances 11 and 14 both start at 10 hours of simulation. Figure 45 shows the process 

behavior when a sensor drift fault starts at 10 hours of simulation.  

 

A comparison of the basic PI control and MPC can be found in Appendix 4. 
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Figure 38 shows the behavior of the process in mode 3 when a random variation disturbance in 

the cooling water inlet temperature (IDV 11) starts at 10 hours of simulation. The disturbance is 

in the cooling system of the reactor and has no significant effect on the levels. On the reactor 

temperature the effect of the fault is immediate. The variation remains within a degree on both 

sides of the setpoint, and the fastest change is a degree in 10 minutes. 

 

Fig. 38. Process behavior in mode 3 with random variation disturbance in reactor cooling water 

inlet temperature (IDV 11). The vertical line shows start of disturbance 

 

Figure 39 shows the behavior of the process in mode 3 when a stiction fault in the cooling valve 

(IDV 14) starts at 10 hours of simulation. The disturbance is in the cooling system of the reactor 

and has no significant effect on the levels. For the reactor temperature the simulation shows 

high frequency oscillation (a change of 0.8 degrees up and down within 5 minutes). The MPC 

causes some oscillation also in the setpoint, but the mean of the temperature remains steady.  

 

Figure 40 shows the behavior of the process in mode 3 when both variation in cooling water 

temperature and stiction in the valve (IDV 11 and IDV 14) start at 10 hours of simulation. The 

disturbances are in the cooling system of the reactor and have no significant effect on the 

levels. A combination of the two previous faults behaves as would be expected. The variation 
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remains within a degree on both sides of the setpoint, and there are periods of high frequency 

oscillation.  

 

Fig. 39. Process behavior in mode 3 with a stiction fault in reactor cooling valve (IDV 14). The 

vertical line shows the start of disturbance 

 

Fig. 40. Process behavior in mode 3 with variation in cooling water temperature and stiction in 
cooling valve (IDV 11 + IDV 14). The vertical line shows the start of disturbance 
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Figure 41 shows the behavior of the process in mode 3 when a drift shaped fault in the stripper 

level sensor starts at 10 hours of simulation. The reactor is upstream of the stripper in the 

process, so faults in the stripper have no effect on reactor level or temperature. A positive drift 

in the sensor causes the controller to think the stripper level is higher than it actually is, which 

results in the real level being proportionally lower than the setpoint.  

 

Fig.  41. Process behavior in mode 3 with a drift fault in stripper level sensor. The vertical line 

shows the start of disturbance 

 

Figure 42 shows the behavior of the process in mode 1 when a random variation disturbance in 

the cooling water inlet temperature (IDV 11) starts at 10 hours of simulation. Mode 1 behaves 

similarly to mode 3. The disturbance is in the cooling system of the reactor and has no 

significant effect on the levels. On the reactor temperature the effect of the fault is immediate. 

The variation remains within a degree on both sides of the setpoint, and the fastest change is a 

degree in 10 minutes. 

 

Figure 43 shows the behavior of the process in mode 1 when a stiction fault in the cooling valve 

(IDV 14) starts at 10 hours of simulation. Mode 1 behaves similarly to mode 3. The disturbance 

is in the cooling system of the reactor and has no significant effect on the levels. For the reactor 
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temperature the simulation shows high frequency oscillation (a change of 0.8 degrees up and 

down within 5 minutes). The mean of the temperature follows the setpoint. 

 

Fig. 42. Process behavior in mode 1 with random variation disturbance in reactor cooling water 

inlet temperature (IDV 11). The vertical line shows start of disturbance 

 

Fig. 43. Process behavior in mode 1 with a stiction fault in reactor cooling valve (IDV 14). The 

vertical line shows the start of disturbance 
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Figure 44 shows the behavior of the process in mode 1 when both variation in cooling water 

temperature and stiction in the valve (IDV 11 and IDV 14) start at 10 hours of simulation. Mode 

1 behaves similarly to mode 3. A combination of the two previous faults behaves as would be 

expected. The variation remains within a degree on both sides of the setpoint, and there are 

periods of high frequency oscillation. 

 

Figure 45 shows the behavior of the process in mode 1 when a drift shaped fault in the stripper 

level sensor starts at 10 hours of simulation. Mode 1 behaves similarly to mode 3. The reactor 

is upstream of the stripper in the process, so faults in the stripper have no effect on reactor 

level or temperature. A positive drift in the sensor causes the controller to act like the stripper 

level is higher than it actually is, which results in the real level being proportionally lower than 

the setpoint. 

 

 

Fig. 44. Process behavior in mode 1 with variation in cooling water temperature and stiction in 

cooling valve (IDV 11 + IDV 14). The vertical line shows the start of disturbance 
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Fig. 45. Process behavior in mode 1 with a drift fault in stripper level sensor. The vertical line 

shows the start of disturbance 

 

 

9 Summary and discussion of the results 
 

In the previous chapters the design and testing of a MPC strategy was presented. The 

implemented control methodology is a supervisory one that provides optimized setpoints to 

three control loops on the stabilizing lower PI control level. Currently, the MPC itself has 

unchanging setpoints, but in a real process it would have either a higher level optimizing 

controller or an operator giving it setpoints.  

 

The aim of the control is to maintain the product quality and production rate even in the case 

of disturbances and faults. The product composition must stay within 5 mol-% of its setpoint 

and the production rate must stay within 5 % of its setpoint.  
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The MPC supervises three loops, and a linear state space model was identified to capture the 

dynamics of these loops. The MPC parameters; horizons and weights, have been tuned 

following the general principles about the process dynamics.  

 

From the studied set point changes within the three loops it was found that the MPC performs 

well, compared to the base PI control, as it able to provide faster response by manipulating the 

set points for the down level.  

 

The studied mechanical faults affect the expected measurements. IDV 11 and 14 are faults in 

the cooling system and therefore affect mainly the temperature by producing high frequency 

oscillations. A drift in a stripper level sensor naturally affects mainly the level measurement as 

it deviates from its natural value.  The obtained results with the proposed MPC strategy show 

that the controller is able to some extent reduce the produced oscillations in the cases of IDV 

11 and IDV 14 by providing optimized set points, thus reducing the end product variability. 

However, it cannot fully suppress the effects of the faults which will require the 

implementation of a FDI mechanism. The same effects are observed in the case of a level 

sensor drift fault, where the MPC is unable to handle the fault, but the system behavior is 

slightly better compared to the case of base PI control. 

 

The MPC was designed in mode 3 and only the nominal values were changed when testing in 

mode 1. In real processes, the move from one operating mode to another requires retuning of 

the controller, as the operation point of the process is changed. In the conducted study, no 

retuning was made, in order to assess the potential of the designed control strategy to react on 

regime changes. The obtained results show that the proposed MPC performed reasonably well 

regardless of the tuning, which proved its flexibility in relation to regime changes. 
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10 Conclusions 

 

In this thesis the theoretical background of receding horizon (model predictive) control and 

fault tolerant control were presented. The aim was to design and study the potential of a 

multivariable MPC, that can later be extended into supervisory fault tolerant control.  

 

In the experimental part a linear MPC was implemented using MATLAB’s Model Predictive 

Control Toolbox. The MPC was tested with various process disturbances and faults in two 

operating modes.  

 

From the conducted experiments, it was found that the system remained stable in all cases, 

even though disturbances and faults caused oscillation in the process variables, including the 

cases when the operational regime was changed. Additionally, the proposed MPC strategy was 

able to some extent reduce the effects of occurring faults and disturbances, while keeping the 

end product variability within the admissible margins of 5%. In order to improve the 

performance of the system a suitable FDI mechanism should be implemented, in order to allow 

the system to respond to the effects caused by the faults. 

 

From the preformed research, it can be concluded that the designed MPC strategy is 

operational and able to respond to major system dynamical changes, as it drives the system 

back to desired operational regions by maintaining lower product variability. Supplying an 

additional FDI feature will increase the efficiency of the control system, as it will be able to 

suppress the effects caused by the faults as well. 
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Appendix 1. Revised model tables 
 

Added measurements: Table A1 

Process disturbances: Table A2 

Monitoring outputs (internal values of reactor and process): Table A3 

 

Table A1. Outputs of the revised model Number Description Base value Unit 1 – 41 see tables C and D - - 42 Temperature A feed (stream 1) 45 °C 43 Temperature D feed (stream 2) 45 °C 44 Temperature E feed (stream 3) 45 °C 45 Temperature A and C feed (stream 4) 45 °C 46 Reactor cooling water inlet temperature 35 °C 47 Reactor cooling water flow 93.37 m3/h 48 Condenser cooling water inlet temperature 40 °C 49 Condenser cooling water flow 49.37 m3/h 50 – 55 Composition of A feed (stream 1); components A through F base values of  outputs 52 – 75  are given in  table 1 of  [Downs and Vogel] 

mol% 
56 – 61 Composition of D feed (stream 2); components A through F mol% 
62 – 67 Composition of E feed (stream 3); components A through F mol% 
68 – 73 Composition of A and C feed (stream 4); components A through F mol% 
 
 
Table A2. Monitoring output of random-variation-disturbances Number  IDV  Description  Unit 1  8  A composition in stream 4  mol% 2  8  B composition in stream 4  mol% 3  8  C composition in stream 4  mol% 4  9  D feed temperature (stream 2)  °C 5  10  A and C feed temperature (stream 4)  °C 6  11  Reactor cooling water inlet temperature °C 7  12  Condenser cooling water inlet temperature  °C 8  13  Deviation in reaction kinetics  1 9  13  Deviation in reaction kinetics  1 10  16  Deviation in the heat transfer of the heat exchanger (originally specified as unknown) 1 
11  17  Deviation in heat transfer in reactor (originally specified as unknown) 1 12  18  Deviation in heat transfer in condenser (originally specified as unknown) 1 
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13  20  unknown  1 14  21  A feed temperature (stream 1)  °C 15  22  E feed temperature (stream 3)  °C 16  23  A feed flow (stream 1)  kmol/h 17  24  D feed flow (stream 2)  kmol/h 18  25  E feed flow (stream 3)  kmol/h 19  26  A and C feed flow (stream 4)  kmol/h 20  27  Reactor cooling water flow  m3/h 21  28  Condenser cooling water flow  m3/h 
  

Table A3. Monitoring output of reaction and process; values 1 - 15 are related to the reactor Number Description  Unit 1  Substance conversion rate component A kmol/h 2  Substance conversion rate component C kmol/h 3  Substance conversion rate component D kmol/h 4  Substance conversion rate component E kmol/h 5  Substance conversion (production) rate component F kmol/h 6  Substance conversion (production) rate component G kmol/h 7  Substance conversion (production) rate component H kmol/h 8  Partial pressure of component A  kPa abs 9  Partial pressure of component B  kPa abs 10  Partial pressure of component C  kPa abs 11  Partial pressure of component D  kPa abs 12  Partial pressure of component E  kPa abs 13  Partial pressure of component F  kPa abs 14  Partial pressure of component G  kPa abs 15  Partial pressure of component H  kPa abs 16 - 21  Delay-free and disturbance-free measurements of reactor feed analysis mol% 22 - 29  Delay-free and disturbance-free measurements of purge gas analysis mol% 30 - 34  Delay-free and disturbance-free measurements of product analysis mol% 35 - 40  Delay-free and disturbance-free measurements of feed A analysis mol% 41 - 46  Delay-free and disturbance-free measurements of feed D analysis mol% 47 - 52  Delay-free and disturbance-free measurements of feed E analysis mol% 53 - 58  Delay-free and disturbance-free measurements of feed C analysis mol% 59  Production costs related to product amount based on measurements ct/(kmol product) 60  Production costs related to product amount based on disturbance free process values  ct/(kmol product) 61  Production costs related to time based on measurements $/h 62  Production costs related to time based on dist. free process values $/h 
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Appendix 2. Quality and Cost graphs 
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Appendix 3 Dynamic behavior 
 

1: A feed , 2: D feed, 3: E feed, 4: A and C feed, 5: recycle flow, 6: reactor feed rate, 7: reactor 
pressure, 11: separator temperature, 12: separator level, 13: separator pressure, 16: stripper 
pressure, 18: stripper temperature, 23: feed analysis A, 24: feed analysis B, 25: feed analysis C, 
26: feed analysis D, 27: feed analysis E, 37: product analysis D, 38: product analysis E, 39: 
product analysis F 
 
Mode 3

 
No disturbances 
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Appendix 4. Comparison of PI and MPC 
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