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Abstract—In this paper the control of a bioprocess using 
an adaptive type-2 fuzzy logic controller is proposed. 
The process is concerned with the aerobic alcoholic 
fermentation for the growth of Saccharomyces Cerevisiae 

a n d  i s  characterized by nonlinearity and parameter 
uncertainty. Three type-2 fuzzy controllers heve been 
developed and tested by simulation:  a  simple type-2 
fuzzy logic controller with 49 rules; a type-2 fuzzy-
neuro-predictive controller (T2FNPC); a t y p e -2 self-
tuning fuzzy controller ( T2STFC). The T2FNPC 
combines the capability of the type-2 fuzzy logic to 
handle uncertainties, with the ability of predictive 
control to predict future plant performance making use 
of a neural network model of the non linear system. In 
the T2STFC the output scaling factor is adjusted on-line 
by fuzzy rules according to the current trend of the 
controlled process. T h e  advantage of the proposed 
adaptive algorithms is to greatly decrease the number of 
rules needed for the control reducing the computational 
load and at same time assuring a robust control. 

Keywords: adaptive control,   type-2  fuzzy  control,  non-linear 
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I.  INTRODUCTION  

It is well known that many traditional control design 
techniques require restrictive assumptions for the plant 
model and for the control to be designed. This is particularly 
true for systems characterized by multiple steady states. For 
all non linear systems dependent from one or more 
parameters the operative conditions remain stable only if the 
values of these parameters remain in a limited range. If the 
system parameters  go out of this range, the system may also 
reach new equilibrium points that m a y  b e  stable but 
unacceptable for the plant operation. Many chemical process 
exhibit similar behaviour that m a k e s their control 
problematic. The use of nonlinear controllers like fuzzy 
logic controllers is justified by their robustness and by their 
ability to handle changes in the system parameters as well. 
In addition  to traditional fuzzy logic systems based on type-
1 fuzzy sets more recently other fuzzy logic systems based 
on type-2 fuzzy sets have been proposed [1]. Despite their 
popularity type-1 fuzzy logic control show some weakness 
in particular when the systems to control are characterized 
by uncertainties.Type-2 fuzzy sets in fact can handle the 

uncertainties in a better way than type-1 fuzzy sets because 
they are characterized by a larger number  of parameters and 
more design freedom degrees. The few applications in the 
field of process control regard the control of: marine diesel 
engines [2], liquid level process  [3], autonomous mobile 
robots [4], [5], vehicle active suspensions [6], biochemical 
reactor [7], CSTR [8].  

The system here considered is a biochemical process for 
the aerobic growth of Saccharomyces Cerevisiae on glucose 
and ethanol. A dynamic analysis of the process model 
showed that multiple steady states occur depending on the 
feed concentration and kinetic parameters as well. The 
control objective for the biochemical reactor under study is 
to keep the concentration value of the substrate 
concentration at desired value taking into account all the 
disturbances and all the uncertainties, corresponding to 
small variations of the model kinetic parameter values. 

In some cases, in systems where parameters are time 
varying  and affected by  uncertainty  and strong 
nonlinearities are present,  the use of type-2 fuzzy logic 
controllers might not allow to reach good control results. 
The introduction of an adaptive algorithm, that changes 
some controller parameters depending on the system 
condition,  can improve the control action enormously 
reducing the number of rules necessary for the control and 
considerably decreasing the  computa t iona l  load  as  
consequence. 

 

II. TYPE-2 FUZZY LOGIC 

A. Interval type-2 fuzzy set  

The type-2 fuzzy set, denoted with the symbol A
~ , is 

characterized by a type-2 membership function 
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where Xx Î  and ]1,0[ÍÎ xJu . 
Type-2 fuzzy logic operations are very prohibitive, therefore  
at the moment only a particular sub case of type-2 fuzzy 
logic is treated in research field: the interval type-2 fuzzy 
logic. 

An interval fuzzy set IA
~

 (Fig. 1) is defined as:   
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The secondary grade of  interval set can assume only two 
values: 0 or 1. 

B. Footprint of Uncertainty  

Type-2 fuzzy logic shows all its potential only in 
environments characterized by uncertainty. The Footprint of 
Uncertainty [9] consists of a bounded region that can be 
considered  as a measure of dispersion of the system input 
The FOU is bounded by a lower (LMF) and a upper 
membership function (UMF) (Fig. 2). 

     

Figure 1.  Type-2 fuzzy set 

 

All the uncertainties present in a system can be taking in 
to account by opportune use of FOU (Fig. 2) and their 
negative effects can be minimize as well consequently. 

 

 

Figure 2.  FOU (shaded), LMF (dashed), UMF (solid) for interval type-2 
fuzzy logic. 

The main difference between type-2 and type-1  FLSs is 
the  output-processor. The output-processor in fact for a 
type-1 FLS  is  a simple defuzzifier, while, for a type-2 FLS 
it is composed by two components: the first component is a  
type-reducer which maps a type-2 fuzzy set into a type-1 
fuzzy set. The second component is just a normal defuzzifier 
that transforms a fuzzy output in a crisp output. 

 

C. Type-reduction 

One of the most used type-reduction methods is the 
center of sets type reducer [10], which can be expressed  as: 
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In (2) Ycos(x) is an interval set while ly  and ry are its end-

points, [ ]i
i ff ,  and [ ]i

r
i
l yy ,  are respectively the interval firing 

level of the ith rule and the centroid of the type-2  interval 
consequent set. With the Karnik-Mendel iterative method 
[10] it is possible to compute Ycos(x) using the equation (2). 
The defuzzification of Ycos(x) is a simple operation. Ycos(x) is 
in fact an interval type-2 fuzzy set and the defuzzified 

output is a simple average of ly and ry :     
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III. TYPE-2 FUZZY CONTROLLERS STRUCTURE  

A. Type-2 FuzzyLogic Controller  

Three different type-2 fuzzy controllers were designed, 
two of which adaptive. All the controllers use the Sugeno 
inference (zero order for the simple type-2 fuzzy controller 
and first order for the adaptive type-2 fuzzy controllers); the 
input variables are the error and the integral of the error; and 
the output variable i s  the control variable, i.e. the dilution 
rate.   

The simple type-2 FLC is characterized by a set of 49 
rules. For each input variable, seven Gaussian membership 
functions were chosen. Although the type-2 fuzzy controller 
with a large number of rules shows to be a very robust 
controller, the choice of adaptive control represents a better 
alternative in terms of efficiency above all when the 
parameters of the controlled process are time varying as in 
this case  [11]. 

B. Type-2 Fuzzy  Neuro Predictive Controller 

 The f irst  adaptive controller has a hybrid type-2 fuzzy 
predictive-neural-control structure (T2FNPC) that is shown 
in Fig. 3. The predictive neural algorithm can be divided in 
two parts: a predictive part and a neural network part. The 
first part uses the receding horizon technique, the prediction 
is carried out by a numerical optimization program that 
determines the control signal that minimizes a performance 
criterion over a specified horizon. The neural network) 
provides, after a training stage, the model of the system 
from which the prediction of the plant response is obtained. 
The measured output of the control system also represents 
the input signal of the predictive-neural controller. The 
control signal of the predictive-neural network controller is 
combined with the control signal of the type-2 feedback 
fuzzy controller and constitutes the input of the process. The 



rule set of the type-2 fuzzy controller is  formed by only two 
rules with Gaussian membership functions. 

 

 
 

Figure 3.  Type-2 neuro-predictive fuzzy controller structure. 

C. Type-2 Self Tuning Controller 

The second adaptive fuzzy controller is a type-2 self-
tuning fuzzy controller (T2STFC), designed taking into 
account the fuzzy controller structure proposed by Mudi and 
Pal [12]. The adaptive controller, shown in Fig. 4, is based 
on a control hierarchical structure constituted on two fuzzy 
controllers. The fuzzy rules of the secondary fuzzy 
controller adjust online the output scaling factor (SF) of the 
main fuzzy controller, according to the current trend of the 
controlled process. The main controller is a normal type-2 
fuzzy controller with 2 rules (Gaussian membership 
functions) while the adaptive secondary controller is a type-
1 fuzzy controller with 2 rules as well. The control variable 
of the type-2 fuzzy controller is updated by the signal that 
comes from the type-1 fuzzy controller and sent to the final 
control element.  

 

 

Figure 4.   Type-2  self  tuning  fuzzy controller structure. 

 
   

IV. MODEL DYNAMICS ANALYSIS 

An accurate and detailed analysis of the bioreactor 
model used in the simulation study can be found in Lei et al. 
[13]. I n  the model all reactions are modelled assuming a  

Michaelis-Menten kinetics with respect to a given substrate 
a n d  a  first order dependency on the active biomass 
concentration aX .  T h e  reactor volume and all physical-

chemical properties are assumed constant. The control of 
glucose concentration inside the bioreactor using the  
dilution  r a t e  as manipulation variable is the control 
objective. The glucose concentration is used as carbon and 
energy source and strongly influences the Saccharomyces 
Cerevisiae growth. Generally, to avoid the Crabtree effect 
[14]  a n efficient control of glucos e  c o n centration is 
required. In all simulations carried out, an initial value of 
dilution rate was imposed at instant t=0 hr. This value (in 
accordance with the equilibrium conditions of the system) 
corresponds to the steady state value of the dilution rate for 
given values of the substrate and biomass concentrations in 
the bioreactor.  Suppose to work (without control) with a 
constant value of the substrate concentration equal to 0.065 

1-gl . The corresponding equilibrium value of the dilution 

rate and biomass concentration are 0.38 1-h and 6.9 1-gl  
respectively.  
 

 

 

Figure 5.  Glucose concentration (a) and biomass concentration (b) for a 

linear change of 7k  from 1.203 to 0.953 in 50 hours  

Le t  us  suppose that the value of the system kinetic 
parameter k7 decreases for 50 hours from the initial value 
1.203 with a ramp change (slope = - 0.005 h-1).  

From Fig. 5 it can be seen that a small change of a 
particular kinetic parameter, can cause a large decrease in 
the biomass product. The new operative condition 
corresponding to the steady state values reached by the 

glucose substrate concentration (15 1gl - ) and the biomass 

concentration ( 0@ 1gl - ), although stable, is obviously 

unacceptable. 



Also a change in the feed substrate concentration may 
modify the steady state of the bioreactor with undesirable 
effects on biomass concentration, although the negative 
effects are not so significant if compared with the previous 
simulation results. Fig. 6 shows the effects of a disturbance  
in the substrate feed concentration respectively on glucose 
concentration (a)  and on biomass concentration (b)  for the 
uncontrolled system.  

The objective of the bioreactor control is therefore to 
keep the system in the chosen initial equilibrium point, with 
a glucose concentration equal to  0.065 gl-1 even in the 
presence of disturbances and parameter changes by suitably 
modifying the value of the manipulation variable.  The  
previously performance of  the simple type-2  fuzzy  
controller with 49 rules described was compared by 
simulation with the performance of  the T2FNPC and with 
that of the 
T

 
 

 
Figure 6.  Glucose concentration (a) and biomass concentration (b) for a 

step change of fS from an initial value of 15 to 14 (gl-1) at t = 20 hr.  

V. SIMULATION RESULTS 

 
Fig. 7 shows the simulation results obtained introducing 

at t =10 hr a disturbance in the system with a negative step 
in fS , from 15 to 14 gl-1. The system in each three cases 

reaches the set-point value imposed, removing  the effects of 
the disturbance. The two adaptive fuzzy controllers perform 
better than the simple type-2 fuzzy controllers with the 
T2STFC showing the best performance for the fastest 

control action and the lowest deviation amplitude after the 
disturbance. 

 

Figure 7.  Response of the controlled system to a  fS  disturbance  (step  

from 15 to 14 gl-1 at t =10 hr). 

Fig. 8 shows instead the simulation results obtained 
imposing two disturbances to the system: the first as a ramp 
change to the 7k kinetic parameter value (starting at time 10 

hr and lasting until the end of the simulation time) and the 

second as a step change to fS value (step from 15 to 14 gl-1 

at t =30 hr). In this case all three type-2 fuzzy controller are 
not able to remove the negative effects of this parameter 

drift 7k . Although in each case an off set appears it is more 

accentuated in the case of the simple type-2 fuzzy controller 
and the T2STFC results to be the controllers that minimize 
in the best ways the effects of the kinetic parameter 
disturbance. 

 

 
Figure 8.  Response of the controlled system to a 7k disturbance    (ramp 

disturbance starting  at t =10 hr) and  to a  fS  disturbance  (step  from 15 

to 14 gl-1 at t =30 hr). 

Fig. 9 shows the simulation result obtained imposing a 
random variation of the 7k  kinetic parameter throughout 

simulation, confirming again the best behavior of the 
T2STFC.  



 
Figure 9.  Response of the controlled system to a random variation of 7k  

and to a 1fS disturbance   (step from 15 to 13 gl-1 at t =2 hr). 

The last simulation results shown in Fig. 10 is obtained 
imposing a step to fS  from 15 to 14 gl-1 at t = 5 hr; a second 

step to 7k  from 1.203 to 1.1 at t =25 hr; a third step to 

kinetic parameters 1ilk  from 0.94 to 1 at t =45 hr and a 

fourth step 3k  from  0.501 to 0.48 at t =45 hr as well. 

    

 
 

Figure 10.    Response of the controlled system to disturbances in  fS  of 

(step  from 15 to 14 gl-1 at t =5 hr), in 7k  step  from 1.203  to 1.1at t =25 

hr), in 1ilk  (step from  0.94 to 1) and in 3k  (step from 0.501  to 0.48 at t = 

45 hr). 

From Fig. 10 it can be seen that the change of the two 
kinetic parameters 1ilk  and 3k  seems  to have no effects on 

the bioreactor controlled by adaptive fuzzy controllers. In 
particular the T2STFC  is  very fast and robust for changes 
of the feed substrate concentration and the kinetic 
parameters, in comparison with the other two fuzzy 
controllers.  

 

VI. CONCLUSIONS 

 

In this paper, the control of a bioreactor for the aerobic 
growth of Saccharomyces Cerevisiae, characterized by time 
varying parameters, was studied by use of three type-2 fuzzy 
controllers: a simple T2FC with 49 rules and two adaptive 
type-2 fuzzy controllers: a T2FNPC and a T2STFC, both 
with only two rules. The simulation results confirm that 
despite the reduced rule set, compared with the  simple 
T2FC,  the two adaptive fuzzy controllers, in particular the 

T2STFC, allow to reach very efficient control of the 
bioreactor in presence of parameter changes of different 
type with a very fast response and very low overshoot.   The 
adaptive fuzzy algorithm of the T2STFC, that operates on 
the output scaling factor  allows to minimize all the negative 
effects of all system parameters with a minimum 
computational load 
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