292 research outputs found

    A RELIABLE ROUTING MECHANISM WITH ENERGY-EFFICIENT NODE SELECTION FOR DATA TRANSMISSION USING A GENETIC ALGORITHM IN WIRELESS SENSOR NETWORK

    Get PDF
    Energy-efficient and reliable data routing is critical in Wireless Sensor Networks (WSNs) application scenarios. Due to oscillations in wireless links in adverse environmental conditions, sensed data may not be sent to a sink node. As a result of wireless connectivity fluctuations, packet loss may occur. However, retransmission-based approaches are used to improve reliable data delivery. These approaches need a high quantity of data transfers for reliable data collection. Energy usage and packet delivery delays increase as a result of an increase in data transmissions. An energy-efficient data collection approach based on a genetic algorithm has been suggested in this paper to determine the most energy-efficient and reliable data routing in wireless sensor networks. The proposed algorithm reduced the number of data transmissions, energy consumption, and delay in network packet delivery. However, increased network lifetime. Furthermore, simulation results demonstrated the efficacy of the proposed method, considering the parameters energy consumption, network lifetime, number of data transmissions, and average delivery delay

    On cross-domain social semantic learning

    Get PDF
    Approximately 2.4 billion people are now connected to the Internet, generating massive amounts of data through laptops, mobile phones, sensors and other electronic devices or gadgets. Not surprisingly then, ninety percent of the world's digital data was created in the last two years. This massive explosion of data provides tremendous opportunity to study, model and improve conceptual and physical systems from which the data is produced. It also permits scientists to test pre-existing hypotheses in various fields with large scale experimental evidence. Thus, developing computational algorithms that automatically explores this data is the holy grail of the current generation of computer scientists. Making sense of this data algorithmically can be a complex process, specifically due to two reasons. Firstly, the data is generated by different devices, capturing different aspects of information and resides in different web resources/ platforms on the Internet. Therefore, even if two pieces of data bear singular conceptual similarity, their generation, format and domain of existence on the web can make them seem considerably dissimilar. Secondly, since humans are social creatures, the data often possesses inherent but murky correlations, primarily caused by the causal nature of direct or indirect social interactions. This drastically alters what algorithms must now achieve, necessitating intelligent comprehension of the underlying social nature and semantic contexts within the disparate domain data and a quantifiable way of transferring knowledge gained from one domain to another. Finally, the data is often encountered as a stream and not as static pages on the Internet. Therefore, we must learn, and re-learn as the stream propagates. The main objective of this dissertation is to develop learning algorithms that can identify specific patterns in one domain of data which can consequently augment predictive performance in another domain. The research explores existence of specific data domains which can function in synergy with another and more importantly, proposes models to quantify the synergetic information transfer among such domains. We include large-scale data from various domains in our study: social media data from Twitter, multimedia video data from YouTube, video search query data from Bing Videos, Natural Language search queries from the web, Internet resources in form of web logs (blogs) and spatio-temporal social trends from Twitter. Our work presents a series of solutions to address the key challenges in cross-domain learning, particularly in the field of social and semantic data. We propose the concept of bridging media from disparate sources by building a common latent topic space, which represents one of the first attempts toward answering sociological problems using cross-domain (social) media. This allows information transfer between social and non-social domains, fostering real-time socially relevant applications. We also engineer a concept network from the semantic web, called semNet, that can assist in identifying concept relations and modeling information granularity for robust natural language search. Further, by studying spatio-temporal patterns in this data, we can discover categorical concepts that stimulate collective attention within user groups.Includes bibliographical references (pages 210-214)

    Reconfigurable Instruction Cell Architecture Reconfiguration and Interconnects

    Get PDF

    APIC: A method for automated pattern identification and classification

    Get PDF
    Machine Learning (ML) is a transformative technology at the forefront of many modern research endeavours. The technology is generating a tremendous amount of attention from researchers and practitioners, providing new approaches to solving complex classification and regression tasks. While concepts such as Deep Learning have existed for many years, the computational power for realising the utility of these algorithms in real-world applications has only recently become available. This dissertation investigated the efficacy of a novel, general method for deploying ML in a variety of complex tasks, where best feature selection, data-set labelling, model definition and training processes were determined automatically. Models were developed in an iterative fashion, evaluated using both training and validation data sets. The proposed method was evaluated using three distinct case studies, describing complex classification tasks often requiring significant input from human experts. The results achieved demonstrate that the proposed method compares with, and often outperforms, less general, comparable methods designed specifically for each task. Feature selection, data-set annotation, model design and training processes were optimised by the method, where less complex, comparatively accurate classifiers with lower dependency on computational power and human expert intervention were produced. In chapter 4, the proposed method demonstrated improved efficacy over comparable systems, automatically identifying and classifying complex application protocols traversing IP networks. In chapter 5, the proposed method was able to discriminate between normal and anomalous traffic, maintaining accuracy in excess of 99%, while reducing false alarms to a mere 0.08%. Finally, in chapter 6, the proposed method discovered more optimal classifiers than those implemented by comparable methods, with classification scores rivalling those achieved by state-of-the-art systems. The findings of this research concluded that developing a fully automated, general method, exhibiting efficacy in a wide variety of complex classification tasks with minimal expert intervention, was possible. The method and various artefacts produced in each case study of this dissertation are thus significant contributions to the field of ML

    Facing online challenges using learning classifier systems

    Get PDF
    Els grans avenços en el camp de l’aprenentatge automàtic han resultat en el disseny de màquines competents que són capaces d’aprendre i d’extreure informació útil i original de l’experiència. Recentment, algunes d’aquestes tècniques d’aprenentatge s’han aplicat amb èxit per resoldre problemes del món real en àmbits tecnològics, mèdics, científics i industrials, els quals no es podien tractar amb tècniques convencionals d’anàlisi ja sigui per la seva complexitat o pel gran volum de dades a processar. Donat aquest èxit inicial, actualment els sistemes d’aprenentatge s’enfronten a problemes de complexitat més elevada, el que ha resultat en un augment de l’activitat investigadora entorn sistemes capaços d’afrontar nous problemes del món real eficientment i de manera escalable. Una de les famílies d’algorismes més prometedores en l’aprenentatge automàtic són els sistemes classificadors basats en algorismes genetics (LCSs), el funcionament dels quals s’inspira en la natura. Els LCSs intenten representar les polítiques d’actuació d’experts humans amb un conjunt de regles que s’empren per escollir les millors accions a realitzar en tot moment. Així doncs, aquests sistemes aprenen polítiques d’actuació de manera incremental a mida que van adquirint experiència a través de la informació nova que se’ls va presentant durant el temps. Els LCSs s’han aplicat, amb èxit, a camps tan diversos com la predicció de càncer de pròstata o el suport a la inversió en borsa, entre altres. A més en alguns casos s’ha demostrat que els LCSs realitzen tasques superant la precisió dels éssers humans. El propòsit d’aquesta tesi és explorar la naturalesa de l’aprenentatge online dels LCSs d’estil Michigan per a la mineria de grans quantitats de dades en forma de fluxos d’informació continus a alta velocitat i canviants en el temps. Molt sovint, l’extracció de coneixement a partir d’aquestes fonts de dades és clau per tal d’obtenir una millor comprensió dels processos que les dades estan descrivint. Així, aprendre d’aquestes dades planteja nous reptes a les tècniques tradicionals d’aprenentatge automàtic, les quals no estan dissenyades per tractar fluxos de dades continus i on els conceptes i els nivells de soroll poden variar amb el temps de forma arbitrària. La contribució de la present tesi pren l’eXtended Classifier System (XCS), el LCS d’estil Michigan més estudiat i un dels algoritmes d’aprenentatge automàtic més competents, com el punt de partida. D’aquesta manera els reptes abordats en aquesta tesi són dos: el primer desafiament és la construcció d’un sistema supervisat competent sobre el framework dels LCSs d’estil Michigan que aprèn dels fluxos de dades amb una capacitat de reacció ràpida als canvis de concepte i entrades amb soroll. Com moltes aplicacions científiques i industrials generen grans quantitats de dades sense etiquetar, el segon repte és aplicar les lliçons apreses per continuar amb el disseny de LCSs d’estil Michigan capaços de solucionar problemes online sense assumir una estructura a priori en els dades d’entrada.Los grandes avances en el campo del aprendizaje automático han resultado en el diseño de máquinas capaces de aprender y de extraer información útil y original de la experiencia. Recientemente alguna de estas técnicas de aprendizaje se han aplicado con éxito para resolver problemas del mundo real en ámbitos tecnológicos, médicos, científicos e industriales, los cuales no se podían tratar con técnicas convencionales de análisis ya sea por su complejidad o por el gran volumen de datos a procesar. Dado este éxito inicial, los sistemas de aprendizaje automático se enfrentan actualmente a problemas de complejidad cada vez m ́as elevada, lo que ha resultado en un aumento de la actividad investigadora en sistemas capaces de afrontar nuevos problemas del mundo real de manera eficiente y escalable. Una de las familias más prometedoras dentro del aprendizaje automático son los sistemas clasificadores basados en algoritmos genéticos (LCSs), el funcionamiento de los cuales se inspira en la naturaleza. Los LCSs intentan representar las políticas de actuación de expertos humanos usando conjuntos de reglas que se emplean para escoger las mejores acciones a realizar en todo momento. Así pues estos sistemas aprenden políticas de actuación de manera incremental mientras van adquiriendo experiencia a través de la nueva información que se les va presentando. Los LCSs se han aplicado con éxito en campos tan diversos como en la predicción de cáncer de próstata o en sistemas de soporte de bolsa, entre otros. Además en algunos casos se ha demostrado que los LCSs realizan tareas superando la precisión de expertos humanos. El propósito de la presente tesis es explorar la naturaleza online del aprendizaje empleado por los LCSs de estilo Michigan para la minería de grandes cantidades de datos en forma de flujos continuos de información a alta velocidad y cambiantes en el tiempo. La extracción del conocimiento a partir de estas fuentes de datos es clave para obtener una mejor comprensión de los procesos que se describen. Así, aprender de estos datos plantea nuevos retos a las técnicas tradicionales, las cuales no están diseñadas para tratar flujos de datos continuos y donde los conceptos y los niveles de ruido pueden variar en el tiempo de forma arbitraria. La contribución del la presente tesis toma el eXtended Classifier System (XCS), el LCS de tipo Michigan más estudiado y uno de los sistemas de aprendizaje automático más competentes, como punto de partida. De esta forma los retos abordados en esta tesis son dos: el primer desafío es la construcción de un sistema supervisado competente sobre el framework de los LCSs de estilo Michigan que aprende de flujos de datos con una capacidad de reacción rápida a los cambios de concepto y al ruido. Como muchas aplicaciones científicas e industriales generan grandes volúmenes de datos sin etiquetar, el segundo reto es aplicar las lecciones aprendidas para continuar con el diseño de nuevos LCSs de tipo Michigan capaces de solucionar problemas online sin asumir una estructura a priori en los datos de entrada.Last advances in machine learning have fostered the design of competent algorithms that are able to learn and extract novel and useful information from data. Recently, some of these techniques have been successfully applied to solve real-­‐world problems in distinct technological, scientific and industrial areas; problems that were not possible to handle by the traditional engineering methodology of analysis either for their inherent complexity or by the huge volumes of data involved. Due to the initial success of these pioneers, current machine learning systems are facing problems with higher difficulties that hamper the learning process of such algorithms, promoting the interest of practitioners for designing systems that are able to scalably and efficiently tackle real-­‐world problems. One of the most appealing machine learning paradigms are Learning Classifier Systems (LCSs), and more specifically Michigan-­‐style LCSs, an open framework that combines an apportionment of credit mechanism with a knowledge discovery technique inspired by biological processes to evolve their internal knowledge. In this regard, LCSs mimic human experts by making use of rule lists to choose the best action to a given problem situation, acquiring their knowledge through the experience. LCSs have been applied with relative success to a wide set of real-­‐ world problems such as cancer prediction or business support systems, among many others. Furthermore, on some of these areas LCSs have demonstrated learning capacities that exceed those of human experts for that particular task. The purpose of this thesis is to explore the online learning nature of Michigan-­‐style LCSs for mining large amounts of data in the form of continuous, high speed and time-­‐changing streams of information. Most often, extracting knowledge from these data is key, in order to gain a better understanding of the processes that the data are describing. Learning from these data poses new challenges to traditional machine learning techniques, which are not typically designed to deal with data in which concepts and noise levels may vary over time. The contribution of this thesis takes the extended classifier system (XCS), the most studied Michigan-­‐style LCS and one of the most competent machine learning algorithms, as the starting point. Thus, the challenges addressed in this thesis are twofold: the first challenge is building a competent supervised system based on the guidance of Michigan-­‐style LCSs that learns from data streams with a fast reaction capacity to changes in concept and noisy inputs. As many scientific and industrial applications generate vast amounts of unlabelled data, the second challenge is to apply the lessons learned in the previous issue to continue with the design of unsupervised Michigan-­‐style LCSs that handle online problems without assuming any a priori structure in input data

    Dynamic Resource Management of Network-on-Chip Platforms for Multi-stream Video Processing

    Get PDF
    This thesis considers resource management in the context of parallel multiple video stream decoding, on multicore/many-core platforms. Such platforms have tens or hundreds of on-chip processing elements which are connected via a Network-on-Chip (NoC). Inefficient task allocation configurations can negatively affect the communication cost and resource contention in the platform, leading to predictability and performance issues. Efficient resource management for large-scale complex workloads is considered a challenging research problem; especially when applications such as video streaming and decoding have dynamic and unpredictable workload characteristics. For these type of applications, runtime heuristic-based task mapping techniques are required. As the application and platform size increase, decentralised resource management techniques are more desirable to overcome the reliability and performance bottlenecks in centralised management. In this work, several heuristic-based runtime resource management techniques, targeting real-time video decoding workloads are proposed. Firstly, two admission control approaches are proposed; one fully deterministic and highly predictable; the other is heuristic-based, which balances predictability and performance. Secondly, a pair of runtime task mapping schemes are presented, which make use of limited known application properties, communication cost and blocking-aware heuristics. Combined with the proposed deterministic admission controller, these techniques can provide strict timing guarantees for hard real-time streams whilst improving resource usage. The third contribution in this thesis is a distributed, bio-inspired, low-overhead, task re-allocation technique, which is used to further improve the timeliness and workload distribution of admitted soft real-time streams. Finally, this thesis explores parallelisation and resource management issues, surrounding soft real-time video streams that have been encoded using complex encoding tools and modern codecs such as High Efficiency Video Coding (HEVC). Properties of real streams and decoding trace data are analysed, to statistically model and generate synthetic HEVC video decoding workloads. These workloads are shown to have complex and varying task dependency structures and resource requirements. To address these challenges, two novel runtime task clustering and mapping techniques for Tile-parallel HEVC decoding are proposed. These strategies consider the workload communication to computation ratio and stream-specific characteristics to balance predictability improvement and communication energy reduction. Lastly, several task to memory controller port assignment schemes are explored to alleviate performance bottlenecks, resulting from memory traffic contention

    Scalable Quality Assessment of Linked Data

    Get PDF
    In a world where the information economy is booming, poor data quality can lead to adverse consequences, including social and economical problems such as decrease in revenue. Furthermore, data-driven indus- tries are not just relying on their own (proprietary) data silos, but are also continuously aggregating data from different sources. This aggregation could then be re-distributed back to “data lakes”. However, this data (including Linked Data) is not necessarily checked for its quality prior to its use. Large volumes of data are being exchanged in a standard and interoperable format between organisations and published as Linked Data to facilitate their re-use. Some organisations, such as government institutions, take a step further and open their data. The Linked Open Data Cloud is a witness to this. However, similar to data in data lakes, it is challenging to determine the quality of this heterogeneous data, and subsequently to make this information explicit to data consumers. Despite the availability of a number of tools and frameworks to assess Linked Data quality, the current solutions do not aggregate a holistic approach that enables both the assessment of datasets and also provides consumers with quality results that can then be used to find, compare and rank datasets’ fitness for use. In this thesis we investigate methods to assess the quality of (possibly large) linked datasets with the intent that data consumers can then use the assessment results to find datasets that are fit for use, that is; finding the right dataset for the task at hand. Moreover, the benefits of quality assessment are two-fold: (1) data consumers do not need to blindly rely on subjective measures to choose a dataset, but base their choice on multiple factors such as the intrinsic structure of the dataset, therefore fostering trust and reputation between the publishers and consumers on more objective foundations; and (2) data publishers can be encouraged to improve their datasets so that they can be re-used more. Furthermore, our approach scales for large datasets. In this regard, we also look into improving the efficiency of quality metrics using various approximation techniques. However the trade-off is that consumers will not get the exact quality value, but a very close estimate which anyway provides the required guidance towards fitness for use. The central point of this thesis is not on data quality improvement, nonetheless, we still need to understand what data quality means to the consumers who are searching for potential datasets. This thesis looks into the challenges faced to detect quality problems in linked datasets presenting quality results in a standardised machine-readable and interoperable format for which agents can make sense out of to help human consumers identifying the fitness for use dataset. Our proposed approach is more consumer-centric where it looks into (1) making the assessment of quality as easy as possible, that is, allowing stakeholders, possibly non-experts, to identify and easily define quality metrics and to initiate the assessment; and (2) making results (quality metadata and quality reports) easy for stakeholders to understand, or at least interoperable with other systems to facilitate a possible data quality pipeline. Finally, our framework is used to assess the quality of a number of heterogeneous (large) linked datasets, where each assessment returns a quality metadata graph that can be consumed by agents as Linked Data. In turn, these agents can intelligently interpret a dataset’s quality with regard to multiple dimensions and observations, and thus provide further insight to consumers regarding its fitness for use
    corecore