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Abstract

This thesis considers resource management in the context of parallel multiple video stream de-

coding, on multicore/many-core platforms. Such platforms have tens or hundreds of on-chip

processing elements which are connected via a Network-on-Chip (NoC). Inefficient task allo-

cation configurations can negatively affect the communication cost and resource contention in

the platform, leading to predictability and performance issues. Efficient resource management

for large-scale complex workloads is considered a challenging research problem; especially

when applications such as video streaming and decoding have dynamic and unpredictable

workload characteristics. For these type of applications, runtime heuristic-based task mapping

techniques are required. As the application and platform size increase, decentralised resource

management techniques are more desirable to overcome the reliability and performance bot-

tlenecks in centralised management.

In this work, several heuristic-based runtime resource management techniques, targeting

real-time video decoding workloads are proposed. Firstly, two admission control approaches

are proposed; one fully deterministic and highly predictable; the other is heuristic-based, which

balances predictability and performance. Secondly, a pair of runtime task mapping schemes

are presented, which make use of limited known application properties, communication cost

and blocking-aware heuristics. Combined with the proposed deterministic admission con-

troller, these techniques can provide strict timing guarantees for hard real-time streams whilst

improving resource usage. The third contribution in this thesis is a distributed, bio-inspired,

low-overhead, task re-allocation technique, which is used to further improve the timeliness and

workload distribution of admitted soft real-time streams.

Finally, this thesis explores parallelisation and resource management issues, surrounding

soft real-time video streams that have been encoded using complex encoding tools and mod-

ern codecs such as High Efficiency Video Coding (HEVC). Properties of real streams and decod-

ing trace data are analysed, to statistically model and generate synthetic HEVC video decoding

workloads. These workloads are shown to have complex and varying task dependency struc-

tures and resource requirements. To address these challenges, two novel runtime task clustering

and mapping techniques for Tile-parallel HEVC decoding are proposed. These strategies con-

sider the workload communication to computation ratio and stream-specific characteristics to

balance predictability improvement and communication energy reduction. Lastly, several task

to memory controller port assignment schemes are explored to alleviate performance bottle-

necks, resulting from memory traffic contention.
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Chapter 1

Introduction

1.1 Background and motivation

Traditionally, the computation power of a single core processor was improved by increasing the

operating frequency. Power dissipation in clocked digital devices is proportional to the clock

frequency; therefore, due to on-chip energy density constraints, increasing the processor fre-

quency was no longer feasible. In order to keep Moore’s law [1] alive, hardware manufacturers

exploited a high number of slower logic gates, leading to parallel devices with duplicated on-

chip elements such as general purpose processors, reconfigurable logic, memory and caches,

working at lower clock speeds. Thus leading to massively multi-core (commonly referred to

as many-core) chips with hundreds or thousands of low-frequency, low complexity cores [2].

Today, commercial many-core chips such as the Kalray-MPPA (256 cores) [3] or the Tilera TILE-

Gx8036 chip (72 cores) [4] have been integrated into high data throughput applications such as

data centre networking equipment, storage devices or broadcast video server products. Many-

cores are not only seen in high performance or server devices but also in the consumer electron-

ics domain. Mobile phones with 8-core multiprocessor system-on-chips (MPSoCs) are already

in mass production [5], and the release of 10-core MPSoCs have been announced [6]. The In-

ternational Roadmap for Semiconductors in 2012 [7], have predicted that the number of cores

on-chip will double every 26 months. Hence, one of the greatest challenges is in providing the

interconnection networks that allow these cores to communicate efficiently. Traditional hier-

archical bus or crossbar based interconnects approach saturation as the on-chip data traffic

scales up. To effectively tackle this interconnect complexity, a communication-centric design

approach, Network-on-chips (NoCs), has become the default choice of scalable, power-efficient,

interconnect design paradigm for many-cores [8]. NoCs are inherently shared communication

mediums; hence operations such as flow-control, arbitration and routing need to be efficient

and fast, where performance is of concern and predictable/analysable where real-time guaran-

tees are required.

The field of embedded multimedia electronics has evolved and grown technological ma-

turity, driven by the ever increasing demand in application and user requirements. Multime-

dia, and more specifically in the context of this work, video decoding has been one of the first

applications to embrace the massive parallel processing capability offered by multiprocessing

platforms. Video playback and streaming services have become pervasive and an integral part

of our life. With recent content delivery infrastructure and hardware advances consumers are

now experiencing richer, more immersive content with every new generation of multimedia de-

vice. Merely ten years ago portable dedicated video players were becoming popular in the con-

sumer electronic market [9]; now, a 4K-Ultra high definition (UHD) video (i.e. 3840×2160 reso-

lution) can now be streamed and played in real-time on multicore mobile phones [10]. Modern
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consumer electronics shows a great demand for computation power with a large constraint on

power consumption and device size. After high-definition television (HD-TV) was introduced,

video decoding alone now requires an average of 50 giga-instructions per second (GIPS) [11].

Video decoding has always been a computationally expensive process [12]. However, recent

dramatic improvements in video compression [13, 14] has made video coding algorithms in-

creasingly complex, making it necessary to utilise the parallelism offered by many-cores.

In Section 1.1.1 of this introductory chapter, the reader will be provided with several use-

cases for real-time multi-stream video decoding especially indicating why strict predictability

guarantees are required. Section 1.2 will then introduce the scientific research challenges ad-

dressed in this thesis and outline the approaches taken by existing work and where less work

has been done previously. The thesis hypothesis will be clearly presented in Section 1.3 and Sec-

tion 1.4 will explicitly outline the novel contributions made in this thesis to address the stated

research problems. Section 1.5 will lastly end the chapter with the structure of this thesis.

1.1.1 Use-cases for predictable real-time multi-stream video decoding

Video streams have specific frame-rates, measured in frames per second (fps), which introduce

timing requirements for video decoding and playback. The required fps will vary based on the

application (e.g. higher fps for HD-TV than low bitrate video communications). Violating these

timing constraints can lead to degraded quality of experience (QoE) [15], but the video decoding

system can still continue to operate. Due to this reason, conventional video processing systems

are considered to be soft real-time. However, there are several use-cases with hard real-time

requirements on video decoding. Furthermore, as multimedia applications become more com-

plex, there starts to exist the need for decoding of multiple video streams simultaneously.

The work presented in this thesis (particularly the first two technical chapters) places an em-

phasis on the management of multiple video streams with hard real-time timing requirements.

The latter technical chapters focus on managing video streams with soft real-time timing re-

quirements with complex characteristics. Managing multiple video streams with hard real-time

requirements has not received much attention previously. This section will introduce several

use-case scenarios where both hard and soft real-time video decoding of multiple simultane-

ous video streams are required.

1.1.1.1 Hard real-time decoding of multiple video streams

Hard real-time multiple video stream decoding has direct applicability in applications such as

remote tele-surgery, autonomous vehicles and video surveillance. These application scenarios

will be described briefly in this section.

Tele-surgery, is where a surgeon performs surgical operations with robotic tools to gain more

control over traditional open surgery. Remote tele-surgery, is the same as tele-surgery, but the

surgeon and patient are separated by significant distances (e.g. [16] [17]). In these systems,

the surgeon controls the robotic tools whilst closely monitoring multiple video monitors which

display the patient and the robot movement. Therefore, it is crucial that remote tele-surgery

requires systems which can decode and playback multiple video streams within the hard timing

requirement. Missing any frame decoding deadlines can result in unsafe surgical operations.

In vision-based autonomous vehicle safety-critical systems, multiple cameras are connected

to the vehicle and the captured video streams are used to identify and actuate emergency mea-

sures [18]. These systems can guide and warn the driver of collisions and keep the passengers
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safe during emergency situations. In such vision-based vehicle safety systems, the accuracy and

functionality of the feedback controls depends on processing video frames with tight timing re-

strictions. Missing decoding deadlines can introduce latencies into the system, thus reducing

its safety.

Next generation automated video surveillance systems (e.g. [19]) contain motion-tracking al-

gorithms that make use of the multiple hard real-time video streams. These systems are used

to ensure the safety and security of people by tracking hundreds of objects in real-time. For ex-

ample in [19], the automated video surveillance system is used to notify healthcare services of

fallen or injured elderly people living alone. If frames are dropped or their decoding deadlines

missed, the motion detection algorithms may not operate correctly, which can result in delayed

or failed response to threats/accidents.

1.1.1.2 Soft real-time decoding of multiple video streams

Several soft-real time video streaming applications now require decoding and playback of mul-

tiple videos in parallel due to increased user requirements. Unlike in the previously described

hard real-time video streams, if soft timing requirements are not met, the system can continue

to operate but with reduced QoE and negatively impacting the video service/business.

Multiple soft real-time video stream decoding can be seen in modern multi-view TVs [20],

where the TV can stack and display more than one video at the same time. Users can isolate and

view a specific video using special polarized glasses, thereby allowing multiple users to watch

different videos on the same TV simultaneously. Also, in the digital television (DTV) industry,

certain advanced graphical user interfaces (GUIs) now allow multiple video channel playback

and video scaling, to aid TV users in selecting a program [21]. These features make use of avail-

able system resources to provide a rich and improved user-experience.

Multi-stream decoding is also a common requirement in the live broadcasting (e.g. BBC/Sky)

where a wall of multiple videos is displayed and monitored for stream analysis and video er-

rors [22]. In multipoint video conferencing systems [23] several video streams from different

client devices need to be decoded and merged into a single frame; thus requiring considerable

processing power and incurring delay. Another example is in high-end vehicles, where multi-

ple audio-visual applications with varying quality of service (QoS) and priority/criticality levels

need to be decoded and played-back simultaneously. These videos could be from high priority

road-surveillance videos from vehicle mounted cameras for the driver, or low-priority enter-

tainment videos for the passengers [24].

1.2 Research problems

This section will provide an overview of the primary scientific research problems addressed in

this thesis, as well as highlight existing research work related to these problems. Note that a

comprehensive survey of existing related work can be found in Chapter 2, therefore only a gen-

eral overview of existing research will be given in this chapter.

Figure 1.1 shows a high-level illustration of the research problem investigated in this work,

formed from the multi-stream real-time video decoding use-cases described in the Section 1.1.1.

The figure shows multiple live video sources which need to be decoded by the many-core de-

coder and displayed in real-time. In this work, the multi-stream video decoding workload will
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Figure 1.1: Overview of multi-stream video decoding using many-core platform

be modelled as real-time task-sets. This research will primarily look into how dynamic and un-

predictable workloads with hard/soft real-time constraints can be allocated and scheduled in

an adaptive and scalable manner. In the case where streams have hard timing requirements, an

admission controller must provide guarantees before admission. Once admitted, the streams

must be allocated efficiently to achieve the required performance and throughput constraint

(i.e. fps).

1.2.1 The problem of shared-memory based parallel video decoding

There exists an evident gap between the parallel video decoding research community and the

embedded multimedia design research community. Many work in the state-of-the-art in paral-

lel video decoding assume a multi-threaded shared-memory many-core architecture (e.g. [25],

[26]). In these architectures, performance improvement saturates as the number of cores and

threads increase, due to resource contention. On the other hand, the state-of-the-art NoC-

based many-core embedded multimedia systems design assumes a task-level parallel video de-

coder model (e.g. [27], [28]) which has limited parallelism and flexibility compared with data-

level parallel video decoders [29]. These designs also often assume a communication-centric,

message-passing based NoC architecture, which are more difficult to program but alleviates

the performance bottlenecks of a shared memory, multi-threaded design. In order to improve

modern multi-core multimedia systems designs to deliver increased throughput, this separa-

tion needs to be reduced.

1.2.2 The problem of resource management for unpredictable workloads

Unpredictable workloads are those which characteristics (e.g. arrival patterns, computation,

communication and memory requirements) are only known at runtime and not at design time.

Many live video streams fall into this category as they have characteristics that are difficult to

determine and predict beforehand. In such scenarios, hard predictability guarantees are diffi-

cult to provide and resource management has to be performed at runtime, instead of pruning

the allocation search space at design time [30]. As modern video codecs become more sophis-

ticated and include content-adaptive algorithms their dynamicity also increases.
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Existing work in resource allocation for dynamic workloads focus on runtime task alloca-

tion/re-allocation (e.g. [30], [31]). Many of these techniques rely heavily on monitoring platform

resource usage at runtime in a feedback-loop to adapt to the dynamic workload. However, mon-

itoring system resources in a feedback-loop can in turn lead to higher communication network

use. Resource managers that do not employ such feedback monitoring (i.e. open-loop man-

agement) have received significantly much less attention in the existing literature. Some of the

existing techniques assume exact computation/communication requirements of the workloads

are known beforehand (e.g. [32], [33]), which is not the case with live video streams. On the other

hand, some assume worst-case workload properties (e.g. [34]) to provide hard real-time guar-

antees, which can lead to resource over-provisioning and underutilisation. In a multi-stream

video decoding context this could mean the rejection of potentially serviceable video streams.

Very few existing work have combined end-to-end worst-case response time analysis in runtime

resource management schemes (e.g. admission control) for predictable NoC architectures.

1.2.3 The problem of scalable management

Scalability is another challenge addressed in this work to support the continuous increase in

the number of processing cores in a platform and the scale of the workload. Existing centralised

resource management has been successful in the past in smaller systems, but has proven to

quickly become a bottleneck as the platform size and workload grows. Existing state-of-the-art

hierarchical and fully distributed techniques also can have complex and high management over-

head in terms of their communication protocols (e.g. [35–37]). Low overhead fully distributed

resource management protocols are required for future large-scale NoCs.

Many existing work consider relatively small applications (e.g. [33]) in their evaluations.

However, resource management should also take into account the scale of the workload, as the

number of tasksets and their rate of arrival can increase as applications become more sophis-

ticated and complex. Runtime task admission and allocation algorithms should therefore still

maintain an acceptable execution overhead when faced with large-scale workloads.

1.2.4 The problem of resource sharing

An important aspect of NoC-based many-cores is the sharing of on/off-chip resources (process-

ing elements, communication channels, shared memory, input/output ports etc.) by concur-

rently running processes or applications. On one hand, many-cores offer increased parallelism

to meet the expectations of the embedded and high-performance computing market. On the

other hand, the complexity of the software deployed on these systems grow exponentially re-

quiring more shared resources and computation power. Resource sharing leads to higher sys-

tem utilisation and increases average performance resulting in low-cost design alternatives.

However, resource sharing also leads to resource contention causing individual applications

to become blocked and wait until a resource is free to use, resulting in unpredictability and de-

lays to execution. The trade-off between the conflicting goals, predictability and performance

is a challenging yet key design decision, driven by use-case requirements. With the emergence

of many-core systems, blocking scenarios will effectively become a critical issue in the design

of real-time systems. Resource contention due to sharing of resources amongst tasks (i.e. sub-

partitions of applications) over multiple cores can easily leave cores in idle states, thereby de-

grading system performance, impacting schedulability of real-time systems and wasting the
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benefits provided by many-cores.

Different task to processing core allocations can result in varying resource contention pat-

terns on the platform [30]. Thus, efficient task allocation (also referred to as task mapping ) and

scheduling policies, combined with application domain knowledge, need to be designed to alle-

viate the causes of resource contention. Many of the existing runtime task allocation techniques

consider metrics such as communication cost, utilisation and execution time in their mapping

heuristics (e.g. [38], [39], [37]). However, very few runtime mapping heuristics take into account

resource contention and even less consider improving predictability metrics (such as reducing

lateness).

1.3 Research hypothesis

Section 1.2 introduced scientific research challenges and existing research work related to the

use cases presented in Section 1.1.1. The main objective of this research is to explore and design

predictable and efficient, scalable, low overhead NoC resource management (admission con-

trol, allocation/re-allocation) techniques for unpredictable multi-stream video decoding appli-

cations. Therefore, the following thesis hypothesis determined the central focus of this research.

The thesis hypothesis is divided into two domains with respect to classical and modern coding

tools:

• For videos encoded using classical video codecs: Application and blocking-aware run-

time mapping heuristics combined with a deterministic admission controller can be used

to guarantee timing requirements and improve system utilisation for hard real-time video

streams; a low-overhead, distributed, remapping technique, can be further used to reduce

the lateness, of soft real-time video streams.

• For videos encoded using modern video codecs: Application-specific task clustering and

mapping combined with better memory controller selection heuristics, can be used to bal-

ance communication cost and lateness reduction of soft real-time decoding of complex video

streams.

1.4 Thesis contributions

The following explicitly outlines the novel contributions made in this thesis to address those

research problems identified in Section 1.2 and to achieve the thesis hypothesis set above in

Section 1.3:

• A communication-centric data-parallel video decoding application model: This model

suits modern message-passing NoC architectures with distributed local memory. Its hier-

archical structure enables modelling characteristics of multiple simultaneous video streams.

The initial proposed application model targets classical video codecs (e.g. MPEG-2) with

certain stream constraints. Latter technical chapters present a more flexible and expres-

sive application model, which both captures the content-adaptive nature of modern video

codecs (e.g. H.264/High Efficiency Video Coding - HEVC) and block-level characteris-

tics, not been analysed before. Novel, workload generation algorithms are also presented

which make use of real stream analysis, to synthetically produce abstract workloads.
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• Deterministic and heuristic-based admission controllers: This thesis presents a novel

deterministic admission controller, which uses end-to-end NoC schedulability analysis to

provide hard timing guarantees, for multi-stream video stream decoding workloads. Also,

proposed is a soft real-time heuristic-based admission controller which uses task lateness

as a metric to balance predictability and utilisation in the system.

• Application and blocking-aware runtime task mapping techniques: These two alloca-

tion techniques are used to improve the low-utilisation of deterministic admission contr-

ollers. Unlike existing mapping techniques, the first proposed approach takes into ac-

count task contention and attempts to pack tasks tightly onto a PE whilst trying to reduce

deadline misses. The second mapping heuristic adapts the first approach and exploits the

limited knowledge of the video stream structure to further improve the system utilisation.

• A distributed, bio-inspired, task re-allocation technique for NoCs: This proposed task

remapper has low communication overhead and can adapt to varying workloads auton-

omously, without centralised/cluster-based management. Thus, it is suited for large-scale

NoC architectures handling soft real-time workloads. This proposed runtime re-allocation

technique is used to load-balance the system as well as further reduce the lateness of ac-

cepted video streams.

• Task clustering/mapping and memory traffic management for HEVC video streams: Two

runtime task clustering and mapping techniques are proposed to improve predictabil-

ity and reduce NoC communication cost, targeting highly dynamic, soft real-time HEVC

video streams with tile-level data parallelism. The first approach attempts to cluster and

map the tasks in the longest path of the task-set in close proximity, in order to reduce the

NoC usage. The second approach exploits stream-specific video frame relationships to

derive a novel clustering technique to balance both the aforementioned objectives. Lastly,

several main memory controller port to task allocation heuristics are explored. These

heuristics attempt to balance the memory traffic load and also to mitigate memory con-

troller contention.

1.5 Thesis outline

The remaining chapters of this thesis are organised in the following structure:

Chapter 2 surveys the existing literature in three strands: 1) the video decoding application

domain and its complexities; 2) components and design challenges in predictable many-

cores and NoC interconnects; 3) compare and contrast the state-of-the-art in dynamic

resource management techniques and methodologies for NoC-based many-cores.

Chapter 3 firstly present the preliminary system models (application and platform), which form

the basis of the evaluation infrastructure in this thesis. Later chapters will refine and lift

certain assumptions in these models. Secondly, the evaluation metrics focused in this the-

sis (related to predictability, performance, energy and efficiency) are defined. This chapter

ends with an outline of the overall research problems this thesis is attempting to address.

Chapter 4 provides the first technical contribution in the form of two admission control ap-

proaches for multiple video stream applications executed on NoC-based platforms. A
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deterministic admission controller is proposed for hard real-time video streams and a

heuristic-based admission controller is proposed to trading-off/balance predictability and

utilisation for soft real-time streams.

Chapter 5 extends the work in Chapter 4, by presenting two novel hard real-time task allocation

heuristics to improve the low-utilisation of deterministic admission controllers. These

heuristics consider task blocking and incorporate limited application-awareness to re-

duce the video streams’ end-to-end worst-case response time. They are evaluated against

existing NoC task mapping techniques, as well as a design-time task mapper. Extended

evaluations related to platform scalability and communication loads are also included.

Chapter 6 explores the feasibility of using a low-overhead, distributed and biologically-inspired

task re-allocation protocol, to improve the response-time of video stream decoding with

soft timing requirements. This technique is compared against a state-of-the-art hierarchi-

cal many-core resource management technique and a centralised manager.

Chapter 7 extends the video decoding application model to consider the complexity of modern

codecs, specifically the H.265/HEVC standard. Statistical properties of real video streams

such as frame dependency patterns and decoding execution profiles are characterised. A

novel bottom-up HEVC video decoding synthetic workload generation framework is in-

troduced.

Chapter 8 utilises the workload model generated in the previous chapter to address challenges

in multi-stream HEVC video decoding, with tile-level parallelism and soft timing con-

straints. Novel, application-aware, runtime task clustering and mapping heuristics are

used to balance the overall NoC communication, predictability and mapping overhead.

Memory controller to task mapping heuristics are explored to reduce memory traffic con-

gestion in the NoC.
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Chapter 2

Literature Survey

This chapter provides an overview and discussion of previous research in fields related to par-

allel video decoding, network-on-chip and many-core resource management. The sections in

this chapter are structured in a top-down approach using a Y-chart methodology as presented

in Figure 2.1. Kienhuis et al. [40] introduce this Y-chart approach to prune the embedded sys-

tems design space, where the application and architectural models are decoupled and improved

iteratively. Similarly, this chapter first introduces parallel video decoding applications in Sec-

tion 2.1, followed by a discussion of network-on-chip based many-core architectures and their

challenges in Section 2.2. Section 2.3 discusses many-core resource management in terms of

mapping, scheduling and runtime adaptation mainly for multimedia workloads.

Resource management 
Mapping, scheduling, runtime 

adaptation etc.

Design space 
exploration

Performance 
analysis

Application modelling
Video decoding applications

Architecture modelling
Many-core NoC system

Design flow
Refinement/
improvements

Figure 2.1: Y-chart methodology of reviewing the literature (taken from [40])

2.1 Video decoding applications

An overview of video decoding is presented in this section. The challenges and bottlenecks of

these algorithms are analysed and steps taken to parallelise video decoding are discussed.

2.1.1 Video stream decoding overview

Media files are extremely large in their original form (e.g. a 1 minute duration, 4K (3840×2160),

8 bits per pixel (bps) video file, is approximately 33GB large). Therefore, they must be encoded

(compressed) before they can be stored or transmitted. Video compression is typically per-

formed by exploiting spatial and temporal redundancies. There exists multiple video compres-

sion standards such as MPEG-2, MPEG-4 Part 10 (H.264), H.264/AVC (Advanced video codec)

and the latest H.265/HEVC (High Efficiency Video Codec). With each new version of video codec
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new coding techniques are used, resulting in increased complexity and requiring more compu-

tational resources.

A video stream is a sequence of compressed (encoded) frames (also referred to as pictures). A

video sequence can be hierarchically broken down into groups of pictures (GoPs), frames, slices,

macroblocks and finally blocks as shown in Figure 2.2a [41]. Frames can be an intra-predicted

(I-frames) or inter-predicted (P or B frames). I-frames are reconstructed (decoded) using infor-

mation within itself. P-frames are forward predicted and require reference data from a recently

reconstructed I or P frame. B-frames use bi-directional prediction and can reference past and

future I, P or generalised B-frames. For example, in Figure 2.2b, B2 obtains reference data from

I0 and P3. Generalised B-frames as shown in Figure 2.2d can be referenced by other B-frames,

in a hierarchical B-frame coding structure as used by advanced codecs such as H.264/AVC and

HEVC [13, 42].

Encoders predict the current P/B frame by using the reference frames and only transmits the

residual (difference) and the motion vectors (if any) to the decoder. At the decoder, the residual

values are added with the reference frame(s) macroblocks and shifted using the motion vectors

(MVs) to decode the frame. As illustrated in Figure 2.2c, a frame’s blocks can refer to other

blocks in multiple reference frames (H.264/AVC onwards). Multiple reference frames improves

compression at the expense of higher encoder complexity. The decoded picture buffer (DPB),

located in memory stores all decoded frames until they are no longer required by any of the

future frames in the encoded video stream. Frames are decoded and displayed in the display

order, which is different to the decoding order at the encoder output, to facilitate bi-directional

decoding. Hence, the decoded frames need to be re-ordered before displaying.

Figure 2.2b shows an example of a closed GoP with 12 frames. Closed GoPs do not have

dependencies with other GoPs in the video stream and they reduce error propagation, but pro-

vide slightly less compression than open GoPs. Generally, all the GoPs in the video stream have a

fixed number of frames and the number of P or B frames within the GoP may change depending

on video content variation. According to the MPEG-2 specification, the 12 frame GoP structure

given in Figure 2.2b, is recommended to balance compression, facilitate stream random-access

and to manage error propagation [43]. Fixed GoP structures are also simpler to implement.

They enable a certain level of performance analysis of the decoder beforehand but is poor in

coding efficiency as temporal variations in the video are not accounted for. Therefore, adaptive

GoP algorithms have been presented to detect valid scene-changes, reduce cumulative encod-

ing errors and improve compression [44, 45]. These techniques vary the GoP length and struc-

ture depending on detected scene-change events and temporal variations.

2.1.1.1 Functional blocks of a video decoder

A video encoder and decoder are complementary pairs of systems, containing coding tools (i.e.

algorithms and models) to exploit temporal and spatial redundancies. This thesis focuses solely

on decoder resource management, hence the decoder characteristics are inspected closely. A

block diagram of a generic MPEG-2 decoder is given in Figure 2.3a. A variable length coder/de-

coder (VLC/VLD) is used to reduce the codeword length of image data leading to lossless, bit-

rate reductions. Quantisation performs lossy compression to reduce a range of values to a single

value. 2D inverse discrete cosine transform (IDCT) is frequency to spatial domain transforma-

tion technique. Motion compensation is used to decode the inter-predicted frames using the

frame data in the DPB. Typically, macroblocks/blocks run through this decoder pipeline, one
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Figure 2.2: (a) Hierarchical structure of a video sequence (b) Frame ordering and reference frame dependency pattern
in an open-GoP (c) Multi-frame motion compensation (∆=reference picture index in the reference picture buffer), taken
from [42] (d) Example of using generalised B-frames in a hierarchical B-frame, open GoP structure (taken from [46])

VLC
decoder

IQ IDCT +

Decoded 
Picture 
Buffer

MC predictor/
interpolator

Reconstructed
images

Coding decisions (intra/inter pred.)

Display

Video
Bitstream

Motion vectors

(a)

Entropy 
decoder 
(CABAC)

IQ
IDCT/
IDST +

Decoded 
Picture Buffer

MC predictor/
interpolator

Display

Video
Bitstream

Motion vectors

Coding decisions (intra/inter pred.)

Inloop filtering
Deblocking and 

SAO filters

Reconstructed
images

(b)
Figure 2.3: High-level block diagrams of: (a) Generic MPEG-2 decoder (adapted from [42]) (b) Generic HEVC decoder
(adapted from [47]). (VLC=variable length coding; IQ=inverse quantisation; IDCT/IDST=Inverse discrete cosine/sine
transform; MC=motion compensation; CABAC=context-adaptive binary arithmetic coding; SAO=sample adaptive off-
set)

after the other.

The HEVC decoder (Figure 2.3b) contains a similar set of high-level functions; however, each

significantly more complex than MPEG-2. Two main differences in HEVC decoding is the use

of a context-adaptive binary arithmetic coder (CABAC) entropy coder, and in-loop filtering.

CABAC uses statistical properties to perform lossless compression, and in-loop filtering is used

to improve the quality of the image and reduce the visual artefacts introduced during compres-

sion [47].

2.1.2 Features of the H.265 (HEVC) coding standard

The preliminary technical chapters in this thesis assume the video stream decoding workloads

are MPEG-2 encoded with simple coding tools. MPEG-2 is still in use in industry, specifically in

the digital TV domain to encode standard definition (SD) broadcast streams to support legacy
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devices and MPEG-4 or H.264/AVC is used for HD streams. H.265(HEVC) has generated huge

optimism given the broadcast industry’s struggle with lack of bandwidth and the need to de-

liver HD/UHD content to multiple platforms. HEVC offers many features which make resource

management challenging, hence the last two technical chapters of this thesis focus on resource

allocation issues surrounding HEVC encoded video streams. This section therefore aims to pro-

vide the reader with a brief overview of the key components of the HEVC standard related to this

research.

The HEVC coding standard was primarily developed to address compression problems with

very high video resolutions (beyond 1920×1080) and promoting the use of parallel architectures.

HEVC is able to offer over 50% bit-rate savings than H.264/AVC with approximately similar sub-

jective quality and Peak Signal to Noise Ratio (PSNR) levels [48]. At the time of writing, the

third version of the HEVC standard and its extensions have been released [14]. HEVC aims

to improve the compression (coding efficiency) by using several improved coding tools (e.g.

transform sizes, intra-prediction modes, in-loop filtering changes given in Table 2.1). The mac-

roblock structure in previous codecs have been replaced in HEVC by coding tree units (CTUs).

The CTU logical structure can be of the size 64×64, 32×32 or 16×16 depending on the stream

parameters. Compared to previous standards (Table 2.1), larger CTU sizes provides better com-

pression for higher resolution videos [48]. CTUs are recursively partitioned using a quadtree

structure into smaller coding units (CUs) as shown in Figure 2.4a. I-frames only contain intra-

coded CUs, P-frames can contain intra/inter(forward) coded CUs and B-frames can contain

intra/inter(forward)/inter(bi-directional) coded CUs. CUs are flagged as Skip if they do not have

a residual or motion vector, hence a reference-CU is copied directly. Details of other new coding

tools such as merge mode for MVs, asymmetric prediction units, motion interpolation filtering

etc. can be found in [47].

Table 2.1: Comparison of MPEG-2, H.265/AVC and HEVC [13, 47]

Features MPEG-2 H.265/AVC HEVC

Macroblock size 16×16 16×16 64×64, 32×32, 16×16

Block size 8×8
16×16, 16×8, 8×16,8×8,

8×4,4×4
64×64 to 4×4

(symmetric/asymmetric)

Transform DCT (8×8) DCT (8×8, 4×4)
DCT (32×32, 16×16, 8×8,

4×4), optional DST for 4×4
Intra-prediction modes 1 9 35
Reference frames One Up to 16 frames Up to 16 frames
Native parallelisation None slice level slice level, WPP, Tiles

In-loop filtering None De-blocking filter
De-blocking and SAO

filtering

In addition to the slice-level parallelisation offered in H.264/AVC, HEVC contains several na-

tive mechanisms to make the codec better parallelizable [29]. An HEVC frame can optionally

be partitioned into Tiles (Figure 2.4b), where Tiles are approximately equal rectangular picture

regions which can be independently decoded in parallel. When wavefront parallel processing

(WPP) is enabled in HEVC, each CTU row of a frame can be decoded in parallel. However,

each decoding thread can only begin decoding each CTU row with a 2 CTU delay relative to

the previous row (Figure 2.4b), due to the entropy decoding synchronisation requirements [47].

A detailed discussion regarding decoder parallelisation is given in Section 2.1.4.
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Figure 2.4: (a) HEVC CTU partitioning and respective quadtree structure (taken from [47]) (b) Tiles and Wavefront
parallel processing in HEVC (taken from [13])

2.1.3 Complexities of video decoding

New coding tools in each generation of video codec comes at the expense of increased imple-

mentation cost. Early work on memory usage and computation complexity analysis of MPEG-2

and H.264 decoding have been carried out by Holliman et al. [49]. They show that total MPEG-

2 decoding execution costs are about 8 times slower than H.264 for a video sequence with the

same resolution and bitrate. The MPEG-2 decoder spends more time in motion compensation

(MC) for low-bitrate videos, but spends more time performing IDCT, VLD and IQ for higher-

bitrate videos. Similarly, for H.264, VLD becomes the bottleneck as the bitrate is increased.

Motion compensation in MPEG-2 is memory intensive and memory architecture details such

as L1/L2 cache size, cache line size, memory bandwidth etc. can impact decoding time. How-

ever, in H.264 and H.264/AVC unlike in MPEG-2, MC is mainly computation-bound for low bi-

trate videos and the peak memory usage highly depends on the number of reference frames

per intra-predicted frame [49, 50]. Furthermore, the decoding time of H.264/AVC is also depen-

dent on the quantisation parameter (QP) (i.e. level of quality loss) of the encoded video; where

higher QP values decreases the decoding time. In-loop deblocking filtering in H.264/AVC in-

creases memory accesses by 6% and overall processing time increase by 10% [50]. The use of

B-frames increases the decoder execution time by 20-40%, hence generally not used by low-

latency applications (e.g. video conferencing).

Preliminary decoder performance analysis of the HEVC reference software decoder is per-

formed by Bossen et al. [51]. Their results show that, when performing intra-only HEVC decod-

ing (no P/B frames), the IDCT and in-loop filtering components takes the most amount of time.

However, when decoding random-access streams (i.e. P and B-frames are used), the motion-

compensation process takes 50% of decoding time, which matches the same trend in results

as H.264/AVC decoding [50]. Random-access stream decoding has a higher decoding time due

to memory subsystem issues, such as bandwidth saturation and cache misses when fetching

reference frame data. Depending on the type of video content and bit-rate required, certain
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advanced coding tools can be disabled without sacrificing significant quality loss. Using less

complex coding tools would greatly decrease the computation complexity and memory usage

of modern codecs [50].

2.1.4 Parallel video decoding

The state-of-the-art in parallel video decoding techniques can be categorised into task-level,

data-level decomposition or a hybrid of the two partitioning approaches [29]. The two ap-

proaches are illustrated in Figure 2.5. In task-level decomposition (e.g. [52–54]) the functional

components of the decoding algorithm (e.g. IDCT, VLC, IQ etc.) are assigned to different pro-

cessing elements in the platform. Some of these tasks are pipelined and/or done in parallel.

Task synchronisation and a significant amount of communication is required between the tasks

to perform the decoding in this technique [54]. Task dependencies and varying task pipeline

execution times can also lead to load imbalance. Scalability is difficult to achieve in this parallel

approach as decoding higher resolution video streams would require the tasks to be partitioned

differently to achieve high throughput demands. Furthermore, each processor/task would need

to implement specific hardware/software optimisations to obtain better performance, hence

more suited for platforms with heterogeneous processing units [53] or with dedicated hardware

units [52].

PE0

PE2 PE3

PE1

PE0 PE1

PE2PE3

Data-level partitioning
(illustrates Tile-level parallelisation)

Task-level partitioning

Figure 2.5: Video decoding parallel partitioning approaches: data-level (left) and task-level (right) partitioning

Figure 2.5 illustrates the data-level parallel video decoding approach which is commonly

used by the video processing research community (e.g. [25, 26, 29]). In this approach, the data

(encoded video stream) is divided into small parts and each assigned to a different processor

or processing thread. Partitioning of the video stream data could be coarse-grain (e.g. GoP-

s/frames/HEVC Tiles) or fine-grain (e.g. macroblocks/CTUs). Meenderinck et al. [29] compare

data-level parallelisation techniques at different levels of granularity. GoP-level parallelism is

simple to implement, but requires a large amount of memory. Frame-level parallelism is a

generic approach, applicable to different video coding standards and do not require special

signalling or instrumentation in the video bitstream. However, the scalability of frame-level
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parallelism is limited by the number of parallel B-frames in the GoP and has high commu-

nication overhead due to inter-frame data dependencies. Figure 2.6(b) shows the results ob-

tained by Bross et al. [55], when evaluating the scalability of random-access (i.e. P/B frames

enabled) vs. intra-only video profiles. Random-access profiles offer superior compression over

intra-only videos; however, due to the inter-frame dependencies they scale poorly. The scala-

bility issues with frame-level parallelism is however not a concern when attempting to decode

multiple video streams, as idle processors can be utilised to decode frames from an alternate

video stream. Slice-level parallelism has less dependency issues, but is affected by in-loop fil-

tering; furthermore, increasing the slices in a frame can increase the bitrate. Parallelism at the

macroblock-level offers a high degree of scalability and lower memory usage, but stream in-

strumentation and additional delays will be incurred to parse and determine the macroblock

start/end locations in the bitstream [29].

2.1.4.1 Parallel HEVC stream decoding

As described in Section 2.1.2, HEVC contains two native data-parallel techniques: Tiles and

WPP. Both Tiles and WPP require explicit video bit-stream signalling, to indicate where tiles/CTU

rows start and end. The scalability of WPP decreases as the number of CTU rows increase, due

to synchronisation issues. Tiles start to incur coding losses as the number of Tiles in a frame is

increased [56]. Georgakarakos et al. [25] experimentally show that Tile-level parallelisation of-

fer better speed-ups when compared with native WPP as the decoder thread count is increased.

Chi et al. [26] improve the WPP technique to mitigate the synchronisation issues and combine it

with frame-level parallelism. Their approach, termed overlapped wavefront processing (OWF)

show better scalability than Tiles or WPP and the results are given in Figure 2.6(c). Further re-

sults from their same work [26], given in Figure 2.6(a) show, parallel decoding of multiple lower

resolution videos scale better than a lower number of very high resolution videos. A common

trend in all data-parallel approaches shown in Figure 2.6 is that, performance improvement sat-

urates as the number of cores/simultaneous threads are increased. This behaviour is due to the

heavy contention on the shared memory sub-system (e.g. memory bandwidth, main memory

controllers).

Hybrid decomposition techniques (e.g. [57, 58]) attempt to combine different task-level and

data-level parallelisation strategies. In [57], CTU-level wavefront data-parallel processing is em-

ployed to decode CTU pixels, but task-level parallelism is used for entropy decoding. They use

explicit barrier synchronisation to manage the decoding pipelines. Many hybrid approaches

speed-up compute intensive functions of the decoder using architecture specific optimisations

such as Single Instruction Multiple Data (SIMD). However, SIMD optimisations are orthogonal

to data-level/task-level parallelism as SIMD can be used to improve the performance of each in-

dividual core/thread [29]. In [59], SIMD optimisations are used at each decoder stage to obtain

a 2.8x-5x speed-up improvement over a combined WPP and frame-level parallel approach.

2.1.5 Challenges in characterisation of video decoding workload

In order to balance complexity and compression performance, most modern video codecs (such

as HEVC) are highly content-adaptive [13]. Therefore, different video sequences under certain

encoder settings can produce highly dynamic and unpredictable workload characteristics. For

example:

28



CHAPTER 2. LITERATURE SURVEY

(a) (b) (c)

Figure 2.6: HEVC decoder performance results: (a) Using combined OWF and frame-level parallelism (for multiple
stream decoding on a Tilera TILE-Gx8036 processor) (taken from [26]) (b) Scalability of intra-only vs. random-access
(inter-prediction enabled) videos; speed-ups compared to a sequential decoder (taken from [55]) (c) Scalability com-
parison between OWF vs. Tiles vs. WPP (taken from [56])

• Decoding time: Frame decoding execution cost can vary 2-3 times between consecutive

frames in the same stream; however, variation between frames of the same type are small

[11]. Decoding time is also generally proportional to resolution. Intra-prediction generally

takes more computation time than inter-prediction; higher number of I-macroblocks in

a frame can cause the decoding time to increase. I-frame decoding time varies least due

to less coding options, and B-frames vary the most [60]. The execution time of certain

functional components in the decoder (e.g. interpolation, entropy decoding, de-blocking

filtering) can also vary significantly, depending on the type and size of macroblocks in a

frame. Hence, the computation cost of video decoding cannot be known a priori.

• Timeliness: Timing requirements of a video decoding task is determined by the required

frame rate (i.e. how many frames need to be displayed per second). For example, a video

decoder which has to perform at 25 frames per second (fps) has to decode and display a

single frame within 0.04s (1/fps). For video streams that use bi-directional prediction (i.e.

B-frames), a frame re-ordering delay is introduced to put the frames in the right order for

displaying. The re-ordering process complicates real-time analysis of a video decoder as

it becomes difficult to determine the decoding deadline of individual frames [60]. Using

frame display deadlines implicitly to calculate the decoding deadlines as in [61], can lead

to optimistic timing analysis.

• Arrival rate: The arrival rate of streaming video depends mainly on the video bitrate and

delivery networks. If a video is encoded at a variable bit rate (VBR), the encoder would

allow higher bitrates for more complex segments of the video stream and vice versa. VBR

means the video stream data will be arriving at the input of the system at a variable rate. In

practice the input could be more bursty in nature due to the variability in the transmission

medium (e.g. the Internet). However, it is possible to set a maximum allowed bit rate when

using VBR to offer a minimum inter-arrival time for packets [62]. Video traffic models

which takes into account the non-deterministic behaviour of the transmission mediums

and content delivery networks can be found in [63]; however an in-depth analysis is out of

scope of this research.

• GoP-structure: Video encoders attempt to adapt the GoP structure and length to improve

the coding efficiency based on the video sequence motion and scene change [44, 45]. B-

frames are used to improve compression by taking advantage of temporal redundancy,
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hence for static or slow-motion video segments the number of B-frames in a GoP would

be higher than fast-motion videos [46]. The dynamic nature of GoP dependency patterns

are further increased from the H.264/AVC standard onwards due to the inclusion of hier-

archical B-frame structures and multiple reference frames [42].

• Reference frame data: A macroblock or HEVC CU can be inter or intra coded [46, 47].

Hence, depending on the size and number of inter-coded macroblocks in a frame, the

amount of reference data required by an inter-predicted frame can vary. Furthermore,

the volume of reference data passed between two frames also can vary on the number of

reference frames used to encode an inter-frame.

Buffering is a common technique in video streaming applications to overcome issues with

timeliness and throughput. When buffering is used, the user waits until the video frame buffer

at the decoder is filled up before starting playback. Hence, the buffering delay negatively af-

fects QoE; furthermore, videos freezing/stalling mid-way during playback can impact the QoE

factor further [64, 65]. Furthermore, buffering incurs additional memory overhead at the video

decoder and in the case of live video streaming, buffering in the middle of playback is not ac-

ceptable.

2.1.5.1 Workload models

The highly dynamic characteristics of encoded video makes designing resource management

and prediction techniques very challenging. Furthermore, trying to design a realistic and tracta-

ble model of video decoding workloads also becomes difficult. Abstract workload models, that

have accurate stochastic properties to real video streams are necessary, to reliably evaluate dif-

ferent resource management protocols. These workload models facilitates synthetic generation

of a large amount of different kinds of video streams, without the need for collecting real traces

for a study.

An abstract workload model of a task-level parallel H.264 decoder is introduced in the MCSL

benchmark framework [66]. They specify the decoder functional unit execution cost and inter-

task communication traffic as actual traces obtained from recorded real video streams as well

as data derived from statistical properties of trace-data. However, their workload properties

such as execution cost, release patterns, inter-task traffic volumes assume a Gaussian distribu-

tion, which may not be accurate with the real underlying distribution. Similar task-level par-

titioned, video decoder benchmarks are used in several many-core design space exploration

works (e.g. [32, 38, 67]); most of which use profiled execution-trace data. However, only a few

works consider synthetic workload generation for data-parallel video decoding.

The sizes of frames and their decoding times vary, depending on the temporal and spatial

correlation in the video. Encoded frame sizes have been assumed to follow a Gamma, Lognor-

mal or Weibull distribution [68]. Tanwir et al. [63] in their survey paper, show that wavelet-based

frame-size models offer a reasonable compromise between complexity and accuracy but the

model prediction results varied significantly based on the type of encoding. In early research,

frame decoding time was assumed to have a linear relationship with the frame size [69]. How-

ever, Isovic et al. [60] show that there is a large variance in the decoding time for the same frame

size. High variability in decoding times are seen for I/P/B frame-types due to different coding

tools and memory access patterns in each type [11]. Therefore, classification based on frame

type need to be addressed in the model in order to obtain an accurate representation of video
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Table 2.2: Relationship between macroblocks and 8 blocks types (taken from [70])

Block type Mi I P B Bi Weight(wi)

IDCT only M1 x x x x 8.0e-7
IDCT + Fw motion M2 x 1.1e-6
Fw motion only M3 x 4.0e-7
IDCT + Bw motion M4 x 8.0e-7
Bw motion only M5 x 3.0e-7
IDCT + Bi motion M6 x 1.4e-6
Bi motion only M7 x 5.0e-7
No IDCT, No motion M8 x x x 3.0e-7
Run length decoding M9 x x x x 1.0e-7
Constant (w0) -0.1297e-3

decoding workloads. Tan et al. [70] improve the execution time prediction accuracy by consid-

ering other variables within the video stream apart from frame-size and type. They observe that

in MPEG-2 decoding, different types of blocks within a macroblock perform different decod-

ing operations related to IDCT and motion compensation. Their observations show 9 different

block types (Table 2.2) that can be used to derive the frame decoding cost as per Eq. (2.1). The

number of different types of blocks in a frame (Mi in Eq. (2.1)), can be obtained by parsing the

MPEG header. The wi term denotes the weight of a type i block and w0 is the constant term in

their regression model. These weights are essentially coefficients of their regression analysis,

and are fixed for a given decoder and platform; the weights have been derived by analysing real

video streams. Their evaluations were based on a 2.6GHz Intel Pentium IV platform and using a

range of video stream types (e.g. low/high motion, CGI/animation).

frame decode time = w0 +
9

∑
i=1

wi×Mi (2.1)

Seitner et al. [71] analyse H.264 video bitstream metrics such as different macroblock-level

characteristics (e.g size, type, motion vectors) to estimate the frame/macroblock decoding time

and resource utilisation at runtime. However, their analysis does not break down the amount

of time spent on the computation/memory subsystems individually, and results are dependent

on the optimised decoder and hardware used. A similar approach is made in [72] to estimate

the execution time for task-level partitions within 3% normalised error margin, derived using

linear regression; however their method incurs stream instrumentation overhead. Much of

the existing literature on video workload models do not consider accurately modelling the GoP

structures (i.e. dependency patterns). Probabilistic approaches such as markov-chain models

have been used to generate varying GoP structures taking into account inter-frame dependency

probabilities [61, 73]. However, these techniques do not consider complex coding tools such as

multiple reference frames and hierarchical B-frames.

2.2 Many-core platforms

With the increasing demand of high-performance multimedia applications, many-core proces-

sor architectures are emerging as an attractive platform to fulfil their high throughput and cost-

effective requirements. The advances in microchip technologies and nanotechnology has al-

lowed the integration of multiple processing elements (PEs) onto a single chip, thus enabling

the creation of MPSoCs. Homogeneous MPSoC systems have PEs with similar architecture and
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performance characteristics such as the Intel Xeon Phi co-processors [74] or the Tilera many-

cores [4]. Heterogeneous MPSoCs however could contain PEs with vastly different features and

architectures such as the Xilinx Zynq UltraScale+ MPSoC [75], which has a quad-core 64-bit

ARM application processor, a dual-core ARM real-time processor, an ARM graphics processing

unit and field-programmable gate array (FPGA) logic.

Traditionally, different intellectual property (IP) cores on the chip were inter-connected via

point-to-point wires, crossbar, bus or hierarchical bus-based architectures (e.g. [76]). However,

as the number of IP cores and their inter-connections on the chip increased, communication

quickly became a bottleneck [77]. In addition, power consumption became a limitation in bus

based architectures, due to the high capacitive load (and in turn higher energy) as the system

size increased [78]. This section of the literature survey will primarily introduce many-core

communication interconnects and will outline some challenges related to achieving scalable

performance in many-cores.

2.2.1 Network-on-chip interconnects

Networks-on-Chips (NoCs) have been proposed as a more scalable, communication centric ap-

proach to address the increasingly complicated communication requirements of modern mul-

ticores and future many-cores [8]. NoCs have several clear advantages over the bus architec-

tures as discussed in [77]. Due to shorter wires, less power is consumed and performance does

not degrade when scaling. Less contention can be seen for larger networks due to distributed

routing. Furthermore, NoCs offer flexibility as the same router design can be reinstated, for

larger network sizes. It has been shown empirically, using real workloads, that even for stan-

dard definition video stream decoding, a NoC architecture can offer higher concurrency and

communication bandwidth compared to a popular shared-bus architecture, resulting in lower

decoding times (over a factor of 2) and reduced power dissipation [79]. Therefore, NoCs are the

communication architecture of choice for emerging multimedia MPSoC applications, with high

bandwidth requirements.

As shown in Figure 2.7 NoCs are composed of links which are the physical wires, IP Cores

which are the processing elements such as memory, processors or other dedicated hardware

components, routers that are responsible for forwarding packets from one core to another and

network interfaces (NI) which connect the routers and cores together. Each link and router act as

the communication infrastructure that facilitates cores to send/receive data. In a 2D mesh NoC,

each router has four pairs of input and output (I/O) ports connecting to neighbouring routers

(north, east, south and west) and a fifth I/O port pair connecting to the local IP core. NoCs

use multihop communication to pass packets from source to destination core along a specified

path in the network. A packet is usually segmented into multiple flow control units (flits). For

example, in Figure 2.7, if core (0,0) wanted to communicate with core (2,0), the packets would

require traverse across 4 links (including local links).

A NoC is mainly defined by its topology and protocol implemented by it. 2D mesh topolo-

gies are most commonly used, where nodes are connected as a grid and thereby little effort is

needed for expansion of the network. The nodes may be tolerant to a few link failures, however

due to its irregularity the corner/edge nodes may have less bandwidth. The edge node issue

is subsequently addressed in the torus topology; however, unlike mesh networks which have

bi-directional links, torus links are unidirectional [77]. NoC protocols dictates the mechanism

of data transfer within the network such as flow control, switching mechanisms, routing and
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Figure 2.7: High-level architecture of a 2D, 4x4, mesh NoC. Router architecture using virtual channels and priority based
arbitration (adapted from [80])

arbitration techniques.

2.2.1.1 Routing, flow control and arbitration

The routing algorithm determines the traversal path of the packets through the network. In

deterministic routing such as in XY-routing, the packets first travel on x-axis and when the x-

coordinate of the destination is reached it continues on the y-axis towards the destination (i.e.

rows first, then columns). Deterministic routing is simple to implement, and is commonly used

in real-time analysis as it can guarantee that packets always traverse along the same network

route between a given source and destination node. NoCs such as Hermes [81] and QNoC [82]

employ XY deterministic routing in their NoC routers. In contrast, adaptive routing algorithms

determine the path of the packets on a per-hop basis; they are difficult to analyse as the message

routes continuously change with respect to the congestion hot-spots in the network [83].

Flow control deals with buffer and channel allocation and is responsible for synchronization

between sender and receiver nodes in the network. It is also involved in handling issues of utiliz-

ing network resources such as channel bandwidth, buffer capacity and control state efficiently

to provide predictable communication services [77, 84]. A switching algorithm as part of the

flow control mechanism determines if a flit should be buffered, forwarded or dropped. Unlike in

packet switching networks (e.g. Hermes [81], QNoC [82]), circuit switched networks (e.g. AEthe-

real [85]) reserve a physical path for the data packets before transmission. Packet-switched net-

works have shown to handle congestion better than circuit switched networks when packet sizes

are small [86], although they tend to be energy inefficient due to the complex logic involved.

Wormhole switching is a common packet switching technique where a packet is forwarded as

soon as the header flit has arrived; thereby having low area overhead (i.e fewer buffers needed),

but causes unpredictability and increase in network contention as multiple channels may be

occupied [84].

An arbitration strategy is used by the router to select between several simultaneous requests

to forward packets. Round robin (RR), first come first serve (FCFS), priority based (PB) and pri-

ority based round robin (PBRR) arbitration are some common algorithms used by arbiters to
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Per core:
· 64 registers in register file
· 32 KB L1 I-cache, 32 KB L1 D-cache
· 256 KB L2 cache 
· Collection of all L2 caches across all cores 

serves as a distributed, coherent, shared 
L3 cache (total 18MB)

· Each core has access to dedicated 5 on-
chip networks (used for memory, cache, 
off chip I/O and user traffic)

Figure 2.8: 72-core, Tilera Gx72 high level schematic showing memory hierarchy (taken from [4])

select which packet to serve first. Wu et al. [87] presents an improved priority-based arbitration

scheme where the contention level of the network is considered when selecting an input chan-

nel in the router, thereby helping to relieve congestion hotspots of upstream traffic. Priority-

based arbitration schemes are generally used for guaranteed traffic, which is highly attractive

for real-time systems where performance bounds need to be known [84].

2.2.2 Predictability in NoCs

For real-time systems that require hard guarantees, the behaviour of tasks and messages shar-

ing different NoC resources such as computation and communication elements need to be pre-

dictable. In NoCs such as AEthereal [85], time division multiplexing (TDM) is used to provide

guaranteed throughput and latency services with contention-free routing. TDM routers main-

tain slot-tables to avoid contention, divide bandwidth per link between connections and switch

data to the correct output port. TDM routers however scale poorly due to the increase in the

slot table size as the NoC size and network load increases.

NoCs such as Hermes [81] and QNoC [82], use a technique called virtual channels (VC),

where a physical communication channel is shared logically by separate channels such that

multiple packets can use the same path. VCs help to avoid deadlocks, optimise utilisation of

wires, improve performance and facilitate message flows with different quality of service (QoS)

levels. These advantages however come at the cost of expense of area, power consumption, and

production cost of the NoC implementation [77]. VC usage in NoCs is illustrated by Figure 2.7.

Each input port has first-in-first-out (FIFO) buffers which stores flits arriving through different

virtual channels (i.e. one VC for each priority level). A flit of a given packet will be sent through

its respective output port if it has the highest priority among the packets being sent out through

that port, and if it has sufficient output port buffer space. Using VCs, associated priority levels

and priority-preemptive arbitration the NoC can guarantee throughput to higher priority traffic

and it is possible to calculate latency bounds for best-effort traffic [80]. The priority-preemptive

arbitration creates a priority ordering which allows the real-time designer to determine when a

packet will be blocked. This approach is more efficient than TDM-based NoCs as unnecessary

resource reservation is not made. Similar priority-preemptive architectures are often used in

real-time multiprocessor research due to its predictability properties (e.g. [80, 88])
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2.2.3 Many-core memory challenges

The ever growing gap between memory and processor architecture advances makes it difficult

to hide memory latencies as applications became more complex and memory bound. In or-

der to alleviate this issue, modern multicores now employ several levels of memory hierarchy.

Registers, scratch-pad memory and caches closer to the processor are small but have faster ac-

cess times compared to main memory stored off-chip, which are slower but has higher storage

space. For example, the Tilera many-core Gx72 chip [4] shown in Figure 2.8 has L1 caches pri-

vate to each core and distributed shared L2 caches. It also has a dedicated on-chip network,

which is used for memory related traffic. In such a NoC based shared memory system, off-chip

dynamic random access memory (DRAM) access is translated into a message transaction over

the network, and hence incurs round-trip network latencies on every access.

Locality of the data structures on the different memory hierarchy levels need to be taken

into account to obtain maximum performance [89]. On-chip cache hierarchies are crucial to

achieving fast performance, but in shared-memory architectures providing a consistent view of

memory with different caches becomes a problem. Scalable cache coherence protocols have

been proposed [90], but bounding the latency and on-chip interference of these coherency

techniques on NoC-based systems still remains an open problem. Apart from coherency is-

sues, memory traffic contention in the NoC have also shown to degrade the performance of

memory intensive applications, such as video encoding/decoding [49]. Zhuravlev et al. [91] ex-

plore cache-aware, thread mapping and scheduling policies to reduce the memory controller

and traffic contention; however, they improve average latencies but do not consider worst-case

latencies. Memory traffic contention within the NoC rises as the number of cores on the system

increases. This poses challenges for real-time multicore systems where upper-bounds for the

memory latencies need to be predicted and analysed. A task’s worst-case execution time could

increase by 300% due to memory access interference even though it only spends 10% of the time

fetching from off-chip memory. Nikolic et al. [88] derive upper bounds on memory traffic delays

for Tilera-based many-core chips. They assume a limited migration model where tasks can only

execute on a subset of the cores and assume static task priority assignment. Architectural ef-

forts have been made in [92] to design a scalable, tree-shaped, TDM interconnect to carry only

memory traffic. Using their technique the worst-case latencies of memory transactions to/from

the DRAM sub-system can be derived to provide timing predictability.

Due to the limitation on the available number of pins on the many-core chip, the reality of

few memory-controllers (MCs) and controller ports for hundreds of cores becomes a concern

due to contention at the MCs. Abts et al. [93] show how a suitable MC placement and related

routing algorithm combination can improve latency of the workload and bandwidth of the net-

work. Their simulation based experiments show that a diamond based configuration of MCs

and a memory-aware routing algorithm can reduce the maximum channel load by 33% and ex-

ecution time by 56% for uniform random traffic. Placing the data and code of tasks closer to

the MCs in order to reduce memory access latencies have also been considered in [94]. They

explore a thread-to-MC configuration based on queueing delays at the MC, the communication

distance and network load.

2.2.4 Communication models

There are two primary ways data is communicated between parallel tasks in a multiprocessor

system - by accessing shared data space and exchanging messages. Tasks in shared memory
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platforms communicate by writing and reading from shared global address space common to

all processors. Multiple threads can be executed on the different cores of the multicore platform

to achieve thread-level parallelism (TLP) where inter-thread communication and synchronisa-

tion would occur via the shared-memory. In [95] a speed-up of over 50 is achieved for data-

parallel H.264 decoding, using TLP. Many of the parallel video decoding platforms discussed in

Section 2.1.4 employ a shared memory communication model. However, shared resource con-

tention related scalability issues (as outlined in Section 2.2.3) eventually decrease performance

improvement in shared memory systems.

In the message-passing communication paradigm, parallel processes exchange messages

with each other using send/receive data transfer operations. These data transfers could be

buffered/unbuffered, blocking/non-blocking, synchronous/asynchronous modes of commu-

nication [96]. Unlike in a shared memory model, message passing is only limited by the latency

and bandwidth of the on-chip interconnect. Early work by Kranz et al. [97] show that message-

passing has a factor of 2-3 improvement over shared memory when transferring large blocks

of data between PEs, and is significantly more effective depending on the message sizes and

the communication-to-computation cost (CCR) ratio of the workload. The study in [98] show

that for NoCs, shared memory approaches do not scale well over 16 processing nodes in a sys-

tem, but message-passing scale beyond this threshold. However, Casu et al. [99] argue that a

hybrid of both paradigms is more cost/area efficient. Their PEs fetch and store private data

structures assisted by shared-memory while an on-chip network is available for shared data

elements. Message-passing communication has also been used for parallel video encoding/de-

coding research in the past (e.g: [100,101]). In [101], GoP-level parallelism is used, while in [100]

frame-level parallelism is used and reference picture data is transferred via passing messages in

a NoC.

2.2.5 Modelling many-core systems

Early design space exploration is often performed in software based simulations where com-

plexity of the hardware/software design is abstracted. A system could be simulated at different

abstraction levels as shown in Figure 2.9; where at each level, the degree of abstraction, cost of

modelling and accuracy of the model is different [40]. At the highest level an idea or specifica-

tion can be turned into an analytical/mathematical model, that does not capture the timing or

functional behaviour of the system. In abstract system level simulations, fine-grain complexities

of the platform and applications are abstracted away. A system is represented as architectural

blocks (e.g. processor, interconnect, memory) and applications are considered as tasks and the

behaviour is abstracted as simple read/write/execute events. This allows for early design space

exploration such as hardware/software partitioning, task allocation, task scheduling etc. [102].

Discrete event simulations (DES) are popular models of computing (MoC) used in system level

simulations. The DE scheduler processes the system events chronologically according to their

associated timestamps. DES has been used in [103] to analyse delays in wormhole based NoCs,

with non-uniform number of VCs, using the open source OMNeT++ network simulator. In their

simulation they model the router as a collection of connected ports. High-level system sim-

ulations have been used by many researchers to quickly evaluate multiprocessor/distributed

system resource management techniques [31, 34, 39, 104].

Transaction level modelling (TLM) separates the details of the communication modules

from the functional units. TLM models focus only on large-granularity data transfers to speed
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Figure 2.9: Abstraction levels of evaluation platforms (taken from [40])

up simulation time. Hosseinabady et al. [105] proposes a lightweight scheduler that can be used

to speed up SystemC-based TLM models to be able to simulate large-scale many-cores. Their

approach locally manages the events for each SystemC module in order to reduce the context

switching overhead of the SystemC kernel and thereby speed it up by 30%, with no loss of accu-

racy. Indrusiak et al. [106] present an abstract simulation model of a priority-preemptive NoC,

modelled as a single module rather than an array of routers. Their lightweight TLM model takes

into account the blocking incurred by different parts of the NoC (i.e. routers, links and PE in-

terfaces), in order to obtain the overall packet transfer latency. Compared to a cycle-accurate

model [107], their simulations are 3 orders of magnitude faster but comes at the expense of on

average 70% accuracy and overestimate the latency of small packets with long routes.

A cycle accurate simulator often extends or complements a functional simulator with tim-

ing information and hence can be used to obtain performance estimations for metrics such as

latency in number of clock cycles used or power consumption. Popular cycle-accurate NoC

simulators include BookSim [107] written in C++, Noxim [108] and NIRGAM [109], both written

in SystemC. In Booksim, simulations are restricted to synthetic/trace-driven traffic similar to

Noxim. Booksim offers a wider range of topologies and routing algorithms compared to Noxim,

however Noxim offer power measurement features not seen in Booksim. Results show only a 5%

difference in accuracy in Booksim compared to a register-transfer level (RTL) model but simu-

lation speed and memory usage increase linearly with the modelled network load and number

of VCs. Compared to Noxim and Booksim, NIRGAM offers better support for configuring traf-

fic patterns and routers, where users can define their sender and receiver SystemC modules to

simulate NoC traffic.

There also exist full system simulators (FSS) which model a complete system including the

operating system (kernel and user level instructions), the processors and peripherals. For exam-

ple, the Gem5 [110] full system simulation framework, can simulate execution of real workloads

running on multiple PEs interconnected by a NoC. Due to its cycle-accuracy, simulation of com-

plex workloads could lead to minutes or hours. The OVP simulator by Imperas Ltd. [111], is an-

other example of a FSS framework; however, unlike Gem5 [110] it offers instruction/functional

level accuracy and no native support for NoCs.

2.3 Resource management in multicore platforms

In multi/many-core systems having a large amount of PEs in the platform brings benefits but

also challenges. Tasks that share resources such as PEs, communication interconnects and
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shared memory, encounter contention from other tasks. A resource manager (RM) efficiently

manages on-chip resources in order to optimise on one or more objectives. When faced with

dynamic and unpredictable video streaming workloads, the RM is faced with several application

constraints (as defined in Section 2.1.5) that needs to be taken into account during the manage-

ment process. As these application characteristics are unknown at design time, the RM has to

make management decisions at runtime. Therefore, the runtime management of large-scale

complex workloads in a system with many shared resources, becomes an increasingly complex

problem to solve.

In the context of this research, the term resource management is defined as the process of

arriving at the solutions to the following questions:

• When do the tasks start execution and in which order?

• How do we decide whether to accept/reject new workloads?

• Which entity in the system, makes the management decisions?

• Where do the tasks get executed?

Likewise, in the context of this research, the primary resource management optimisation

variables (objectives) focused are as follows (detailed explanation given in the next chapter -

Section 3.2):

• Predictability: in terms of optimising the number of schedulable video streams, increas-

ing admission rates and decreasing application lateness.

• Utilisation: in terms of decreasing processor idle times and decreasing NoC busy times.

• Energy-efficiency: in terms of decreasing NoC communication cost and improving PE

busy time distributions.

Resource management can also have several overheads which can deteriorate performance.

RM overheads therefore need to be taken into account when evaluating and comparing one re-

source management protocol to another. RM computation overheads are primarily related to

the processing time required to arrive at a resource management decision. Similarly, RM com-

munication overheads are encountered during PE/task monitoring and/or gathering metrics

that will be used in the RM decision making process. Section 3.2.4 of the subsequent chapter

explains each of the RM overheads in detail.

This section will outline the state-or-the-art resource management techniques and proto-

cols used in the literature to address the concerns above. Before discussing resource manage-

ment protocols, an introduction to real-time systems and scheduling for multiprocessor plat-

forms needs to be given.

2.3.1 Multiprocessor real-time systems

According to Stankovic et al. [112]: “Real-time systems (RTS) are those systems in which the cor-

rectness of the system depends not only on the logical results of computations, but also on the time

at which the results are produced”. A real-time task has a specified deadline, which is the max-

imum time within which it must finish its execution. If missing a deadline causes catastrophic

consequences, the system is defined as hard real-time (HRT). On the contrary in soft real-time

(SRT) systems, producing an output after missing a task’s deadline causes system performance

degradation, but the system can continue to operate [113].
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A real-time task can have several specific characteristics depending on the nature of the ap-

plication and task model [114]. Release requirements define when the task should become

runnable; resource requirements state the hardware/software (e.g. processing elements, de-

pendent data) required per release; scheduling requirements define the timing constraints of

the application (e.g. deadlines, periodicity, priority etc.). A task is said to be periodic when

it executes on a regular basis and time-triggered; an aperiodic task is when the task is event

triggered and hence irregular; thirdly a sporadic task is also an event-triggered task but has a

known/specified minimum inter-arrival time. Tasks have a notion of priority, which is a charac-

teristic used by a priority based scheduler to determine which task to execute next. In priority

preemptive scheduling, tasks can be preempted by a higher priority task at any time; whereas

in non-preemptive scheduling, a running task is executed till completion, it cannot be inter-

rupted. Scheduling provides an algorithm for ordering the use of system resources as well as

provides a means for predicting the worst-case behaviour of the system [114]. Many results

have been achieved in the area of fixed priority pre-emptive scheduling based on the seminal

work of Liu and Layland [115]. Although priority preemptive scheduling generally leads to bet-

ter schedulability than priority non-preemptive scheduling, preemptive scheduling does have

its own drawbacks; such as the need for non-trivial resource access protocols and preemption

delays involved in flushing/reloading cache memory [116]. Therefore, there also exists cooper-

ative schemes where tasks can only be preempted at well-defined scheduling points at runtime,

thus attempting to strike a balance between fully preemptive and non-preemptive scheduling

techniques [117].

Multiprocessor scheduling can be viewed as attempting to solve two problems: the task al-

location problem and the task priority assignment problem [118]. Priority assignment dictates

when and in what order tasks and their different invocations should execute. A task can have

a single fixed priority for all its invocations, different priorities for each invocation (e.g. earli-

est deadline first - EDF) or different priorities at different time instants dynamically (e.g. least

laxity first - LLF). Multiprocessor scheduling is a much more difficult problem than uniproces-

sor scheduling, because a task can only use a single processor at a time even when several are

free [118]. Hence, optimal uniprocessor priority assignment schemes such as rate monotonic

priority ordering (RMPO) [115] or Audsleys’ priority assignment [119] algorithms, are not valid.

Davis and Burns [118], highlight several challenges in HRT multiprocessor scheduling related to

task migration, processor utilisation and resource sharing policies. In their survey they purely

consider tasks that do not communicate with one another (i.e. independent tasks).

Static scheduling requires knowledge of real-time task characteristics a priori and may use

resources inefficiently; therefore, they are inflexible to failures and overload situation. Thus, the

need for dynamic scheduling techniques such as, value-based scheduling [120], proportionate

fairness (Pfair) scheduling [121] and earliest deadline zero laxity (EDZL) scheduling exits. Pfair

algorithms are considered optimal for periodic task-sets with implicit deadlines (i.e. deadline =

period), however Fisher [122], proves that there is no optimal runtime multiprocessor schedul-

ing algorithm for sporadic task-sets with constrained or arbitrary deadlines.

Task allocations can either support migration (global), where tasks and its invocations can

be executed on different processors; or no migration (partitioned), where each task is allocated

to a processor and no migrations are allowed. In the partitioned approach, each processor has

its own run-queue, and a task can only interfere other low priority tasks in the same run-queue.

In global scheduling, a single priority ordered queue for all processors is maintained, and tasks
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and their invocations are allowed to migrate between processors. There also exists hybrid ap-

proaches such as clustered/hierarchical scheduling, where multiple processors are combined

into a virtual cluster and task migration is only allowed within the cluster [123].

2.3.1.1 Predictability vs. resource efficiency

A task is considered schedulable if it completes its execution before its deadline. A wide range

of design-time schedulability tests for different real-time tasks models exist, which can be eval-

uated to guarantee that a task will not miss its deadline [113, 118]. These tests often have con-

servative assumptions of the task’s worst-case timing behaviours. They try to account for any

non-deterministic behaviour of the system in the analysis, with less pessimism as possible. The

tests also tend to consider the worst-case execution time (WCET) of tasks when performing the

schedulability tests to provide safe timing guarantees. However, as illustrated in Figure 2.10, the

WCET upper bound may be rarely observed in practice. If the analysis has a high degree of pes-

simism or is overly conservative, tasks will definitely meet their deadlines but system resources

will be over-provisioned and/or under-utilised. Conversely, if the analysis is optimistic, certain

timing violations may be made, but platform resources (e.g. PEs, NoC) maybe better utilised.

Figure 2.10: Basic notions concerning timing analysis of systems (taken from [124])

SRT systems are often characterized by highly dynamic behaviour and hence offering pre-

dictability guarantees while efficiently utilising system resources is non trivial. Therefore, pre-

dictability objectives of a SRT system is to minimise the mean and maximum lateness/tardiness

(i.e. completion time - absolute deadline) of the tasks [125]. Unlike HRT tasks, SRT task prop-

erties such as periodicity, deadlines, inter-arrival patterns, computation times etc. are difficult

to ascertain offline. Hence, techniques such as reclaiming unused resources, overload man-

agement, system adaptability via feedback-based scheduling can be employed to balance pre-

dictability and resource utilisation [125].

2.3.1.2 Response time analysis

The response time of a task is defined as the elapsed time between the dispatch time and the

time it completes execution. The response time includes the duration it was blocked by an-

other task and any time period it was waiting for data. Response-time analysis (RTA) is a stan-

dard, sufficient and necessary schedulability test for fixed priority-preemptive systems, where

the worst-case timing of a task is analysed [114]. In RTA, the blocking interference caused by
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higher priority tasks on lower priority tasks are taken into account when calculating a task’s

worst-case response time (WCRT).

Audsley et al. [126], present a recurrence relationship as shown in Eq. (2.2), to find the WCRT

(denoted ri) of a fixed priority preemptive task τi. In Eq. (2.2), ci denotes the WCET, ti denoted

the period of τi. The set hp(τi) denotes the tasks that have a higher priority and in the same task

queue as task τi. A task is deemed schedulable if ri ≤ di, where di is the absolute deadline of τi

with respect to its release time. To derive the WCRT, the analysis assumes, each task experiences

the maximum blocking possible by higher priority tasks. This response time analysis has also

been adapted to suit symmetric multiprocessor systems using global fixed priority and EDF

scheduling [127].

rn+1
i = ci + ∑

∀τ j∈hp(τi)

⌈
rn

i
t j

⌉
c j (2.2)

Similarly, on a many-core NoC interconnect, contention occurs when several message flows

try to access the same network resource at the same time. In the case where priority based pre-

emptive arbitration of the routers, the NoC architecture is able to provide guaranteed through-

put to high priority message flows. Hence, a message flow (denoted Msgi) will have at most

two interference sources - direct and indirect interference flows. Direct-interferers (denoted

Sid) are higher priority traffic-flows that have at least one physical link in common with the ob-

served traffic-flow. Indirect-interferers (denoted Sii) are higher-priority flows that do not share

any links with the observed traffic-flow but share at least one link with a traffic-flow in Sid . For

example in the flow contention scenario in Figure 2.11, Msg j directly interferes Msgi if Pj > Pi,

where Pi denotes flow priority. However, Msgk indirectly interferes Msgi, if Pk > Pj > Pi.

Msga

Msgk
Msgj

Msgi

Figure 2.11: Direct and indirect interference on NoC message flows (taken from [128])

Shi et al. [128] introduces an analytical approach to derive an upper bound for the worst-

case network latency of a traffic flow in wormhole switching, fixed priority preemptive NoCs,

as shown in Eq. 2.3. In this equation JR
i is the release-jitter and JI

i is the interference-jitter. The

basic latency Ci of a message flow, calculated using Eq. (2.4), is the time taken to transfer from

source to destination under the assumption of no contention over the NoC links. In Eq. (2.4),

numHops is the number of hops between source and destination, RL denotes the time needed

for a flit to traverse a link, numFlits is the payload size in number of flits and HL denotes the time

needed to route a packet header.

Rn+1
i =Ci + ∑

∀Msg j∈Sid

⌈
Rn

i + JR
j + JI

j

Tj

⌉
C j (2.3)

Ci = (HL×numHops)+(RL× (numHops−1))+(HL×numFlits) (2.4)

The work in [80] extends the priority-preemptive NoC RTA analysis in [128] to include both
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communication flows and computation tasks in order to calculate the end-to-end worst case

response time (E2ERTA) of task chains. In their synchronous pipeline model, parallel execu-

tion of multiple invocations of a task chain is allowed to execute simultaneously over different

PEs but disallows the simultaneous execution of more than one invocation of the same task.

Different invocations of the task chain runs concurrently in a phase-shifted way. In [80], the

response time ri of the task τi that releases the message-flow is considered to be the release jit-

ter of Msgi, hence JR
i = ri, as shown in Eq. 2.5. This is assuming the message flow is released

immediately after the execution of its source task hence, Eq. 2.5 can be used to calculate the

end-to-end response-time of tasks. This analysis becomes useful to determine if a task-set with

a given task to PE mapping is schedulable on a fixed priority preemptive system. Both [128]

and [80] assume the tasks and flows of an application will be released at simultaneously and do

not take into account the precedence constraints of tasks/flows in an application. Dependent

tasks in a non-pipelined task chain would not ever interfere with each other and would be re-

leased at different points in time after their parent task (i.e. predecessors) have finished their

execution. Hence, the analysis in [80, 128] will result in over-estimating the end-to-end WCRT,

for a non-pipelined application scenario. Kashif et al. [129] integrates offsets and jitters in to

the response time analysis to take into account the precedence relationships in directed acyclic

graphs (DAGs) based applications running on priority-preemptive NoCs. However, they still as-

sume all applications in the system start at the same time instant with zero jitter and assume

infinite buffers in the NoC.

Rn+1
i =Ci + ∑

∀Msg j∈Sid

⌈
Rn

i + r j + JI
j

Tj

⌉
C j (2.5)

2.3.1.3 Predictable online admission control

Admission control and resource reservation have traditionally been used to achieve predictable

performance of real-time services. In HRT systems, where application real-time properties are

known, sufficient resources are reserved a priori and offline schedulability analysis is performed

to ensure all timing constraints can be met [118]. On the other hand, in dynamic real-time sys-

tems where the workload patterns are not known at design time, such as in live video decoding

(Section 2.1.5), predictability is achieved through online admission control (e.g. [130]). Admis-

sion control (AC) is one of the first steps in managing resources in a system. The role of a pre-

dictable AC is to assert if a new task/task-set can be executed in the system without missing its

deadline and not forcing existing tasks to miss theirs. Making a fast AC decision at runtime, tak-

ing into account existing resource usage is non-trivial, specially when the application workload

is highly dynamic and not known a priori.

Deterministic admission controllers, such as in [131–133], provides a guaranteed and pre-

dictable service by taking into account worst-case timing behaviour of the application and plat-

form. However, if the assumptions of the workload execution budgets and/or the assumptions

made in the worst-case timing analysis are highly pessimistic, the admission control algorithms

will cause severe under-utilisation of system resources. Deterministic admission controllers

using online schedulability tests for fixed-priority real-time systems can be categorised into

utilisation-based tests and RTA-based tests. Utilisation-based tests can be used to efficiently

decide if the system has sufficient capacity to accommodate new tasks [132]. However, they

are more suited for uniprocessor systems, often assume an independent task-set model and do
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not capture the blocking behaviour of tasks. Dziurzanski et al. [134] uses reduced complexity

RTA-based online schedulability tests which are more powerful but have higher overhead than

utilisation based tests.

In deterministic ACs the WCRT of tasks and their deadlines are critical requirements for eval-

uating the admission decision. In certain distributed real-time systems only the end-to-end

deadline of a chain of tasks may be known and individual task deadlines may need to be esti-

mated at runtime [135]. Di Natale et al. [136] slices the overall end-to-end deadline amongst

the subtasks in order to maximize the minimum slack of tasks. Kao and Garcia-Molina [137]

divides the total remaining slack among the subtasks in proportion to their estimated execu-

tion times. Eq. 2.6 shows the calculation of the absolute deadline using their proposed equal

flexibility scheme (EQF) subtask deadline assignment scheme; here, xi represents the task ex-

ecution time, m represents the total number of tasks in the task-set, ai is task arrival time and

De2e denotes the task-set end-to-end deadline. A similar approach is taken in [138], where they

calculate the subtask deadlines of critical path and non-critical path tasks of a task graph differ-

ently. For these deadline assignment schemes to be effective, the task’s execution time need to

be known or accurately estimated.

di = ai + ci +


[

De2e−ai−
m

∑
j=1

c j

]
×

 xi
m
∑
j=i

ci


 (2.6)

Statistical admission control for SRT/best-effort video streaming services have been explored

in the past [130, 139]. These work mainly attempt to probabilistically predict the platform load

in terms of disk access times and bandwidth measurements for VBR video workloads. These

algorithms do not take into account deadlines but attempt to maximise resource usage. There

also exists probabilistic admission control approaches which rely on task execution time dis-

tributions and quality parameters, to reserve resources at runtime [140]. Ditze et al. [141] pro-

pose a method for real-time scheduling and admission control of multiple MPEG video streams

which uses continuous re-processing by the admission controller and scheduling the different

workloads out-of-phase to each other such that the decoding tasks do not interfere. In case the

allocated resources vary over time, their method re-invokes the AC to adjust the resource reser-

vation. This method guarantees QoS, however their analysis is limited to a few concurrent video

streams and a uniprocessor system. Online predictability guarantees for video streaming, can

also be provided via the video transmission communication network [142] or through operating

system support [143] but is out of the scope of this thesis work.

Open-loop scheduling and admission control algorithms such as those discussed above, suf-

fer from the inability to adapt to unforeseen varying system states. They also assume worst-case

application characteristics leading to resource under-utilisation [144]. Due to these reasons,

feedback control real-time admission and scheduling algorithms has been proposed to adapt

the system to dynamic and unpredictable workloads [144, 145]. A feedback control real-time

scheduling (FCS) architecture consists of a feedback loop which continuously monitors con-

trol variables from the system [145] to adapt the performance based on the required QoS level.

For example in adaptive video processing systems, system load, decoding execution time and

power usage is monitored to balance image quality and energy consumption [146] or to decide

on when to skip frames [147]. Feedback-based admission control strategies have also been re-

cently employed in many-core HRT systems to predict the task-set schedulability, by using the
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task slack as a control variable [134]. However, the overhead of the feedback loop in FCS systems

increases as the system size and workload increases. Also, higher monitoring rates can improve

the accuracy of the system state but also increases the monitoring overhead [37].

2.3.1.4 Video-centric task scheduling

Mastronarde et al. [148], show that a classical EDF scheduling approach does not take into ac-

count video quality of the decoded video stream; hence, under heavy load it may induce severe

distortion to the video. They introduce a packet-level, priority assignment scheme that takes

into account a video distortion reduction metric, which is derived via offline stream analysis.

Isovic et al. [147] and Blanch et al. [149] use video-specific metrics such as frame-type, frame-

position in the GOP, frame-size and buffer size in order to determine a frame-level priority as-

signment. They use the priorities to determine which frames to skip decoding in order to meet

end-to-end GoP deadlines and to reduce the video quality degradation. Priorities have also

been assigned at a coarse-grain, stream-level [18, 150]. In [150], stream priorities are dynami-

cally assigned based on the number of missed video frame deadlines within a specified window

of consecutive frames. They use this scheme to maintain the quality of each video stream above

a specified tolerable quality level. In [18], a vehicular multi-camera safety system case-study is

presented. Higher priorities are assigned to the camera in the direction where a vehicle is ap-

proaching. Using these priorities, a runtime resource manager can steal processing resources

(i.e. reduce the frame rate) from low-priority cameras.

Moreira et al. [34] investigates real-time scheduling of dataflow programs such as graph-

ics scaling applications, modelled as synchronous dataflow (SDF). They use a time-division

multiplexing (TDM) scheduler and a static allocation technique to provide hard timing guar-

antees. Similarly, Bamakhrama et al. [151] consider using an extension of dataflow graphs to

model streaming applications. Their analytical framework, allows the computation of the min-

imum number of processors needed by different HRT scheduling algorithms, for periodic tasks

with varying data dependencies, to achieve maximum throughput and meet all deadlines. In

[152], the authors combine a largest task first heuristic with dynamic power management based

scheduling scheme to decode SRT H.264 bitstreams with slice-level parallelism. They assume

a GoP structure without B-frames that have equally spaced soft deadlines, based on the frame

rate. Their task model however, assumes the execution cost of the slice decoding times can

be accurately predicted. Energy savings are obtained through setting the speed of the process-

ing cores as low as possible, without missing any deadlines, and shutting off power to unused

cores. In [61], the sequence of frames in a GoP is modelled as a deterministic Markov chain.

The authors present a two-level scheduler which firstly selects the scheduling and processor

frequency per frame and secondly maps frames to processors and set their clock frequencies.

The scheduler considers the frame buffer state, dependencies between parent and child frames,

number of remaining slices in a frame, power consumed by each processor in each state. They

assume an exponentially distributed slice decoding cost and assume frame deadlines and GoP

structures are known at design time.

2.3.2 Resource management organisation

Resource management (RM) of on-chip resources such as communication links/bandwidth,

computation resources and memory, in a NoC-based many-core platform is a challenging task.
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Figure 2.12: Illustration of resource management organisation types

Resources need to be allocated to tasks and message flows at efficiently at runtime and the sys-

tem must adapt to changing workload conditions. The types of resource management can be

broadly classified into three categories: centralised, hierarchical or fully distributed. Figure 2.12

shows the high level differentiation between these classifications, based on which entity in the

platform performs the RM duties.

2.3.2.1 Centralised management

Centralised managers have global knowledge of the platform, which allows for a globally coor-

dinated and efficient distribution of resources to applications. For example, in early work by

Nollet et al. [153], slave PEs continuously send state information to a single master PE via the

NoC. The slaves purely execute user application code and the RM performs runtime manage-

ment functions. The type of information monitored and the overheads of monitoring depends

largely on the optimisation objective, timing and nature of the workload. PE utilisation is an-

other simple but effective metric obtained at runtime from the slave PEs, in order to facilitate

task allocation decisions [39]. In some work, the communication between the slave PEs and the

central management PE is more complex, such as in [32] where a four-way message request/re-

ply communication protocol is used to decide on a task allocation. In [154], the RM stores and

updates several platform resource metrics such as channel occupancy, PE resource usage, local

memory usage, which are monitored with the help of resource monitors connected to the NoC

ports and PEs. As seen in [155], dedicated control networks can be used for the communica-

tion between the RM and the PEs, hence the control messages would not interfere with data

traffic; however, an additional network would incur area and energy overheads. In some work,

the slave PEs regularly send certain application-specific information to the RM without being

requested. For example, Khan et al. [146] feed back the encoded HEVC video frame quality and

thread execution times to the RM at runtime, in order to maintain minimal quality degradation

and minimise power dissipation. In [156], the RM periodically monitors a wide range of metrics

such as PE/memory/communication channel usage, network congestion and latency values, to

adaptively vary the video frame-rate with respect to (w.r.t) to meeting the deadlines of a video

decoding application. The monitoring frequency has to be tuned in order to maintain a bal-

ance between achieving an accurate view of the system and to keep the monitoring overhead

low [156].

Centralised management schemes are acceptable for small platforms such as 4-16 core NoCs,
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however as the platform size and workload increases, centralised RM shows performance degra-

dation [30]. It suffers from a single point of failure, large monitoring traffic overhead, central

communication hotspot around the manager and scalability issues [30]. Due to these reasons,

fully distributed and hierarchical management strategies have been proposed in the literature

as scalable and reliable resource management techniques for large-scale many-cores.

2.3.2.2 Hierarchical management

The literature provides several hierarchically distributed RM protocols [35, 36, 146, 157–159]. In

these hierarchical management techniques, the many-core system is divided into virtual re-

gions called clusters, with each cluster having a cluster manager (CM) which allocates tasks to

PEs within its own cluster. Such a scalable, hierarchical management technique is shown to sig-

nificantly reduce resource management communication and computation overhead, for plat-

form sizes larger than 12×12 [36]. In [36], the cluster managers (agents) are not fixed and can

vary, depending on the number of applications. When an application starts execution, its ini-

tial node is selected at random. It then tries to randomly allocate regions (i.e. PE resources) on

the network to service the application. CMs communicate with CMs in other regions to borrow

resources. Long communication routes between distant control agents and applications can be

an issue, as it can lead to higher NoC traffic congestion and therefore performance degradation.

The distributed management approach by Anagnostopoulos et al. [159], has a lower communi-

cation overhead than [36], but solely targets malleable applications (flexible applications, which

can be stopped and assigned different number of processors at runtime). In their work each

cluster can have one or more ‘manager cores’ responsible for application workload distribution

and a ‘controller core’ is responsible for assigning applications to managers. A hierarchical par-

allelisation approach for multi-level H.264 video encoding is given in [160]. A cluster platform is

partitioned into groups of computation nodes, each encoding independent GoPs. Within each

group, slice-level parallelism is employed. Each processor group has a local manager which

requests for new GoPs from a global manager.

Castilhos et al. [157], performs continuous self optimisation by enabling the cluster man-

agers (or agents) to communicate with other cluster agents in the surrounding area. They at-

tempt to reduce processor energy consumption , balance workload distribution and reduce ex-

ecution time of video decoding and generic synthetic applications. In [157], when the global

manager (GMP) receives a new application request it decides which cluster to map the initial

tasks of the application. The slave nodes within a cluster (SP) requests a new task from the lo-

cal cluster manager (LMP) and the LMP in turn makes a request to the global manager (GMP)

(as shwon in Figure 2.13(a)). The LMPs periodically monitors the load of each slave node (SP)

in its cluster. If there are no resources available in the current cluster, the LMP sends a ’loan

request’ to other neighbouring LMPs (Figure 2.13(b) - step 1). The LMPs that receive the loan

request searches for an available resource in their cluster and if found, reserves the resource and

sends a reply back to the requesting LMP (step 2). The requesting LMP decides which resource

to select and sends a ’release’ message to the other LMPs that were not selected (step -3). Lastly,

in step 4 the GMP is notified of the new task mapping. In the authors subsequent work [37],

they discuss how a trade-off between accuracy and intra-cluster monitoring overhead can be

achieved by tuning the monitoring period.
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(a) (b)

Figure 2.13: Cluster-based resource management protocol : (a) Communication between slave nodes (SP), cluster man-
agers (LMP) and global manager (GMP); (b) Request/reply protocol between neighbour LMPs (taken from [157])

Hierarchical resource management protocols are more scalable than centralised manage-

ment but they come with their own drawbacks. The inter-cluster communication and intra-

cluster monitoring within large sized clusters can lead to high levels of monitoring and con-

trol traffic within a NoC. Using smaller clusters intuitively leads to a higher number of cluster-

managers which limits the compute-resources in the platform. Furthermore, the system’s relia-

bility is still bounded by the number of cluster-managers within a system. Due to these reasons,

there exists a body of research focusing on fully distributed resource management techniques.

2.3.2.3 Fully decentralised management

Fully distributed resource management techniques are scarce in the many-core resource man-

agement literature. Unlike the previously discussed approaches, they employ runtime self-

management and resource allocation/re-allocation mechanisms in each node, without the need

of one or more management entities. In such systems, the nodes adapt and optimise itself

to changing workloads and internal conditions and recover from faults. Fully distributed ap-

proaches offer higher levels of redundancy and scalability over cluster based approaches for

large scale systems, due to not having any central management nodes. However, due to the lack

of global knowledge and no monitoring being performed by a centralised authority, the system

may be load-unbalanced, and cause tasks to miss their deadlines.

In [161], each processing core in the system can migrate individual tasks to neighbouring

ones based on the local workload, task sizes, communication requirements of the tasks and

network traffic. Results showed that compared to offline RM approaches, their proposed tech-

nique provided 25-30% mean different mapping results. A decentralised NoC monitoring infras-

tructure [162] and fully decentralised core allocation scheme [163] is introduced for invasive

applications running on NoC-based multicores. Invasive applications are those that can dy-

namically explore and automatically request/release a certain amount of processing resources

by itself during its execution in order to increase its speed-up. Once additional resources have

been claimed, the application code is copied and executed on the cores in parallel. Applications
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give up resources for other applications only if the gain is substantial over the loss. However, ad-

ditional hardware in terms of NoC and PE monitoring infrastructure is needed to perform these

invasive control functions [162]. Their evaluation results show an additional 2% area overhead

and 5% power consumption required for a performance improvement of 6% and communica-

tion energy reduction of 27%. In fully distributed schemes, since each node performs control

operations the overhead of the software/hardware resource management policies need to be

lightweight in order to not interfere with the computation.

2.3.2.4 Bio-inspired autonomous management

The complexity of dynamic applications and large-scale multiprocessor, distributed systems of

the future have given reason to investigate fully-distributed, autonomous self-organising/opti-

mising mechanisms inspired by biology. Brinkschulte et al. [164] present a distributed, artificial

hormone system inspired, middleware framework where periodically each core calculates and

communicates its task suitability with other cores in the network, to determine which core to ex-

ecute a task. However, in their further work [165], it is shown that even though their fully decen-

tralised management technique displays better failure handling, the communication overhead

is higher compared to a centralised or hierarchical approach. Bio-inspired, distributed load-

balancing reconfigurable hardware and software architectures have been explored by Mudry et

al. [166]. Processing nodes are able to monitor their workload and during overload situations,

tasks locate unused nodes in the system and replicates its code onto it; similar to cellular divi-

sion and differentiation in biology. Their algorithm allows a video decoder stream processing

pipeline to grow and balance load between its computational nodes automatically using local

decisions. Complex policies are required to overcome network flooding due to control message

overheads and pipeline overgrowth which would decrease efficiency in the system. An adaptive,

immune-inspired NoC architecture is presented in [167], to achieve lower data flow latency and

buffer utilisation. The NoC switching, routing, flow control and resources such as buffers, band-

width and link utilisation can adapt based on the application characteristics. Their architecture

requires monitoring and supervising mechanisms at each layer in the NoC.

Bio-inspired algorithms have been evaluated on more mature domains such as wireless sen-

sor networks. For example, Caliskanelli et al. [104] present a distributed load-balancing tech-

nique inspired by social insects such as bees. The authors devise a technique which is used

to solve the trade-off between service availability and energy consumption. In their technique

a node in a network can either be a queen bee (denoted QN) or a worker bee; the QN per-

forms computation and stimulates a pheromone which is propagated throughout the network.

All nodes accumulate and pass on pheromones received from the queens, and the dose of the

pheromone is decreased at every hop-distance away from the QN. The pheromone level (de-

noted hi) for each node decays over time. A node becomes a QN when its hi drops below a

certain threshold. The range of the pheromone broadcast by the QN is limited to reduce the

communication overhead, and hence worker nodes are only aware of nearby QNs. Each node

executes a set of simple rules to obtain increased performance on the system as a whole. As

shown in Figure 2.14, the algorithm contains two periodic and one asynchronous event cycles,

that are carried out by each node in the network. The differentiation cycle occurs to distinguish

a nodes queen status and during the decay cycle the node’s hormone level is decremented. The

asynchronous, propagation event occurs when a new hormone dose is received by a neighbour-

ing node.
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Figure 2.14: Illustration of the pheromone-signalling algorithm: Differentiation and decay cycles and the propagation
event. Green nodes indicate queen nodes and the values represent the hormone level (taken from [104])

2.3.2.5 Closed-loop vs. open-loop resource management

Closed/open-loop based classification is orthogonal to the organisation of resource manage-

ment. In this work, a closed-loop RM is referred to as one which has monitoring information

sent back to the RM by the system (i.e. either by the PEs/interconnect). Much of the centralised

management schemes identified in Section 2.3.2.1, fall under closed-loop resource manage-

ment, as the slave-PEs send back monitoring information or are requested for state information

by the centralised RM (e.g. [153] [154] [146] [32]). In hierarchical-management schemes such as

in [37] [159] (Section 2.3.2.2), the cluster managers monitor their slave-PEs gathering informa-

tion such as utilisation. Therefore, many of the existing hierarchical-management schemes also

have a closed-loop resource management protocol. It is difficult to categorise fully-distributed

resource management as open/closed-loop, as each node performs RM functionality. Closed-

loop systems enable the RM to have an up-to-date view of the system in order to make accu-

rate resource management decisions. Unfortunately, closed-loop systems encounters commu-

nication overheads as the NoC is utilised for the feedback communication between the RM and

slaves. In large-scale platforms, the RM communication overhead due to system monitoring

feedback can cause network congestion and eventually lead to severe performance bottlenecks

and increase interconnect power consumption.

Unlike closed-loop systems, in open-loop resource management, the PEs/network do not

send back state/monitoring information back to the RM. In open-loop management, the RM

may instead keep track of previous management decisions. The tracked information and predic-

ted/worst-case timing properties and characteristics of the workload can be combined to then

estimate the current state of the system and thereby arrive at future task allocation and sched-

ules. The lack of feedback monitoring loop removes the RM communication overhead in open-

loop resource management systems leading to better scalability but the RM can have inaccurate

view of the system. Open-loop many-core resource management has not had much attention

in the literature; however, many of the task allocation and management techniques presented

in this work focuses on open-loop management.
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2.3.3 Dynamic task mapping

This section first explains the notion of many-core task mapping. Next, an overview of design-

time, static mapping techniques are given and their unsuitability in managing dynamic work-

loads are discussed. Dynamic task mapping techniques are then introduced and an in-depth

review of the state-of-the-art dynamic mapping heuristics is presented.

Multi/many-core task mapping is an important issue which has a rich body of literature and

different taxonomies classified in surveys [30, 168, 169]. Applications are assumed to be par-

titioned and parallelised into tasks or data-level components. Task graphs (TG) and data-flow

graphs (DFG) are common forms of analytical tools to represent applications. The nodes in a TG

represents computational tasks and edges indicate communication and dependencies between

two tasks. Figure 2.15 illustrates this process of application to TG partitioning and mapping onto

a many-core system. Task clustering can be performed during mapping, for platforms that sup-

port multitasking. Inter-task communication is carried out via the NoC. Finding the best task

placement to optimise on one or more performance metrics (e.g. throughput, deadline misses,

energy etc.), can be reduced to a quadratic assignment problem, which is a well known NP-hard

problem [170].
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Figure 2.15: Illustration of task to PE mapping

Static task mapping algorithms (also referred to as design-time/offline mapping) are used

when the application and platform characteristics are known a priori. Static mapping tech-

niques prune the mapping solution space to find the best placement of tasks on the NoC. The

quality of the mappings given by static approaches may be superior to dynamic mapping, which

do not have a complete view of the platform and workload. Optimisation techniques such as in-

teger linear programming (ILP) can be used to find an optimal mapping solution for small prob-

lem sizes (i.e. small number of tasks and cores) [171]. Search-based techniques such as genetic

algorithms (GA) have also been successfully used to find schedulable mapping configurations

for hard real-time systems [172]. In [173], Schmitz et al. use a GA to obtain an energy-efficient

task mapping configuration on dynamic voltage-scaling enabled PEs, that adheres to specified

timing constraints. Whilst their GA fitness function takes into account the power dissipation

and communication time of inter-task communication, they do not consider timing character-

istics related to network contention. Genetic algorithms can also be easily parallelised, giving

the ability to search large problem sizes; however, their solution cannot be guaranteed to be

optimal. Branch and bound (B&B) algorithms have also been used to perform static task map-

ping for NoCs [174]. B&B algorithms first construct a tree structured solution space, which are

then topologically searched whilst bounding un-allowable solutions. Deterministic search time
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however grows exponentially with the size of the problem [168].

Static mapping techniques cannot be used for workloads with unknown/unpredictable char-

acteristics. Due to the large optimisation overhead of static mapping approaches, they also

are not feasible to be used at runtime. The work presented in this thesis considers dynamic

task mapping to manage the video decoding workload not known at design time, hence a de-

tailed survey of static mapping techniques will not be provided. Interested readers can refer

to [30, 168], for a comprehensive review of static mapping approaches.

When the workload is unknown at design time and/or unpredictable, dynamic task map-

ping (also referred to as runtime/online/on-the-fly mapping) techniques need to be used. The

task allocation needs to adapt to available resources, unforeseeable application and platform

changes. Therefore, these greedy algorithms use heuristics to determine the task-to-PE map-

ping at runtime in order to optimise one or more conflicting goals such as energy consumption,

execution time, communication latency, reliability and schedulability. As they are executed at

runtime, it is mandatory that they are low in complexity and must scale well for larger NoC and

task-set sizes, whilst maintaining a good mapping quality.

In this context of this thesis, Table 2.3 summarises the state-of-the-art dynamic resource

management (mapping and remapping) techniques according to the following criteria: 1) in-

terconnection and architecture type; 2) resource management approach; 3) was task migration

or re-allocation performed?; 4) key metric in the mapping heuristic; 5) optimisation goal; 6)

target/evaluated application type; 7) evaluation platform and 8) novelty of the technique. The

following sub-sections provide a deeper review into the techniques given in Table 2.3, specifi-

cally focusing on the novelty of the intelligent heuristics used in the runtime mapping process.

2.3.3.1 Simple bin-packing dynamic mapping heuristics

Several early work in partitioned multiprocessor scheduling considered applying bin-packing

heuristics such as first fit (FF), best-fit (BF), next-fit (NF), worst-fit (WF), combined with ED-

F/RMPO to address the task mapping problem [118]. These heuristics are simple to implement,

however they assume independent tasks and the utilisation-based schedulability tests are pes-

simistic. There exists variations of these packing heuristics such as FF-decreasing (FFD), where

tasks are first sorted according to their utilisation/weight and then allocated. In [34], the FFD

allocation heuristic is combined with clustering of heavily communicating tasks to decrease

the number of PEs and communication bandwidth used. First-free node (FFN) and nearest-

neighbour (NN) are also two simple heuristics introduced by Carvalho et al. [32]. FFN starts at

node (0,0) and simply assigns tasks to the next free node in a column-wise fashion. NN searches

for a free/available node in close proximity to the requesting task; the search area is increased

spirally with 1-hop increments.

2.3.3.2 Load-balancing dynamic mapping heuristics

Load imbalance between PEs and poor locality of tasks are two major factors which can cause

utilisation hot-spots in the system. This could lead to PE failures due to thermal implications,

performance degradation and affect latency [31, 37]. Huang et al. [39] use a modified FFD algo-

rithm to perform load balancing whilst ensuring tasks are still schedulable. Tasks from cross-

domain HRT applications are first sorted in decreasing order of their resource usage, (a com-

bination of WCET, memory and bandwidth consumption metrics) and allocated to PEs which

are sorted in ascending order of resource utilization. Mapping equal number of tasks to each

51



2.3. RESOURCE MANAGEMENT IN MULTICORE PLATFORMS

PE does not necessarily lead to a good load-balance, due to the variation in task execution cost.

Brinkschulte et al. [164, 175] show that by considering the suitability of tasks to heterogeneous

PEs, the distance between communicating tasks can give up to 20% improvement over a simple

equal task-to-PE mapping approach. Mandelli et al. [27] propose a runtime mapping heuristic,

which maps the initial task of a DAG based TG to the center of the NoC region with the low-

est mean PE load. An incremental region search technique is employed to find a low-utilised

placement for non-initial tasks. Their approach is evaluated on general-purpose synthetic and

MPEG decoding applications to provide a well-balanced workload distribution whilst reducing

communication volume. However, the approaches in [27, 37, 39] assume an accurate value of

the new task’s communication and computation budgets are known at runtime.

2.3.3.3 Communication/congestion-aware dynamic mapping heuristics

An unoptimised mapping may place communicating tasks away from each other, increasing

communication latency, network traffic and congestion. Several NoC communication and cong-

estion-aware heuristics are introduced by Carvalho et al. [32] to reduce the maximum and av-

erage load in the network as well as to obtain an even distribution of communication load and

reduce packet latency. Their proposed, best neighbour (BN) heuristic, spirally searches a neigh-

bour PE to map communicating tasks; the path load cost function is evaluated to determine

the mapping which gives the lowest congestion out of the neighbours in the four directions.

Singh et al. [154] extend the work in [32], to include PEs that can accommodate multiple tasks.

In their approach, if two communicating tasks are mapped on the same node, then the NoC

would not be used for that particular inter-task communication, thus leading to less congestion

and communication volume. They evaluate a range of metrics such as total execution time, total

platform energy consumption, average channel load, average packet latency; the effect of CCR

variation in workload is also investigated. Kaushik et al. [33] present a runtime, pre-processing

heuristic which takes the application TG as input and tries to minimize the communication la-

tencies among tasks while simultaneously trying to balance the processing load on the PEs. The

pre-processing algorithm is presented in Algorithm 2.1; the first phase merges the TG nodes

together as long as their communication load is higher than computation load; the second

phase performs load-balancing by merging the nodes in the updated TG. The reduced TG is

then mapped on to the PEs in using NN as a heuristic. Their results on a cycle-accurate, 5×5
simulated NoC show 33% reduction in total execution time, 37% reduction in resource usage

and 40% reduction in energy consumption compared with a communication-aware mapper,

for generic synthetic workload as well as a MPEG-4 decoder. However, the runtime overhead of

their algorithm is not given in their evaluation results. As seen in Algorithm 2.1, their technique

relies heavily on operations on the application TG (e.g. node merging and searching), which

may be slow on large TGs.

Network contention has a negative effect on network latency and performance. With the in-

crease of concurrent task-graphs or applications being executed on-chip, communication den-

sity and network contention will arise. According to the classification in [176], internal con-

tention occurs when tasks of the same application occupy the same network channel; external

contention occurs when tasks of different applications occupy the same network channel. When

TGs are mapped contiguously, external contention is minimized but internal contention is in-

creased; and vice-versa for non-contiguous allocations. However, two overlapped edges will

not always lead to congestion, if they do not share the same channel at the same time. In [176],
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Algorithm 2.1: Communication and computation-aware graph pre-processing algorithm
(taken from [33])

Input : TG(T,E)
Output: Optimized TG(T,E)
/* Phase - I */

1 repeat
2 Find node ti ∈ T having maximum computation load maxpload from TG(T,E);
3 Find edge ei ∈ E having maximum communication load maxcload from TG(T,E);
4 if maxpload < maxcload then
5 Find computation load of connecting nodes tp & tq of edge ei, i.e. pload(tp) and pload(tq);
6 if (pload(tp)+ pload(tq))≤ maxcload then
7 Merge tp & tq to a single node if their mem. req. are satisfied ;
8 Update TG(T,E) ;
9 else

10 break; // goto second phase for optimization, i.e. start from step 13

11 end
12 end
13 until maxcload > maxpload ;

/* Phase - II */
14 repeat
15 Find communicating nodes ti and t j having minimum computation loads pload(ti) and pload(t j)

from updated TG(T,E) ;
16 if (pload(ti)+ pload(t j))< maxpload then
17 Merge ti & t j to a single node if their memory requirements are satisfied and update TG(T,E) ;
18 end
19 until maxcload > maxpload ;

in order to minimize the internal/external contention and communication cost, convex/near-

convex regions are formed to map the application, and combined with user-level characteristics

such as application periodicity, criticality and communication rate. However, the authors only

consider a single task per PE and assume exact task communication costs are known.

Fattah et al. [177] attempt to reduce contention for heterogeneous multi-tasking platforms

by keeping the mapping area of an application rectangular and carefully choosing where to map

the first task. The task with the largest number of edges are mapped to the PE with the largest

number of available neighbour PEs, keeping the mapped area as square as possible, to prevent

fragmentation. Experiments showed 16% improvement over the allocation method in [176], but

computationally more expensive than FF or NN. Similarly, Haghbayan et al. [178], address the

first node selection problem (i.e. finding the first PE, around which an application/TG can be

mapped). They divide the network into different sized squares to fit potential applications of

different sizes; each square region is weighted and searched for a suitable fit to the new applica-

tion in terms of a unified metric (spatial availability, dispersion and internal congestion). For a

large 12x12 network, considering synthetic general-purpose and video processing applications

(max 20 tasks in each TG), their method showed 21-28% reduction in congestion and disper-

sion over the state-of-the-art runtime task mappers. The work in [177], is extended in [179], by

modelling the application as multiple rectangles and using a reduced complexity hill-climbing

algorithm to find an allocation region. Their work reduced the average allocation fragmentation

and communication cost for synthetic traffic, for heavily utilised scenarios.

2.3.3.4 Energy/power/thermal-aware dynamic mapping heuristics

Many mapping approaches have focused on reducing the energy consumption in the system,

whilst maintaining acceptable performance. Energy consumption in a MPSoC is mainly due
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to computation by the PEs and NoC communication. The volume and path distance of a mes-

sage flow is directly related to communication energy consumption and hence, energy can be

reduced by mapping communicating tasks close together or on the same PE [155,180]. In [180],

the task mapping search is conducted in a bounded network region, to minimise the commu-

nication energy; where, communication energy is modelled using the bit-energy metric given

in [174]. The bounded region is increased by 1-hop if a suitable PE is not found. In [38] the work

is extended by a clustering phase where tasks that exchange a high volume of communication

is grouped together and placed on the same PE. Both techniques in [38,180] are evaluated using

image/video processing applications including MPEG4 decoding with functional-parallelism.

Castilhos et al. [37] present a hierarchical runtime management and energy monitoring tech-

nique to obtain processor and NoC energy data at runtime. The global manager selects the

cluster with the lowest accumulated energy to map an incoming application to; similarly within

the clusters, the cluster manager selects the PE with the lowest energy consumption to map the

initial task to.

In many of the existing work in NoC energy/power-aware dynamic task mapping, the heuris-

tics use power macromodels to estimate the NoC dynamic power consumption. In [174] a

bit-level NoC energy model is presented which takes into account the energy consumption of

NoC links and routers between source and destination nodes. A comprehensive dynamic power

model for a wormhole switched NoC is presented by Palesi et al. [181] and is shown in Eq. 2.7,

where the power dissipated by the routers (Pr), network interface (Pn) and links (Pl) are taken

into account. The h and f terms in Eq. 2.7, denote the number of hops between source and

destination and the number of flits in the message flow. The model assumes that the power

required to transmit a header and data flit is the same. In [181], the absolute power values of

Pr,Pn and Pl are assumed to be 5.7mW, 5.3mW and 5.23mW respectively, where the buffers, ar-

bitration, routing etc. are taken into account in Pr. It can be seen from Eq. 2.7, that the number

of flows, their size (number of flits/bytes), and the route length all contribute and are directly

proportional to the NoC power consumption.

Pm =
[
(h+1)( f +1)Pr

]
+
[
2( f +1)Pn

]
+
[
h( f +1)Pl

]
(2.7)

Certain work has considered reducing the power dissipation of PEs by employing dynamic

voltage and frequency scaling (DVFS) and shutting down idle PEs or leading certain areas of the

silicon inactive (termed Dark Silicon) [28,67]. In [67], compile time analysis is used to support a

runtime mapping technique, which first assigns the minimum number of PEs to an application

such that a throughput constraint is satisfied. Remaining PEs are given to applications which

achieve the most energy saving with an additional PE. If the amount of available PEs are not

sufficient for the application, then DVFS is employed to minimise the PE energy consumption.

However, they do not allow processor sharing which could lead to under-utilised resources. A

multi-objective control theoretic approach is explored in [28], to allocate sufficient power to

applications at runtime, whilst improving throughput. Different metrics such as the NoC router

and PE power measurements, buffer utilisation and application injection rate are fed into the

resource manager periodically, to perform DVFS and per-core power-gating. Their technique

protects the system from overshooting from power consumption when new applications enter

the system. Evaluations are carried out on cycle-accurate simulators using generic synthetic

workloads.
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Efficient on-chip thermal management is also a concern in multicore systems as thermal

hotspots and elevated operating temperatures can lead to device wear-out and failures. In [182],

multicore thermal management has been addressed by using runtime learning algorithms as-

sisted by on-chip temperature sensors. The learning agent adapts to workload variations and

selects efficient thread-to-core mappings and CPU frequencies. For a set of multimedia appli-

cations, their method demonstrated 2-3 times lower system mean time to failure and up to 11%

reduction in energy consumption.

2.3.3.5 Timing constraints aware dynamic mapping heuristics

Many of the dynamic mapping techniques that need to provide HRT guarantees perform sim-

ple utilisation based tests [34, 39, 163]. They determine if a processor will be overloaded for a

given set of mapped tasks. For example, Liu and Layland [115] showed that for their task model,

according to RMPO, the sufficient schedulabulity test is as given in Eq. 2.9; where utilisation is

calculated as per Eq. 2.8. ci is the task WCET, ti is the task period and n denotes the number of

tasks mapped to the target PE. In [163], both processor utilisation and communication band-

width restrictions are considered when mapping tasks on a NoC platform. Both [39] and [34],

assumed a TDMA arbitrated communication network in the target hardware platform. How-

ever, as outlined in Section 2.3.1.3, utilisation based tests are sufficient but not necessary to

guarantee HRT constraints [118]. Furthermore, unlike RTA-based tests they do not take into

account task blocking and do not offer a schedulability result for an individual task. HRT sys-

tems that perform RTA require knowledge of certain task characteristics (e.g. WCET, priority,

deadlines, periodicity, etc.) in order to guarantee schedulability. If the variance between the

WCET and the observed execution time is large, then the system can be under utilised. Further-

more, response-time calculations such as in Eq. 2.5 contains recurrence relations and ceiling

operations which incur large execution overhead, and hence the schedulability test needs to be

efficient to be able to use online.

PE worst-case utilisation: U(PEi) = ∑
i=1..n

[
ci

ti

]
(2.8)

RMPO schedulability bound: U(PEi)≤ n(21/n−1) (2.9)

Dziurzanski et al. [134] perform approximate schedulability tests to reduce the number of

exact RTA executions. RTA is performed per task to core mapping, to ensure hard deadlines can

be met. In their approach the slack value of executed jobs are monitored and used within a

feedback controller to improve future admission rates. In [158], SRT tasks have been mapped

to PEs that have the highest amount of average slack, where the PE slack values are periodically

monitored. Ali et al. [183] propose a critical-path first heuristic which attempts to maximise

the system utilisation and minimise the end-to-end WCRT of DAG based applications. In their

method, all possible paths are extracted from the DAG and mapped according to the order of

cumulative weight of the path. However, their utilisation analysis does not capture the dynamic

offsets introduced by task precedence constraints and they assume a simple NoC model with

high bandwidth and no contention.
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2.3.3.6 Runtime mapping techniques for video processing

Many of the previously discussed dynamic task mapping approaches are evaluated on multime-

dia related benchmarks (e.g. [27, 154, 155]). However, they are general-purpose mapping tech-

niques applicable to a range of application types. Several task mapping work have represented

applications using dataflow models of computation (e.g. [31, 34, 151, 183]) which are suited to

represent streaming multimedia applications; however, these techniques target generic stream-

ing workloads and do not exploit characteristics of video processing workloads (e.g. depen-

dency structures, execution patterns, data communication volumes etc.).

The default behaviour of popular multi-threaded video decoders such as ffmpeg [184], is to

spawn as many threads as there are processing cores on the platform and allow the operating

system load balance the cores. A similar approach is taken in [185], where the OS is allowed

to map HEVC CTU-level decoding threads on a 12 core system. They observe a saturation in

speed-up as the number of threads exceed 8 due to context switching and scheduling overhead.

Using profiled information, they are able to analytically derive the minimum number of cores

required for a decoding task. Pal et al. [186] propose a dynamic core allocation technique for

H.264 slice-level parallel decoder. Each frame is decoded using multiple threads/cores, based

on the amount of remaining slack or overshoot of decoding time, the number of cores utilised

in the system is dynamically varied to save energy. In [61], slice-level parallel video decoding

is carried out, where decoding tasks are not migrated between cores. Stream parsing, map-

ping and filtering tasks are handled by a single master core and slave cores decode the slices in

parallel with goal of minimising the decoding time. In their model they assume fixed GoP de-

pendency structures, bus-based interconnects and shared-memory communication. A similar

master-slave approach is employed in [100], where at runtime a dispatching core waits until an

idle signal is received from slave cores, before dispatching the reference frame data and com-

pressed frames to a slave core for processing. However, they assume a circuit-switched NoC

which could lead to low network utilisation. Blanch et al. [149] introduce several video decod-

ing, task allocation and selection heuristics based on earliest PE availability and task execution

costs. Current frame decoding costs are predicted using previous frame execution costs. Eval-

uations of their techniques of multiple stream decoding on heterogeneous PEs are carried out

via simulation.

Khan et al. [146, 187] jointly consider workload balancing and power reduction when map-

ping HEVC encoding Tiles to homogeneous cores connected by a NoC. They use a FFD bin

packing heuristic to maximise the utilisation of the cores whilst minimising the number of cores

used. Unlike in [61], their allocation method assumes multiple Tiles can be assigned to a single

core, to avoid idle cores. PE frequency and the number of PEs required is adapted to sustain the

timing constraints (i.e. frame rate) and application power budget, during HEVC encoding [146].

They continuously monitor the frame-rate of a video in order to determine if more or less power

should be given to that encoding thread.

2.3.3.7 Hybrid mapping approaches

Static mapping approaches cannot cope with dynamic workloads, and online mapping ap-

proaches that use heuristics cannot be computationally expensive hence the mapping solutions

are of lower quality. In hybrid mapping approaches, multiple mapping solutions are derived at

design time using computation expensive optimisation approaches, and then applied during

runtime considering the workload and resource availability. For example, in [31, 188] a design
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space exploration (DSE) is conducted offline of different mappings and corresponding applica-

tion throughputs and energy consumption values; each of the DSE points are then stored in a

database. In [188], the design space is pruned, and inefficient mappings are discarded. In [31],

the mappings are classified according to workload scenario/mode groups. For each application,

the stored mappings are searched at runtime to find a configuration which satisfies the through-

put constraint and uses the minimum number of processors. The hybrid mapping technique

by Jung et al. [67] can support intermittent processor failures, hence supporting a higher degree

of runtime variability. In [189], the hybrid mapping approach takes into account the shared re-

source contention. An offline DSE stage is coupled with a formal performance analysis which

verifies real-time guarantees. The survey by Singh et al. [30] presents more examples on hybrid

mapping techniques. Hybrid approaches can still be inefficient if the application behaviour is

too dynamic and the design-time knowledge is limited. Also, it can lead to high runtime and

memory usage overhead for storing and searching all the optimal mapping solutions derived at

design time.

2.3.4 Runtime task re-allocation

Task re-allocation (also referred to as task migration/remapping) is the process of adaptively

changing a task’s PE mapping at runtime. Adaptive systems perform task migration/remapping

at runtime to improve metrics such as performance, energy savings, load balance, to circum-

vent system faults etc. A distributed, scalable, task migration policy to avoid thermal hot-spots

and workload imbalance in many-core systems is presented in [190]. Each core decides if a mi-

gration to a neighbouring core, is beneficial or not in a decentralised manner. Derin et al. [191]

consider the problem of task remapping when a faulty core has been detected in the system,

for improving fault-tolerance, and to continue operating under degraded performance. When

remapping a task in a faulty core, they attempt to remap communicating tasks together, as long

as the destination node is not overloaded. However, they do not take into account the migration

overhead when deciding to remap a task. In [31], the system continuously monitors the work-

load execution to identify performance problems, due to bad initial mapping (i.e poor locality

and/or load imbalance); migration is performed to improve the performance and energy saving.

They propose to remap a video frame decoding task only after it has finished processing a frame,

such that migration overhead can be minimised. Holmbacka et al. [192] use a middleware-

based migration framework to reduce the system power dissipation whilst maintaining required

video decoding QoS levels. Similar to [31], in [192], explicit migration positions are marked in

the application code to achieve migration predictability. Harbin and Indrusiak [193], present

a dynamic task remapping approach to reduce the network traffic contention, thereby reduc-

ing flow latencies and power consumption in a non-preemptive NoC. In their approach, each

NoC router keeps track of flow contention and relays this information to a central management

core. The central manager then periodically reallocates the tasks according to a congestion-

aware heuristic. Tasks with high level of communication are mapped closer together or on the

same PE. However, they do not model the overhead of migration and/or remapping process,

and intentionally keep the remapping period relatively long to reduce the overheads.

Task migration incurs different overheads based on the implementation, system architecture

and communication model. Migration costs are largely dominated by additional interconnect

congestion as the task size increases [194]. If a NoC-based distributed memory architecture
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with message-passing communication is used, then the task code, data contained in the mem-

ory page, and task context has to be transmitted over the NoC from the source PE local memory

to the target PE’s local memory [195]. Once the transfer has been completed the task has to be

re-scheduled in the target PE and all tasks communicating with the migrated tasks should be

notified of its new location. Betting and Brinkschulte [196] analytically derive worst-case over-

head costs for their decentralised migration process which includes the steps: task termination

at source, context transfer, restore procedure at destination, waiting until ready to run and any

jitter involved in these functions. However, in [192], the authors assume a shared memory ar-

chitecture where only a pointer to the task handle needs to be physically moved; hence, the task

size or migration distance does not influence the migration overhead. In [194], a replica of the

task is available in each core and registered in each local OS; only one replica of the task can be

run at a time. When migration is needed, the running task is suspended in the source PE and

resumed in the destination PE along with the task-context of the migrated task. This method

has low migration overhead but wastes local memory to store task replicas.

58



CHAPTER 2. LITERATURE SURVEY

Ta
b

le
2.

3:
Su

m
m

ar
y

o
fs

ta
te

-o
f-

th
e-

ar
ti

n
d

yn
am

ic
ta

sk
m

ap
p

in
g/

re
m

ap
p

in
g

te
ch

n
iq

u
es

fo
r

m
an

y-
co

re
s

R
ef

.
In

te
rc

o
n

n
ec

t
A

rc
h

.
R

M
M

ig
.

K
ey

m
et

ri
c

in
h

eu
ri

st
ic

G
o

al
s

A
p

p
li

ca
ti

o
n

s
E

va
l.

N
ov

el
ty

[1
83

]
N

o
C

,T
D

M
A

(–
)

H
o

m
.

C
en

t.
N

o
U

ti
l.-

b
as

ed
sc

h
ed

u
la

b
ili

ty
,s

p
ir

al

se
ar

ch

M
ax

im
is

e
re

so
u

rc
es

,r
ed

u
ce

en
d

-t
o

-e
n

d
W

C
R

T

Sy
n

th
et

ic
(s

tr
ea

m
in

g

ap
p.

)
H

L
si

m
.

C
ri

ti
ca

lp
at

h
h

eu
ri

st
ic

[1
51

]
B

u
s

(–
)

H
o

m
.

C
en

t.
N

o
Fi

rs
t-

fi
t

La
te

n
cy

,M
in

im
is

e
re

so
u

rc
es

Sy
n

th
et

ic
(s

tr
ea

m
in

g

ap
p.

)
H

L
si

m
.

C
SD

F
gr

ap
h

sc
h

ed
u

li
n

g

[1
49

]
B

u
s

(–
)

H
et

.
C

en
t.

N
o

E
ar

lie
st

av
ai

la
b

le
P

E
,E

ar
lie

st

co
m

p
le

ti
o

n
ti

m
e

M
in

.f
ra

m
e

d
ea

d
lin

e
m

is
se

s,

th
ro

u
gh

p
u

t,
vi

d
eo

q
u

al
it

y
M

u
lt

i-
vi

d
eo

d
ec

o
d

in
g

H
L

si
m

.
E

xe
c.

p
re

d
ic

ti
o

n
,

fr
am

e
p

ri
.a

ss
ig

n
m

en
t

[1
55

,

17
6]

2*
N

o
C

(d
at

a+
co

n
tr

o
l)

H
o

m
.

C
en

t.
N

o
M

an
h

at
ta

n
d

is
t.

,P
E

av
ai

l.
C

o
m

m
.c

o
st

,e
n

er
gy

,e
xe

c.
ti

m
e,

co
n

te
n

ti
o

n
re

d
u

ct
io

n
Sy

n
th

et
ic

H
L/

LL
si

m
.

R
eg

io
n

se
le

ct
io

n

U
se

r-
aw

ar
en

es

[3
2]

N
o

C
,R

R
ar

b.
H

et
.

C
en

t.
N

o
Pa

th
lo

ad
,P

E
av

ai
l.,

h
o

p
d

is
t.

Pa
ck

et
la

te
n

cy
,c

h
an

n
el

lo
ad

,

ex
ec

.t
im

e,
m

ap
p

in
g

ov
er

h
ea

d
,

en
er

gy

Sy
n

th
et

ic
,

m
u

lt
im

ed
ia

(i
n

c.

M
P

E
G

-4
)

R
T

L
si

m
C

o
m

m
u

n
ic

at
io

n
-

aw
ar

en
es

s

[1
34

]
N

o
C

,p
ri

o
ri

ty

ar
b.

H
o

m
.

C
en

t.
N

o
Sc

h
ed

u
la

b
ili

ty
(R

TA
),

sl
ac

k
D

ea
d

lin
es

m
is

se
s,

m
ap

p
in

g

ov
er

h
ea

d

Sy
n

th
et

ic
H

P
C

w
o

kl
o

ad
s

T
LM

si
m

.
C

o
n

tr
o

lt
h

eo
ry

,H
R

T

[1
77

]
N

o
C

,

ra
n

d
o

m
ar

b.
H

o
m

.
C

en
t.

N
o

P
E

av
ai

l.
N

et
w

o
rk

co
n

te
n

ti
o

n
re

d
u

ct
io

n
Sy

n
th

et
ic

C
A

C
C

si
m

.

F
P

G
A

F
ir

st
-t

as
k

&
n

o
d

e

se
le

ct
io

n

[1
78

]
N

o
C

,

ra
n

d
o

m
ar

b.
H

o
m

.
C

en
t.

N
o

P
E

av
ai

l.,
d

is
p

er
si

o
n

,c
o

n
ge

st
io

n
A

vg
.p

ac
ke

tl
at

en
cy

,c
o

n
ge

st
io

n
,

en
er

gy

Sy
n

th
et

ic
,

m
u

lt
im

ed
ia

(i
n

c.

M
P

E
G

-4
)

C
A

C
C

si
m

.
N

et
w

o
rk

p
ar

ti
ti

o
n

ed

se
ar

ch

[3
9]

N
o

C
,T

D
M

A

(–
)

H
et

.
C

en
t.

N
o

F
F

-d
ec

re
as

in
g,

u
ti

l.
te

st
R

es
o

u
rc

e
u

ti
lis

at
io

n
,e

xe
c.

ti
m

e
Sy

n
th

et
ic

H
L

si
m

.

Fe
ed

b
ac

k-
b

as
ed

in
st

an
ta

n
eo

u
s

u
ti

li
sa

ti
o

n
te

st
s

[1
85

]
B

u
s

(–
)

H
o

m
.

C
en

t.
B

o
th

P
ip

el
in

e
o

n
P

E
s,

es
t.

ex
ec

.t
im

e
Fr

am
er

at
e,

ex
ec

.t
im

e,
re

so
u

rc
e

u
ti

lis
at

io
n

R
ea

lH
E

V
C

vi
d

.

st
re

am
s

H
W

H
yb

ri
d

H
E

V
C

p
ar

al
le

li
sa

ti
o

n

[6
7]

N
o

C
,R

R
ar

b.
H

o
m

.
C

en
t.

Ye
s

M
in

.P
E

s,
th

ro
u

gh
p

u
tc

o
n

st
ra

in
t,

en
er

gy
sa

vi
n

gs
E

n
er

gy
,f

ra
m

e
ra

te
Sy

n
th

et
ic

M
u

lt
im

ed
ia

(i
n

c.
H

.2
64

d
ec

o
d

in
g)

C
A

C
C

si
m

.
H

yb
ri

d
m

ap
p

in
g

[3
3]

N
o

C
,R

R
ar

b.
H

o
m

.
C

en
t.

N
o

Ta
sk

cl
u

st
er

in
g,

ta
sk

co
m

p.
an

d

co
m

m
.l

o
ad

E
xe

c.
ti

m
e,

lo
ad

b
al

an
ce

,

re
so

u
rc

e
u

ti
l.,

en
er

gy

Sy
n

th
et

ic
,

m
u

lt
im

ed
ia

(i
n

c.

M
P

E
G

-4
)

C
A

C
C

si
m

.
T

G
cl

u
st

er
in

g

[1
00

]
N

o
C

,T
D

M
A

H
o

m
.

C
en

t.
N

o
Pa

ra
lle

li
sm

d
eg

re
e,

b
al

an
ci

n
g

co
m

p.
an

d
co

m
m

.d
el

ay
Fr

am
er

at
e,

ex
ec

ti
m

e

M
u

lt
i-

vi
ew

H
.2

64

d
ec

.

(f
ra

m
e/

vi
ew

-p
ar

al
le

l)

H
L

si
m

.
U

se
s

m
es

sa
ge

p
as

si
n

g.

D
SE

[6
1]

B
u

s
(–

)
H

o
m

.
C

en
t.

N
o

P
la

t.
/a

p
p.

co
n

st
ra

in
ts

.C
P

U
fr

eq
.;

sl
ac

k

A
vg

.p
ow

er
p

er
P

E
,d

ea
d

lin
e

m
is

se
s

Sl
ic

e/
fr

am
e-

le
ve

l

p
ar

al
le

lv
id

.d
ec

o
d

in
g

H
L/

C
A

C
C

si
m

.
H

yb
ri

d
m

ap
p

in
g

[3
4]

B
u

s,
T

D
M

A

(–
)

H
o

m
.

C
en

t.
N

o
F

ir
st

-fi
t,

ta
sk

cl
u

st
er

in
g

R
es

o
u

rc
e

u
ti

l.,
b

an
d

w
it

h
sa

vi
n

g
Sy

n
th

et
ic

H
L

si
m

.
H

R
T

co
n

si
d

er
at

io
n

59



2.3. RESOURCE MANAGEMENT IN MULTICORE PLATFORMS
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CHAPTER 2. LITERATURE SURVEY
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2.4 Summary

This chapter presented a literature survey on three domains: parallel video decoding appli-

cations; challenges faced in many-core platforms in achieving both predictability and perfor-

mance; and the state-of-the-art in dynamic resource management for many-core platforms.

Firstly, a basic overview of video encoding and decoding is presented in Section 2.1.1, before

moving on to more complex encoding principles used in modern codecs (Section 2.1.2). With

each new generation of video codecs the decoding complexity of the videos also increases. As

discussed in Section 2.1.4 different parallelisation techniques are used to manage the decod-

ing complexity and achieve the required throughput. Many parallel processing approaches to

video decoding assume a shared memory, multi-threaded architecture which offer ease of im-

plementation and flexibility. However, they often face issues with performance scalability due

to main memory contention. In contrast, the embedded systems community (as discussed in

Section 2.3.3), often assume a distributed memory architecture when decoding video streams.

They also assume a functional-parallel partitioning approach to video decoding which is shown

by the video processing research community to be inferior to data-parallel decoding.

As shown in Section 2.1.3, the resources required to decode video streams vary consider-

ably based on the spatial and temporal properties in the video and the complexity of the differ-

ent coding tools used by the encoder. Due to this highly varying nature of video streams, it is

increasingly difficult to model/predict the complexity and resource requirements of video de-

coding workloads at design time (Section 2.1.5). Many of the existing models do not take into

account certain workload characteristics such as block-level variations, reference data patterns

and frame dependency structures. These properties are required when performing design space

exploration for communication-centric platforms such as NoC-based many-cores.

Network-on-chip interconnects, introduced in Section 2.2.1 are the de-facto form of inter-

connects in many-core platforms that offer improved scalability, power-efficiency and flexi-

bility over traditional bus-based interconnects. However, as applications become more data-

intensive, the complex dependencies between applications and tasks within the same applica-

tion cause network contention. Resource contention can limit application performance but,

more importantly, can be hazardous to real-time systems where predictability of network traf-

fic behaviour needs to be analysed and latencies bounded. As discussed in Section 2.2.2, ser-

vice guarantees in these systems typically are provided by resource reservation or response-

time analysis. The issues faced by many-core systems due to memory transactions and off-chip

memory traffic is discussed in Section 2.2.3. Many of the MPSoC platforms now have multi-

ple memory controllers on-chip. Efficient memory controller placement and data locality can

help to reduce memory traffic latencies. However, the assignment of application/task to mem-

ory controller to overcome memory traffic congestion and improve performance is still an open

problem.

The final section of the chapter surveys resource management methods for many-core plat-

forms, which involves admission control, scheduling, mapping and remapping of applications.

An overview of scheduling and response-time analysis for multiprocessor real-time systems

is first presented. Section 2.3.1.3 discusses the merits and drawbacks of deterministic, prob-

abilistic and feedback-based admission control systems in terms of predictability offered vs.

adaptability to dynamic workloads. Section 2.3.1.4 shows how previous work on video-centric

scheduling techniques can provide better performance and efficient use of resources than con-

ventional multiprocessor scheduling algorithms. In the last decade, considerable effort has
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been made to shift from a centralised resource management model to a hierarchical or fully dis-

tributed model to reduce monitoring overhead and improve scalability (Section 2.3.2). Out of

these efforts, bio-inspired, autonomous management techniques have shown to be a promising

research avenue for future large-scale adaptive systems. Many of the reviewed distributed man-

agement protocols have complex rules and communication protocols; several depend heavily

on architectural changes and only a few consider the low-level issues of communication, such

as network resource contention. Sections 2.3.3.1 to 2.3.3.7 discuss the state-of-the-art in heuris-

tic based runtime task allocation techniques for many-cores; a summary of which is presented

in Table 2.3. Runtime task mapping techniques are more suited for dynamic/unknown work-

loads as seen in live video decoding applications. Initial task to processor mapping can later be

further improved by adaptive remapping/migration techniques (Section 2.3.4).

Existing techniques in dynamic task mapping follow a closed-loop strategy, depending heav-

ily on monitoring information to guide a mapping heuristic. The periodicity of the monitoring

needs to be tuned to balance the traffic overhead and mapping quality. Most of the reviewed

techniques attempt to improve performance metrics such as load distribution, power/energy,

communication cost, congestion avoidance and average execution time. However, real-time

metrics such as task lateness, response-time or deadline misses are rare optimisation objec-

tives in dynamic task mapping. As seen in Table 2.3, many existing mapping heuristics consider

PE utilisation and network path load as a metric. Most of the existing work on resource allo-

cation considers simple yet unpredictable NoC arbitration and PE scheduling (e.g. RR, FCFS).

This makes it difficult to account for resource contention when performing dynamic task map-

ping. Furthermore, most existing techniques target a generic application model and do not

consider any application-specific task mapping heuristics to improve the mapping quality. This

motivates the proposal of new techniques that take into account both resource contention and

application awareness when designing a mapping heuristic.
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Chapter 3

Evaluation platform, metrics and

problem statement

This chapter presents the experimental platform and the metrics used to test the hypotheses of

this thesis (Section 1.3). This chapter first describes the application and platform models used

for evaluation. The application model is described in terms of its real-time properties, execu-

tion profile and arrival patterns. The platform model is defined in terms of its computation and

communication elements. Secondly, metrics used to evaluate the proposed resource manage-

ment techniques are defined. The metrics allow us to quantify the predictability, performance

and efficiency of the proposed techniques. Next the simulation-based evaluation methodology

is introduced, followed by an outline of the problem statement and objectives of this thesis.

3.1 System model

This section introduces the application and platform models which forms the basis of the ex-

perimental framework in this thesis. Assumptions made in the models are described with justi-

fication; certain model assumptions will be lifted in the following chapters.

3.1.1 Application model

This section outlines the multi-stream video decoding application model. As described in Sec-

tion 2.1.1, video frames can be of type: I (Intra), P (Predictive) or B (Bi-directional) encoded;

i.e. frame type denoted as ft = {I,P,B}. Video streams are assumed to be MPEG-2 encoded with

a fixed, independent, group-of-pictures (GoP) structure of IPBBPBBPBBBB (decoding order).

According to the MPEG-2 specification this 12 frame GoP structure is recommended to bal-

ance compression, facilitate reasonable random-access points in the stream and reduce error

propagation [43]. As discussed in Section 2.1.4, decoding a video stream can be performed at

different levels of functional and/or data granularities; each technique having their merits and

drawbacks. A frame-level data parallel video decoding approach is assumed, as it does not re-

quire stream instrumentation and it offers a balance between data dependent communication

and parallelism.

As shown in the system overview diagram in Figure 3.1, the application model has a hierar-

chical structure. At the top-most level are stream based workflows (Wi), each containing video

streams V Si with arbitrary number of N independent jobs, where a job is denoted as Ji. Video

streams have varying resolutions defined as res(V Si) = frame height×frame width. A job, repre-

sents an MPEG GoP and is modelled as a directed acyclic graph (DAG) with a fixed dependency

structure, as depicted in Figure 3.2. Each node in the task graph (TG) represents a real-time
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frame decoding task τi and edges represent traffic-flows (flows for short), denoted as Msgi, which

are reference data that needs to be sent to one or more dependent tasks (also referred to as child

tasks). The weight of a node in the TG is the frame-decoding computation cost and the weight

of an edge represents the amount of reference frame data. A task’s execution can only start iff

its predecessor(s) (also referred to as parent tasks) have completed execution and their output

data is available. As shown in Figure 3.2, certain tasks in the TG can be executed in parallel (e.g.

P4, B2, B3) if all the precedence constraints are met. A task-chain = {τ1,τ2, ...,τx} is a topolog-

ically ordered, non-repeating, set of nodes of the TG where each task sends a message flow to

the next task. In this work a task chain is also referred to as a simple path or path.
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Figure 3.1: System overview diagram
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P-frame decoding task
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Data dependency

Figure 3.2: MPEG GoP data precedence and task communication graph (weights are not shown in illustration)

A task τi is characterised by the following tuple: (pi, ti, xi, ci, at
i); where pi is the priority, ti is the

period, xi is the actual computation cost in terms of execution time, ci is the worst-case compu-

tation cost, at
i is the arrival time (also referred to as release time) of the task τi. A task will wait

for the dependent data to arrive before execution. Hence, wi denotes the waiting time and st
i,e

t
i

denotes the relative start and end times of execution. Tasks are sporadic, preemptive and have

fixed priority. Individual task deadlines are unknown; however, each job is considered schedu-

lable if it completes execution on/before its end-to-end deadline (De2e = |Ji|/ f ps). f ps denotes

65



3.1. SYSTEM MODEL

the frame rate of the video stream, which is assumed to be fixed at 25fps for all video streams,

and |Ji| denotes the number of tasks in a job (cardinality). A task upon completing its execution

sends its output (i.e. the decoded frame data) as a message flow to the PEs executing its child

tasks. A message flow, denoted by Msgi is characterised by the following tuple: (Pi, Ti, PLi, Ci);

where Pi is the priority, Ti is the period, PLi is the payload and Ci is the basic latency of message

flow Msgi. If one or more of a task’s children are mapped to the same PE, then only one data flow

is sent out in order to avoid flow redundancy. Flows inherit the ti and pi of the sender/source

task. The payload PLi of a message flow (also commonly referred to as communication volume)

is equivalent to the reference frame data size which is given by Eq. (3.1), where bpp refers to bits

per pixel.

Reference data payload: PLMsgi = res(V Si)×bpp (3.1)

3.1.1.1 Deriving the task execution cost

The computation cost of decoding a video frame and the payload of reference data message

flow will greatly depend on the temporal and spatial variations of the video stream. As explained

previously in Section 2.1.5.1, MPEG frame decoding time (xi) can be estimated by the block-level

model designed by Tan et al. [70]. Based on this model, xi is modelled as per Eq. (3.3), which is

an adaptation of Eq. (2.1). In Eq. (3.3), the number of type j blocks (denoted M j) is modelled

as a uniform random variable between {0,maxM j}, where maxM j as defined in Eq. (3.2), is the

maximum amount of blocks for a given video resolution.

Figure 3.3 shows the distribution of decoding time, per frame type, of 200 synthetically gen-

erated jobs (MPEG GoPs). The distributions show that P/B-frames have a larger range than

I-frames due to the lower amount of coding options used when decoding. Furthermore, I-

frames on average take longer to decode because I-frames have a high number of IDCT only

blocks which have a higher weighting. These distributions correlate well with previous MPEG

real video stream decoding analysis seen in [60]. As defined in Eq. (3.4), the WCET ci of a task

of type ft in a video stream is the maximum of all ft type task’s execution costs xi ; therefore

different frame types would have a different ci. The actual execution cost of the task xi, is un-

known to the system at runtime, and only the worst-case execution cost ci is known. In a real

implementation the ci can be estimated via offline execution profiling.

maxM j =
res(V Si)

block size
, (0 if block M j not enabled in frame type) (3.2)

xi = w0 +
9

∑
j=1

w j× rand(0,maxM j) (3.3)

ci( ft) = max{xi of τi∈V Si | frame type = ft} (3.4)

3.1.1.2 Task priority assignment

Assigning priorities to tasks not only enables the analysis of its timing properties (using tech-

niques such as RTA), it also guarantees higher priority tasks do not get interrupted during its

execution. The use of task priorities and fixed priority preemptive scheduling, is a design deci-

sion chosen to provide the video streams with a high level of timing predictability. Flows inherit
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Figure 3.3: Frame decoding time distribution of synthetically generated MPEG decoding workload (top: 230×180, bot-
tom: 720×576 resolution videos, 200 jobs each)

the priority of their source tasks. A higher pi value denotes a higher priority. Similar to the dy-

namic mapping schemes presented in this work, the priority assignment between different jobs

of the same video stream do not change. The same priority values are used for tasks in subse-

quent jobs of that stream. This type of policy combined with priority-preemptive scheduling,

enables us to analyse the worst-case timing properties of the video streams (as discussed in

Section 2.3.1.2).

In this initial application model tasks (i.e. frames) of a video stream are assigned fixed pri-

orities, randomly at design time with the following constraint. It is assumed the priorities are

provided by the application or software designer at design time. It should be emphasised that

the resource management approaches described in this thesis primarily focus on optimising

the placement of the tasks in the system independent to the priority assignment scheme. As

such the mapping techniques can work around any given priority assignment scheme. In fu-

ture chapters a more sensible priority assignment policy is used which is commonly seen in

video streaming applications. The problem of optimising priority assignment is out-of-scope to

this work.

3.1.1.3 Video/Job arrival rate

In certain HRT multi-stream video systems such as in [17], the number and start time of video

streams are fixed and known in advance. However, this may not be true for certain SRT multiple

stream decoding systems such as in [22], where video streams can start/stop arbitrarily. To gen-

eralise, the application model assumes the start and end time of a video stream V Si are arbitrary

and not known at design time. However, the model assumes two consecutive videos in the same

workflow have a random inter-arrival time as specified by Eq. (3.5). V Srate
min and V Srate

max are model

variables (units in seconds) that can be varied to control the temporal separation between two

consecutive videos.

Inter-video arrival time: rate(V Si) = rand(V Srate
min ,V Srate

max) (3.5)

As described in Section 2.1.5, video streams typically use VBR encoding to vary the bitrate
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according to the content. VBR has a user-specified maximum bitrate, which can be used to

represent the minimum inter-arrival time of consecutive frames (ignoring transmission delays).

This behaviour is adapted into the application model, such that the job arrival rate is assumed to

be sporadic with a known minimum inter-arrival time. In this work, the minimum inter-arrival

time of a job is assumed to be equal to De2e, where De2e = |Ji|/ f ps (the display rate). All tasks of a

job Ji are assumed to arrive at the same time instant; hence, all tasks in a job have equal periods

such that ti = De2e. The inter-arrival time of consecutive jobs, can therefore be modelled as per

Eq. (3.6). The parameters Jrate
min and Jrate

max are set to 1.0 and 1.3 respectively for all experiments in

this thesis. Decreasing Jrate
min , would increase the chance of new jobs arriving before the deadline

of the previous job has passed, and increasing Jrate
max can make the system more idle.

Inter-job arrival time: rate(Ji) = rand(Jrate
min ×De2e,Jrate

max×De2e), where {Jrate
min ,J

rate
max} ≥ 1.0 (3.6)

3.1.1.4 Workload profile

The workload profile of the system is characterised by the following various factors of the hier-

archical application model (Section 3.1.1) :

• The maximum number of simultaneous workflows (|W |).

• The maximum number of video streams in a workflow (|V S|).

• The inter-video (V Srate
min ,V Srate

max) and inter-job (Jrate
min ,J

rate
max ) dispatch rate : lower values of these

parameters can increase the number of parallel video streams decoded by the system.

• The spatial resolution of the video streams: according to Eq. (3.3), higher resolutions will

have higher computation requirements.

• The maximum number of jobs per video stream: larger number of jobs will result in long

running experiments.

The above factors can be combined to form a quantitative Workload factor WL as per Eq. (3.7).

A WL contains multiple workflows (W ) and each workflow contains multiple video streams V Si.

Total workload (WL) =
|W |

∑
Wi=0

|V S|

∑
V S j=0

res(V Si) (3.7)

3.1.2 Platform model

The many-core platform model is composed of P homogeneous PEs (e.g. CPUs) connected by

a mesh, NoC interconnect. The NoC platform model uses wormhole packet switching, fixed

priority preemptive arbitration, has a mesh topology and uses the static XY deterministic algo-

rithm for routing such as in [82]. The NoC link arbiters are priority-preemptive and as explained

in Sections 2.2.2 and 2.3.1.2, they offer means of calculating response-time upper bounds for

traffic flows under worst-case conditions.

The platform model assumes inter-PE communication is performed via the NoC by pass-

ing messages. Each PE has a priority-preemptive local task scheduler and local memory, which

contains a task’s queue and dependency buffer. The local memory is assumed to be sufficiently

large to hold multiple decoded reference frames. Modern stacked 3D NoC architectures such as
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in [197] have a separate layer in which memory cores are located. A PE has access to the mem-

ory core directly above it on the memory layer, using short through silicon vias (TSV). This type

of architecture can be used where large local memories are required. The PE upon complet-

ing a task’s execution, transmits its output (i.e. decoded MPEG frame data) to the appropriate

PE’s dependency buffer. A task can begin execution iff all its data dependencies have arrived

at the dependency buffer. Each task can only be executed on a single PE and migration is not

performed. If two tasks are mapped on the same PE it is assumed they do not need to com-

municate through channels of the NoC; hence the output of the source task will immediately

be available at the dependency buffer of its PE. Higher priority tasks that have all dependencies

fulfilled can interrupt already running lower priority tasks. Once a task finishes its execution the

local scheduler picks the next highest priority task with dependencies fulfilled, to be executed.

Once a task is released from a global input buffer, it is sent to the task queue of the PE, and

the respective PE notified via an interrupt. This preliminary version of the platform model does

not take into account the delay incurred during task transfer from global input buffer to PE local

task queue. The size of the global input buffer, task queue and dependency buffers are model

parameters.

3.1.2.1 Closed-loop resource manager

The initial model of the resource manager is assumed to behave in a closed-loop nature (a def-

inition of closed/open-loop resource management can be found in Section 2.3.2.5). The re-

source manager (RM) of the system in this thesis, has a range of duties in the system:

• Admission control: deciding which jobs/video streams to admit/reject

• Task mapping and priority assignment (MP&PR): Mapping tasks to the PEs and assigning

fixed priorities to the tasks/flows of the application.

• Task dispatching : transferring a task (code and data) from the global buffers to the PEs.

Therefore, the terms RM, task dispatcher (TD), mapper, admission controller (AC) are in-

terchangeable as they are all performed by one entity. It is assumed the RM does not execute

frame decoding tasks, it only performs resource management operations (such as mapping/ad-

mission control/dispatching etc.). Task dispatching involves the timely release of tasks from

the global input buffers to the PE task queues. Tasks are held in the global input buffers until

their parent tasks have completed execution and their output data is transmitted to the required

destination processing node. PEs will notify the RM via interrupts once a task has completed its

execution, so that the RM can release child tasks of the completed task. The job structure is fixed

and small, hence the overhead of searching for the child tasks is very small. Similarly, the RM

notification message payload is not more than 1-2 bytes, hence the notification communica-

tion overhead is assumed to be negligible. The RM keeps track of the admitted and active video

streams, their real-time task characteristics and the runtime task to PE mapping configuration

in the task mapping table.

3.1.2.2 Interference in the platform

Figure 3.4, illustrates the blocking behaviour in the platform, due to the priority preemptive PE

schedulers and NoC arbiters. Tasks and flows can get blocked by higher priority tasks and flows.

Figure 3.4(b) shows an example of the execution of MPEG frame decoding tasks I0,P1,B2 and B3
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Turn-around time for task P1

Figure 3.4: (a) End-to-end response time of a communicating task, showing tasks and flows being interfered. (b) Exam-
ple of 4 MPEG frame tasks executed over 3 processors

on 3 different PEs. I0 and P1 are mapped on PE0 and PE1 respectively, and both B2 and B3 are

mapped on the same PE - PE2. This example follows the data precedence task graph shown in

Figure 3.2. In this example B2 and B3 are assumed to be mapped on to the same PE; hence, only

a single flow is sent by I0 and P1 to the destination PE2, where the B-frame tasks are mapped.

However, B2 and B3 cannot start execution until PE2 receives the decoded frame data from P1. I0

and P1 both transmit multiple flows to their child tasks, however these flows cannot be sent in

parallel due to the local-link contention. The idle gaps in the PEs and network resources can be

exploited by executing tasks and flows from other streams in a pipeline fashion.

3.2 Metrics

Quantitative metrics not only help us to compare and evaluate different resource management

policies but can even be used within resource allocation heuristics. In this section the evalua-

tion metrics are described in a generic form, independent to the experimental platform. Rather

than choosing purely domain specific metrics, this work attempts to choose metrics that are

meaningful and comparable across the real-time and embedded systems domain. Metrics are

calculated from the raw measurements that are gathered during the experiment. The metrics

used in this thesis is classified into two primary objectives - predictability and utilisation-based

performance metrics. Additional secondary metrics - overhead and energy metrics are used to

quantify the management overheads and energy efficiency of the resource management poli-

cies respectively.
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3.2.1 Predictability metrics

Predictability metrics are related to timing properties of the workload that is executed by the

system. The resource allocation scheme can affect a task/jobs responsiveness, as certain map-

ping policies may cause higher latencies than others due to interference. In the case of HRT

systems, improving the schedulability of the system (i.e. reducing deadline misses) are impor-

tant. In the case of SRT systems, a few deadline misses are affordable but maximum and average

latencies need to be managed.

Task response time (observed): Contrary to execution cost, the response time of a task includes

the total time period from release time until the end of execution. This duration includes

the waiting time for all dependencies to arrive, the execution cost xi and the interference

caused by task blocking. The observed response time of the task should not be confused

with ri, in Eq. (2.2) which is the analytical worst-case response time of a task. For exam-

ple in Figure 3.4(b), rI0 = 6.5, rP1 = 16.5 and rB2 = 21.5 units. The notation rI0 denotes the

response time for the I0 frame decoding task. The end-to-end response time of I0, which

includes the flows emitted by I0, is 13.5 from the dispatched time.

Flow response time (observed): This is the duration between flow transfer start and comple-

tion. It includes the blocking time due to the interference from direct/indirect flow inter-

ferers. In Figure 3.4(b), flow I0 → P1 has a basic latency of 2.5 time units, but a response

time of 3.5 time units.

Task turn-around time : This is essentially the duration et
i − st

i , which includes the execution

time of the task and the interference from higher priority tasks but does not include the

waiting time. As an example, consider task P1 in Figure 3.4(b); its absolute turn-around

time is 3 time units, from the point at which its dependent data had arrived, including its

task interference.

Job response time (observed): The observed job response time is the measured time period

between a job arriving into the system and all tasks in the job completing execution (de-

noted Jr
i ). This is also referred to as the job end-to-end response time. The maximum Jr

i

obtained by several experimental runs can be referred to as the observed worst-case job

response time, which is most often lower to the analytical worst-case.

Analytical worst-case job response time: The analytical worst-case job response time is the

worst-case end-to-end response time of a job that is calculated assuming the worst-case

behaviour of tasks and flows in the job. This is essentially the WCRT of the critical-path of

the job (denoted WCRT (JCP
i )). Both the WCRT (JCP

i ) and Jr
i would vary depending on the

task allocation due to the interference patterns. Lower WCRT (JCP
i ) values are desirable to

improve the schedulability of a system and to improve utilisation specific metrics. When

a WCRT (JCP
i ) distribution for multiple jobs is being analysed, a smaller spread is a more

desirable in terms of predictability, as it indicates less variability in WCRT (JCP
i ) between

jobs.

Task/job lateness: The task lateness is referred to as the time period after the task has missed

its deadline, calculated as per Eq. (3.8), where li is task lateness and di is the task deadline.

The job lateness is the time period after which a job has missed its end-to-end deadline,

calculated as per Eq. (3.9). This metric is primarily for SRT systems where a reasonable
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number of job deadlines can be missed, however the maximum and mean lateness of

the jobs need to be kept to a minimum. A positive lateness result indicates the task or

job has missed its deadline. A negative lateness is essentially referred to as slack, which

means the task or job completed its execution before its deadline. In this work, lower

maximum and mean lateness values are desirable. The cumulative job lateness (CJobs
L ) of

an experimental run indicates the overall total lateness incurred by all late jobs in all video

streams admitted into a system. CJobs
L is measured as given in Eq. (3.10); here, the jobs with

negative lateness (i.e. slack) are omitted from the calculation.

Task lateness: li = et
i− (at

i−di) (3.8)

Job lateness: L(Ji) = Jr
i −De2e (3.9)

Cummulative job lateness: CJobs
L = ∑

∀vi∈V S

 ∑
∀J j∈vi|L(J j)>0

L(J j)

 (3.10)

Number of late video streams: At a coarser granularity, a video stream is considered late if one

of more of its jobs incurred lateness. In the context of this work, the aim of a SRT resource

management scheme is to reduce the number of late video streams.

Number of fully schedulable video streams: A video stream is considered fully schedulable if

none of its admitted jobs are late (i.e did not miss any deadlines). A resource management

scheme with a higher number of fully schedulable video schemes is considered more pre-

dictable than one which provides a lower number of fully schedulable video schemes, for

the same workload.

Number of rejected video streams: A video stream decoding request can be rejected by the sys-

tem to maintain the predictability level of existing/active video streams in the system. An

admission controller could also reject a video stream if it determined the new stream can-

not be serviced without missing any deadlines. Reducing the number of rejected video

streams is desirable to improve performance/utilisation metrics.

Admission rate: This is the ratio between the number of admitted video streams (fully schedu-

lable or otherwise) over the total video stream decoding requests received.

Many of the above predictability metrics relate to the worst-case observed timing character-

istics of tasks/jobs. Average-case timing measurements can also give a notion of performance

of a system. For example, a scheduling or task allocation technique which provides a lower

mean job response time can be said to offer higher performance than a technique which shows

a higher mean job response time. However, due to the unpredictable interference in the system

a lower mean response time may not necessarily lead to a lower worst-case response time.

3.2.2 Utilisation-based performance metrics

In the context of this work, utilisation-based metrics are also used to quantify performance.

Utilisation metrics are related to the platform and are used to measure how much of the system

resources (e.g. PEs, NoC communication channels) are being used. Depending on the context

and workload condition, evaluation may focus on different utilisation metrics. For example,
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having a balanced utilisation distribution vs. using as few PEs as possible to meet required

timing constraints. In all cases however, utilisation levels of the system is driven by admitted

workload. In an ideal scenario, under high workloads conditions the system resources would

be heavily utilised and there would be no videos rejected or late. Inefficient resource allocation

policies could lead to PEs being idle, yet some jobs still missing their deadlines. Admitting video

streams with extremely high computation/communication requirements in excess of what the

system can offer, can lead to job lateness. This work defines certain utilisation metrics as fol-

lows:

PE busy time: This is the total time duration that a PE was busy (i.e. active) performing com-

putation. The waiting time for data dependencies to arrive is excluded from this measure-

ment. The mean (µ) PE busy time of the system is calculated as the average busy time of

all PEs in the platform, as given in Eq. (3.11); also quantified as a percentage of the overall

experiment run time, Eq. (3.12). As this metric is a notion of the utilisation of the PEs in the

system, the terms PE busy time and PE utilisation is used interchangeably. In this work,

guaranteeing workload worst-case timing requirements whilst maintaining high resource

utilisation is preferred.

µ (system PE busy time) =
∑

P
i=1 BusyTime(PEi)

P
(3.11)

Percentage µ (system PE busy time) =
µ (system PE busy time)

experiment time
×100% (3.12)

PE busy time distribution: This is a distribution of busy times for each PE. This metric is used

to identify load imbalance, which can introduce issues such as delayed response times and

thermal hotspots in the system; specially under high workload scenarios. Under low work-

load conditions, system designers may decide to utilise as few PEs as possible, in order to

save energy. Task clustering based mapping approaches may induce load imbalance but

the communication contention in the system can be reduced, hence leading to reduced

job response times. Lower standard deviation (σ) or lower variance (σ2) of the distribution

implies more uniform workload distribution across the PEs.

NoC busy time: Similar to the PE busy time metric, the NoC busy time is the total duration in

which the NoC links were in use. This metric is calculated as per Eq. (3.13) and Eq. (3.14),

where L denotes the number of links in the NoC. Higher NoC busy times can lead to idle

PEs waiting for data to arrive before starting execution, thus implying an inefficient task

allocation configuration. Increased NoC utilisation could also contribute to NoC conges-

tion and therefore higher response times. This said, allocating all tasks to a single PE can

diminish NoC usage, but will also disregard any opportunities for parallelism and can also

increase task blocking behaviour.

µ (system NoC busy time) =
∑

L
i=1 BusyTime(NoClink

i )

L
(3.13)

Percentage µ (system NoC busy time) =
µ (system NoC busy time)

experiment time
×100% (3.14)
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3.2.3 Resource management energy-efficiency

The measurements below are used to represent implicit power savings that can be obtained by

a specific resource management policy.

Total NoC communication cost: This is a summation of basic latencies of all the flows injected

into the NoC by any of the PEs as per Eq. (3.15). NoC communication cost captures the

number of flows, their payload volume and route length metrics. It is directly propor-

tional to interconnect power dissipation, as given by NoC energy models in [174, 181]. As

discussed in Section 2.3.3.4, several existing task mapping techniques explore task clus-

tering to reduce NoC communication related power dissipation.

NoC communication cost = ∑
∀Msgi∈all flows

Ci (3.15)

PE busy time distribution : This metric represents the variation of the load on different PEs in

the NoC. As discussed in Section 2.3.3, certain energy-aware resource management tech-

niques (e.g. [146, 187]), exploit non-uniform workload distribution to put unused PEs into

low-power states. On the other hand, work such as in [27,37,39] focus on uniform distribu-

tion of workload to make efficient use of resources, reduce thermal hot-spots and improve

system reliability.

3.2.4 Resource management overhead

In this work, resource management typically encounters computation and communication over-

heads. The computation overheads primarily relates to the execution overhead related with

making the task mapping decisions. The communication overheads relates to any use of the

NoC interconnect to facilitate the resource management functions. The RM overheads can be

used to compare the efficiency of one management technique against another.

Task mapping execution overhead: This is the normalised execution time of the task alloca-

tion procedure. Runtime task mappers need to be light-weight to not significantly affect

the job response time. However, in this work the task mappers are evaluated on an ab-

stract simulator, executed on a desktop system. The actual overhead of mapping on a real

platform would be significantly different to the mapping execution time on the evalua-

tion platform. Therefore, adding the mapping execution time into the simulation model

will not result in meaningful results. For relative comparison purposes this metric is nor-

malised. A distribution of mapping execution overheads can be obtained by measuring

the time taken for mapping each individual job that comes into the system. The max-

imum mapping execution time is of particular importance as it indicates the observed

worst-case behaviour of the mapper.

RM communication overhead: This is the NoC communication overhead required to perform

the management/monitoring functionalities of the resource manager. As given in Eq. (3.16),

this metric is calculated as the sum of the basic latency of all the management control

flows (e.g. feedback messages, request/reply protocols etc.). Data communication flows

are not taken into account in the calculation. Other properties of the control messages
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such as their payloads, number of hops taken per flow (i.e. links used), total number of

control message flows, all assist in quantifying the RM communication payload. The cu-

mulative basic latency (Eq. (3.16)) encapsulates all the above factors. Similar to the NoC

communication volume metric, a higher communication overhead implies higher NoC

energy consumption.

RM communication overhead = ∑
∀Msgi∈control flows

Ci (3.16)

3.3 Simulation-based evaluation

The resource management and scheduling policies explored in this thesis are evaluated on a

discrete-event system-level simulation platform, using an abstract workload model of multi-

ple stream video decoding. As discussed in Section 2.2.5, compared to a cycle-accurate model

or a hardware prototype, using an abstract simulation model can accelerate the design space

exploration and enables a swift move from algorithm inception to performance evaluation.

There are two primary reasons for selecting simulation based evaluation in this thesis. Firstly,

in the early stages of the design flow, exact performance values are less important, and the main

goal of this work is to study relative performance benefits of different resource management

techniques. Secondly, this thesis conducts experiments with a large magnitude of varying multi-

stream video workloads, representing different communication/computation costs, arrival pat-

terns and dependency structures etc. It would be highly infeasible to conduct experiments with

a similar scale on a prototype system.

A key requirement of simulation-based models is that the characteristics and scale of real

workloads and many-core platforms are closely represented. The models should have a rea-

sonable level of abstraction in order to balance simulation time and still give reasonable insight

into performance bottlenecks. To this extent, existing abstract video decoding workload models

are initially used (as described in Section 3.1.1), and then in Chapter 7 the workload models are

extended, to take into account more complex and modern video decoding workload character-

istics.

The lightweight and accurate, high-level NoC simulation technique introduced in [106] is

used in this work, to model the NoC flow traffic. This technique has similar principles to TLM

models where the message flow contention is modelled at a higher abstraction level to avoid

lengthy simulations. The entire interconnect is modelled as a single entity and the message

flow interference patterns are modelled taking into account the basic latency, priority, shared

links and release times of flows. Packets are modelled at the points where they enter/leave the

NoC. The state of the NoC is maintained as a list of priority sorted flows. As time progresses, the

algorithm activates/deactivates the flows based on their interference sets implemented via an

event-driven interface. In terms of accuracy, this technique is over 70% accurate compared to a

cycle-accurate model, even for large 10×10 NoC sizes, and can deliver 3-5 orders of magnitude

speed-up over an equivalent cycle-accurate model.

It is interesting to investigate the communication and memory subsystem bottlenecks that

arise due to higher contention scenarios when the NoC is heavily utilised. A high contention

condition can be induced, either by increasing the amount of workload (i.e. increasing the

amount of parallel video streams) or by decreasing the NoC bandwidth (e.g. decrease link width
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and/or NoC frequency). However, evaluating larger workloads increase the number of simula-

tion events, and in turn negatively affect the simulation speed. Therefore, this work uses the

latter approach, where certain experiments assume the NoC communication bandwidth is a

scarce resource, with a lower NoC operating frequency relative to the PE frequency. Higher

amount of flow interference can also impact the NoC simulation speed, therefore experiments

must be carefully designed to balance the simulation runtime, the level of workload and net-

work utilisation evaluated.

3.4 Problem statement

Designing efficient mapping heuristics that take into account different forms of resource con-

tention is a challenging task and an open research question. Inefficient mapping configurations

can negatively affect performance and predictability in the system, especially when workloads

are highly dynamic. This work focuses purely on runtime task mapping and remapping tech-

niques which are specifically suited for real-time video decoding applications. In order to test

the hypothesis defined in Section 1.3, the following problems need to be explored.

• The system must guarantee timing requirements of the video streams upon admission.

This is the primary requirement for HRT streams. The dynamic nature of the workload

makes providing hard timing guarantees a challenging task, and hence the admission con-

troller needs to assume the worst-case timing behaviour of the workload. As discussed

in Section 2.3.1.1, providing high predictability often leads to resource under-utilisation.

Therefore, the first research question is, can the admission controller use the system sta-

tus as a heuristic to offer SRT video streams a reasonable balance between predictability

and resource utilisation?

• Targeting purely HRT video streams, can the task mapper exploit application and plat-

form knowledge to improve the resource allocation policy in order to increase the system

utilisation? These heuristics would need to perform equally well for large platform sizes

and workloads with variations in communication/computation load. Many of the existing

task mapping techniques in the literature (Section 2.3.2.1) follow a closed-loop resource

management scheme, where different platform/application metrics are monitored at run-

time, to dynamically improve the resource allocation process. Can an open-loop resource

manager be designed to reduce the overhead introduced by monitoring the system?

• In order to service SRT and best-effort workloads, research work has recently focused

on hierarchical and fully distributed resource management techniques (discussed in Sec-

tions 2.3.2.2). These offer scalable alternatives to centralised management but still have

limitations such as complex protocols and communication overheads. Some of these

techniques perform task migration, which re-allocates tasks to different PEs in order to im-

prove performance metrics; however migration overheads are expensive and rely on well

defined migration points (checkpoints). Can a low-overhead, fully distributed remapping

technique be designed which does not perform migration? Can autonomous bio-inspired

techniques be exploited to assist in the distributed resource re-allocation procedure?

• Certain constraints have been made in the application and platform models presented in

Section 3.1. Assumptions such as fixed GoP structures may be unrealistic when encoding
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efficiency is of primary concern (i.e saving bitrate). In addition, modern video codecs such

as HEVC can offer built-in data-parallelism features that can be exploited to improve de-

coding latencies. The platform model as well can be refined to include memory read/write

transactions within the application. The problem now is two-fold:

– Can the application and platform models be adapted to include memory related traf-

fic?

– Can the application model in Section 3.1.1 be adapted to represent the communica-

tion and computation characteristics, of HEVC encoded video streams with content-

adaptive complex coding techniques?

• The application model in Section 3.1.1, includes several assumptions regarding the work-

load. Lifting these assumptions increases the dynamic nature of the workload, and there-

fore mapping techniques originally designed for HRT workloads may prove inefficient.

For future use-cases where SRT, HD/UHD video decoding is required on mobile devices,

energy-efficient resource management techniques are required. Furthermore, memory

traffic must also be managed appropriately to ensure they do not cause performance degra-

dation. These issues open the following new mapping specific research questions which

are explored in this thesis. Can efficient heuristic-based resource allocation techniques be

designed, which jointly balance task lateness and communication energy consumption?

Can application-specific heuristics perform better than existing generic allocation tech-

niques? Can the contention caused by memory traffic be reduced to improve job lateness?

77



Chapter 4

Admission control strategies to

balance predictability and

utilisation

The motivation of the work in this chapter arises from the multiple video stream decoding use-

cases presented in Section 1.1.1. Video decoding requests will be received at different points in

time into the system at runtime. These videos have timing requirements which will need to be

satisfied if admitted. Buffering is a common technique in video streaming applications to over-

come issues with throughput. However, the buffering delay negatively affects QoE; furthermore,

videos freezing/stalling mid-way during playback can impact the QoE factor further [64, 65].

Therefore, guaranteeing a reliable video streaming service at the start of the stream is required

to improve user-experience for SRT video streams and a mandatory requirement for the pro-

cessing of HRT videos. A predictable and efficient admission controller (AC) is therefore re-

quired to decide if the stream should be admitted/rejected. The objective of a predictable AC

is to only admit a video stream if it can guarantee that the stream will not incur any lateness

throughout the stream’s lifetime; nor should the admission cause any lateness to the existing

video streams already admitted. The challenge however, is to also maintain a low rejection rate

in order to maximise resource utilisation. High level of predictability is required for HRT video

streams while SRT videos can tolerate a reasonable degree of lateness.

As discussed in Section 2.3.1.3, many of the existing predictable admission controllers use

either deterministic or probabilistic techniques. The probabilistic techniques rely on accurate

models of the workload and cannot be used to guarantee hard timing requirements. The deter-

ministic techniques that employ utilisation based tests which are sufficient but not safe. Mean-

ing, they do not consider all timing behaviours of the tasks, omitting the calculation of blocking

behaviours.

This chapter presents the first technical contribution of this thesis. Two admission control

schemes are presented: a deterministic AC (D-AC) and a heuristic-based AC (Heu-AC). The D-AC

provides a strict timing guarantee by performing online end-to-end worst-case response time

analysis (E2ERTA) of the tasks and flows in the video streams. The Heu-AC attempts to balance

predictability, admission rates and efficient resource usage by using heuristics, related to the

status of tasks currently active in the system. It has parameters that can be tuned to achieve

the required level of trade-off. Both AC schemes are tailored to the multiple video decoding

application model as described in Section 3.1.1 and the priority-preemptive NoC many-core

platform model introduced in Section 3.1.2.

The remaining sections of this chapter will be as follows. Firstly, the runtime task mapping
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and priority assignment process (MP&PR) is described. The RM first performs MP&PR which

is required by the D-AC process to perform timing analysis on the tasks and flows of the video

stream. Secondly, the proposed AC techniques will be described in detail and lastly, they are

evaluated using system-level simulation.

4.1 Runtime task mapping and priority assignment

Runtime MP&PR is performed only once for a video stream at the admission of the first job J0

of a new video stream V Si. It is reminded that the GoP structure/pattern is fixed for each GoP in

the video stream; therefore, there is a fixed task dependency structure for each job Ji of a video

stream V Si. All subsequent jobs of the same video stream follow the initial mapping and priority

assignment made for J0. The task mapping configuration between separate videos will differ

as the mapping and priority assignment process is re-invoked for each new video decoding re-

quest. The granularity of the mapping configuration is hence at the video stream-level, not at

the job-level. A job-level mapper, unlike a video-level mapper as described here, would invoke

the mapping process for each job that arrives into the system and each subsequent job would

hence have a different mapping configuration.

Task mapping directly affects the D-AC admission decision but does not influence the Heu-

AC decision. Depending on the mapping configuration, the task and flow WCRT may change

due to different levels of task/flow interference. Therefore, certain mapping configurations will

result in the D-AC admitting a video stream whilst others might result in a rejection. For the

purpose of the experiments in this chapter, a simple uniform mapping heuristic termed least

mapped (LM) is used to map the tasks to the PEs. The LM heuristic is given in Algorithm 4.1;

each task in the first job of the video stream is mapped to the PE with the least number of tasks

in its task queue. Using a simple mapping heuristic such as LM, allows us to perform a fair

evaluation of the basic performance of the D-AC against the Heu-AC, which does not rely on

task mapping. Chapter 5 will then show that, more efficient and intelligent mapping schemes

can be used to improve the performance of the D-AC.

Tasks are assigned unique priorities according to its resolution as described in Section 3.1.1.2.

Similar to task mapping, priorities are assigned to tasks of J0 of a new video stream, and tasks of

all subsequent jobs are assigned the same priorities.

4.1.1 Runtime task mapping table

The RM maintains a runtime mapping table (T MT ) of the jobs of every active video stream in

the system. This mapping table contains the following task information:

• Real-time properties: {ci, ti, pi}

• Non-real-time properties: { ft , fix}

• Task mapping: indicates which PE a specific task τi is mapped to (τi→ PEi).

Once the tasks of J0 have been mapped and priorities assigned, their details are saved onto

the TMT and used during the E2ERTA analysis performed by the D-AC. If the admission decision

is to reject the stream, the task entries of the new video stream’s J0 are removed from the TMT.

Furthermore, when the video stream has stopped/finished, the task entries related to the stream

(V Si) are removed.
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Algorithm 4.1: Least-mapped task mapping heuristic (LM)
Input : T MT - runtime task mapping table,

J0 - first job of the new video stream (V Si),
PE list - PEs and their task queue (TQ) occupancy

Output: T MT with new task mapping
/* Map each task in J0 of new video V Si to the PE with the least tasks in its TQ */

1 forall τi ∈ J0 do
2 Find PEi from PE list with the least number of tasks in its TQ
3 Map task τi onto PE PEi
4 Update PE list(τi,PEi) (increment TQ occupancy)
5 Update T MT (τi,PEi)
6 end

4.2 Admission control tests

4.2.1 Deterministic admission controller

The D-AC process, is illustrated in Figure 4.1. This process is invoked each time a new video

stream decoding request is received by the system. The mapping configuration generated dur-

ing the MP&PR stage is saved to the TMT and used to perform the E2ERTA of the video streams.

This is to determine if by admitting the new video stream, any of the WCRT of new or exist-

ing/active video streams would miss their end-to-end deadline. Algorithm 4.2 shows the steps

involved in D-AC decision process. Firstly, the task mapping details are added temporarily to

the T MT (line 2). If the video is rejected, then the entries are removed (line 24). After the task

mapping, the flows (and their real-time properties) resulting from the mapping can be gener-

ated (line 3). If two communicating tasks are mapped onto the same PE, then the respective

flow between those two tasks are omitted in the response time analysis. Similarly, if multiple

children of the same task is mapped onto the same PE, redundant flows are also omitted.

Runtime task mapping
and priority assignment

Calculate
WCRT of all tasks 

and flows

JNJN-1J1J0

New video stream 
decoding request (VSi)

Video 
admission

Schedulability of 
all video streams

Temporarily add VSi

mapping details to TMT

Task mapping 
table (TMT)

E2ERTA

Delete 
VSi entry

RejectAdmit

stream start

stream end

W
o
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Figure 4.1: Deterministic admission control (D-AC) process

With the task and flow information above, the calculation of the WCRT of tasks and flows

of all video streams in the system can be initiated (lines 4-11 of Algorithm 4.2). Eq. (2.2) and

Eq. (2.5) can be used to find the WCRT of tasks and flows. The analysis takes into account the

blocking/interference factors due to higher priority tasks/flows. However, as the precedence
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Algorithm 4.2: Deterministic admission control pseudo-code
Input : T MT : Runtime task mapping table;

J0 - first job of the new video stream (V Si),
PE list - PEs and their task queue (TQ) occupancy

Output: ac decision admission control decision (ADMIT/REJECT)
/* Perform mapping and derive resulting flow set */

1 Perform MP&PR according to Section 4.1
2 Temporarily insert V Si task mapping details to T MT
3 FTtemp : derive all valid periodic flows in system (for the mapping configuration)

/* Calculate WCRT of each task and flow in T MT */

4 forall τi ∈ T MT do
5 Find interference set hp(τi) (exclude non-interferers ni(τi))
6 Calculate task WCRT - Eq. (2.2), save value in T MT
7 end
8 forall Msgi ∈ FTtemp do
9 Find interference sets Sid ,Sii (exclude non-interferers ni(Msgi))

10 Calculate task & flow WCRT - Eq. (2.5), save value in FTtemp ;
11 end

/* Calculate WCRT (JCP
i ) of all video streams. */

12 forall V Sk ∈ T MT do
13 vsp : initialise structure for all simple paths of V Sk job
14 job(V Sk) : J0 of video stream V Sk

/* Calculate WCRT of each path/task-chain in job */

15 forall pathi ∈ job(V Sk) do
16 Calculate WCRT of pathi according to Eq (4.3)
17 Save WCRT (pathi) to vsp
18 end
19 Critical path of job(V Sk) : JCP

i = max{vsp}
/* Check video stream schedulability */

20 if WCRT (JCP
i )≤ De2e then

21 ac decision = ADMIT
22 else
23 ac decision = REJECT
24 Remove V Si details from T MT
25 Return ac decision
26 end
27 end
28 Return ac decision;

constraints of each job in the application model is known a priori, certain exclusions can be

made to the task/flow interference sets as shown in Eq. (4.1) and Eq. (4.2). The process in which

the non-interferers are derived is presented in Section 4.2.1.1. The calculated WCRT of tasks

and flows are then saved in T MT to be used later to calculate the job WCRT, of all video streams.

r̂n+1
i = ci + ∑

∀τ j∈{hp(τi)\ni(τi)}

⌈
rn

i
t j

⌉
c j (4.1)

R̂n+1
i =Ci + ∑

∀Msg j∈{Sid\ni(Msgi)}

⌈
Rn

i + r j + JI
j

Tj

⌉
C j (4.2)

In lines 12-27 of Algorithm 4.2, the WCRT of the critical path of the job WCRT (JCP
i ) is calcu-

lated. Due to the fixed job structure there are fixed number of simple paths (also referred to as

task chains) of the TG, known a priori. For each path of a video stream job job(V Si) the sum-

mation of the WCRT of all nodes and edges is calculated (line 16) as per Eq (4.3). Note that the

WCRT of the source task is included in Ri as release-jitter r j, hence only the flow WCRT needs

to be accumulated. The WCRT of the leaf node (tasks without any child tasks) task (τ−1) de-

noted rτ−i is added to the summation. The job critical path JCP
i is the path with the maximum
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accumulated cost (line 19).

WCRT (pathi ∈ Ji) =

[
∑

Msgq∈pathi

Rq

]
+ r(τ−1) (4.3)

A video stream is granted admission, only if the expression given in Eq. (4.4) is true for the

new and all active video streams in the system (lines 18-24 in Algorithm 4.2); this guarantees that

the worst-case timing requirements of all existing and new video streams will be successfully

met.

Admit new V Si← if ∀Ji ∈ T MT |WCRT (JCP
i )≤ De2e (4.4)

4.2.1.1 Exclusion of non-interferers

Unlike in [80, 128], this work takes into account precedence constraints when calculating the

task and flow interference. In this analysis, it is assumed there is no overlap between consec-

utive jobs within the same video stream. Hence, when deriving the hp(τi) of a task, the depen-

dent/successor tasks can be excluded. For example, in the case where both frame decoding

tasks B2 and P1 are mapped on the same PE, P1 would not interfere B2 and vice versa due to

the dependency between P1 and B2. Likewise, when calculating the direct (Sid) and indirect (Sii)

flow interference sets the task precedences are taken into account to determine non-interfering

flows. Excluding non-interferers will make the WCRT analysis tighter but still safe. As the appli-

cation dependency pattern is known a priori this method is straightforward and much simpler

than using an offset-based analysis such as in [129].

As explained in Section 3.1.1, a TG has multiple simple paths. For example the simple path

(P1⇒B9) consists of the frame decoding tasks (vertices) P1,P4,P7,B9 and the message flows (edges)

between them. In DAG structures, two distinct simple path types are defined - to and from a

node in the TG, termed ancestral and descendant simple paths [198]. The ancestral simple path

(expressed as (τ0⇒τi)) consists of the path from root node (τ0) to the target node τi; the descen-

dant simple path (expressed as (τi⇒τ−1)) consists of the path from target node τi to any leaf

node (τ−1) in the TG. For example in the TG (Figure 3.2), if we consider τi = P4, then the nodes

I0 and P1 will lie on the ancestral simple path, and the nodes P7 and one leaf node B8/9/10/11 will

lie on the descendant simple path. Hence, the non-interference set of a task τi can be defined

as per Eq. (4.5). Similarly, flows in ancestral and descendant simple paths will not interfere with

the target flow as given by Eq. (4.6). Here, the (Msgi : τs→ τd) component denotes the target flow

Msgi and its source and destination tasks τs and τd respectively.

ni(τi) = τk ∈ {τ0⇒τi∪ τi⇒τ−1} (4.5)

ni(Msgi : τs→ τd) = Msgk ∈ {τ0⇒τs∪ τd⇒τ−1} (4.6)

4.2.1.2 Conservative E2ERTA analysis

For both tasks and flows, the E2ERTA analysis considers the maximum interference to derive an

upper bound for their WCRT (i.e ri and Ri). However, in reality this may not occur and hence

makes the analysis safe but conservative. In other words, if a traffic flow or task passes the

schedulability test, it will meet its deadline, but if it fails, it may not necessarily miss its deadline.
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Furthermore, the WCET of the tasks are considered in the WCRT analysis. If the execution time

distribution of the frame decoding tasks have long tails or is skewed (such as in the decoding

time model - Figure 3.3), the worst-case execution would definitely be a rare occurrence. Both

these factors makes the E2ERTA analysis find WCRT upper bounds which may never be seen in

practice/simulation. Hence, the schedulability tests are safe and enables the D-AC to provide

hard real-time guarantees, but negatively affect its admission rate and may lead to low resource

utilisation.

4.2.1.3 Reducing the overhead of D-AC

As defined in Section 3.2.4, a resource manager can have associated computation and commu-

nication overheads. The D-AC does not incur communication overheads but has a computation

overhead in terms of the processing time taken to arrive at the admission decision. However, as

the admission controller is invoked only at the start of a video stream, a reasonable admission

control delay is acceptable. Subjective tests in [65] show that up to 30 seconds of initial delay in

video playback can be tolerated, before a significant loss in QoE can be observed.

Under certain high workload scenarios, the recurrence relationship calculations (Eq. (4.1)

and Eq. (4.2)) to derive the worst-case response time of tasks/flows may take a significant amount

of processing time to complete, due to heavy interference. Hence, the D-AC would take longer

to arrive at a decision. To avoid this issue, a time-out is assigned to the calculation, where an

intermediary result is returned when the time-out expires. The time-out needs to be set to a

reasonably high value such that a sufficiently accurate worst-case response time can be calcu-

lated within the time-limit but at the same time have a relatively fast computation time. In all

experiments in this section the time-out of the D-AC is set to 60 seconds.

In order to further manage the overhead of the D-AC, the De2e timing constraint is checked

at different intermediate levels of the E2ERTA calculation. Each time the WCRT of a task/flow

is calculated the r̂i ≤ De2e and R̂i ≤ De2e are checked. Also, for each path in the TG the condi-

tion WCRT (path ∈ T G) ≤ De2e is checked (lines 12-27 of Algorithm 4.2) and if not satisfied the

admission is rejected immediately. These intermediate assertions enable the D-AC to arrive at

rejection decisions quickly. For example, it is not necessary to calculate the WCRT of job paths,

when a single flow WCRT alone has exceeded the De2e.

Certain existing work in [199], propose techniques to approximate the iterative E2ERTA cal-

culations, thereby lowering the computation complexity. Furthermore, there also exists hard-

ware based implementations of the E2ERTA, which offer up to 3 orders of magnitude faster cal-

culations compared to a software based calculation [200]. These approaches are complemen-

tary to the overhead reductions discussed in this section, and can be used in conjunction with

the AC and task allocation techniques discussed in this work.

4.2.2 Heuristic-based admission controler

The Heu-AC admission test introduced in this section is essentially a best effort test, which con-

siders the lateness of the tasks admitted. The system is considered to be in an overload state if

two conditions are true: (1) if any of the tasks in the global input buffer (G IBF) or local PE task

queues (TQs) are late; (2) if the G IBF or the TQs are full. A new video stream decoding request

is only admitted if and only if the system is not in an overload state. Therefore, unlike the D-AC,

the Heu-AC does not rely on task mapping to perform the admission control process. Similar to

D-AC, the Heu-AC process is invoked when a new video stream decoding request is made.
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A task can wait in the G IBF until its parent tasks have been completed. There exists certain

scenarios, particularly during heavy workload conditions where the G IBF does not have any

space to accommodate new tasks. If there is no available space in the G IBF then the admission

of new video streams should be avoided and if any jobs are due to be dispatched in that time

instant, they will be dropped. Tasks in the local task queues (TQs) can be blocked and waiting

for the processor resources. During their waiting period, tasks will incur lateness. A task is con-

sidered as late if it finishes its execution after its absolute deadline. However, in our application

model the individual task deadlines (di) are not known; only the end-to-end job deadline De2e

is known. If the individual task deadlines are assumed to be equal to the end-to-end deadline

(i.e. di = De2e) then the lateness calculation may be too optimistic, as tasks that are higher up in

the task-graph will have longer slack times. To alleviate this issue, the individual absolute task

deadline is estimated as a fraction of De2e as specified in Eq. (4.7) and Eq. (4.8). li(InputBu f f er)

is the estimated instantaneous lateness of a task in the global input buffers and li(TaskQueue) is

the estimated instantaneous lateness of a task in the local PE task queues. tc denotes the current

time and ai denotes the arrival time of the task. IBLα and T QLα are the ratios used to calculate

the relative deadline of the tasks in the global input buffers and task queues respectively.

li(InputBu f f er) = (tc−at
i)− (De2e ∗ IBLα), where (0≤ IBLα≤ 1) (4.7)

li(TaskQueue) = (tc−at
i)− (De2e ∗T QLα), where (0≤ T QLα ≤ 1) (4.8)

Algorithm 4.3: Heuristic admission control pseudo-code

Input : PET Q
all : Local task queues of all PEs,

G IB : Global input buffer
Output: ac decision admission control decision (ADMIT/REJECT)

1 ac decision = ADMIT (initialise)
/* check if global input buffer or task queues are full */

2 if (G IB||PET Q
all ) are Full then

3 Return ac decision = REJECT
4 end

/* check global task queue for task lateness */

5 forall τi ∈ G IB do
6 Calculate task τi lateness li as per Eq. (4.7)
7 if li > 0 then
8 Return ac decision = REJECT
9 end

10 end
/* check local PE task queues for task lateness */

11 forall PET Q
i ∈ PET Q

all do

12 forall τi ∈ PET Q
i do

13 Calculate task τi lateness li as per Eq. (4.8)
14 if li > 0 then
15 Return ac decision = REJECT
16 end
17 end

18 end
19 Return ac decision;

Every task in global input buffers and the task queues incurs lateness as time progresses.

Negative lateness values are considered as slack and are acceptable. Algorithm 4.3 shows the

Heu-AC admission decision making process. The algorithm takes the content on the buffer and

queues as input parameters. It first checks the lateness of all tasks in the global input buffer
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(lines 2-6) and then proceeds to check the lateness of all tasks in all PE TQs (lines 7-14). If any

of the tasks are late, the new stream request is rejected else the stream is admitted.

The execution overhead of Heu-AC compared to D-AC, is very small. Even for large work-

loads the Heu-AC tests arrive at an AC decision within a few seconds, on a standard PC machine

(Intel i3 2GHz, 8GB RAM). However, as it can be seen from Algorithm 4.3, the execution time of

Heu-AC test is directly dependent on the number of PEs in the system and the number of tasks

in the local and global task queues.

4.3 Evaluation

This evaluation section investigates the effect that the different AC tests (heuristic and deter-

ministic) have on predictability and utilisation metrics. The experimental conditions are first

defined followed by a discussion of the results. The objectives of this evaluation is two fold:

• To test if the D-AC will give maximum predictability guarantees to the video streams with

no admitted videos being late.

• To test if the Hue-AC parameters can be tuned to offer a trade-off between predictability

and utilisation.

4.3.1 Experimental design

Platform specification: a 3× 3 (i.e. 9 PEs) NoC platform is assumed with the platform char-

acteristics as defined in Section 3.1.2. The PEs are assumed to have an operating frequency of

200MHz and the PE local task queues, dependency buffers and the global input buffer sizes are

set to accommodate a maximum of 10 tasks each. Message flow header routing cost is assumed

to be 7 clock-cycles, NoC frequency is set at 1GHz and the link width is set to 16 bytes.

Independent variables: The two proposed admission controllers (D-AC and Heu-AC) are eval-

uated under equal workloads. Different variation of IBLα and T QLα values of the Heu-AC are

explored. In addition to the proposed AC techniques two more admission controllers are eval-

uated as baselines:

• No admission control (No-AC): the situation where no admission test is used, however jobs

can be dropped due to insufficient buffer space.

• Deadline equal-flexibility AC (DEQF-AC): a heuristic-based admission controller that uses

the individual deadline assignment scheme as proposed by Kao and Garcia-Molina [137]

(discussed in Section 2.3.1.3). The functionality of DEQF-AC is similar to Heu-AC, however

the calculation of the task deadlines are performed using Eq. (2.6).

Workloads: The multi-video stream decoding workload is simulated according to the applica-

tion model defined in Section 3.1.1. The load profile was characterised as per Sections 3.1.1.3

and 3.1.1.4. The experiments were conducted on a low workload of 8 workflows and a high

workload of 16 workflows. Each workflow is randomly allocated 6/7 video streams with 7/8 jobs

per video stream. Video stream resolutions were chosen randomly from common high to low

resolutions (e.g. high: 720×576, low: 320×240). The temporal workload parameters are chosen to
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ensure a densely packed workflow. The job dispatch rate parameters were set to Jrate
min = 1.0 and

Jrate
min = 1.5. The inter-video dispatch rate parameters are set to V Srate

min = 0.48 and V Srate
max = 0.76.

Response variables: The predictability and utilisation of the admission controllers were mea-

sured in terms of video stream admission rates (i.e. number of fully schedulable, late and re-

jected streams), job lateness and mean system PE busy time %. Detail description of the metrics

can be found in Section 3.2.

Evaluation platform: An abstract system level simulation as specified in Section 3.3 is used

to perform the evaluation. Figure 4.2 shows the interaction and execution sequence between

the task dispatcher, resource manager, PEs and the NoC model of the simulator. In this closed-

loop system (Section 3.1.2.1), the RM releases the child tasks only after a task complete notifi-

cation is received from the PEs. Simulation experiments were carried out for 35 unique random

seeds, which produced a range of workloads within the aforementioned parameter settings.

Each seeded simulation run will provide a workload with variations in video resolutions, task

execution costs and inter-arrival times.

TaskDispatcher ProcessingNodeResourceManager

dispatchTask()

new admissionRequest()

decideAdmission()admit/reject

mapTasks()

releaseTasks()

executeNextTask()

NoC Model

interrupt()

transmitMessage(taskOutput)

addToFlowTable(newFlow)

updateFlowTable()

scheduleNextEvent()

Loop

notifyTaskComplete()

receiveMessage(taskOutput)

notifyFlowComplete()

Multiple concurrent PEsDispatches VSi workload

Figure 4.2: High-level execution sequence of abstract simulator

4.3.2 Results discussion

Evaluation results shown in Figure 4.3 illustrate the trade-off between predictability and utilisa-

tion made by the different ACs. The x-axis for all sub plots in Figure 4.3 represents the admission

controllers under evaluation. The ratios IBLα and T QLα of the Heu-AC are given inside brack-

ets. For example Heu(0.3, 0.7) denotes the heuristic based admission control test results with

IBLα = 0.3 and T QLα = 0.7. Only a subset of {IBLα,T QLα} combinations are shown in Figure 4.3

to aid the visualisation of the results. Full set of results can be found in Appendix A. Figure 4.3a

and Figure 4.3c represent the mean values of 35 seeded simulation runs. The distribution of

job lateness values shown in Figure 4.3b represents positive lateness values across all jobs in all

seeded simulation runs. The right-y-axis of Figure 4.3b represents the maximum job lateness

across all seeds

For all evaluated ACs, the admission rejections increase as the number of workflows is in-

creased (Figure 4.3a). It can also be seen in Figure 4.3c that as more video streams are admitted
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Figure 4.3: Admission control evaluation results - predictability vs. utilisation)

into the system (regardless of whether they are late or schedulable), the PE busy time will in-

crease. For the tested workload the peak system utilisation is ≈ 78% after which the buffers

begin to overflow, as shown in the No-AC test case. Both the quantity of admitted video streams

and their respective computation complexity correlate directly to a more busy system. Admit-

ting a few high resolution video streams may cause the system to be more busy than when ad-

mitting relatively higher amount of low resolution streams. The variation in the job lateness

distribution (specially in the No-AC case) is due to the differences in computation cost require-

ments between streams of different resolutions. Higher resolution streams are more likely to

incur positive lateness due to higher execution and communication costs.

The results indicate, when the D-AC is used in both low/high load conditions, none of the
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admitted video streams incur any lateness or dropped jobs. However, D-AC has a high rejection

rate due to its conservative timing analysis procedure Section 4.2.1.2. Due to the high rejection

rate, D-AC shows a very low mean PE busy time (i.e mean PE utilisation). Contrary to the D-AC,

the No-AC admits all incoming video streams provided the global input buffer is not full. In

the low workload case, No-AC only has a few late streams and very high acceptance rate, but

in the high workload scenario it performs poorly with a large amount of late streams, dropped

jobs and large job lateness values. The No-AC test therefore provides no timing guarantee to the

incoming video streams but has an advantage over other ACs in the form of higher PE utilisation.

The DEQF-AC scheme shows similar service guarantees as the D-AC test, where no admitted

streams incur lateness but with a lower rejection rate than D-AC even at high workloads. DEQF-

AC also indicates a higher PE busy time than D-AC but lower than the Heu-ACs. The Heu-AC

shows a range of different results depending on the IBLα and T QLα ratios used. Figure 4.3a il-

lustrates that smaller ratios lie closer to D-AC results while higher ratios show results similar to

the No-AC test but with lower rejection rates. The maximum job lateness increase significantly

when higher values of IBLα and T QLα are used (e.g. Heu-AC(0.5,0.5), Heu-AC(0.7,0.7) and Heu-

AC(1.0,1.0)). The PE utilisation results also increase for higher values of the Heu-AC ratio param-

eters for both low/high workloads. Low Heu-AC ratios on the other hand, show high number

of rejections with only very few streams late but at the cost of low PE busy times. Compared to

DEQF-AC, the Heu-AC(0.5,0.1) offers about 8% more utilisation (high workload scenario), an av-

erage of 9 more fully schedulable streams at the cost of only 1 stream being late. Heu-AC(1.0,1.0)

shows more late streams than compared with lower ratios (e.g. Heu-AC(0.7,0.7)), however the

PE busy time is comparable. This is mainly due to two aspects - increased NoC congestion

(therefore, idle PEs) due to higher admissions and more dropped jobs at higher workloads.

4.3.2.1 Exploring D-AC timing guarantee reduction

Secondary experiments were carried out to investigate the behaviour of the D-AC with respect

to relaxing the strictness of the E2ERTA calculations. The effect of scaling down the result of the

WCRT calculation in Eq. (4.2) and Eq. (4.1), on reducing the effect of the conservative assump-

tions of the D-AC is first explored. As shown in Figure 4.4 the task and flow WCRT (ri and Ri)

were reduced by a certain factor β where 0% ≤ β ≤ 100%. In Figure 4.4a, the left y-axis displays

the number of streams schedulable, rejected and late as a percentage ratio of the total number

of video streams; respectively, the right y-axis displays the number of streams as an absolute

value. The ratio of late streams decrease exponentially between β = 15%− 55% in Figure 4.4a,

after which the amount of late streams are negligible. For β = 70% and above, the D-AC shows

zero late streams but rejection levels increase. Similarly, wide variations in job lateness values

are seen in Figure 4.4b for lower β values as more streams are admitted, but for β > 50% the

lateness variation is significantly less.

At this point, it is useful to investigate the predictability of the D-AC if only the task WCRT

calculation is carried out in the E2ERTA (i.e. flow WCRT calculation is omitted). However, the

benefit of taking into account both the task and flow response time in the E2ERTA calculation

is only apparent, when the flow basic latency and the task WCET is approximately in the same

range and the NoC is more utilised. In order to induce such an experimental condition, the NoC

frequency was set to 10MHz, PE frequency scaled up and higher resolution videos were included

(e.g. 1280x720) to increase the flow payload size. In this experiment, lines 8-11 of Algorithm 4.2

related to calculating Ri is omitted from the D-AC algorithm. Also, the Ri summation when
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Figure 4.4: Effect of scaling down the task and flow WCRT (ri,Ri): (a) Admission rates; (b)Job lateness

calculating WCRT (pathi) is replaced with only taking into account the WCRT of tasks ri and not

flows.

The group of bar plots labelled D-AC(tasks only) in Figure 4.5 shows the admission rates

when only the task WCRT based timing analysis was used (WCRT of flows omitted) in the D-AC

decision. D-AC(tasks only) shows a higher number of admitted and fully schedulable streams as

well as a lower rejection rate than the original D-AC. However, as message flow timing properties

was not accounted for, the D-AC(task only) admission controller shows a few streams missed

their deadlines. The results in Figure 4.5 also justify that it is crucial to include both the task and

flow WCRT in E2ERTA calculation and D-AC decision making process, in order to guarantee

hard timing requirements and avoid stream deadline misses.
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Figure 4.5: Admission rates of D-AC(original) vs. D-AC(tasks only)

4.3.2.2 Results summary

The results confirm that D-AC offer maximum predictable timing guarantees without any dis-

ruption to admitted streams. However, this comes at a price of heavily under-utilising the sys-

tem. Experiments in Section 4.3.2.1 explored variations to the D-AC’s E2ERTA calculation to

improve the admission rates with low increase to job lateness levels. However, these adapta-

tions of D-AC make the D-AC unsafe and unsuitable for HRT video decoding. The No-AC tests

increased the system utilisation significantly but at the cost of offering no service guarantees to

the user. Heuristic based tests do not attempt to find optimality in both objectives but the IBLα
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and T QLα ratios can be tuned to offer required levels of predictability and utilisation.

The Heu-AC ratios, IBLα and T QLα can be categorised into different ranges namely, High:

(1.0 ≤ α ≤ 0.7), Medium: (0.6 ≤ α ≤ 0.4) and Low: (0.5 ≤ α ≤ 0.1). Looking at the range of Heu-

AC results given in Appendix A, a general guideline can be given when choosing appropriate

values for these ratios. A low value of IBLα combined with high values of T QLα provides the best

trade-off between utilisation and predictability.

4.4 Summary and novel contributions

To summarise, this chapter presented two novel admission controllers for multi-video stream

decoding applications:

• A deterministic admission controller: This contribution refers to the deterministic ad-

mission controller specified in the first thesis hypothesis in Section 1.3, that is used to

provide hard timing guarantees for video streams encoded using classical codecs. The D-

AC performs end-to-end schedulability analysis of video streams, facilitated by dynamic

task mapping to arrive at an admission decision. The original E2ERTA analysis in [80, 128]

was adapted to suit the multi-video stream decoding application model. Schedulability is

tested at the job-level and non-interferers are excluded to make the analysis tighter.

• A heuristic-based admission controller: This contribution is aimed at improving the pre-

dictability of soft real-time video streams, as specified in the first thesis hypothesis in Sec-

tion 1.3. The Heu-AC attempts to balance predictability and utilisation of the system by

using simple heuristics, unlike the D-AC which performs video stream timing analysis.

The Heu-AC queries the lateness of the tasks the global input buffer and the local task

queues of the platform to determine the admission decision. Heu-AC admits new video

streams only if no other tasks in the system are late and if there are sufficient buffer capac-

ity. The individual task lateness was derived as ratios of the end-to-end job deadline.

The objective of the D-AC was to provide a high degree of predictability which was con-

firmed in the evaluation section. The D-AC can be used in HRT video stream decoding where

missing video stream deadlines are not acceptable. However, the evaluation showed that due to

its conservative end-to-end response time analysis, the D-AC severely under-utilises the PEs in

the platform. The Heu-AC approach offers a range of utilisation and predictability values such

that, the systems designer can choose the IBLα and T QLα lateness ratio parameters, depending

on the requirements of the video streaming application and/or the load profile. For example

higher ratios can be used if higher system utilisation is required or lower ratios can be used

when predictable services are required. Therefore, the Heu-AC can be used when soft-timing

guarantees of video stream decoding is required. The No-AC baseline test used as a baseline AC

in the evaluation section offers best-effort/high performance where missing deadlines/lateness

is not a concern.

The low-utilisation issue of the D-AC motivates the research presented in the next chap-

ter. Efficient runtime task mapping schemes are explored to improve the admission rate and

resource utilisation of the D-AC in order to efficiently decode HRT video streams.
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Chapter 5

Dynamic task mapping for hard

real-time video streams

The work presented in this chapter is motivated by the need for efficient resource allocation

techniques for data-parallel multiple-stream video decoding with strict hard real time con-

straints. Section 1.1.1 discussed several use-cases of HRT video decoding. Specially in cases

such as in [19] the system should provide deterministic timing guarantees upon admission as

well as make efficient use of resources to manage several tens/hundreds of streams simultane-

ously.

The previous chapter introduced a deterministic admission control technique (D-AC) which

can be used to service HRT video streams. However, the evaluation of the D-AC showed that it

provides very low admission rates and as a consequence under-utilises the system resources.

Runtime task mapping and priority assignment were introduced in the previous chapter (Sec-

tion 4.1) which are essential to the D-AC process. It is evident that different task to PE mapping

configurations produce different task and flow contention patterns in the NoC, leading to timing

constraints being successfully met or violated. The work in this chapter is based on the hypoth-

esis that with efficient runtime task to PE mapping approaches, admission rates and system

utilisation of the D-AC can be improved. This is challenging as certain workload characteristics

such as execution time, arrival patterns and task and flow interferences are unknown a priori.

In this chapter, two novel heuristic-based runtime task mapping techniques are introduced,

that exploit the application characteristics and blocking behaviour, in order to minimise the

video stream job WCRT. Lowering the job WCRT will increase the D-AC admission rate, leading

to better utilised systems; whilst still maintaining a high level of predictability. To evaluate the

dynamic mappers, a baseline search-based, static, HRT task mapping technique is used with a

novel points-based fitness function that considers video stream schedulability. The proposed

mapping techniques are also evaluated in terms of their scalability and variations in the work-

load CCR.

The structure of this chapter is as follows: Section 5.1 describes certain refinements to the

system model that was presented in Chapter 3. In Section 5.2 a blocking-aware heuristic is

introduced which is used by both dynamic mappers presented in this chapter. The first runtime

mapper is a general purpose technique and is described in Section 5.3 followed by second and

application-specific technique in Section 5.4. The baseline static mapping technique is then

introduced in Section 5.5 and an evaluation of the presented task mapping techniques is carried

out in Section 5.6.
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5.1. SYSTEM MODEL

5.1 System model

The application and platform model used in this chapter follows the primary system model

description given in Section 3.1. The following extensions were made to bring the model closer

to a realistic video stream decoding system and/or make the evaluation of the task mappers

simpler.

5.1.1 Application model refinements

The following three application model refinements are introduced:

• Integrating memory transactions into the task model.

• Video-centric task priority assignment.

5.1.1.1 Memory transactions

As discussed in Section 2.1.3. real video decoding workloads are both computation and data in-

tensive and perform a significant amount of communication with main memory. Even though

the amount of shared memory usage is considerably reduced in a distributed memory model

as presented in Section 3.1, there still exists certain shared memory transactions that cannot be

avoided. At the very least, each decoded frame requires writing out to a frame buffer in main

memory to drive a video display. The application model introduced in Section 3.1.1 is there-

fore adapted to introduce memory read/write transactions in addition to the data dependency

communications, as shown in Figure 5.1.
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Figure 5.1: MPEG GoP decoding task model with memory transactions

Each task’s data (i.e. encoded frame data) needs to be transmitted to its respective PE before

starting the task execution. This process is referred to as a memory read. After the MPEG decod-

ing task has completed, its output (i.e. decoded frame data) is transmitted to the frame-buffer

located in the main memory, referred to as memory write. Memory read and write transactions

are NoC message flows and are denoted as MRD
i and MWR

i respectively. The payload of a MRD
i is
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CHAPTER 5. DYNAMIC MAPPING FOR HRT VIDEO STREAMS

characterised by the size of the encoded frame as shown in Eq. (5.1). The model assumes an

encoded MPEG-2 I-frame (with ≈ 40% frame compression) is twice as big as a P-frame, and 4

times as big as a B-frame; which is similar to the stream analysis shown in [60]. The payload of a

MWR
i is essentially the decoded frame data size as given in Eq. (5.2). Memory read flows are given

a higher priority over data and memory write flows as the task data is required immediately for

a task to start its execution.

PLMRD
i

=


[res(V Si)×bpp]×0.4, if ft = I

[res(V Si)×bpp]×0.2, if ft = P

[res(V Si)×bpp]×0.1, if ft = B

(5.1)

PLMWR
i

= [res(V Si)×bpp] (5.2)

The example illustrated in Figure 5.1(right) shows the sequence of computation, communi-

cation and memory transactions for a task running on PEi. MRD
i occurs before the task’s com-

putation, after which the task’s reference data transfer and MWR
i can start. The MWR

i has to wait

until the reference data transfer is complete as it shares the local link and has lower priority.

Once the reference data transfer is complete, the child task (mapped to PE j) can start execu-

tion, assuming the child task has completed its memory read (note that the child task’s memory

read/write transactions are not illustrated).

5.1.1.2 Video-centric task priority assignment

The original task model presented in Section 3.1.1.2 and later used in Chapter 4, assumes a ran-

dom task priority assignment. In such an assignment, there may be situations in which the

response time (and therefore the QoE) of low resolution videos may be severely degraded, due

to blocking incurred by several long running high resolution streams. This may seem counter-

intuitive from a user perspective. In this chapter, a more sensible assignment policy is followed,

which reflects common practice in the video streaming industry. However, it is worth empha-

sising that this work is not trying to propose a novel priority assignment scheme for dynamic

workloads, but only attempts to optimise on the task allocation, for a given priority assignment.

The proposed mapping heuristics can work around any other priority assignment approach.

The priorities for the video decoding tasks are assigned according to Eq. (5.4), where tasks

of low resolution video streams are given higher priority over high-resolution video streams. In

Eq. (5.4), fix denotes the frame index within the GoP. The (tc×o f f set) component ensures a first-

come-first-served (FCFS) selection between equal resolution video streams (tc denotes current

time). The quality and dependency-aware frame priority assignment given in [147] is used to

assign priorities between frames within a GoP as shown in Eq. (5.3). Similar to the random

priority assignment scheme, task priorities are assigned upon admission of a new video stream

and the same priority values are used for tasks in subsequent jobs of that stream.

GoPpr
f r = {12,11,4,7,10,3,5,9,2,6,1,8} (5.3)

pi = (res(V Si)−GoPpr
f r [ fix])+(tc×o f f set) (5.4)
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5.1.2 Platform model refinements

This chapter presents the following refinements to the platform model:

• Platform model changes to accommodate memory transactions.

• An open-loop resource management scheme.

• Removing buffer space constraints.

5.1.2.1 Memory interfaces

As explained in Section 5.1.1.1, tasks read and write to/from the global input buffers location

in main memory. Memory read/write transactions occur via the NoC and to/from the memory

controllers located around the NoC. As shown in Figure 5.2, the system has 4 main memory

controllers (MMC) located on the edges of the platform and each MMC has dual ports. Such

a multiple memory controller configuration is similar to the Tilera many-core architecture [4];

although they have four controllers arranged only above/below the NoC. The model assumes

every MMC can access the entire main memory, as is the case on Tilera many-cores when the

memory is not striped. Any PE can access any MMC on the platform and memory transaction

traverse in a multi-hop manner across the NoC similar to data traffic flows. In this model it is

assumed that tasks by default communicate with the MMC port (MMCP) closest to it.
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Figure 5.2: Refined system model (with memory controllers and open-loop RM)

5.1.2.2 Open-loop resource management

Section 3.1.2.1 introduced a closed-loop RM which queries for the system status and receives

feedback from the PEs. As discussed in Section 2.3.2.1 and Section 2.3.2.5, this type of cen-

tralised, closed-loop approach is not suitable for large-scale NoCs where the feedback/moni-

toring overhead would cause network congestion and degrade performance [30, 35, 36]. There-

fore, in this section, an open-loop RM is presented which does not rely on feedback to perform

its duties. The high level sequence diagram of the simulation implementation of the open-loop

RM is shown in Figure 5.3. Comparing Figure 5.3 with the previous closed-loop implementation

in Figure 4.2 shows several differences as well as similarities. As normal, the RM performs ad-

mission control, task dispatching, mapping and priority assignment functions. After mapping

the tasks the RM performs admission control, and if the stream is admitted the respective tasks
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are released to the mapped PEs. Tasks no longer notify the RM regarding their completion, in-

stead all tasks are released together to their mapped PEs by initiating memory read transactions

from the main memory. During release, the tasks are tagged with information regarding the lo-

cation of their child tasks, so that after a task completes execution it knows which PE to send its

reference data to. The tasks also send their output to the main memory.

Note that the D-AC does not rely on the feedback loop in previous system model, hence

the open-loop mechanism introduced here does not affect it in any way. On the other hand

the runtime task mapping techniques would now rely solely on the information in the TMT to

make the runtime mapping decisions, hence their mapping quality would be reduced. Using an

open-loop RM is a key design decision, chosen to trade-off mapping quality to achieve reduced

usage of the NoC, leading to lower congestion and energy consumption. Furthermore, in terms

of scalability, as discussed in Section 2.3.2.1, when the NoC size and workloads increase the

continuous feedback to the RM as seen in a closed-loop system can lead to network congestion

bottlenecks.
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Figure 5.3: Refined system model (with memory controllers and open-loop RM)

5.1.2.3 Infinite buffer space

In Chapter 4, it was assumed that the buffers in the system (i.e. global input buffers, PE local

task queues and dependency buffers) have a finite space to accommodate tasks and depen-

dency data. If these buffers are full, video streams are rejected and new jobs of active streams

may be dropped. Dropping of jobs due to buffer overflow reduces the utilisation of the system

and presents a confounding variable to any performance evaluation. Hence, from this chapter

onwards it is assumed that the above mentioned buffers have infinite space. Although this is not

a realistic assumption, it simplifies the evaluation of the resource allocation techniques. Also,

it opens up the possibility for designers to evaluate which buffer size a system should have, to

prevent performance bottlenecks.

95



5.2. LEAST WORST-CASE REMAINING SLACK HEURISTIC

5.1.3 Memory-specific response time analysis refinements

The memory transactions introduced in the application model need to be integrated into the

job E2ERTA given in Section 4.2.1 to ensure the predictability guarantee of the D-AC is not re-

duced. As shown in Figure 5.1 each task now has a new inbound and outbound edge represent-

ing the memory read and write transactions. This would also add two nodes (start and end)

to all the paths of the initial TG. For example a non-memory aware TG would have an end-to-

end path such as (I0⇒P1⇒B2) but now it would be changed to (MRD
I0 ⇒I0⇒P1⇒B2⇒MWR

B2
). Also,

there would exist short paths including only one computation (MRD
B2
⇒B2⇒MWR

B2
). The memory

read/write transactions would be modelled as new edges in the application TG with weights in-

dicated by the flow payloads (PLMRD
i
,PLMWR

i
). These new memory related paths need to be taken

into account when determining the worst-case response time of a job (i.e. the (WCRT (JCP
i ) cal-

culation in Algorithm 27). Similarly, in this new model, the memory read/write transactions are

taken into account when measuring a job’s observed end-to-end response time via simulation.

5.2 Least worst-case remaining slack heuristic

This section defines the least worst-case remaining slack (LWCRS) heuristic, which will facilitate

the two runtime task mapping techniques presented in the following sections. LWCRS attempts

to select a PE with a balanced-blocking approach, considering both the blocking incurred to a

target task and the interference caused to lower priority tasks from the target task. It takes into

account the blocking behaviour of the tasks already mapped onto a given PE to approximate the

remaining slack a PE has to accommodate a new task. The objective is to find the PE mapping

that will result in the tightest temporal-fit, without missing the deadlines of the target task nor

any of the already mapped tasks. Algorithm 5.1 provides the utility function used to find the

task-to-PE mapping which will give the LWCRS for the target task. The worst-case slack of a task

is the difference between the task deadline and worst-case computation cost. This function is

integral to both runtime mapping strategies introduced in this chapter.

Algorithm 5.1 iterates through the provided PE list and calculates the following for each task-

to-PE mapping: (a) RemSlackt - the worst-case remaining slack (WCRS) for the given target task

- blocking incurred by higher-priority tasks already mapped on the PE are taken into account

(line 6); (b) RemSlackl p - the WCRS for each of the lower-priority tasks already mapped on the

PE, taking into account the WCET (ci) of the target task (line 7-11). Individual task deadlines

(di) are calculated using the DEQF scheme [137]. The cumulative WCET of higher priority tasks

are used to determine the amount of worst-case blocking for a target task. A weight is then

assigned to each PE in PE list, which is equal to the sum of RemSlackt and RemSlackl p, for each of

the searched PEs (line 13). The PE with the lowest weight is selected and returned (line 17,18).

If no PE is found with positive worst-case slack the PE with the lowest utilisation is selected and

returned (line 20-22). As the WCET of tasks are used to calculate the slack and the deadlines, the

calculations are conservative but safe.

5.3 LWCRS-aware runtime mapping

The LWCRS aware mapping algorithm (henceforth denoted as LWCRS) makes use of the utility

function introduced in Section 5.2. It attempts to temporally pack tasks tightly as well as min-

imise the distance between communicating tasks to reduce network congestion. The temporal
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Algorithm 5.1: get PE least slack pseudo-code - Find PE with the least worst-case remain-
ing slack

Input : τi : target task;
T MT : the runtime task mapping table;
PE list : list of PEs to search

Output: tuple : (result PE, search result (boolean))
1 PE packing = {} structure to store PE weights
2 forall PEi ∈ PE list do

/* obtain the following from T MT */

3 Get T MT (PEi) : tasks already mapped on PEi
4 Get hp(τi), l p(τi) : high and low priority tasks in T MT (PEi) w.r.t τi

/* get worst-case remaining slack (WCRS) to target task */

5 τslack
i = di− ci (task slack w.r.t estimated sub-task deadline)

6 RemSlackt = τslack
i − ∑

∀τ j∈hp(τi)
c j

/* get WCRS on low-pri mapped tasks */

7 RemSlackl p = {}
8 forall τ j ∈ l p(τi) do
9 RemSlack j = τslack

j − ∑
∀τk∈hp(τ j)

ck

10 Insert RemSlack j to RemSlackl p
11 end

/* assign weights to each PE - combination of blocking factors */

12 if RemSlackt > 0 and ∀x ∈ RemSlackl p|x > 0 then
13 PE packing [PEi] = RemSlackt +∑RemSlackl p
14 end
15 end

/* choose PE with lowest positive weight, if any exists */

16 if ∀x ∈ PE packing | x > 0 then
17 PE j = index of MIN(PE packing)
18 Return (PE j, FALSE)
19 else

/* else choose PE with lowest utilisation */

20 Sort PE list by increasing order of PE utilisation (Eq. 2.8)
21 PE j = PE list[0]
22 Return (PE j, FALSE)
23 end

packing enables parallel video streams to be pipelined on the PEs, such that the initial PEs in the

NoC will be heavily utilised before selecting the next available PE. This allows the system to po-

tentially admit and handle a higher number of simultaneous video streams, without missing any

deadlines. This type of mapping is dissimilar to the LM mapper used in Section 4.1, where the

workload is distributed evenly, and makes use of less PEs as possible whilst attempting to ensure

deadlines are not violated. LWCRS is a general purpose technique, that can be applied to map

other types of applications, modelled as DAGs and scheduled using fixed priority-preemptive

scheduling.

The algorithm of LWCRS mapping is given in Algorithm 5.2. The algorithm uses a copy of

the TMT. The get PE with least slack utility function is used to find a PE which gives the LWCRS

for each task in the job (lines 3 and 11). Firstly, the PE which gives the lowest slack is selected

to map the root node of the TG (line 3). For all other nodes in the TG, the algorithm maps each

node within increasing hop distances from its closest parent (lines 9-17); the helper function

getPENeighbours() is used for this purpose. A node’s closest parent (τPARENT
i ) is defined as the

node with the longest path from the root node. For example in Figure 5.4, B5 has 2 parents - P4

and P1; however P4 is the closest parent due to the longer path from the root node (therefore

τPARENT
B5 = P4). If no suitable PE with remaining slack is found, the algorithm maps the target
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Algorithm 5.2: LWCRS-aware mapping heuristic algorithm pseudo-code
Input : all tasks in the job (J0) sorted in the frame decoding order in the GoP,

T MT : the runtime task mapping table,
PE list : list of PEs to search

Output: Updated T MT with new task to processing element mapping (τi→ PEi)
1 forall unmapped tasks : τi ∈ J0 do

/* if task is the root node - τ0 */

2 if τi == τ0 then
3 (PEi, f ound)= get PE least slack(τi, T MT , PE list) /* call Algorithm 5.1 */

4 Map (τi→ PEi); Update T MT
5 else

/* obtain following from T MT */

6 Get τPARENT
i : closest parent task

7 Get PEP
i : PE that τPARENT

i was mapped onto
/* get neighbouring PEs at increasing hop counts */

8 for hc = 1 to MAX HOPS do
9 N PEP

i = getPENeighbours(PEP
i ,hc)

10 Append PEP
i into N PEP

i
11 (PEi, f ound) = get PE least slack(τi, T MT , N PEP

i ) /* call Algorithm 5.1 */

12 if f ound == T RUE then
13 Map (τi→ PEi); Update T MT
14 break loop; Go to step 1
15 end
16 end

/* if no suitable PE is found, select closest lowest utilised PE */

17 if f ound == FALSE then
/* else choose neighbouring PE with lowest utilisation */

18 N PEP
i = getPENeighbours(PEP

i ,hop count = 1)
19 Sort N PEP

i by increasing order of PE utilisation (Eq. 2.8)
20 PEi = N PEP

i [0]
21 Map (τi→ PEi); Update T MT
22 end
23 end
24 end
25 Return updated T MT

node to the PE with minimum utilisation (line 17-22). The algorithm attempts to reduce long-

communication routes between communicating tasks in order to reduce network congestion

and communication costs. Each node in the TG is mapped onto a PE that gives the LWCRS as

well as close proximity to τPARENT
i . The TMT copy is updated at runtime in each iteration of the

main loop.

Use blocking/slack-aware heuristic to select PE to 
map child node
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Figure 5.4: Illustration of LWCRS mapping closest parent selection (left) and IPC mapping task grouping (right)
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5.3.1 LWCRS mapping complexity analysis

The worst-case time complexity of LWCRS mapping algorithm (WC(LWCRS)) can be calculated

as Eq. (5.5). The term |Ji| denotes the number of tasks in a job, MAX HOPS is the maximum hop

count for a given network size, |PE| is the number of PEs in the platform and |PET Q| represents

the maximum number of tasks in a PEs task queue. In our current application model the |Ji|= 12
(12 frames per GoP). In the case of a regular 2D mesh NoC wherein the rows and columns are

equal, the MAX HOPS can be reduced to MAX HOPS = (2
√
|PE| − 2), thereby giving Eq. (5.6).

By dropping the constant terms and variable coefficients, the WC(LWCRS) can be reduced to

Eq. (5.7) and further reduced to Eq. (5.8) by dropping the lower order term. Finally, |T Q| ≤ |PE|
can be assumed as the D-AC would not allow the system to be overloaded, thereby giving the

worst-case runtime complexity of LWCRS as Eq. (5.9), which is less than O(n3) but worse than

O(n logn).

WC(LWCRS) = O [|Ji|×MAX HOPS×|PE|× |T Q|] (5.5)

WC(LWCRS) = O
[
12× (2

√
|PE|−2)×|PE|× |T Q|

]
(5.6)

WC(LWCRS) = O
[(

(|PE|)3/2−|PE|
)
×|T Q|

]
(5.7)

WC(LWCRS) = O
[
(|PE|)3/2×|T Q|

]
(5.8)

WC(LWCRS) = O
[
(|PE|)5/2

]
(5.9)

Since the mapping algorithm is executed only once for a video stream its runtime overhead

(in the order of a milliseconds) is negligible compared to the duration of a video (order of min-

utes/hours).

5.4 Clustered I and P frames mapping

Unlike the LWCRS mapper, the clustered I and P frames mapping heuristic (henceforth denoted

as IPC) exploits known application-specific TG dependency patterns. By inspecting the video

job TG (Figure 5.1), it is clear that the I and P frames lie on the longest-path in the TG. The

longest path of the TG is the simple path with most number of non-repeating nodes (ignor-

ing node and edge weights). Even if the node and edge weights are taken into account, the task

chain I0→P1→P4→P7 also lies in the critical path of the TG (assuming no B-frame task blocking

is encountered). Therefore, by grouping the I and P frame tasks together the critical path WCRT

of the TG is essentially reduced. Searching for the critical path of the TG is not necessary as the

dependency structure of the TG is known a priori. The B-frames have no inter-dependencies,

hence they can be processed in parallel. The B-frame decoding tasks can occupy smaller tem-

poral gaps in the execution schedule as their computation cost is lower than I/P frames.

Figure 5.4 (right) illustrates the TG after the grouping of I and P frames. Clustering the I/P

frames together has two distinct advantages : (a) it reduces the NoC congestion/interference as

less flows need to be injected into the NoC; (b) it reduces the end-to-end response time of a job

since the TG’s potential CP is executed as soon as possible, without waiting for message flows.

The IPC mapping technique works as described in Algorithm 5.3. Firstly, the I and P frame

decoding tasks of the job are grouped and mapped to the lowest-utilised PE on the platform.
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The B-frame decoding tasks are mapped as close to their parent tasks with a 1-hop distance.

The LWCRS heuristic (Algorithm 5.1 is used to select a PE within the 1 hop distance region.

Algorithm 5.3: IPC mapping heuristic algorithm pseudo-code
Input : all tasks in the job (J0) sorted in the frame decoding order in the GoP,

T MT : the runtime task mapping table,
PE list : list of PEs to search

Output: Updated T MT with new task to processing element mapping (τi→ PEi)
/* first find lowest utilised PE */

1 Sort PE list by increasing order of PE utilisation (Eq. 2.8)
2 PEIPC = PE list[0]
3 forall unmapped tasks : τi ∈ J0 do

/* if task is either a I or P-frame decoding task map to lowest utilised PE */

4 if ft(τi) == {I‖P} then
5 Map (τi→ PEIPC); Update T MT
6 else

/* map B-frames at 2-hop distances from their closest parent */

7 Get τPARENT
i : closest parent task

8 Get PEP
i : PE that τPARENT

i was mapped onto
9 N PEP

i = getPENeighbours(PEP
i , hop count = 1)

10 (PEi, f ound) = get PE least slack(τi, T MT , N PEP
i )

11 Map (τi→ PEi); Update T MT
12 end
13 end
14 Return updated T MT

5.4.1 IPC mapping complexity analysis

The IPC mapping algorithm uses the LWCRS heuristic given in Algorithm 5.1. Therefore, its

worst-case timing complexity WC(IPC) analysis follows a similar derivation to WC(LWCRS) as

given in Eq. (5.10) and can be reduced to Eq. (5.11). Similar to WC(LWCRS), if |T Q| ≤ |PE| is

assumed, then WC(IPC) further reduces to Eq. (5.12).

WC(IPC) = O [|Ji|× |PE|× |T Q|] (5.10)

WC(IPC) = O [|PE|× |T Q|] (5.11)

WC(IPC) = O
[
(|PE|)2] (5.12)

5.5 Baseline static task mapping

This section presents a search-based static HRT mapping optimisation technique, used as an

upper baseline to evaluate the dynamic task mappers presented in the previous two sections.

This static mapper is an extended version of the technique introduced by Sayuti et al. [172].

As discussed in Section 2.3.3, static mapping algorithms are suitable when a complete view of

the application workloads and platform conditions are known at design time. This static HRT

mapper is purely used as an upper baseline, to evaluate the performance of the proposed run-

time mappers. An indication of a good runtime mapping heuristic is one which shows results as

close as possible to the upper-baseline. However, recall that static mappers not only rely on full

knowledge of the workload, but also incur a considerable runtime execution overhead; hence,

they are not suitable for use in runtime mapping.
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In [172], the authors use a multi-objective genetic algorithm (GA) based optimisation strat-

egy to optimise the task to PE mapping approach. GAs start with a random initial population of

candidate solutions and gradually evolves the populations towards the global optimum using

a given fitness statistic. As illustrated in Figure 5.5, the algorithm in [172] uses standard evo-

lutionary GA pipeline constructs such as single-point crossover, bit-flip mutation and binary

tournament selection to generate a new population for each generation. Each GA individual

is represented by an integer-based chromosome structure indicating the PE mapping for each

task. The index of the gene represents the task index and the value of the gene indicates the

PE index. Hence, the length of the chromosome varies with respect to the number of tasks in

the workload. Elitism is used to ensure the best individual of each generation is advanced to

the next generation. However, due to the random nature of solution development, GAs do not

guarantee optimality of the best solution which it finds.

Multi-video stream 
workload generator

Static task-to-PE mapping 
solutions

Many-core
System simulator

Dynamic mapping 
techniques

(LWCRS, IPC, BN, PP, LM, LU)

Measurements:
Response-time, admission 

rates, System utilisation

Parent 
population

Offspring 
population

Combined 
population

Selection

Crossover

Mutation

Evaluate 
fitness

Elitism

Generational GA pipeline

Temp. fitness 
hash table

3 2 6 1 2 8----

τ1 τ2 τ3 τn-2 τn-1 τn----

Gene PE index

Task

Chromosome structure

Figure 5.5: Illustration of the GA pipeline from [172] adapted and integrated to the experimental design flow

The GA-based static HRT mapper given in [172] was adapted and integrated with our appli-

cation/platform model and metrics. The shaded components in Figure 5.5 indicate the changes

made to the GA and the design flow with respect to the GA in [172]. In the experimental design

flow, the abstract video stream workload is first generated and input into the GA pipeline to

obtain mapping solutions. The final GA mapping solutions are then taken and used in the sys-

tem simulator to obtain performance measurements and compare against the mapping results

provided by the dynamic mappers. This allows evaluation of both the dynamic and static map-

pers under the same workload. This adapted GA-based static mapping technique is henceforth

referred to as GA-MP. The following extensions were added to the GA framework in [172]:

Application specific extensions: A direct integration of the GA framework in [172] without

several application specific adaptations is not possible. For example, the precedence constraints

of the TG, as discussed in Section 4.2.1.1, were taken into account when calculating the task/flow

interference sets. Memory read/write traffic has been incorporated into the set of flows in the

application and the task mapping configurations (Section 5.1.1.1). Furthermore, as mentioned

in Section 4.2.1, flow-level optimisations were carried out such as redundant flows are removed

for each mapping configuration when multiple children are mapped to same PE.
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Points-based GA fitness function: Unlike in [172], this work is concerned with the end-to-end

schedulability of an entire video stream rather than individual tasks/flows. Therefore, a points-

based single-objective fitness function as described in Algorithm 5.4 is used for this purpose.

Firstly, the WCRT (JCP
i ) of every video stream needs to be calculated. These calculations are sim-

ilar to the E2ERTA performed by the D-AC (Section 4.2.1). The loop in lines 2-10 evaluates and

accumulates the points for each V Si in the workload (WL). Video streams that have a higher

WCRT (JCP
i ) than their deadline are given a positive point based on the amount of which they

have missed their deadline (i.e. WCRT (JCP
i )−De2e). On the other hand, video streams that are

fully schedulable are awarded a negative point relative to their slack (i.e. De2e−WCRT (JCP
i )). The

ratios in line 6 and 8 of Algorithm 5.4 indicates the extent to which a video stream is unschedu-

lable/schedulable. Individuals with negative points have a higher fitness score than those with

positive points. This points-based fitness scoring system enables the GA to pick individuals with

task mappings that have lower distributions of WCRT (JCP
i ) and penalise individuals who have

unschedulable video streams. For example consider the following scenario. Two GA individuals,

A and B have equal number of fully schedulable streams and one unschedulable video stream

each, but they have fitness scores -1.65 and -1.15 respectively. This indicates that A’s unschedu-

lable video missed its deadline by a lower margin than B’s unschedulable video. Hence, using

a points-based fitness score the individual A is preferred over B, whereas if an integer based

fitness score is used, both these individuals will be ranked equally.

Algorithm 5.4: Points-based GA fitness function
Input : - Real-time characteristics of all tasks and flows of every video stream V Si for a given

workload (WL).
- Task to PE mapping configuration (i.e. one individual of the GA population)

Output: points-based fitness score
/* Calculate points for all videos in workload (WL) */

1 points = 0
2 forall V Si ∈WL do
3 Calculate WCRT of all sporadic tasks and flows of V Si
4 Find JCP

i of V Si

5 if JCP
i ≥ De2e then
/* unschedulable */

6 points += 1× WCRT (JCP
i )−De2e

De2e

7 else
/* fully schedulable */

8 points +=−1× De2e−WCRT (JCP
i )

De2e

9 end
10 end
11 Return points

GA implementation optimisations: Due to the extensions above, the fitness evaluation of the

GA becomes more complex. A hash table of task mapping solutions and corresponding fit-

ness scores are maintained and looked-up to avoid repeated evaluation of the same gene. The

hash table is cleared after its number of entries reaches a fixed threshold to reduce the mem-

ory footprint. Subsequently, the GA evolution cycle terminates immediately if it encounters an

individual with an acceptable mapping solution. Such a mapping solution will result in all the

admitted video streams to be schedulable; in other words, the maximum WCRT (JCP
i ) of all the

video stream is less than the E2E deadline : max
V Si∈WL

(WCRT (JCP
i ))< De2e
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5.6 Evaluation

The evaluation section of this chapter has three separate experiments covering three objectives

with respect to measuring the performance of the proposed dynamic mapping techniques.

• Experiment A (ExpA) - Evaluate the improvement to the admission rate and system utili-

sation of the D-AC approach when using the proposed LWCRS and IPC runtime mapping

techniques.

• Experiment B (ExpB) - Compare LWCRS and IPC to the GA-based static HRT task mapping

technique (GA-MP) presented in Section 5.5.

• Experiment C (ExpC) - Investigate the performance of LWCRS and IPC with respect to

different workload CCRs and scalability in terms of increasing NoC sizes.

5.6.1 Experimental design

The application and platform models used in the evaluation follow the characteristics described

in Section 5.1.The preliminary experiments assume a 3×3 NoC platform but larger NoC sizes are

also explored as per Table 5.1. The PEs are assumed to have an operating frequency of 200MHz.

Message flow header routing cost is assumed to be 7 clock-cycles, NoC frequency is set at 10MHz

and the link width is set to 16 bytes. As explained in Section 3.3, a lower NoC frequency (i.e. low

bandwidth) is assumed, in order to induce a reasonable amount of network utilisation/conges-

tion. Such conditions cannot be created using a higher NoC frequency for the same workload

level. Table 5.1 summarise the experimental conditions, parameters and metrics used to explore

the evaluation objectives described above. The abstract simulation framework as described in

Chapter 3 and Section 4.3.1 is used in these experiments. However, the sequence of events now

follows the open-loop RM process as shown in Figure 5.3. The D-AC admission controller is

used for all experiments except in ExpC, where no admission control (No-AC) is used. When the

D-AC is used, all admitted video streams are fully schedulable.

Table 5.1: Summary of LWCRS and IPC experimental evaluation design parameters

Eval.
obj.

Workload configuration
NoC
size

Independent
variables

Response
variables

AC

ExpA

increasing workloads:
WL = {4.3×104.. 3.0×106},

|WL|= 460,
max |V S|= 9 (per WL)

3×3
Mapping techniques:
LWCRS, IPC, PP, BN,

LU, LM

Admission rate,
PE busy time

D-AC

ExpB

increasing workloads:
WL = {54.2×104.. 2.3×106},

|WL|= 10,
max |V S|= 8 (per WL)

3×3
Mapping techniques:
LWCRS, IPC, PP, BN,

LU, LM, GA-MP

Admission rate,
PE busy time,

NoC busy time
D-AC

ExpC

|V S|= {9,25,49,81}
(proportional to NoC size),

Therefore WL is random
(but bounded by |V S|)

3×3,
5×5,
7×7,
9×9

Mapping techniques:
LWCRS, IPC, PP, BN,

LU, LM
Varying CCR levels:

CCR(WL) =
{0.001,0.5,1.0,1.5,2.0}

Analytical
WCRT (JCP

i )
No-AC

5.6.1.1 Baseline task mapping techniques:

The following dynamic task mapping techniques existing in the literature are used as baselines.
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• Best neighbour heuristic (BN): as defined in [32]. The original BN algorithm was adapted

to support multiple tasks and have used PE utilisation to determine available PEs, while

maintaining path-load as the main heuristic.

• Pre-processing based communication and computation balancing heuristic (PP): as de-

fined in [33]. As the TG dependency pattern is fixed and known, the pre-processing stage

of PP (Algorithm 2.1) is performed at design time.

Evaluation is also performed against two load-balancing task allocation heuristics which at-

tempt to evenly distribute the load of the application across available PEs:

• Least mapped heuristic (LM): selects the PE with the minimum number of mapped tasks

according to the TMT. This mapper was used in the work presented in Chapter 4, and the

pseudo code given in Algorithm 4.1.

• Least utilised heuristic (LU): similar to LM, this mapper iterates through all tasks in the job

and maps each task to the lowest utilised PE. The worst-case PE utilisation is estimated via

Eq. (2.8).

The GA-MP static mapper with functionality as explained in Section 5.5, is used as an up-

per baseline to evaluate the performance of the proposed mappers. For all experiments the

crossover and mutation rates were fixed at 0.5 and 0.01 respectively, similar to the GA in [172].

Higher workloads will be executed with a larger number of GA evaluations to suit the increasing

complexity of the search problem; where the number of evaluations = number of generations×
population size.

5.6.1.2 Workload conditions:

The workload conditions are varied based on the experiment type as shown in Table 5.1. In

all workloads video stream resolutions are selected at random from a range of resolutions (e.g.

high: 720×576, low: 230×180), with 1 video per workflow and 5 GoPs per video. Simulations

were carried out for 30 unique seeds for every workload condition, which results in varying

video stream arrival patterns and task execution costs. For the evaluation objective ExpA, an

increasing workload WL profile is used with 460 different workload levels with a maximum of 9

video streams each. The WL level is calculated as per Eq. (3.7). The term |V S| in Table 5.1 denotes

the number of simultaneous video streams. For ExpB, 10 increasing workload levels were used

to compare the dynamic mappers against the GA-MP static mapper. As each of the 10 workloads

have 30 randomly seeded variations, the GA-MP task mapping optimisation is carried out for

each of the seeds. The workload configuration used for ExpC varied the |V S| proportional to the

size of the NoC. Each seeded simulation run will have a random WL constrained by |V S|.

5.6.1.3 Varying CCR levels:

In ExpC, the CCR level of the workload and the platform size are varied. In reality the CCR of

a workload can also vary depending on platform modifications. For example if optimised/spe-

cialised hardware components (e.g. accelerators) are used in the PEs to accelerate the compu-

tational elements in the video decoder the CCR would be high (i.e. communication-bound). On

the other hand if a high bandwidth or faster NoC was used the CCR would be low (computation-

bound). Task mapping heuristics that target workloads with a low-CCR (such as load-balancing
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techniques) may perform poorly when the CCR is high. The CCR of a single video stream can

be calculated as the ratio between the total cost of the communication edges over the total task

cost in the TG, as shown in Eq. (5.13). In this calculation, the flow’s Ci and the task’s ci are used

as the edge and node costs of the TG respectively. The CCR of a workload can then be defined

as the mean CCR of all the parallel video streams included in the workload (Eq. (5.14)). To vary

the CCR, the task computation cost is kept constant and gradually the NoC frequency is varied

to change the cost of the edges. Increasing the NoC frequency will reduce the communication

cost thereby decrease the CCR and vice versa to increase the CCR.

CCR of a video stream: CCR(V Si) =
Total cost of TG edges
Total cost of TG nodes

=

∑
∀edges∈Ji

Ci

∑
∀τi∈Ji

ci
(5.13)

CCR of a workload: CCR(WL) =
∑

∀V Si∈WL
CCR(V Si)

|V S|
(5.14)

5.6.2 Results discussion

5.6.2.1 ExpA - Admission rates vs. PE busy times

The results from ExpA are shown in Figure 5.6. Each data sample in the distributions represents

the mean admission rate (Figure 5.6a) and mean PE busy time (Figure 5.6b) as percentages per

workload level. The x-axis represents the different workload levels (WL) separated into equal

width bins; the y-axis steps represents the mean of the data in each bin.

Admission rates decrease as the workload increase, because for high workloads the D-AC

cannot guarantee the timing requirements will be met, and hence more rejections will be made.

Around the mid-high workloads the proposed mapping techniques (IPC and LWCRS) show an

improvement of about 10%-15% over the baseline runtime mappings. Since the WCRT of the

jobs are lower when these two mappers are used, the D-AC will admit more video streams. Over-

all, IPC performs better than LWCRS for all workloads, showing a 2-8% improvement. However,

recall that IPC is an application specific heuristic which makes use of known characteristics of

the application TG unlike LWCRS which is application agnostic. The admission rate improve-

ment of IPC and LWCRS over the baselines drop slightly during certain higher workloads (e.g.

2−2.25×106). PP shows slightly better admission rates than the other baselines for all workload

levels because it performs task grouping. The LU, LM and BN techniques show comparable

admission rates.

Higher admission rates result in more tasks being processed by the system, leading to in-

creased PE utilisation as depicted in Figure 5.6b. As the workload increases, the PE utilisation

also increase up to a certain level (approx. 1.0×106), after which the PE busy time starts to level

off, due to the decline of the admission rates. The proposed IPC and LWCRS task mappers show

a 5%-10% improvement in utilisation over the LM, LU, BN and PP mappings for workloads over

1.0×106. IPC utilises the system more than LWCRS for workloads higher than 0.5×106. PP utilises

the PEs more than the other compared baselines, especially at higher workload levels (i.e. over

2.3×106). The PE busy time is a function of both the number of video streams admitted and their

spatial resolution; thus for example IPC and LWCRS have similar admission rates at 2.8–3.0×106

but different PE busy times.
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Figure 5.6: Performance of the runtime mapping techniques for a range of workload levels (a) Admission rates, (b) PE
busy time

5.6.2.2 ExpB - NoC usage and comparison against GA-MP baseline

Figure 5.7 shows the results from ExpB, where predictability and performance of the different

task-mapping heuristics in terms of mean admission rate and mean PE and NoC busy time are

given, under 10 different workload levels. Similar to Figure 5.6, the proposed IPC and LWCRS

mappers show a significant improvement in admission rates and PE busy times over the base-

line runtime mappers. The trend of the results are similar to ExpA (Figure 5.6), however in ExpB

the NoC busy time is also measured. The NoC busy time results shown in Figure 5.7(bottom)

complement the PE busy time results and offers further insight into the mapping behaviour.

Lower PE busy times indicate the PEs are busy waiting for data to arrive at the local buffers, thus

increasing the NoC usage. Both IPC and LWCRS attempt to reduce task communication; hence

the mappings that they perform result in higher PE utilisation while the baseline mappings have

a higher NoC utilisation due to more communication. IPC utilises the NoC for inter-task com-

munication more than LWCRS. LWCRS produces a tighter grouping of tasks than IPC resulting

in lower number of PEs being used. In IPC, because 4 tasks in the job (i.e. I0,P1,P4,P7) are always

mapped together, the algorithm will try to find other PEs to map the B-frame tasks. LWCRS

could still have memory traffic congestion, leading to higher WCRT (JCP
i ) and reduced admis-

sion rates compared with IPC. LU, LM mappers have the highest NoC usage due to the sparse

distribution of tasks on all PEs. PP shows similar NoC usage to IPC, but it does not consider

blocking, hence, it might place the grouped tasks on PEs that cause higher interference.

In the Figure 5.7, GA-MP results denote the task mapping using the genetic algorithm based

static hard real-time mapper. GA-MP has full knowledge of the task characteristics and is used

only as an upper baseline. The number of GA evaluations taken to obtain these results are given

in Table 5.2; here, evaluations refer to the number of generations × the population size. The

mapping search space increases proportionally with the workload level, therefore a higher num-

ber of evaluations were required to obtain a reasonable admission rate for higher workloads.

Similar to the dynamic mappers, the GA-MP’s admission rates decrease and PE busy times in-

crease as the workload is increased. Even though the GA-MP outperform all the dynamic map-

pers at every workload level, a gradual decrease in relative improvement is noticeable as the

workload level increases. At workload 225.4× 104 the IPC and GA-MP show comparable mean

admission rates. Under certain conditions the GA-MP and the proposed dynamic mappers have

comparable admission rates, but the GA-MP has higher PE busy times (e.g. 225.4×104). This is

because in certain scenarios the GA-MP obtains a mapping which makes the D-AC reject lower
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Figure 5.7: Evaluation results of the dynamic mappers vs. static mapper: (Top: Admission rate; Center: PE busy time;
Bottom: NoC busy time)

resolution videos but accept higher resolution streams, thus giving rise to higher PE busy times.

Further investigation into the mapping configuration by the GA-MP showed that it used only

a few PEs per job (on average 2 or 3) and many of the best solutions map children of the same

parent together on the same PE. This leads to lower traffic flows, contention and therefore lower

job response times and admission rates.

Table 5.2: Number of total GA evaluations for different workloads (corresponding to results shown in Figure 5.7)

Workload
(WL) # Evaluations Workload

(WL) # Evaluations

54.2×104 5000 143.4×104 37800
83.1×104 6000 177.3×104 40000
85.3×104 7200 189.8×104 40000
110.0×104 27000 191.2×104 48400
112.4×104 32000 225.4×104 50000

GA-MP performance with respect to workload level: As the workload increases, the number

of the tasks and flows, their computation and communication costs increase (Table 5.3), caus-

ing the complexity of the optimisation problem also to increase. To illustrate this, the GA-based

mapping optimisation is executed for the ten different workloads with a fixed number of gen-

erations and population size (500, 200 respectively); the search terminates when an acceptable

mapping solution is found. GA-MP execution runtime for the different workloads are given in

Table 5.3. The total execution time of the GA increases exponentially as the workload level is

increased and all except the lowest workload level show an execution time in the order of tens

of hours. Both, the number of tasks and flows and their computation/communication costs

attribute to the runtime of the GA-MP. For example WL = 189.8× 104 shows a lower runtime,

because |V S| = 6 showing that both the number of simultaneous videos and their resolutions
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are directly related to the GA execution time. The GA was able to find a satisfactory solution for

workloads up to 112.4×104, however a solution was not found for the larger workloads.

Figure 5.8 shows the generational progress of the GA for the workloads described in Table 5.3

for a single seed. Recall that lower points-based scores relate to GA solutions with higher fitness.

There is a dramatic improvement in fitness score in the first 100 generations after which the

search converges. Certainly GA parameter tuning can be used to avoid fast convergences but

may result in a longer runtime. As the workload level increases, the search space and complexity

increases and the GA is unable to find a solution within a reasonable number of evaluations

(i.e. runtime). Lower workloads (e.g. WL = 85.3× 104) find a solution quickly and stop the

GA progression; in WL = 54.2× 104 the solution is found in 1 generation. It is also important

to note that for a given workload, the GA progression trend and their convergence will vary

slightly depending on the fitness of the initial random population of the GA. Figure 5.8 shows

the progression of a single test run with a single instance of a random initial population.

Table 5.3: GA-MP runtime performance for different workload levels (GA progress shown in Figure 5.8)

Workload
(WL) |||VVV SSS||| Total #

tasks
Total #
flows

Runtime
(hrs.)

# Evals.
Solution

found

54.2×104 5 60 215 0.31 0.2×103 Yes
83.1×104 4 48 172 1.22 3.4×103 Yes
85.3×104 6 72 258 9.05 4.6×103 Yes
110.0×104 4 48 172 1.68 6.2×103 Yes
112.4×104 5 60 215 5.26 6×103 Yes
143.4×104 7 84 301 99.32 10×104 No
177.3×104 7 84 301 71.68 10×104 No
189.8×104 6 72 258 37.17 10×104 No
191.2×104 7 84 301 96.54 10×104 No
225.4×104 8 96 344 114.49 10×104 No
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Figure 5.8: GA-MP points-based score convergence over generations, for different workload levels (workload conditions
given in Table 5.3)

5.6.2.3 ExpC - Evaluations with respect to CCR and NoC size variations

Figure 5.9 shows the results from ExpC, where the analytical WCRT (JCP
i ) variation (i.e. pre-

dictability) in the different dynamic mapping techniques are evaluated for different NoC sizes

and workload CCRs. The analytical WCRT (JCP
i ) or simply WCRT (JCP

i ), is calculated after all
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streams have been mapped and admitted. The box plots represent the WCRT (JCP
i ) distribution

of all streams for all seeded simulation runs and the line plot with circular markers represents

the distribution means. Note that in ExpC, admission control is disabled (No-AC); hence, a sig-

nificant amount of streams are admitted but late. Lower WCRT (JCP
i ) is preferred and correlates

to a potential higher admission rate, if a D-AC was used. No-AC is used to observe the perfor-

mance of the mappers without the influence of an admission controller.
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Figure 5.9: Distribution of analytical WCRT (JCP
i ) obtained using different dynamic mapping approaches, under varying

CCR and NoC sizes. Mean values shown by line plot

CCR(WL) < 1.0 denotes computation-bound workloads and CCR(WL) > 1.0 denotes com-

munication-bound workloads. The WCRT (JCP
i ) of all mappers increase as the CCR increases,

as the communication latency has effectively increased. IPC mapping method perform rela-

tively better than all the baselines in all conditions. LWCRS performs worse than PP for higher

CCR and NoC sizes, but shows better results than BN/LU/LM in all conditions. The PP heuristic

performs well as it performs better grouping of tasks, but still shows a slightly higher WCRT (JCP
i )

distribution when compared with IPC. LU and LM are computation-centric mappers and there-

fore their performance deteriorates significantly under higher CCR conditions. Furthermore,

LU and LM may map communicating tasks further apart as the NoC size increases, which results
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in a larger distribution range. BN performs better than LM and LU in higher CCRs, as it takes

into account the communication channel load as a metric but is worse than PP/LWCRS/IPC as

it does not perform task grouping.

5.6.2.4 Results summary

The results from the evaluation confirm that the proposed dynamic mapping heuristics, IPC

and LWCRS show an improvement of about 10%-20% in mean admission rates and about 5%-

15% improvement in PE busy times, when compared against other existing heuristic based dy-

namic task-mappers. Furthermore, these improvements can be obtained at a lower usage of

the NoC, which could potentially lead to lower power consumption in the system. For larger

workloads, the proposed dynamic mappers are only 5%-10% worse than the mapping solution

which took 90-100 hours to achieve, by the GA-MP upper baseline.

Results also show that mapping heuristics that rely purely on communication/computation

load do not scale well as the NoC size and workload increase. This work also shows how the

dynamic mappers behave under different CCR workloads. LWCRS and IPC group tasks together

to minimise communication and to reduce the computation interference; they perform sig-

nificantly better than the BN, LU and LM baselines and marginally better than the PP mapping

technique under high CCR workloads. By taking into account task and flow blocking factors bet-

ter mapping decisions can be achieved. For communication and memory bound applications

such as parallel video stream decoding, the performance results of the mapping techniques at

higher orders of CCR are of particular interest.

5.7 Summary and novel contributions

To summarise, this chapter presented the following two novel dynamic task mapping heuristics

for hard real-time video stream decoding applications, on NoC-based platforms:

• LWCRS: a general-purpose, blocking-aware mapping technique that attempts to tightly

pack tasks in the temporal domain. It uses the worst-case remaining slack of tasks as a

metric in the mapping process.

• IPC: an application-aware mapping technique that clusters the I and P frame decoding

tasks (which lie on the critical path) and maps them to a single PE. The remaining B-frame

decoding tasks are mapped according to LWCRS.

Both IPC and LWCRS can be used to improve the utilisation of the D-AC by reducing the

end-to-end worst-case response time of video stream jobs and thereby admitting more video

streams. The proposed runtime mappers are open-loop, meaning they do not rely on monitor-

ing information from the platform or application which is unique unlike existing centralised

resource management techniques, surveyed in the literature (Section 2.3.3). Both proposed

mappers showed significant improvement over existing runtime mappers.

This work also presented a point-based, WCRT-aware fitness function and experimental de-

sign flow which can be used in conjunction with static hard real-time, task mapping, search

techniques (such as a genetic algorithm) to suit multi-stream video decoding applications with

task dependencies and unknown execution times. This static HRT mapper was used as an upper

baseline to evaluate the proposed dynamic mappers and it was able to achieve significantly bet-

ter mapping solutions for low workloads within an acceptable search time. However, it showed
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only a minor improvement over the dynamic mappers for high workloads even after 100 hours

of search time. Evaluations were also carried out for larger NoC sizes and varying workload

CCR levels. This evaluation showed that it is crucial to take into account the workload CCR

and efficient task clustering in the task mapping process, especially if the communication and

computation load of an application has high variability.

111



Chapter 6

Distributed task remapping

The experimental results from Chapter 5 demonstrated how increasing the number of process-

ing cores on a NoC can facilitate processing of higher workloads levels. However, with the in-

crease in the number of cores and concurrent applications the centralised resource manager

faces scalability issues and performance bottlenecks as discussed in Section 2.3.2.1 of the lit-

erature survey. Hierarchical, cluster-based, distributed resource management techniques have

been proposed by many researchers (Section 2.3.2.2) to overcome several limitations of a central

management unit. The complexity and dynamic nature of multiple video stream decoding ap-

plications and the availability of large-scale distributed NoC architectures motivates the inves-

tigation of fully-distributed, autonomous self-organising mechanisms. Even though a handful

of such fully distributed techniques do already exist for NoC-based platforms (Section 2.3.2.3),

they either rely on complex interaction protocols [163], have high communication overhead

[165] and/or require specialised hardware [162, 167].

The work in this chapter presents a bio-inspired, fully distributed, low-overhead task remap-

ping technique that is an extension of the pheromone signalling-based load-balancing proto-

col introduced by Caliskanelli et al. [104] (described briefly in Section 2.3.2.4). The proposed

remapping technique dynamically adapts the mapping of SRT multiple video stream decoding

tasks on the NoC-based platform in order to reduce the overall job lateness. Each individual PE

periodically executes a lightweight set of rules which gives it the capability to make autonomous

task reallocation decisions using its local knowledge. This introduces a high-degree of con-

trolled redundancy into the system, as there is no single point of failure or management entity.

The adaptive nature of the distributed system resource management policy proposed makes it

difficult to analyse task/flow latencies and hence, the system is not able to provide hard timing

guarantees. Therefore, the work in this chapter solely targets SRT or best-effort video stream de-

coding workloads where the objective is to minimise the resource management overhead whilst

reducing the workload lateness.

The second contribution in this chapter is an adaptation of a hierarchical, cluster-based re-

source management approach as given in Castilhos et al. [157] (an overview given earlier in Sec-

tion 2.3.2.4). This RM technique is extended to introduce task blocking and relocation distance

awareness and is used as a baseline to the proposed bio-inspired remapping technique.

The remainder of the chapter is organised as follows. Section 6.1 describes the changes to

the system model that is used in this chapter. In Section 6.2 the protocols of the proposed bio-

inspired distributed remapper is defined followed by a description of the cluster-based remap-

ping technique in Section 6.3. An evaluation of the presented task remapping techniques is

carried out in Section 6.4.
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6.1 System model refinement

Both the application and platform models used in this chapter follow the previous definitions

provided in Section 5.1, with a few exceptions as stated in this section.

6.1.1 Omitting the memory transaction model

The previous chapter integrated high-level abstract memory read/write transactions within the

application model. The primary experiments carried out by this chapter omit those memory

transactions, in order to improve the simulation speed for evaluating both remapping tech-

niques discussed in this chapter. However, the secondary experiment gives an indication of the

predictability of PSRM when memory traffic is modelled. The simulation speed of a discrete-

event simulation increases proportionally to the number of simulated events. Both the bio-

inspired and cluster-based remappers require parameter tuning and hence require several thou-

sands of simulation runs. However, this speed/accuracy trade-off, does not compromise the

evaluation as both remappers are evaluated under the same experimental conditions. Further-

more, the state-of-the-art techniques in distributed resource management (e.g. [37, 157, 159])

also do not take into account the main memory traffic in their evaluations. The author acknowl-

edges that memory transactions can impact task mapping performance, and therefore further

investigations into memory traffic bottlenecks are carried out in Chapter 8.

6.1.2 Disabled admission control

For all experiments conducted in this section, the admission controller is disabled (i.e. No-

AC). The remapping techniques presented in this section can be employed in conjunction with

a soft real-time/best effort admission controller (e.g. Heu-AC). However, disabling the admis-

sion controller allows us to investigate the performance and behaviour of the remappers under

heavy load conditions.

6.1.3 Job-level task mapping/remapping

In the previous chapters, runtime task mapping was constrained to the stream-level, in order

to provide hard timing guarantees by the D-AC. The application model in this chapter assumes

soft real-time video streams; hence, hard timing guarantees are not required. The allocation of

tasks of each consecutive job of the same video stream can be changed/updated at runtime by

the remapping algorithm if needed, to improve the performance/predictability. The mapping

configuration in this chapter can therefore vary at the job-level.

A generic high-level view of the distributed task remapping process is illustrated in Fig-

ure 6.1. In this model, the tasks of the first job J0 of a new stream V Si are mapped and assigned

priorities upon admission as per the previous chapters. For all work presented in this chapter,

the initial mapping of the tasks follow the LU dynamic task mapping heuristic described in Sec-

tion 5.6.1.1. Task priorities are assigned as per the video-centric priority assignment policy in

Section 5.1.1.2. This initial MP&PR configuration is then saved onto the runtime task mapping

table (TMT) and tasks of J0 are dispatched to the respective PEs. When new subsequent jobs Ji

of the stream V Si are received, the task dispatcher queries the TMT to retrieve the mapping and

priority assignment made for J0. Hence, the same mapping and priority configuration is used

for the remaining jobs in the stream unless the remapping procedure changes a task’s allocation.
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Figure 6.1: Video stream task remapping illustration

6.1.4 Low-overhead remapping procedure

Both remapping procedures presented in this chapter use a periodic remapping event and sig-

nalling scheme as shown in Figure 6.1. In the bio-inspired remapping technique any PE in the

platform can notify the dispatcher regarding a task remapping, but in the cluster-based remap-

ping technique only the cluster managers notify the dispatcher. The dispatcher looks up the

task’s id in the TMT and updates the corresponding PE with the new remapped PE id. When the

next job is received the tasks are sent to the new PEs, as indicated by the updated TMT. Hence,

remapping will only take effect from the subsequent arrival of the next job in the video stream.

Unlike the existing task migration techniques in the literature (Section 2.3.4), this novel remap-

ping procedure does not require task code/data to be moved from one PE to another. Task

remapping is simply an update to the TMT maintained by the dispatcher. The dispatcher noti-

fication message overhead is very minimal as its payload is only a few bytes and only transmits

each remapping cycle.

6.2 Bio-inspired distributed task remapping

This section will first describe the mechanisms of the original pheromone-signalling (PS) based

load balancing algorithm [104], henceforth referred to as PSAlgo. This algorithm is inspired

by social-inspects (e.g. bees) and has previously been used to improve reliability of wireless

sensor networks. Extensions to PSAlgo are made in this chapter in order to enable distributed

remapping of late tasks from NoC PEs that are heavily utilised onto PEs that are under utilised

in close proximity. The remapping algorithm parameter selection guidelines are also given in

this section as well as a discussion of the difficulties faced with this technique.

6.2.1 Overview of the PS distributed load-balancing algorithm

An overview of PSAlgo was given in Section 2.3.2.4. To recap, each PE in the network can ei-

ther be classified as a queen node (QNs) or worker node (WN). QNs periodically propagate

pheromones (denoted hd) to neighbouring PEs. All nodes accumulate and pass on pheromones
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received from the QNs to their neighbours, and the dose of the pheromone is decreased at ev-

ery hop-distance away from the QN. The pheromone level (denoted hi) for each node decays

over time. A node becomes a QN when its hi drops below a certain threshold (denoted QT H).

The range of the pheromone broadcast by the QN is limited to reduce the communication over-

head, and hence worker nodes are only aware of nearby QNs. Each node executes a set of simple

rules to obtain increased performance on the system as a whole.

The original PSAlgo [104], contained two periodic events and one asynchronous event. An

additional remapping event has been added as part of the algorithm extensions. All events are

shown by the sequence diagram in Figure 6.2 and these events are carried out by each PE in

the NoC. The periodic PSDifferentiation cycle occurs every TQN seconds to distinguish its queen

status. Every TDECAY seconds, the PSDecay event occurs to decrement/decay the node hormone

level. The PSPropagation event occurs when a new hormone dose is received by a neighbouring

node. In-depth details of these events can be found in [104] and pseudo-code of these events

are given in Appendix B.1.
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propagate hd
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Figure 6.2: Sequence diagram of PSRM algorithm related events. Time triggered (periodic) : PSDifferentiation, PSDecay
and PSRemapping cycles; Event triggered: PSPropagation

6.2.2 Extensions to the PS algorithm

In Figure 6.2, the event sequence of the bio-inspired remapping technique (termed PSRM ) is

presented. The PSPropagation and PSDecay cycles follow the original algorithms given in [104].

Figure 6.3 illustrates the hormone propagation when the hop distance limit is set to 3. At each

hop the level of hormone in the pheromone message decreases, hence PEs further away from a

QN will receive a lower hormone dose than those near to a QN. To reduce the communication

overhead, each pheromone message only propagates in a forward direction. For example, in
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Figure 6.3, PE(1,3) does not pass pheromones back to PE(1,2) and the QN does not receive its

own hormone back, which it propagates. All control flow messages of PSRM including the dis-

patcher notification messages have a higher priority than data communication message flows.

Hormone level

hi

0 1 2 3

0

1

2

3

Figure 6.3: PSRM pheromone propagation

PSDifferentiation has been adapted to take into account the load of the tasks mapped onto

a PE. An additional periodic remapping cycle (referred to as PSRemapping ) has been added

to determine the late tasks and remap them to new PEs. As shown in Figure 6.2, the system

will continually receive jobs from active streams and new video decoding requests as well. The

PSRM event cycles will occur in parallel to the videos/jobs arriving. The objective of these ex-

tensions are to allow WNs to remap late tasks of the video streams to a nearby QNs who have

slack (idle temporal gaps) to accommodate more tasks.

Algorithm 6.1 shows the extensions made to the PSDifferentiation cycle of the PS algorithm.

In this extension, the QT H is dynamically adjusted depending on the normalised cumulative

slack (MPTslack) of the tasks mapped on the PE. MPTslack is calculated in line 2. A PE will be-

come a QN if it has enough slack to accommodate additional tasks (lines 3-7). PEs keep track

of a task’s observed response time (et
i − at

i) from its previous invocation, thereby enabling the

estimation of the task slack [di− (et
i − at

i)]. A negative MPTslack indicates the PE does not have

any spare processing capacity to take additional tasks, and hence decreases the queen thresh-

old level; thereby, decreasing the likelihood of the node becoming a QN. Likewise, a positive

MPTslack increases the queen threshold level. The amount in which QT H is incremented/decre-

ment is controlled by the parameters Qα
T H and Qβ

T H .

The self-organising behaviour of the distributed algorithm (specifically the PSDifferentia-

tion), stabilises the number and position of the QNs in the system, as time progresses and de-

pending on the workload. It should be emphasised that a QN will return into a WN state if it

becomes overloaded. A node propagates pheromones immediately after it becomes a queen

(line 10 of Algorithm 6.1 ). The pheromone dose (hd) is represented as a four element vector

(line 10) containing the distance from the QN, the initial dosage (HQN), the position of the QN

(QNxy) and a data structure (PEMPTin f o) containing the pi and ci of the tasks mapped on the QN.

The worker nodes will receive and store this information as the pheromones traverse through

the network.

6.2.2.1 PSRM task remapping cycle

Tasks incur lateness due to the resource over-utilisation and/or due to task/flow blocking. The

goal is to change the mapping of the late tasks, such that these causes of lateness can be miti-

gated. The PSRemapping cycle is presented in Algorithm 6.2 and is executed by each PE period-

ically, using only its local knowledge gathered via the pheromone doses.
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Algorithm 6.1: PSRM Algo [PSDifferentiation] (Periodic : every TQN)

Input : PEMPT - tasks mapped onto the PE,
TQN - QN differentiation period,
hi - local pheromone level,

QT H ,Qα
T H ,Q

β

T H - local QN threshold and increment/decrement factors,
Output: hd - updated pheromone dose,

QueenStatus - QN status (boolean),
1 while true do

2 Calculate normalised cumulative slack of mapped tasks: MPTslack =
∑

∀τi∈PEMPT
[di−(et

i−at
i)]

∑
∀τi∈PEMPT

(di)
;

/* calculate QN threshold based on the slack level */

3 if MPTslack > 0 then
4 QT H = QT H × (1+(MPTslack×Qα

T H));
5 else
6 QT H = hi×Qβ

T H ;
7 end

/* determine queen status */

8 if hi < QT H then
9 QueenStatus = TRUE;

10 Broadcast hd =
{

0,HQN ,QNxy,PEMPTin f o
}

to neighbouring PEs;
11 else
12 QueenStatus = FALSE;
13 end
14 wait for TQN ;
15 end

The task with the maximum lateness τMAX
L is selected from the mapped tasks on the PE, as

the task that needs to be remapped to a different PE (line 2). di is calculated using the DEQF

scheme [137]. Each node is aware of the nearest QNs (denoted QList), and their mapped tasks, by

storing the information received from each pheromone dose hd. A balanced blocking heuristic

(similar to LWCRS in Chapter 5) is used to select a QN out of QList to remap τMAX
L . The heuris-

tic attempts to find a QN, that can provide a lower blocking than the current blocking B(τMAX
L )

(lines 5-11), and also with the minimum number of low priority tasks which will be affected

by the remapping. To avoid overloading QNs in a single remapping cycle, only a single WN

can select a particular QN at a remapping event. Hence, the QN availability (lines 12-14) is

checked before selection. There are situations where a QN can become overloaded; for exam-

ple, when its amount of cumulative slack reduces over time after several remapping events. In

these conditions, the QN will return to a WN state (as described by the PSDifferentiation cycle

in Algorithm 6.1).

Finally, the task dispatcher is notified via a message flow to update the TMT. In the next

job invocation the dispatcher will retrieve the updated mapping from the TMT and dispatch

the tasks to the new PE. It should be made clear that even though there is an update message

sent to a centralised dispatcher, the remapping decision is achieved in a decentralised manner,

purely using local information at each PE.

Figure 6.4 illustrates an example of the remapping procedure in a 4x4 NoC. At a remapping

event (step 1 of Figure 6.4), the PEs identify the late tasks mapped onto them. In step 2, the

worker nodes PE(1,0) and PE(2,2) determines the suitability of each QN to remap the late tasks

(τ1 and τ2). τ1 can either be remapped to Q(1,1) or Q(3,0) and τ2 can be remapped on to either

Q(3,2) or Q(1,1), but Q(3,2) is not suitable due to the task blocking behaviour and Q(0,3) is not

in the QList due to distance. Also in step 2, the nodes request for the suitable QN’s availability; in

this instance PE(1,0) obtains a lock on Q(1,1) first. Therefore, τ1 will be remapped onto Q(1,1)
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Algorithm 6.2: PSRM Algo [PSRemapping - Task remapping].
(Periodic : every TRM)

Input : PEMPT - tasks mapped onto the PE,
TRM - remapping period,
QList - list of QNs in close proximity and their mapped tasks

Output: Remapped tasks
1 while true do

/* find most late task from mapped tasks */

2 τMAX L
i = MAX(

{
τi ∈ PEMPT | (at

i +di)≤ tc
}
);

/* get current blocking for late task */

3 Current blocking: B(τMAX L
i ) = ∑

∀τ j∈hp(τMAX L
i )

c j

/* find suitable QNs which offer lower blocking, than current blocking */

4 QB
List = {}

5 foreach Qi ∈ QList do
/* get target task blocking factor */

6 Amount of self blocking if mapped to QNi: Sel f BQ = ∑

∀τ j∈hp(τMAX L
i )

c j

7 Amount of lower priority tasks mapped on QNi: LPsize =
∣∣l p(τMAX L

i )
∣∣

/* Insert into suitable QN list, only if lower than current blocking */

8 if Sel f BQ < B(τMAX L
i ) then

9 Insert {Qi,LPsize} to QB
List

10 end
11 end

/* request for QN availability - via request/reply message flows */

12 Avlb QB
List = requestAvailability(QB

List)
/* get available QN that has least amount of lower priority tasks */

13 {QMIN LP
i ,LPMIN

Q }= MIN(Avlb QB
List)

/* Update dispatcher’s task mapping table */

14 Notify dispatcher : τMAX L
i → PE(QMIN LP

i )
15 wait for TRM
16 end
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Figure 6.4: PSRM task remapping example. (Q=queen nodes; D=Dispatcher; [τ1,τ2] are late tasks; Blue lines represent
communication

and τ2 remapped to Q(2,3). In step 3 the PEs notify the dispatcher via a message flow regard-

ing the remapping. In step 4 the next job arrives and the tasks are now dispatched to the new

processing elements PE(1,1) and PE(2,3).

6.2.3 PSRM parameter selection

The performance of adaptive algorithms such as PSRM is highly dependent on the selection

of a good set of parameters. Manual selection of parameters is not feasible due to the size of

the search space. For this work, a simple random search based parameter tuning approach
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(evaluated 150 unique random parameter combinations) proved sufficient to obtain reason-

able performance. A more efficient parameter selection mechanism for PSAlgo can be found

in [201] but relies upon an optimised simulation framework with lower accuracy to speed-up

the fitness evaluation. Table 6.1 shows the parameters obtained via a simple random search

based selection method. Results for all tested random parameter combinations can be found in

Appendix B.2.

Table 6.1: PSRM algorithm parameters - for a 10×10 NoC

PSRM parameter Value

Differenciation cycle period (TQN) 0.94 (s)
Decay cycle period (TDECAY ) 0.313 (s)
Remapping period (TRM) 3.8 (s)
Default QN threshold (QT H ) 20
Initial hormone dose by QN (HQN) 5

QN threshold inc./dec. factors (Qα
T H , Qβ

T H ) 0.203, 0.3
Pheromone time and hop decay factors 0.2, 0.217
Pheromone propagation range (pd) 2 (hops)

Several intuitive guidelines were derived from the parameter tuning. TQN must be smaller

than TRM , but high enough not to cause significant signalling overhead in the communication

network. TDECAY should be 2-4 times lower than TQN . The remapping period (TRM) should be

much larger than the job minimum inter-arrival rate, to ensure QN position stabilisation. A

lower TRM results in the dispatcher notification overhead to cause network congestion. Likewise,

the QN hormone propagation range should be kept low to reduce the protocol communication

overhead but at the same time giving sufficient capability to discover nearby QNs. The Qα
T H

and Qβ

T H factors must be kept low to reduce large variations in hi. The relationship between the

original PSAlgo parameters have been investigated extensively in previous work [104, 201].

6.2.4 Complexity and overhead analysis of PSRM

PSRM incurs very low computation complexity in the PSPropagation and PSDecay cycles as

each are a short sequence of simple ALU operations. The PSDifferentiation has O(|MPT |) worst-

case complexity where |MPT | denotes the number of tasks mapped on the PE. The PSRemap-

ping has a worst-case complexity of O(|MPT | × |Qlist |) where, |Qlist | is bounded by the propa-

gation range. However, unlike cluster-based or centralised management approaches, each PE

carries out the resource management event cycles, hence the complexity variables |MPT | and

|Qlist | are very small. The communication overhead of the PSDifferentiation and PSPropagation

events are directly proportional to the number of QNs in the network, the propagation range

pd and the differentiation period TQN . The number of hd messages injected into the NoC due to

hormone propagation by a single QN and its hc hop neighbours can be estimated by Eq. (6.1).

Msghd
hc denotes the number of messages generated at hop count hc. Each hd has a very small

payload (16 bytes) compared to the inter-task data message payload. In PSRM, each WN helps

to propagate pheromone messages, therefore the PS messages are of 1 hop each; when a WN

receives a PS message from another WN or a QN it creates another message and passes it along

to its own neighbours. Therefore, the PS algorithm inherently avoids message flows with long

routes. The propagation range (pd) parameter determines how far a specific PS message emit-

ted by a QN can travel. Larger pd values can significantly increase the congestion in the network

but improves QN discovery. A smaller pd can limit the interference to the data traffic.
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Number of hd messages (by 1 QN): Msghd
hc =

4 if hc = 1

Msghd
hc−1 +[4×3(hc−1)] if 1 < hc≤ pd

(6.1)

The amount of workload admitted into the system will marginally affect the position and

number of QNs in a network but the worst-case scenario where all PEs are QNs would only oc-

cur in very low load conditions. The dispatcher notification communication overhead is small

compared to the pheromone propagation overhead as the TRM is much larger than TQN . Further

results and discussion of the communication overhead of PSAlgo with respect to the network

size and TQN can be found in [202].

6.2.5 Challenges of PSRM

The primary drawback of PSRM (and any other fully distributed management techniques) is

lack of global state of the system. The remapping heuristic cannot take into account the change

in the network contention patterns caused by the reallocation. Therefore, there are situations

where remapping a task can result in an increase in the lateness. The second drawback of this

technique is related to event synchronisation. Between consecutive PSDifferentiation events,

the QN’s load can change rapidly when the system is heavily utilised. This may lead to inaccu-

rate local knowledge regarding the nearby QNs. Furthermore, late tasks should be remapped

ideally before the next job invocation. However, the remapping event is periodic (i.e. every TRM

seconds) which allows the remapping overhead to be kept at a minimum, but does not guar-

antee synchronisation with the workload arrival pattern. Longer periodic events may lead to

inconsistency in data and states, but are used to keep the communication overhead at a mini-

mum.

Lastly, PSRM is sensitive to the parameters used and the network size. The parameters need

to be tuned for a specific network size and ideally for a known workload profile to obtain better

results. In this work however, a fixed/generic parameter set (Table 6.1) was derived (via tuning)

for a range of random workload profiles (i.e. different arrival patterns, execution costs, resolu-

tions etc.)

6.2.6 Application of PSRM

This section reflects upon the applicability of PSRM and describes scenarios and conditions

where PSRM can deliver good performance and where it might be less able to meet expecta-

tions. PSRM’s performance is dependent on the type of workload scenario. If the workload is

less diverse and more characteristics of the workload are known beforehand, the PSRM param-

eter tuning can yield a better performing task remapper. For example, if the actual workload

scenario consists of a fixed number of streams and workflows, with only one or two video reso-

lutions then the diversity of the workload can be significantly reduced. Similarly, long-running

video streams rather than short videos are more desirable as the pheromone-signalling algo-

rithm may take several differentiation cycles to stabilise and a suitable number of nodes be-

come QNs. The type of scenario described above is commonly seen when the properties of the

streams are controlled by the same video decoding service (e.g. multi-stream real-time video
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surveillance, multi-stream broadcast video monitoring systems). However, note that when eval-

uating the remapping techniques presented in this chapter, a random set of workload condi-

tions are induced to cover a range of possible application scenarios.

PSRM can also perform better for video streams with less number of B-frames or bi-directio-

nal predicted coding disabled completely. In these streams, the task-graphs (i.e. GoPs struc-

tures) will have less number of edges, leading to lower communication between tasks. In such

kinds of workloads, the negative impact of task reallocation due to not considering network

contention (as described in Section 6.2.6), can be made less severe.

The level of lateness of the workload also has an impact on the effectiveness of PSRM. The

availability of QNs is dependent on the amount of available slack in a node’s task queue. There-

fore, if the system is heavily loaded and over-saturated, none of the nodes may have available

slack; this can gradually decrease the number of QNs, leading to short intervals of poor PSRM

performance. Of course, a simple heuristic based system admission-controller can be then be

used in conjunction with PSRM, to avoid encountering such overload situations.

PSRM’s performance is also dependent on the scale of the platform and the workload. In

smaller platform sizes (e.g. 4×4 and lower) the communication overhead of PSRM can outweigh

the performance benefits, therefore it is mostly suitable for large scale platforms. Likewise, for

smaller workloads (e.g. when the number of parallel streams are significantly smaller than the

number of cores on the platform), using a simple first-fit load-balancing initial mapping heuris-

tic may be sufficient.

6.3 Cluster-based distributed task remapping

In this section a cluster-based remapping technique is described, which is used as a baseline

to evaluate PSRM. Section 2.3.2.2 provided a brief overview of the cluster-based resource man-

agement technique (referred to as CCPRMV1) introduced by Castilhos et al. [157]. In their work,

the NoC is partitioned into virtual clusters and each cluster has a local manager (LMP) which

manages the slave PEs in its cluster. LMPs perform frequent monitoring on the PEs to obtain

knowledge about a cluster. There is also a global manager (GMP) which performs duties similar

to the centralised dispatcher. As illustrated in Figure 2.13, the LMPs carry out a 3-way request/re-

ply/release interaction protocol to find resources in other clusters when there are no slave PEs

available in the current cluster to service a task. Similarly, in this work, during a periodic remap-

ping event the LMPs first try to remap a late task within its own cluster; failing which, the LMP

communicates with the other LMPs to find an available slave PE in a remote cluster. Here, avail-

ability refers to a slave PE with lower utilisation. Similar to PSRM, the dispatcher is notified of

any task remapping. By doing so, the overall lateness of the video stream jobs can be reduced.

Unlike in [157], this adaptation does not vary the cluster size at runtime or perform task mi-

gration. The LMPs perform task execution similar to the slave PEs as well as carry out monitor-

ing and periodic task remapping procedures. The resource management execution overhead

of LMPs is not taken in to account in the model. Similar to PSRM, all control flow messages

of CCPRMV1 (including the dispatcher notification messages) have a higher priority than data

communication message flows.
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Table 6.2: CCPRMV2 algorithm parameters - for a 10×10 NoC

CCPRMV2 parameter Value

Cluster size 2×5
Remapping period (TRM) 7.2
Max. late tasks (per cluster) to remap 5

6.3.1 Improvements to CCPRMV1

Preliminary experiments showed several limitations of the original CCPRMV1 algorithm, which

are addressed as follows in the improved version of the algorithm, denoted CCPRMV2.

• The task relocation distance (previously unconstrained) is now limited to 2 hops to reduce

long inter-task communication routes, which will cause higher interference in the NoC.

• In CCPRMV1, late tasks were remapped to a new slave PE (either in own or remote cluster)

following the LU heuristic. In CCPRMV2, this is improved by integrating the balanced-

blocking heuristic used in PSRM (lines 4-10 of Algorithm 6.2) to select the new slave PE.

Furthermore, CCPRMV2 ensures that a late task is only remapped to a PE with positive

cumulative slack.

• In [157], the original location of the LMP is at the corner of the cluster, as illustrated in

Figure 2.13(b). In order to reduce long monitoring traffic flow routes, the LMP is placed at

the center of the cluster.

6.3.2 CCPRMV2 parameter selection

CCPRMV2 has 3 important parameters: cluster-size, remapping period and number of late tasks

to remap. The parameters given in Table 6.2 were selected as the best after a parameter search,

equivalent to the random search carried out for PSRM (Section 6.2.3). Large cluster sizes result

in more monitoring traffic transmitted to the LMP and longer communication routes. A larger

number of late tasks to remap would cause the heavy variation in the load which in some cases

may be undesirable. Similar to PSRM, the remapping performed by CCPRMV2 will change the

interference patterns of the message flows; hence certain tasks and flows may incur lateness

while others will decrease in lateness.

6.3.3 Complexity and overhead analysis of CCPRMV2

In CCPRMV2, the computation overhead is incurred only by the LMPs in each cluster. At each

remapping cycle, the search for a local cluster slave PE has O(|cluster|× |MPT |) worst-case com-

plexity. A similar worst-case complexity is taken to select a slave PE when an LMP receives a loan

request. The RM communication overhead of CCPRMV2 is due to two factors: the cluster moni-

toring overhead and the loan request/reply/response protocol. Slave PEs notify its cluster LMP

when a task completes, hence the monitoring overhead is directly proportional to the amount

of workload (i.e. number of tasks admitted). The loan request and reply interactions (steps 1

and 2 of Figure 2.13) incur (|LMPs| × (|LMPs| − 1)) message flows and the loan release (steps 3

of Figure 2.13) takes (|LMPs| × (|LMPs| − 2)) messages. |LMPs| denotes the number of LMPs in

a network. Hence, the inter-LMP interaction is directly proportional to the number of clusters

in the NoC. The loan messages and monitoring feedback messages may have long routes de-

pending on the distance of the slave nodes and LMPs. Both the monitoring message payload
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(i.e. slave to LMP) and the inter-LMP loan communication protocol payload is assumed to be

16 bytes.

6.4 Evaluation

This evaluation section is separated into primary and secondary experiments as follows:

• Primary evaluation (ExpA): evaluate predictability and performance of PSRM against the

baseline remapping techniques.

• Secondary investigation of PSRM (ExpB): to evaluate the impact on job lateness with mem-

ory modelling disabled vs. enabled.

6.4.1 Experimental design

The abstract simulation framework as described in the previous chapters is used in these exper-

iments with the application and platform characteristics as defined in Section 6.1. All experi-

ments assumed a 10× 10 NoC platform. The PEs are assumed to have an operating frequency

of 200MHz. Message flow header routing cost is assumed to be 7 clock-cycles, NoC frequency is

set at 500MHz and the link width is set to 16 bytes. The task remapping protocols evaluated in

this experiment (e.g. PSRM and CCPRM) will inject a high number of control message flows into

the network, which will result in a high amount of network contention if the NoC bandwidth is

low. As explained in Section 3.3, the simulation speed can decrease under heavy contention

scenarios. Therefore, a relatively higher NoC frequency is selected to balance contention and

simulation speed.

The level of workload was configured such that there would be a peak load of 103 parallel

video streams (slightly more videos to the number of total PEs). Video stream resolutions were

selected at random from a range of resolutions (e.g. high: 720×576, low: 230×180), with 1 video

per workflow, maximum 5 jobs per video. Each experiment was run for 30 unique seeds. Admis-

sion control is disabled (i.e. No-AC), and an open-loop task dispatching and resource manage-

ment process is carried out in all experiments (similar to Section 5.1.2.2). Table 6.3 summarise

the experimental conditions, parameters and metrics used to explore the aforementioned eval-

uation objectives.

Job lateness improvement, video stream schedulability, resource management communi-

cation overhead and PE busy time distribution are the main response variables measured in

the experiments. The job lateness improvement indicates the reduction of the cumulative job

lateness (CJobs
L ) when remapping is used (Section 3.2.1). The RM communication overhead of all

remappers include the protocol control messages as well as the dispatcher notification message

flows (Section 3.2.4).

6.4.1.1 Baseline remapping techniques:

The following remapping techniques are used as baselines to evaluate PSRM:

• CCPRMV1 - the original cluster-based remapping technique, with a cluster size of 2×5 (i.e

10 clusters).
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Table 6.3: Experimental design summary of evaluating remapping techniques

Eval. obj. Independent variables Response variables

ExpA

PSRM,
CCPRMV1 (2×5 cluster size),
CCPRMV2 (2×5 cluster size),

Centralised management,
Random remapper

Job lateness improvement,
Number of schedulable video streams,

RM communication overhead,
PE busy time distribution

ExpB
PSRM:

memory modelling
enabled/disabled

Job lateness improvement

• CCPRMV2 - the improved cluster-based remapping technique, with a cluster size of 2×5

(i.e 10 clusters). The modifications as outlined in Section 6.3.1 are included in this cluster

based remapper.

• Centralised management - this is essentially CCPRMV 2 with a single 10×10 cluster. A sin-

gle manager receives status updated from every slave PE in the network and performs

periodic remapping. The central manager notifies the task dispatcher of any remapping

decisions.

• Random remapper - every remapping event each PE selects the most late task in its task

queue and randomly selects another PE to remap to. The task dispatcher is notified of the

remapping event.

6.4.2 Results discussion

6.4.2.1 ExpA - Comparison of PSRM and baseline remapping techniques

In ExpA, the predictability and communication overhead of the remapping techniques are eval-

uated. Figure 6.5 shows the distribution of cumulative job lateness improvement for each of

the remapping techniques evaluated. Each sample in the distribution corresponds to the CJobs
L

improvement in a unique seeded simulation run. A positive job lateness improvement indi-

cates that task remapping has helped to reduce the cumulative job lateness of the video streams.

Negative improvement indicates that the remapping has instead worsened the lateness of the

jobs, due to the unpredictable network contention changes that occur due to task reallocation

(Section 6.2.6). All the techniques show both negative and positive improvements. Unlike the

baseline remappers, a majority of the PSRM distribution lies in the positive improvement re-

gion. However, only a maximum of 2.6% positive lateness improvement can be achieved using

PSRM, while ≈5% improvement can be achieved if CPRMV2 is used. The narrower spread in

the PSRM job lateness distribution indicates that PSRM can offer lower variability in timeliness

(i.e. better predictability) compared to the cluster-based and random remapping baselines. The

results in Figure 6.5 also show the minor improvement of CCPRMV2 over CCPRMV1. The modi-

fications enable CCPRMV2 to marginally decrease the inter-quartile range (IQR) variability and

increase the mean and maximum positive job lateness improvement over CCPRMV1. The cen-

tral manager shows the lowest amount of job lateness variability even though majority of the

distribution falls in the negative lateness region. Random mapping performs poorly as most of

its improvement lies in the negative region, even though it managed to achieve the highest job

lateness improvement (≈6% ) out of the evaluated remappers.
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Figure 6.5: PSRM vs. baselines evaluation - job lateness improvement %

Table 6.4 shows the number of schedulable video streams and the total number of job dead-

line misses (of the unschedulable streams), for all remapping techniques evaluated. A video

stream is considered unschedulable if at least 1 or more of its jobs miss their deadlines. A higher

number of schedulable video streams and a lower number of job deadline misses represent bet-

ter predictability. Therefore, both the results in Figure 6.5 and Table 6.4, have to be considered in

conjunction to better investigate the predictability of the remapping techniques. PSRM shows

marginally higher number of schedulable streams and lower deadline misses than the baselines.

The improvement of CCPRMV2 over CCPRMV1 is more visible in the metrics given in Table 6.4.

The central manager has a higher number of fully schedulable video streams than CCPRMV2,

but at the cost of increasing the job lateness of the unschedulable videos.

Table 6.4: Video stream schedulability results for different remapping types, across all seeded experimental runs

Remapper type
Cumulative #

schedulable video
streams (all seeds)

Cumulative # job
deadline misses

(all seeds)

PSRM 11227 12163
CCPRMV1 11208 12247
CCPRMV2 11216 12180
Centralised 11219 12206
Random 11209 12239

Figure 6.6 shows the distribution of RM communication overhead of the remapping tech-

niques. Different aspects of the communication overhead are measured. The cumulative basic

latency, cumulative payload, total number of message flows and number of hops traversed of

control flows are indicated in Figure 6.6. PSRM shows a significant communication overhead

reduction in all factors, when compared to CCPRMV2, CCPRMV1 and centralised management.

Both PSRM and the cluster-based remappers on average utilise only a few links (i.e. hops) per

control flow; however as the cluster-based remapping/management techniques require 3 times

more control flows to operate, their overall communication overhead significantly increases.

The slave monitoring feedback messages form majority of the control messages of the cluster-

based remappers.
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Figure 6.6: PSRM vs. baselines evaluation - RM communication overhead factors (mean/max/min statistics shown
across all seeds). Top-left: cumulative basic latencies, Top-right: cumulative number of control flows injected, Bottom-
left: cumulative payload of all control flows, Bottom-right: number of hops per control flow

Central management has the higher communication overhead, in terms of cumulative ba-

sic latencies even though it has slightly lower cumulative payload and total number of control

flows compared to the cluster-based remappers. This is mainly due to the long communica-

tion routes (high hop count) used by the control message flows; slave PEs further away from the

management node will take longer routes to send monitoring feedback. Route lengths will in-

crease significantly, as the NoC size increases, and the number of flows and cumulative payload

will increase as the level of workload increases. As shown in previous work (e.g. [36]), the slave

to central manager communication will become a severe performance bottleneck for NoC sizes

larger than 12×12. Random remapping has the lowest overall communication overhead, as it

incurs only control flows to notify the dispatcher. However, it has a high number of hops per

control flow, thus interfering more data traffic flows than the other remappers.

The PE busy time distribution shown in Figure 6.7a, denotes the PEs with higher mean busy

times using lighter shades whilst the darker shades show PEs with low busy levels. The data

shown in this plot are normalised such that each remapping technique is relative to each other.

An ideal/balanced workload distribution would be one in which all PEs represent a similar

shade. A histogram view of the mean PE busy time is shown in Figure 6.7b, where the PE busy

times measurements are categorised into equal sized utilisation levels. The standard deviation

(σ) and mean statistics of the PE utilisation distribution across all nodes is given in Table 6.5.

Remappers with lower σ values have a more balanced workload distribution than higher σ val-

ues. Overall all remappers show a similar workload distribution pattern, with a majority of the

top region of the NoC utilised more than the bottom region; due to the nature of the initial map-

ping. PSRM does not have any nodes at very high utilisation levels (i.e. 90%-100%) unlike the

baselines but have several nodes which have very low utilisation levels. PSRM also has com-

parable workload distribution variability to the cluster-based remappers. The centralised man-

agement show a marginally better workload distribution than the other remappers indicated by

its low standard deviation.
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Figure 6.7: PSRM vs. baselines evaluation: (a) 2D visualisation of the normalised mean PE busy time distribution (10×10
NoC), (b) Histogram of the normalised PE busy time distribution

Table 6.5: PE busy time distribution results (average over all experimental runs)

Remapper type
Std. dev (σ) of PE busy

time
Mean PE busy

time %

PSRM 0.1094 43.67
CCPRMV1 0.1094 43.18
CCPRMV2 0.1097 43.07
Centralised 0.1078 43.07
Random 0.1108 43.36

6.4.2.2 ExpB - Effect of memory modelling on PSRM

In ExpB, the effect of modelling the memory traffic on the PSRM remapping technique is investi-

gated. The distribution of job lateness improvements when PSRM is used is shown in Figure 6.8,

when memory transactions modelling is enabled and disabled. Both treatments use equiva-

lent parameters for PSRM. NoC usage is reduced when two or more communicating tasks are

mapped/remapped on to a single PE but the memory transactions would still occur over the

NoC. Due to this reason, when memory modelling is enabled the performance of the PSRM

technique slightly worsens. The maximum negative lateness improvement of PSRM increases

from ≈-3.2% to ≈-5.2%, when memory traffic is modelled. However, note that as the simu-

lation time significantly increases when memory traffic is modelled, the parameters used for

both treatments were the same as shown in Table 6.1. Hence, the performance of PSRM (with

mem. enabled) can be improved further by parameter tuning. From these results it can be in-

ferred that, the simulations can marginally loose accuracy (by about 1-2%) by not modelling
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memory traffic, but gain the benefit of almost doubling the simulation speed. The remaining

experimental evaluations do not consider memory traffic modelling.
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Figure 6.8: PSRM evaluation memory disabled vs. enabled

6.4.2.3 Results summary

Overall, the results indicate the PSRM fully distributed remapping technique helps to reduce

lateness in the video stream jobs and to marginally increase the number of schedulable video

streams (i.e. improve predictability) when compared with the the baseline remappers. The

maximum job lateness improvement achieved by PSRM is very small (2.6%) but shows a reduc-

tion in job lateness improvement variability when compared with the cluster-based and ran-

dom remapping techniques. Lower timing variability is desirable in the context of predictable

systems. However, this minor improvement in job lateness comes at a much lower communi-

cation overhead than the cluster-based and central management baselines. On average, PSRM

uses 3 times less control message flows, 3 times less cumulative payload and about half the av-

erage number of links than the CCPRMV2 cluster based remapper. These differences results in a

large overall reduction in RM communication overhead in terms of cumulative basic latency.

The centralised manager dominates over the cluster-based remappers in terms of number

of schedulable video streams. It also performs the best amongst the evaluated remappers in

reducing the job lateness improvement variability and shows the best balanced PE workload

distribution. However, central management incurs the largest amount of overall RM commu-

nication overhead, as it requires a high number of control message flows, each of which on

average have long routes. This limitation of the central manager becomes a serious issue as

the NoC size scales. Random remapping on the other hand, shows the lowest communication

overhead but performs poorly in terms of predictability.

6.5 Summary and novel contributions

To summarise, this chapter investigated the following two runtime task remapping techniques,

in order to improve the predictability and performance of SRT video stream decoding:

• PSRM - a fully distributed, low overhead, bio-inspired task remapping technique. This

is an extension of the pheromone signalling based load balancing technique introduced

in [104]. It was adapted to perform dynamic task remapping to improve job lateness in

NoC based platforms.
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• CCPRMV2 - a cluster-based task remapping technique for NoCs is presented as a direct

baseline to PSRM. This was first introduced as a hierarchical resource management tech-

nique in [157] and is adapted/improved in this work to facilitate task remapping and to

take into account task blocking behaviour.

Both presented techniques make use of a balanced blocking heuristic similar to the LWCRS

task mapper (in Chapter 5) when selecting a new PE to remap a late task. As discussed in Sec-

tion 6.1.3, unlike in existing state-of-the-art dynamic resource management techniques, the

remapping procedure in this chapter do not migrate tasks, therefore they have a much lower

communication overhead.

PSRM relies on local knowledge of each PE to make decentralised remapping decisions. In

comparison, the cluster-based approach has a broader view of the NoC state, as the LMPs mon-

itor each slave PE in the cluster and interact with other LMPs to make a remapping decision.

The two remappers are evaluated with a centralised remapping scheme as well as a random

remapper. Evaluation results show that the proposed fully distributed PSRM remapping tech-

nique is marginally better in terms of predictability when compared to the baseline remappers.

However, PSRM incurs much less communication overhead than the cluster-based/centralised

remappers and comparable PE workload distribution to the cluster-based management ap-

proach. The results also suggest that it is possible to employ runtime task remapping to improve

the initial mapping, albeit not in all workload conditions, due to unpredictable NoC traffic con-

tention patterns.
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Chapter 7

Extending the application model to

support modern video coding tools

and standards

The previous chapters presented dynamic resource management methods on video streams en-

coded using classical codecs (e.g. MPEG-2). Even though MPEG-2 is still being used to encode

standard definition video streams, modern codecs such as HEVC are gradually being adopted to

address the compression challenges faced with ultra-high definition video streaming. With the

adoption of HEVC, both the encoder and decoder have increased in computation complexity

and memory requirements. Moreover, modern encoding algorithms such as the use of hierar-

chical B-frame structures, random-access profiles, adaptive scene change detection, multiple

reference frames and more variability in block sizes makes video decoding workloads highly dy-

namic and complex. To address these challenges, better resource management techniques are

required. At early stages of the design space exploration process, simulation-based investiga-

tion is a common practice. Therefore, it is crucial to have tractable, realistic and abstract models

of the actual application workload.

The work in this chapter is motivated by the lack of data-parallel, HEVC video decoding

workload models in the literature (Section 2.1.5.1). The application model used in the previ-

ous chapters are extended in this chapter to model a higher degree of variability in the video

stream workload characteristics. These models will then be used in the following chapter to

investigate runtime task mapping techniques for parallel HEVC decoding.

Trace-driven analysis of real HEVC decoding workloads are carried out at the GoP, frame

and coding unit (CU) levels. DAG-based synthetic HEVC decoding workload generation algo-

rithms are presented, that use statistical distribution models that closely represent video de-

coding workload characteristics. To the best of the author’s knowledge, this is the first work to

characterise HEVC decoding workloads at the block-level as well as capturing the properties of

GoP-level task graphs dependency patterns, for different types of video streams.

The remainder of the chapter is organised as follows. Firstly the refinements introduced to

the application model are clearly indicated in Section 7.1. Section 7.2 describes the method-

ology used to analyse HEVC video streams and generate synthetic workloads. A description

of the video streams used and the codec set-up is given in Section 7.3. A GoP-level analysis is

conducted in Section 7.4 followed by a CU level analysis in Section 7.5 and a communication

volume analysis in Section 7.6. Breakdown of the CPU and memory usage of the decoder is

discussed in Section 7.7. In Section 7.8 the algorithms to generate the synthetic HEVC decoding

workloads are presented. Finally, an evaluation of the presented workload generation technique
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is carried out in Section 7.9.

7.1 Application model refinements

The work in this chapter lifts certain assumptions made in the application model used in the

previous chapters.

• Dynamic GoP structures: the GoP frame pattern and dependency structure no longer will

follow the 12 frame structure given in Section 3.1.1. The number of frames and their de-

pendency patterns within a job can now change between consecutive jobs in the same

video stream.

• Task execution cost: the frame decoding task execution cost will be derived via an accumu-

lation of lower-granularity CU decoding costs. In the previous model (Section 3.1.1.1), the

block-level decoding cost was assumed to be fixed and the number of different blocks per

frame were assumed to be random. In this refinement, the CU decoding cost will be sam-

pled from an analytical distribution representing the real CU decoding time. The type and

number of CUs within the frame model will also be representative of real streams. Execu-

tion time at the CU-level granularity will facilitate deriving even a coarser-grain, Tile-level

decoding cost.

This CU-level decoding information will be used in the following chapter to investigate

HEVC tile-level task mapping.

• Dynamic task reference data: the model in Section 3.1.1 assumes a fixed reference data

payload. This is not realistic as the amount of reference data will vary depending on the

motion in the video. From this chapter onwards, the model assumes a variable amount of

reference data volume per inter-frame.

7.2 HEVC stream analysis and synthetic workload generation

methodology

Similar to other video coding standards, HEVC has a hierarchical structure (Section 2.1.2). CUs

exist at the lowest granularity and frames and GoPs are at the highest level of the hierarchy.

Different characteristics at each level contribute to the complexity of the decoding process. For

example, depending on the motion in the video the number of P and B frames in a GoP as well

as their inter-frame dependencies can vary. CU-level granularity analysis is required in order to

derive an accurate frame decoding model. For example, when modelling an I-frame, a higher

proportion of smaller CU sizes may need to be used, while having no P/B/Skip-CUs. A fine-grain

workload characterisation is also beneficial for design space exploration of CU/WPP/Tile-level

parallel decoding of HEVC streams.

Figure 7.1 illustrates HEVC workload characterisation methodology which includes the sta-

tistical analysis of real HEVC video streams and the synthetic HEVC decoding workload gen-

eration. Video sequences of varying content are first obtained and HEVC encoded. Encoder

settings are configured to represent broadcast related streams suited for decoding on resource

constrained systems. During the encoding and decoding process, the following characteristics

of the different video streams are captured and analysed:
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• GoP-level characteristics: Unlike the application model used in the previous chapters,

this model considers dynamic/adaptive GoP dependency patterns. The distribution of

the number of P/B frames in a video stream with respect to the scene content are captured

per video stream. Reference frame distances (i.e. distance between parent and child frame

decoding tasks in a GoP) and hierarchical/contiguous B-frame groupings are analysed.

• Frame and CU-level characteristics: CU characteristics such as distribution of CU sizes,

types per intra/inter frame are captured. When decoding the streams, CU-level decoding

time is profiled and analysed in order to derive a frame-level decoding cost (i.e. the weight

of the nodes in the task graph)

• Inter-task communication characteristics: Reference data volume per frame/CU-type

(i.e. inter-task communication flow payload) and encoded frame size analysis (i.e. task

memory read traffic payload) are captured.
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Figure 7.1: DAG-based HEVC workload generation methodology

The statistical properties obtained from the video stream trace analysis are then used as

parameters for the workload generation process. The bottom-up workload generator builds

the task sets from a lower granularity (i.e. CU-level) up to a higher granularity (frames, GoPs).

Multiple CUs are generated to construct a frame and multiple frames combined according to

the inter-frame reference pattern, to generate a GoP.

7.3 Video sequences and codec tools under investigation

The video sequences under investigation were chosen to represent varying levels of spatial and

temporal video characteristics. The selected video streams represent typical live (e.g. sport,

speech) or on-demand (e.g. movie, documentary) broadcasting material. Below are the video

sequences selected for this study (snapshots presented in Figure 7.2):

• FastFurious5 (Action, 720p, 30fps, 15mins): Heavy panning/camera movement, frequent

scene changes.

• LionWildlife (Documentary, 720p, 30fps, 15mins): Natural scenery, medium movement

scenes, fade in/out, grayscale to colour transitions.
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• Football (Sport, 720p, 30fps, 15mins): camera perspective mostly on field, camera pan-

ning, occasional close-ups on players/spectators. Large amounts of common single colour

background, combined text and video.

• ObamaSpeech (Speech footage, 720p, 24fps, 10mins): Constant, non-uniform background;

uni-camera and single person perspective, head/shoulder movement.

• BigBuckBunny (CGI/Animation, 480p, 25fps, 9mins): Wide range of colours, moderate

scene changes.

• ColouredNoise (Pseudo Random coloured pixels, 780p, 25fps, 10mins): Low compression

efficiency, useful for analysing worst-case characteristics of an encoder/decoder.

FastFurious5 LionWildlife Football

ObamaSpeech BigBuckBunny ColouredNoise

Figure 7.2: Video sequence snapshots

7.3.1 Encoder and decoder settings

The video streams were encoded using the open source x265 encoder (v1.7) [203]. x265 has

shown to produce a good balance between compression efficiency and quality , by incorporat-

ing several advanced coding features such as adaptive, hierarchical B-frame sequences [204].

The default settings of x265 were complimented with additional settings, to suit resource-cons-

trained decoding platforms (i.e embedded platforms with low memory), targeted at broad-

cast/video streaming applications. The encoder settings are specified in Appendix C.1. As dis-

cussed in Section 2.1.3, fetching reference frame data from main memory degrades decoding

performance especially when multiple reference frames are used. Therefore, inter-prediction

has been restricted to 1 forward and 2 backward references. Higher number of B-frames in a

GoP offers better compression but decreases motion related quality. To strike a balance, the

encoder was configured to use a maximum of 4 contiguous B-frames.

Key-frames (random access-points in the video) provide the ability to move (e.g. fast-forward,

pause and rewind) within a video stream. x265 by default treats all I-frames as key-frames if the

closed-GoP (self-contained/independent GoPs) setting is chosen. Closed-GoPs offer less com-

pression than open-GoPs, but reduce error propagation during data losses, hence more suited

for broadcast video. To ensure a balance between compression and random-access precision,

maximum I-frame interval of 35 frames was chosen. Weighted prediction was disabled to in-

crease decoder performance and B-frames were allowed to have intra-coded blocks in order to

be efficient during high motion/scene-change sequences.
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Decoding execution trace data was obtained using the open source, OpenHEVC [205] de-

coder with the minimal settings given in Appendix C.1. The platform used for decoding was

a laptop with Intel Core i7-4510U 3.1GHz CPU, 4MB L3-cache and 8GB of DDR3 RAM, run-

ning Ubuntu 14.04 Linux OS. In order to eliminate any inter-thread communication and syn-

chronisation latencies which might affect decoding time measurements, multi-threading was

disabled. Also, dynamic power management mode was switched off, such that the processor

operated at a fixed frequency. System cache was flushed before decoding each video.

7.4 Adaptive GoP characteristics

The structure of a GoP is directly related to the scene changes and motion in the video. As

seen from Figure 7.3, the ratio of the number of P and B frames per GoP (denoted as P/B ra-

tio) of the Football changes with respect to high-motion scenes or during scene-changes. The

scene change rate is measured as 1/GoPdi f f , where GoPdi f f refers to the mean number of GoPs

between scene change events. The scene change rate in each tested video stream is given in

Table 7.1. This metric gives a notion of how often the structure of the GoP changes with respect

to time. The FastFurious5 video has the highest scene change rate while the Football video has

the lowest. P-frames give higher compression than I-frames, hence during scene changes, the

x265 encoder increases the P/B ratio, whilst keeping the GoP length constant. Figure 7.4 shows

two example GoPs from the BigBuckBunny video; the bottom GoP refers to a scene with high-

motion (more P-frames).
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Table 7.1: Scene change rate for all video sequences analysed. (GoPdi f f = mean number of GoPs between scene changes)

Video Scene change rate (1/GoPdi f f )

FastFurious5 0.45
BigBuckBunny 0.30
LionWildlife 0.20
Football 0.05
ObamaSpeech 0.00
ColouredNoise n/a

7.4.1 Distribution of different frame types

The number of P and B frames in a GoP for each video sequence is shown as a histogram in

Figure 7.5. The number of P-frames in a GoP (denoted nP) is modelled as an exponentiated-

Weibull (exp-Weibull) distribution [206], where the probability density function (PDF) of the

exp-Weibull distribution is given as Eq. 7.1 with shape parameters a and c. Additional scale and

location parameters defines the relative size and position of the PDF; they are specific to the

statistics package used (i.e. SciPy).

f (x) = ac(1− exp−xc)a−1 exp−xcxc−1 (7.1)
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PDF with shape parameters (a,c), location=0, scale=1.5)

Preliminary distribution fitting using the Gamma and Gumbel PDFs provided inaccurate fits,

motivating the use of exp-Weibull distribution due to its long-tail, right-skewed density and flex-

ibility in shape. From Figure 7.5, it is clear that most of the video sequences fit the exp-Weibull

distribution except for the case of ColouredNoise, where there is no variation in the number of

P or B frames. As the GoP length N is fixed, the number of B-frames (nB = (N−1)−nP), is an in-

verted version of the number of P-frames in a GoP. For low-motion videos (e.g. ObamaSpeech),

the number of P and B-frames show less variation and high values of exp-Weibull parameters

(c,a) are seen. The inverse observation can be made regarding high-motion videos (e.g. Big-

BuckBunny).
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7.4.2 Contiguous B-frames and reference frame distances

Figure 7.6a shows the proportion of different contiguous B-frames in a GoP. Low-motion videos

(e.g. ObamaSpeech), show a high level of contiguous B-frames, while high motion videos (e.g.

FastFurious5), the proportions are uniform. The proportion of contiguous B-frames have a

direct impact to the reference distance of a frame. Reference distance (RFD) is calculated as

the absolute difference between the GoP index of the current frame and its parent/dependent

frame(s). Larger RFDs correlate with higher contiguous B-frames in a GoP. Higher average RFD

in a video stream, means the decoder has to keep a decoded frame longer in the DPB, which

would result in high buffer occupancy and hence a larger main memory requirement.
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Figure 7.6: (a) Number of contiguous B-frames in a GoP, (b) Reference distances for B-frames in different video se-
quences.

Generally, P-frames do not refer to B-frames and if the encoder is restricted to have only 1

reference frame for the forward direction, then a P frame refers to the closest previous I/P frame

(see Figure 7.4). B-frames referred to past and future I/P/B frames with a RFD characteristic

as shown in Figure 7.6b. The most common B-frame RFD is 3, as the maximum number of

contiguous B-frames (nBmax) in the GoP is constrained to 4. Further analysis showed that a con-

tiguous sequence of B-frames referred only to I/P-frames in close temporal proximity; therefore

long edges in the task graph are not present. A correlation exists between the RFD ratios shown

in Figure 7.6b and the number of contiguous B-frames shown in Figure 7.6a. For example, less

than 10% of contiguous B-frames in LionWildlife are of size 4, which leads to a low number of

frames having a RFD of 3.

7.5 HEVC coding unit characteristics

As described in Section 2.1.2, HEVC frames are logically structured as coding tree blocks (CTB)

and each CTB is recursively sub-partitioned into coding units (CU) in a quad-tree manner. In

this section the CU-level characteristics: types, sizes and decoding times are captured and anal-

ysed for each video stream. These fine-grain CU properties are used to form the coarse-grain

frame decoding time model.
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7.5.1 CU sizes and types

HEVC CUs can be of the size 64×64, 32×32, 16×16, 8×8, 4×4 (intra only) and can use either in-

tra (I-CU) or inter (P/B/Skip-CU) prediction. The size and type of CUs are defined further in

Section 2.1.2. Figure 7.7a shows that intra and inter predicted frame types differ significantly in

their use of different CU sizes. There are a higher number of smaller CUs in videos that have

fine-grained information in the picture (e.g. individual players and background spectators in

Football or detailed background in ObamaSpeech). Overall, 64×64 CUs are least used than other

sizes, however inter-frames show significantly more use of 64×64 CUs than intra-frames. The

encoder has failed to use small CU sizes for the ColouredNoise video.
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Figure 7.7: (a) Proportion of CU sizes within each video sequence (per Intra/Inter frame type) (b) Proportion of CU
types within each video sequence (per Inter frame type)

As seen in Figure 7.7b, except for ColouredNoise, the encoder has exploited heavy use of

Skip-CUs to offer better compression. The number of I-CUs are higher in video sequences with

high-motion. The inverse appears to be true of Skip-CUs; for example in ObamaSpeech, the

amount of Skip-CUs are between 80-93%. In general, the number of P-CUs are 2-3 times the

amount of B-CUs, and P-frames show a higher amount of I-CUs than B-frames. The encoder

has failed to use inter-prediction to compress the ColouredNoise, where 99% of the video has

been coded using intra-CUs.

7.5.2 CU decoding time

The distributions of CU-level decoding time are given in Figure 7.8. I,P and B-CU decoding

times are fitted to an exp-Weibull distribution (parameters given in Appendix C.2). Skip-CUs

can belong to either P or B frames; hence, the Skip-CU decoding times are multi-modal. The

Skip-CU decoding time is modelled as a high-order polynomial function (coefficients are given

in Appendix C.2). High B-CU decoding times are due to complex transformations, in bidirec-

tional inter-prediction. B-CUs decoding times are about 2-3 times larger than I/P-CUs. The CU

decoding time is dependent on the CU-size and content of the video sequence. This is evident in

the Football’s B-CU decoding time, where compared to others has a lower variance in decoding

times, because of a higher proportion of inter-frame 8×8 CUs in the video stream. A trend can

be seen in the I-CU decoding time and the exp-Weibull shape parameters; where high-motion,

high scene-change videos such as FastFurious5 and LionWildlife have a lower a and higher c,

leading to wider distributions. Overall Skip-CUs have the lowest decoding time compared with
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the other CU-types. The I-CU decoding time in ColouredNoise gave the highest execution time

out of all the videos; giving an observed worst-case CU decoding time of 4.94×10−4 s. The Skip-

CU decoding in Football shows the lowest decoding time (1.08×10−6 s), which shows us that de-

coding CUs can have up to two orders of magnitude variation, depending on the type of video

and CU-types/sizes used at the encoder.

Figure 7.8: Normalised CU-level decoding time histogram per video sequence. I/P/B-CUs distributions fitted to an exp-
Weibull PDF (dashed line; parameters given in Table C.1); polynomial function fitted to Skip-CUs (parameters given in
Table C.2). (NB: Sub-figures use different scales, share axes and distribution tails are cropped in order to assist visuali-
sation)

Furthermore, encoding LionWildlife resulted in a higher number of 16x16 to 64x64 sizes;

hence, increased CU decoding times are seen. Larger CU-sizes could lead to higher decoding

times due to bottlenecks at the memory subsystems [207].

Frame decoding time distributions for the video streams are given in Figure 7.9. The number

of different CU sizes/types and their decoding costs contribute to the shape of the frame-level

decoding time distribution. The primary factor for the frame decoding time as explained by

Kim et al. [207], is the distribution of different CU sizes in a frame. Small CU sizes in a frame

will result in a higher frame decoding time. This is evident in Football, where frame decoding

times are relatively higher and it also has a high number of 8×8 and 16×16 CUs. LionWildlife

also has a high frame decoding cost, which correlates with a high number of P and B-CUs as

well as a higher B-CU decoding time. Overall in every video stream, tI > tP > tB where the terms

tI , tP and tB denote I,P,B frame decoding times. This is mainly due to the number of Skip-CUs
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in a frame. For example, a B-frame primarily contains Skip-CUs (Figure 7.7b), and Skip-CUs

decoding times are lower than other CU types, resulting in a relatively lower overall B-frame

decoding time. It takes about 2-3 times longer to decode ColouredNoise when compared to the

other streams, because about 99% of the stream consists of I-CUs and no Skip-CUs.
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Figure 7.9: Normalised frame-level decoding time distribution histogram for each video sequence

7.6 Workload communication volume characteristics

In Section 7.4 the inter-frame dependency pattern in a GoP was analysed. This section investi-

gates the volume of reference data required for inter-prediction, which is essentially the weight

of each arc in the GoP-level TG application model. Apart from reference frame-data, the en-

coded frame also needs to be loaded from main memory in order to perform the decoding op-

erations; this forms the memory read traffic in the application. The encoded frame sizes are also

analysed to improve the memory read traffic payload model.

7.6.1 Reference data

The reference data is the pixel data of a decoded frame; the maximum amount of data a P-frame

can reference is ( f rsize = (h×w)×bpp), where h and w represents the frame dimensions and bpp

is bytes per pixel. For B-frames, this upper bound is doubled due to bi-directional prediction,

hence B-frames typically reference twice the volume of data than P-frames. Figure 7.10 shows

the distribution of reference data categorised by direction of reference; for example P← I refers

to the data referenced by a P-frame from an I-frame in the GoP. Considering the distributions

and their sample sizes for each video stream, overall all inter-frames have a preferred reference

probability of: pI > pP > pB, where for example pI denotes the probability of a frame obtaining

data from an I-frame. This observation is true because B-frames have the lowest decoded frame

data accuracy due to bi-directional prediction, and I-frames have the highest accuracy due to

only using intra-prediction.
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The reference data distributions are highly dependent on the RFD (Figure 7.6b), the number

of contiguous B-frames (Figure 7.6a) and the distribution of frame types (Figure 7.5) in a GoP.

This is also the reason for the wide variation of reference data in the B←P distribution. The data

traffic variation seems to be higher in videos with high rate of scene-change (e.g. FastFurious5),

while the mean amount of data volume is higher in largely static videos (e.g. ObamaSpeech).

ColouredNoise has very low reference data because a majority of the CUs are I-CUs. BigBuck-

Bunny has a lower amount of reference data due to its lower resolution.
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Figure 7.10: Distribution of frame reference data for all video sequences. E.g. P← I refers to the data referenced by a
P-frame from an I-frame. Sample-size of the distribution given as n. Circular markers indicate mean value

7.6.2 Encoded frame sizes

As described in Section 5.1.1.1, the encoded frame size represents the memory read transaction

payload in the frame-level application model. The model assumes the complete encoded frame

data needs to be read from memory into the PE local memory before executing a frame decod-

ing task. Figure 7.11 shows the distribution of encoded frame sizes as ratio of the uncompressed

frame size ( f rsize). The distributions are fitted with a exp-Weibull distribution (parameters given

in Table C.3). In the previous application model, a fixed compression ratio for a memory read,

was assumed as per Eq. (5.1). In the new HEVC application model, the compression ratio is sam-

pled from an exp-Weibull distribution with the parameters obtained from the real distributions

shown in Figure 7.11.

Overall, sI > sP > sB, where sI ,sP,sB denote I/P/B encoded frame sizes. However, the long-

tailed distributions tell us that there may be extreme-case scenarios where this may not always

be true (further verified in [60]). It can be observed that the variation in the compression ra-

tio distribution, is relative to the motion/scene-change rate of the video streams. Low-motion

videos such as ObamaSpeech have a much lower encoded P/B frame size than high-motion

videos. B-frame sizes have very long-tailed distributions compared to I or P-frames due to the

variation in the number of Skip-CUs in the frame; because Skip-CUs do not contain a residual,

the amount of data encoded is relatively small. In general I-frame sizes have less variation than

inter-predicted frames.
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Figure 7.11: Distribution of frame compression ratio (encoded frame size as a % of the uncompressed frame size).
Distribution fitted to Exp-Weibull PDF; parameters given in Table C.3. (NB: Sub-figures use different scales in order to
assist visualisation)

7.7 CPU and memory usage breakdown

The CU and frame decoding time measurements presented in Section 7.5.2, actually include

the time spent on different subsystems of the experimental platform. However, the applica-

tion model used in this work assumes the frame decoding task execution time (xi), is the pure

computation time of the task excluding other temporal artefacts such as fetching data and code

from external memory, processor stalls, cache misses etc. Note that, the memory transaction

costs and inter-task communication costs are modelled separately in the application model.

Modern processor architectures contain numerous complex design features such as instruc-

tion level parallelism, out-of-order execution, complex branch prediction and hardware pre-

fetching units in order to keep their execution pipelines busy. Therefore, calculating the actual

time spent only on computation is a challenging task. Furthermore, the task computation cost

can vary significantly, depending on the platform architecture.

This section of the chapter investigates the breakdown of the CPU/memory usage of a video
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decoding process using the Intel VTune performance analyser/profiler [208]. The profiler cate-

gorises the application execution time according to the following classification:

• Front-end bound : this is portion of time spent by the processor to fetch and decode in-

structions from cache/memory and translate them into micro-operations (µops).

• Back-end bound : the µops delivered from the front-end are fed into the back-end portion

of the processor to schedule, execute and commit (retire) the instructions. This section is

further split into the following two sub-categories:

– Memory-bound : indicates time spent on fetching data from the memory subsys-

tem (including L1/L2/L3 cache misses at all levels and fetching from off-chip DRAM

memory).

– Core-bound : indicates the time the execution pipeline was stalled. Long latency in-

structions (e.g. divide operations) and non-vectorised code can contribute to this

section.

• Retiring : this category represents instructions that have finished execution and in a per-

formance context indicates useful work done by the processor. It is reasonable to consider

this is the portion of time purely spent on computation.

• Bad speculation : this is the time spent on bad branch predictions resulting in flushing the

pipeline.

Figure 7.12a shows the breakdown of the decoding time spent in the above different plat-

form components. Different resolutions of the LionWildlife video (2 GoPs) were used to obtain

the measurements. Results show that on average, ≈45% of the time is spent on actual com-

putation (retiring) and ≈30% of the time is spent on pipeline stalls and ≈15% on the memory

subsystem. Result also indicate that the front-end bound issues are increased for low resolu-

tions videos. Figure 7.12b shows a breakdown of the memory subsystem transactions. These

measurements would depend on architectural characteristics such as cache and cache-line size

and DRAM bandwidth. Results indicate that a decoder is mainly L1-cache bound which is not a

main concern as L1 has the shortest latency. DRAM memory transactions can contribute to up

to 44% of the memory subsystem latency.
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Figure 7.12: Decoding time breakdown according to the platform subsystems (for varying resolutions of the Lion-
Wildlife video): (a) High-level breakdown: front-end, back-end, retiring and bad speculation, (b) Breakdown of the
memory-subsystem related decoding time
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7.8 Synthetic HEVC stream decoding workload generation

This section presents algorithms to synthetically generate HEVC video decoding workloads us-

ing the GoP/CU/frame level characteristics of HEVC video streams, obtained via analysis in the

previous sections (i.e. Sections 7.4, 7.5 and 7.6). The workload generation follows the hierar-

chical structure of the video streams as shown in Figure 7.1. Firstly, for each GoP in the video

stream workload, the GoP structures need to be created, which defines the reference data and

dependency patterns. Secondly, for each HEVC frame in a GoP, the CUs need to be generated in

a bottom-up fashion. Likewise, any number of HEVC video streams can be synthetically gener-

ated and fed into an abstract system-level simulator.

The ratio-based relationships and analytical distribution parameters obtained for each video

stream type in the stream analysis stage (i.e. Sections 7.4, 7.5 and 7.6) can be used as a basis for

generating similar type of video sequences. For example, to generate a video with high mo-

tion and heavy scene-changes, the number of P-frames can be generated using the exp-Weibull

PDF parameters similar to FastFurious5. If a slow motion video with high level of fine grain im-

agery is required, the contiguous B-frames ratios can be similar to ObamaSpeech and the CU

sizes can be made similar to Football. Similarly, different types of videos can be generated by

mixing/adapting the model parameters as needed.

7.8.1 Synthetic dynamic GoP structure generation

Construction of a synthetic HEVC dynamic/adaptive GoP structure can be done in two stages

as per Algorithm 7.1. This algorithm is invoked to build each GoP in the video stream workload.

In the first phase of the algorithm, the GoP sequence (in temporal decoding order) is generated,

taking into account the exp-Weibull distributed P,B frames. The position of the B-frames within

the GoP are uniformly distributed, but the selection of contiguous B-frame sizes are derived

from the ratio relationships observed from the trace results (Figure 7.6a). Lines 9-16 generates

B-frame groups (i.e. hierarchical B-frames) and inserts them at random positions in the GoP.

In Phase II of the algorithm, each inter-predicted frame is assigned reference frames as per the

analysis in Section 7.4. P-frames refer to the immediate previous I/P frame in the GoP, this gives

a long task chain like property to the TG as shown in Figure 7.4. B-frames are assigned multi-

ple reference frames (forward/backward) as per the RFD ratios seen in Figure 7.6b. Lines 19-29

derive possible and legal reference frames within the GoP. The RANDOM.CHOICE() function, gen-

erates a random sample from the given possible reference frame set, according to the specified

probabilities derived from the analysis.

The parameter N in Algorithm 7.1 can be varied to obtain different GoP lengths. Typically,

N is constant for all GoPs in the video, and only the frame sequence and dependency structure

will vary. nBmax and Wp can be varied to obtain different numbers of B and P frames within a

GoP. The parameters rB f wd
max ,rBbwd

max and rP f wd
max can be used to provide more reference frames to P

and B frames, this would in turn increase the number of edges in the TG. vsprob
r f d is representative

of the length of the edges in the TG and also gives a notion of the number of possible reference

frames for a B-frame.

7.8.2 Synthetic HEVC frame generation

Once the GoP sequence and structure has been generated (Section 7.8.1) the frames within each

GoP can then be created as per Algorithm 7.2. The algorithm builds up the frame-level task in
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Algorithm 7.1: Pseudo-code for GoP structure generation
Input : N : GoP length ,

nBmax : max. sequential (contiguous) B-frames,
Wp : exp-Weibull PDF shape params. for number of P-frames in GoP (a,c,scale,loc)

Bprob
seq : contiguous B-frame probabilities, vsprob

r f d : reference distance ratios

rB f wd
max ,rBbwd

max : max. forward and backward B-frame references,
rP f wd

max : max. forward P-frame references, rmax
d : max. reference distance

Output: GoP frame sequence (decoding order) and dependency structure for job Ji

1 Phase I - Construct GoP sequence

2 Validate parameters: assert((N−1)%(nBmax +1) == 0)
3 Min/Max num. P-frames in the GoP: (nPmin,nPmax) = {(N−1)/(nBmax +1),(N−1)}

/* Derive exp-Weibull distributed number of P,B-frames */
4 nP = EXPWEIBULL(Wp).SAMPLE(nPmin , nPmax)
5 nB = (N−1)−nP
6 Set of possible contiguous B-frame lengths: nBsizes = [1..nBmax]
7 B f r = {} /* hash table of positions and B-frame numbers */

8 GOPf r = “I”+(“P”∗nP)
/* get contigous B-frame positions in the GoP, iteratively */

9 while ∑B f r.values()< nB do
10 pos = RANDOM.CHOICE([1..nP],prob=’UNIFORM’)

11 tmpB f r = RANDOM.CHOICE(nBsize,prob=Bprob
seq )

12 if (B f r[pos].value+ tmpB f r)<= nBmax then
13 B f r[pos]+ = tmpB f r
14 end
15 end
16 GOPf r← B f r /* Put B-frames into GoP */

17 Phase II - Construct GoP frame references

/* hash table of inter-frame references */

18 f rre f s = {}
19 for f rix, f r ∈ GOPf r do

/* P-frames depend on previous I/P frames */

20 if f r == “P” then
21 rall f wd

POCs = GOPf r[POC < f rix∩ (RFD≤ rmax
d )∩¬“B”]

22 re f s f wd = RANDOM.CHOICE(rall f wd
POCs ,size = rP f wd

max ,prob=vsprob
r f d )

23 f rre f s[ f rix] = re f s f wd
24 else if f r == “B” then

/* B-frames depend on previous/future I/P/B frames */

25 rall f wd
POCs = GOPf r[POC < f rix∩ (RFD≤ rmax

d )]; rall bwd
POCs = GOPf r[POC > f rix∩ (RFD≤ rmax

d )]

26 re f s f wd = RANDOM.CHOICE(rall f wd
POCs ,size = rB f wd

max ,prob=vsprob
r f d )

27 re f sbwd = RANDOM.CHOICE(rall bwd
POCs ,size = rBbwd

max ,prob=vsprob
r f d )

28 f rre f s[ f rix] = {re f s f wd ,re f sbwd}
29 end

a hierarchical bottom-up manner, by first iterating through each CTU in the frame (line 3) and

then constructing a set of CUs per CTU (lines 5-17). The number of CUs in a CTU is obtained

based on the selection of specific CU sizes (line 6); the cumulative CU sizes must be equal to

the CTU size (e.g. 64×64). For each CU a random CU type is selected using the probabilities

given as parameters (line 9). The CU decoding time is sampled from an exp-Weibull distribu-

tion (lines 10-13). The frame decoding time is calculated as the summation of the CU decoding

time (Cdt) of all CUs in the frame (line 20). Similarly, CU reference is selected from the given

reference frame list f rre f (line 14). The input parameters to the algorithm facilitates the selec-

tion of the CU size/type/decoding time and references; these parameters were derived in the

previous stream analysis process. Videos of different resolutions can be generated by changing
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the h,w parameters.

Algorithm 7.2: Pseudo-code for generation of HEVC frames using CU-level properties

Input : h,w : video resolution height and width CTU px
max : CTU size (generally 64×64),

CUsizes = {64,32,16,8,4}
CUtypes = {I-CU,P-CU,B-CU,Skip-CU},
CU p

size : CU size probabilities per frame type - Figure 7.7a,
CU p

types : CU type probabilities - Figure 7.7b
W I

p,W
P
p ,W

B
p : CU-decoding time exp-Weibull parameters (a,c,scale,loc)

pskip
c : Skip-CU decoding time polynomial coefficients

dIlim
CU ,dPlim

CU ,dBlim
CU ,dSkiplim

CU : min/max decoding time range for CU types
f rre f : list of reference frames for current frame
PBr f : probability list of current frame type referencing an I/P/B frame
CUds f : CU-decoding scale factors for different CU types

Output: An HEVC frame decoding task with CU-level information (i.e. decoding time, type, size and
reference data for each CU in frame)

1 Number of CTUs per frame: NCTU = (h×w)/CTU px
max

/* Construct each CTU in the frame */

2 f rCTUs = {} /* empty CTU list in frame */

3 for each CTU ∈ [0..NCTU ] do
4 px = 0;CTUCUs = {} /* init. data struct. */

/* get CU-level information for each CU in the frame */

5 while px <CTU px
max do

/* randomly select CU size */

6 Cs = RANDOM.CHOICE(CUsizes,prob=Cp
s )

7 if (px+Cs)≤CTU px
max then

8 px+= (Cs)
2

/* randomly select CU type */

9 Ct = RANDOM.CHOICE(CUtypes,prob=Cp
t )

/* get decoding time per CU type, randomly sampled from an analytical PDF */

10 if Ct == I-CU then Cdt = EXPWEIBULL(W I
p ).SAMPLE(dIlim

CU ) ×CUds f [Ct ]

11 else if Ct == P-CU then Cdt = EXPWEIBULL(W P
p ).SAMPLE(dPlim

CU ) ×CUds f [Ct ]

12 else if Ct == B-CU then Cdt = EXPWEIBULL(W B
p ).SAMPLE(dBlim

CU ) ×CUds f [Ct ]

13 else if Ct == Skip-CU then Cdt = POLYNOMIAL(pskip
c ).SAMPLE(dSkiplim

CU ) ×CUds f [Ct ]
/* pick CU reference from reference frame list */

14 Cr f = RANDOM.CHOICE( f rre f , prob=PBr f )
/* append CU info. to CU list */

15 CUin f o = {Cs,Ct ,Cdt ,Cr f }; CTUCUs←CUin f o
16 end
17 end

/* append to CTU list */
18 f rCTUs←CTUCUs
19 end

/* The frame decoding time and reference data can be obtained as follows: */

20 Frame decoding time: xi(τi) = ∑
∀CTUi∈ f rCTUs

∑
∀CUi∈CTUi

Cdt

21 Frame ref. data (bytes) from parents : f rre f [ j] = ∑
∀CTUi∈ f rCTUs

∑
∀CUi∈CTUi

{
(Cs)

2×8bpp, if Cr f = j
0, otherwise

7.8.3 Limitations of the proposed workload generator

The size and type characteristics of the CUs obtained during the stream analysis (Section 7.5.1)

are cumulative values of all frames in the video stream. Similarly, the CU decoding time distri-

butions analysed in Section 7.5.2, represent the decoding time for each CU type in a complete

video stream. Therefore, frame-level variations are not accurately captured in this model. How-

ever, consecutive frames in the same video stream would have similar CU properties due to high

spatial/temporal correlation, but frames in different GoPs would have less correlation. In order
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to introduce a degree of variation in the CU types/sizes between different frames each prob-

ability parameter (e.g. CU size probabilities) are varied by a percentage value according to a

normal distribution. For example FastFurious5 has 31% Skip-CUs in P-frames (Figure 7.7b) but

when generating frames this probability is varied slightly, according to a normal distribution

with µ = 0.31 and σ = 0.05. The σ value needs to be high enough to add a certain level of varia-

tion between different frames of the same video stream, but not too high such that the original

proportions will be masked. In a real video stream however, the variation between frames would

be complex and would not fit a theoretical distribution. A deeper analysis into the distribution

of the CU types and sizes of a distribution of frames will need to be analysed, in order to infer

the variations between frames.

In Algorithm 7.1 (lines 9-16), B-frame groups are created with given probabilities of each

group size, such that the final sum of B-frames nB = (N−1)−nP. This problem can be consid-

ered a variation of the coin-change/subset-sum problem which is considered to be NP-Complete

[209], and therefore requires a dynamic programming approach. The technique given in the al-

gorithm is a simple iterative technique which may not always retain the final B-frame grouping

probabilities after creation. Therefore, the probabilities may require minor adjustments dur-

ing the GoP creation process to maintain the required contiguous B-frame probabilities at the

stream-level.

The profiled CU decoding time results do not contain the stream parsing (CTU/CU header

parsing) delay which needs to be integrated into the CU computation cost model. During eval-

uation of the workload generator, it was noticed that the CU decoding costs needs to be scaled

up to account for the parsing delay. The scale factors used during evaluation are presented in

Table C.4. Furthermore, as discussed in Section 7.7, the memory subsystem overheads are in-

cluded in the profiled CU decoding time measurements. Memory transaction related timing

need to be omitted from the decoding time to obtain a pure computation cost model. There-

fore, when simulating HEVC workloads the CU decoding time is multiplied by a factor of 0.6,

to account for the ≈ 40% DRAM transaction delay within the execution time. These scale fac-

tors need to be tuned appropriately to suit a platform and decoder with different memory and

CPU architecture characteristics. For the evaluation of the workload generator the scale factors

shown in Table C.4 gave satisfactory results.

7.9 Evaluation

To evaluate the proposed HEVC video decoding workload generator, 200 synthetic HEVC coded

dynamic GoPs (35 frames each) were generated with parameters suited to generate the Lion-

Wildlife 720p video. The synthetic HEVC video stream characteristics were then compared with

the real video stream. All parameters used for the workload generation were derived from the

GoP/frame/CU level analysis and can be found in Appendix C.3.

7.9.1 Results discussion

Figure 7.13a shows the GoP structure characteristics of the real and synthetically generated

HEVC video stream decoding workload. The number of P-frames have similar distribution

shape (exp-Weibull) and the contiguous B-frame groups of sizes of 1,2 and 3 are similar to the

real stream. However, the minor mismatch in the P-frame distribution introduces minor mis-

match errors, in the contiguous B-frame group sizes and RFDs, as seen in the evaluation results.

146



CHAPTER 7. EXTENDING THE APPLICATION MODEL TO SUPPORT HEVC

5 10 15 20 25 30 35
Number of

P-frames in GoP

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

No
rm

al
is

ed
 fr

eq
ue

nc
y

1 2 3 4
Number of

contiguous B-frames

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
is

ed
 fr

eq
ue

nc
y

1 2 3
Reference distance

of B-frames

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

No
rm

al
is

ed
 fr

eq
ue

nc
y

Real Synthetic

(a) GoP structure comparison: Left - Number of P-frames in a GoP; Center - Proportions of contiguous B-frames; Right
- Proportion of B-frame reference distances.

0 2 4 6 8 10
Frame decoding time (s) 1e 2

0

20

40

60

80

100

120

No
rm

al
is

ed
 fr

eq
ue

nc
y

I-frame
P-frame
B-frame

P<-I P<-P B<-I B<-P B<-B
Reference data direction

0

500

1000

1500

2000

2500

Fr
am

e 
re

fe
re

nc
e 

da
ta

 (K
B)

Real
Synthetic

(b) Frame characteristics comparison: Left - Frame decoding time per I/P/B frame type; Right - Distribution of refer-
ence data

Figure 7.13: Comparison of GoP and frame-level characteristics of a real vs. synthetically generated HEVC video stream

Figure7.13b(left) shows the decoding time distributions of the synthetically generated HEVC

frames; these need to be evaluated against the data given in Figure 7.9(LionWildlife). Due to

inaccurate representation of the frame-level variations (Section 7.8.3), the distribution of the

frame decoding times generated do not exactly follow the same shape as the real video stream.

However, it can be seen that the decoding times are approximately in the same region for P and

B-frames (i.e between 1.0−4.0×10−2s), which is majority of the video stream; and a slightly larger

I-frame decoding time (4.0−8.5×10−2s) can be seen. Similar to the real video, P-frame decoding

times are overall larger than B-frames. The generated frame decoding times show a narrower

spread of values than the real video stream.

The reference data volume distribution comparison is shown in Figure 7.13b(right). The

inter-quartiles of the real and synthetically generated HEVC video distributions overlap, espe-

cially in the case of B← P. However, the P← I and P← P show a narrower spread and the

B← B show a slightly lower distribution range than the real video. These discrepancies in the

distributions are due to the inaccurate view of the frame-by-frame CU variations as explained

in Section 7.8.3.
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7.10 Summary and novel contributions

The previous chapters consider MPEG-2 workloads with fixed GoP structures. This chapter ex-

tends the application model to consider HEVC decoding workloads with adaptive GoP struc-

tures. The following novel contributions are made to extend the state-of-the-art in video de-

coding workload characterisation:

• Characterisation of adaptive GoP structures: existing research in video decoding character-

isation lacks analysis regarding several important GoP-level properties. GoP-dependency

structures, patterns of B-frame groupings (i.e. hierarchical B-frames), reference frame dis-

tances and reference data volume analysis have been presented for real video streams.

This work quantitatively shows that the inter-frame dependency pattern of the GoPs are

highly correlated with the level of activity or motion in the video stream. Statistical distri-

butions have been used to model the number of P/B-frames in a GoP.

• HEVC frame decoding model derived using CU-level analysis: this chapter contains in-

depth analysis of video streams at the CU-level (CU sizes, types and decoding times). An

HEVC frame decoding model is then derived in a bottom-up fashion using fine-grain CU-

level information. This level of detail also facilitates modelling of HEVC Tile or WPP task

models.

• Algorithms to synthetically generate HEVC decoding workloads: the video stream analy-

sis provided several statistical properties of the adaptive GoP structures and the CU-level

characteristics. These properties were then introduced to two workload generation algo-

rithms to synthetically generate DAG-based workloads that have similar statistical char-

acteristics of real HEVC video stream decoding. The presented generators can be used to

create any number of video streams with different spatial/temporal behaviours (e.g. high-

/low motion, coarse/fine level detail imagery etc.).

The evaluation of the proposed technique showed that the workload generators do not fully

capture the extreme variations between real video stream frames due to several limitations out-

lined in Section 7.8.3. However, the properties such as reference frame dependencies, commu-

nication data patterns and decoding execution time bounds are comparable.

Many existing works in design-space exploration assume Gaussian/uniform distributed ran-

dom workload patterns, which is not sufficient to model complex workloads as shown in the

analysis presented in this chapter. The inter-task communication patterns (i.e. inter-frame ref-

erence characteristics) are shown to be highly dynamic and therefore, need to be accurately

modelled when evaluating performance of communication-centric resource management poli-

cies. This extended application model is used in the following chapter to explore resource allo-

cation techniques for HEVC encoded video streams.
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Chapter 8

Task mapping for parallel HEVC tile

decoding

The previous technical chapters of this thesis focused on the resource allocation problem for

multiple video streams encoded using MPEG-2 video compression standard. In Chapter 7, the

dynamic nature of complex, modern video coding standards such as HEVC was discussed in

detail. HEVC was designed to efficiently compress video streams with ultra-high resolution

(4K/3840×2160 and above) and makes use of several complex coding tools such as adaptive, hi-

erarchical B-frame structures and different frame block structures (coding units). HEVC also

introduces several native data-parallel decoding features such as tile-level partitioned decod-

ing, where a frame is spatially partitioned by the encoder, such that each tile can be decoded in

parallel to improve throughput at the decoder (Section 2.1.4.1). These new coding techniques

make the workload highly dynamic and poses several resource management challenges as dis-

cussed in this chapter.

This chapter will explore several task mapping schemes for multiple soft real-time, HEVC

stream decoding. This work will particularly focus on the decoding tile-parallel HEVC streams

with adaptive GoP structures with dynamic frame dependency patterns, which are unknown a

priori. The mapping heuristics also have to be robust enough to manage video streams with

large variations in resolutions (i.e. a low 288p video and 2160p UHD video) as well as variations

in their CCR due to the varying spatial and temporal video characteristics (e.g. slow/fast motion

and/or high/low detail imagery as discussed in Chapter 7). In the case of UHD video decoding,

the application model will have large computation and communication costs. In this case, it is

necessary to exploit tile-level parallel decoding to reduce the latency of decoding a large frame.

However, a higher level of parallelism increases the NoC usage leading to higher communication

energy consumption.

To address the above issues, two runtime task-to-PE mapping techniques are presented in

this chapter. They consider various factors such as application characteristics, blocking and

task clustering/grouping in order to balance parallelism, reduce decoding lateness and NoC

communication cost. The work in this chapter also shows that memory traffic latencies eventu-

ally become a severe bottleneck and cannot be addressed by task mapping alone. To this extent,

several task-to-main memory controller port (MMCP) selection schemes are investigated to re-

duce memory traffic contention and further reduce the overall job response times.

The remainder of the chapter is organised as follows. Section 8.1 introduces the refined sys-

tem model which explains the tile-level application model and job CCR derivation. Section 8.2

details the resource allocation problem this chapter is attempting to address. The proposed two

runtime task mapping schemes are presented in Section 8.3, along with several of their vari-

ants. Section 8.4 introduces different MMCP selection schemes. In Section 8.5 the proposed
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techniques are evaluated under different types of workloads.

8.1 System model refinement

A platform model similar to the one described in Section 5.1.2 is used in this chapter, where

an open-loop centralised resource management scheme is used. The memory traffic is taken

into account in the application and platform models, similar to Chapter 5. As described in Sec-

tion 6.1.3, the resource manager in this work performs dynamic task mapping at the job-level,

where each job in a video stream is given a different task-to-PE mapping configuration. Stream-

level runtime mapping cannot be performed as the job dependency patterns are not known

beforehand. Task priorities are assigned as per Section 5.1.1.2.

8.1.1 Application model refinements

The application model extensions defined in Section 7.1 form the basis of the application model

in this chapter. The number of tasks within a job will not change in a video stream, but the task

dependency structure will vary, based on the temporal correlation in the video sequence (Sec-

tion 7.4). The model assumes video streams are encoded using hierarchical B-frame structures

with a maximum of 4 contiguous B-frames and a maximum of 4 reference frames per B-frame.

CU-level characteristics as described in Section 7.5 are used to derive the task execution cost

model.

The application model assumes the video stream has tile-level partitioning enabled and the

number of partitions per frame is determined by the encoder. The model assumes all frames in

a stream have equal number of tiles and high resolution videos having a higher number of tiles

per frame than lower resolution videos. Therefore, each frame-level decoding task τi consists of

tile-level decoding sub-tasks, denoted as τ
j
i . The new tile-level job structure is then denoted as

JT
i . The tile decoding sub-tasks follow the same notation as the frame decoding tasks (e.g. x j

i is

the computation cost of the jth tile of task τi). Tiles will inherit the real-time properties such as

priorities, periods, sub-task deadlines from their frame-level task.

As described in Section 7.5 and Section 7.8.2, the HEVC frame computation cost and refer-

ence data volumes are characterised at the CU-level. Similarly, the tile-level computation costs

(x j
i ) and reference data volumes can be easily derived by accumulating the computation cost

and reference data for each CU in a tile. As per the standard [13], the model assumes there are

approximately equal number of CTUs per tile. Different regions of a real video frame will have

varying spatial detail and temporal correlations, leading to unbalanced computation and ref-

erence data dependencies amongst tiles in a frame. Similarly, the actual execution cost of the

tiles in the frame model will vary, based on the size and type of CUs it has. The WCET of a tile c j
i

can be estimated via Eq. (8.1) as a ratio of the frames WCET; where τ
j
i (h)× τ

j
i (w) represents the

tile dimensions and τi(h)× τi(w) is the frame dimensions. The worst-case payload for a refer-

ence frame can be calculated similar to the previous model as per Eq. (3.1) and the worst-case

payload for a tile can be estimated as Eq. (8.2) where NT denotes the number of tiles per frame.
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Tile WCET: c j
i = ci×

τ
j
i (h)× τ

j
i (w)

τi(h)× τi(w)
(8.1)

Tile reference data payload: PLMsg j
i
=

PLMsgi

(NT )2 (8.2)

During frame to tile partitioning, the precedence constraints of the TG need to be unaffected.

Hence, the number of edges and nodes in the TG will scale proportionally to the number of tiles

(NT ) per frame decoding task (number of new edges = |edges|× (NT )
2). In the example given in

Figure 8.1, a TG with 4 nodes and 3 edges is transformed into a tile-level, with 8 nodes and 12

edges. Note that the memory traffic flows are not displayed in Figure 8.1 but essentially each τ
j
i

will have a memory read and memory write flow. The payload of the memory read will be the

encoded size of a tile (modelled as per Section 7.6.2) and the memory write will be the decoded

tile size, in bytes (i.e τ
j
i (h)× τ

j
i (w)× bpp). For the sake of clarity, henceforth, tile-level subtasks

and their respective data flows will be commonly referred to as a tasks and flows respectively.

Frames will be referred to as frame-level tasks.
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Figure 8.1: Illustration of original HEVC frame-level task graph before and after tile partitioning (assuming NT = 2).
Bottom example shows tile partitioning of a 15 frame GoP encoded using Hierarchical B-frames

8.1.1.1 Deriving the analytical CCR of a job

The resource allocation heuristics presented in this chapter considers the CCR of the jobs as

a metric for deciding on task placement. The analytical CCR of a frame-level job (denoted

CCR(Ji)) is calculated via Eq. (5.13). In order to calculate CCR(Ji) the RM would require the

following information from the video stream: the number of nodes and edges in a job, the task

WCET and the maximum payload of a reference data flow (assumed as res(V Si)×bpp). The actual

reference data flow payload and the actual task execution cost is unknown to the open-loop RM.

Hence, the CCR(Ji) calculation can be considered as an upper-limit of the job CCR. The exact

reference data payload can be obtained by parsing each of the CTU/CU headers in the video bit-

stream, but this adds additional runtime computational overhead and hence is avoided in this

design. In the previous application model, the CCR(Ji) does not vary between jobs due to fixed

job task-dependency patterns. In this model, adaptive dependency structures are considered,

hence the CCR(Ji) will also vary between jobs of the same video stream.

The upper and lower bounds for CCR(Ji) can be estimated if the video streams are encoded

using hierarchical B-frames and the maximum contiguous B-frames (nBmax) and the maximum

forward/backward reference frames (rP f wd
max ,rB f wd

max ,rBbwd
max) are known. These parameters are set by

the encoder at the video stream-level and typically do not vary between GoPs. The maximum
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and minimum number of edges in a TG can be estimated via Eq. (8.5), where the maximum

number of P and B frames in a GoP can be calculated via Eq. (8.3) and Eq. (8.4) respectively.

Max/min P-frames in GoP: nPMAX/MIN = {N−1,
N−1

BMAX +1
} ,where N=GoP length (8.3)

Max/min B-frames in GoP: nBMAX/MIN = {(N−1)−nPMIN ,(N−1)−nPMAX} (8.4)

Max/min edges in TG = {(nPMIN× rP f wd
max )+(nBMAX × (rB f wd

max ,rBbwd
max))

,(nPMAX ×1)+(nBMIN×2)}
(8.5)

8.2 Problem statement

The application model refinements introduced in the previous section bring upon several chal-

lenges to the tile-parallel HEVC video stream decoding, resource allocation problem. In this

section the following issues are discussed:

• Two conflicting mapping objectives: job lateness reduction and NoC usage (i.e. inter-task

communication cost) reduction.

• Varying job dependency patterns due to adaptive GoP structures and increase in task

graph scale due to tile partitioning.

• Varying video stream computation and communication requirements.

• Memory traffic bottlenecks.

8.2.1 Balancing predictability and energy consumption

Improving predictability of SRT video stream decoding in this work, comes in the form of re-

ducing the variability, mean and maximum job lateness. Energy consumption reduction can

be obtained in two ways. Firstly by reducing the communication cost, i.e by limiting the NoC

usage. Secondly by exploiting variability in utilisation of the PEs across the platform, such that

dynamic power management techniques can be employed efficiently. In certain SRT/best-effort

video decoding use-cases, reducing energy consumption maybe more crucial than video stream

latency. For example, playback delays up to 30s for long video sequences have shown to be tol-

erable by users [65], but inefficient battery usage (e.g. in a mobile device) is not acceptable.

As predictability and energy consumption are most often conflicting goals, in this work several

dynamic mapping techniques are explored to balance the two metrics rather than optimise on

one or both. This subsection will detail the difficulties in optimising job lateness and commu-

nication cost reduction.

Job lateness can be reduced when the mapping configuration takes into account task and

flow contention. Higher amounts of interference directly increase the job lateness. Note that

such interference can be from tasks/flows of the same job (commonly referred to as intra-

interference) or tasks/flows from other jobs of different streams (commonly referred to as inter-

interference). Communication costs (i.e. cumulative flow basic latencies) are typically reduced

by task clustering/grouping, where multiple communicating tasks are placed on the same PE

in order to reduce the number of flows injected into the NoC. Placing tasks closer together re-

sults in shorter routes, and also helps to reduce communication costs. The clustering can be
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tight/loose depending on the level of task dispersion and the size of the region occupied by com-

municating tasks. However, if the clustering is too tight the amount of inter/intra-interference

can increase and the system can start to experience contention hot-spots; even though the com-

munication cost can be largely reduced.

The workload CCR should also be considered when deciding on the level of task cluster-

ing. Low CCR (i.e computationally heavy) workloads may require more parallelism (i.e. loose

clustering) in order to meet deadlines than high CCR workloads. Therefore, the same trade-off

made between job lateness and communication cost reduction for high CCR workloads may

not be achievable for low CCR workloads. For high CCR workloads, tighter task clustering may

result in both lateness and communication cost reduction.

Unlike static mapping techniques, dynamic mapping heuristics need to have low mapping

execution overhead and have limited application and platform knowledge. Intelligent runtime

heuristics that take into account different factors such as task/flow interference, degree of clus-

tering, workload CCR etc. can be effective in balancing the mapping objectives, but can also be

computationally expensive. Therefore, designing a lightweight dynamic mapping heuristic that

takes into account all the factors discussed above is a challenging research problem.

8.2.2 Dynamic GoP-structures and task graph scale

The adaptive GoP nature of video streams poses a new challenge to the mapping problem pre-

viously not considered. As job dependency patterns and the number of P/B frames in a job

are not fixed, the task mappers need to be invoked at the arrival of each job. LWCRS and IPC

runtime mappers proposed in Chapter 5, are not applicable in this case. LWCRS performs tight

temporal packing of tasks to reduce the worst-case job response time and increase the D-AC’s

admission rate. The IPC mapper relies on a fixed dependency structure to reduce the response

time of the longest path of the job, which would not be efficient if the job dependency structure

is dynamic (specifically in the case of high number of contiguous B-frames).

Consider the hierarchical B-frame encoded, 15 frame GoP structure shown in Figure 8.2.

After tile partitioning, the tile-level TG will have significantly higher number of nodes and edges.

As another example, a job with 31 frame-level tasks, 54 edges and 10 tiles per frame, can result in

a tile-level TG representation with 310 tasks and 5400 edges. This large increase in the number

of tasks and especially communication flows, induces more interference to lower priority tasks

and flows already existing in the system. Therefore, the task mapping should take into account

the blocking when selecting a PE to map a task to. Considering the inter-task communication

distance also becomes challenging, as tasks in the tile-level TG may have a larger number of

parent tasks with varying reference data volumes. Grouping communicating tasks may not be

trivial due to interference issues mentioned before. Attempting to allocate resources for a large

number of tasks and flows can lead to high mapping overheads, if the mapping heuristic is very

sophisticated. For example, taking into account multiple factors such as flow/task blocking,

communication distance, task clustering etc. can yield better mapping quality, but can also

lead to high mapping execution overhead.

8.2.3 Varying video stream CCRs

Due to the variation in the GoP structures, different jobs of the same video can have varying CCR

levels. Furthermore, the CCR can also vary based on the stream type. From the real video stream

153



8.2. PROBLEM STATEMENT
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Figure 8.2: Example of tile partitioning of a 15 frame GoP encoded using Hierarchical B-frames

analysis in Chapter 7, it was seen that high motion videos such as LionWildlife/FastFurious5

have high decoding execution cost and low data communication properties (e.g. reference data

volume, number of B-frames and contiguous B-frame sizes), leading to low CCR conditions.

The inverse is true for low motion video sequences such as in ObamaSpeech, where higher data

communication and lower amount of computation cost was seen; these type of videos display

high CCR levels.

Figure 8.3 illustrates the job CCR CCR(Ji) variation of different synthetically generated HEVC

video streams (parameters obtained from Chapter 7 stream analysis). The CCR(Ji) distributions

are categorised by resolutions and sub-categorised by video type (genre) and GoP lengths (N).

In the figure, the video types represent the streams that were analysed in Chapter 7. ACTION,

DOCUMENTARY (DOC), SPORT, ANIMATION (ANIM) and SPEECH represent the FastFurious5,

LionWildlife, Football, BigBuckBunny and ObamaSpeech videos respectively. A breakdown of

the CCRs in terms of the individual computation and communication costs can be found in

Appendix D.1. The line plot in Figure 8.3 denotes the upper/lower bound CCR calculation as

per Section 8.1.1.1. Whilst different resolutions do not vary much in CCR, low motion videos

(e.g. SPEECH) can have CCRs twice that of high motion videos (e.g. ANIM/ACTION). GoPs with

higher number of frames can also show a slight increase in CCR values than GoPs with lower

number of frames.
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Figure 8.3: Varying job CCR (CCR(Ji)) for different video streams. Varying resolutions, GoP lengths (N=16,31) and video
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Higher CCR workloads can give rise to communication bottlenecks and hence tasks require

dense clustering to reduce the usage of the NoC (thereby reducing congestion). On the other

hand, workloads with a low CCR need to be parallelised (i.e. sparsely distributed) in order to

achieve required throughput. For low CCR jobs the mapper can make use of HEVC tiles to de-

code a single frame on multiple PEs in parallel. Deciding the degree of parallelism for a given

CCR and the low/high ranges of CCR for an arbitrary workload is non-trivial, specially at run-

time.

This chapter also explores the performance of the mappers, when the CCR level of the overall

video stream decoding workload is increased (independent to stream characteristics). An exam-

ple where the workload CCR may increase is when the computation cost of decoding a frame

is significantly decreased. For example, when the computationally intensive functional com-

ponents of the decoder are either optimised or implemented in hardware rather than software

(e.g. [210], [211]). In these instances the computation cost of the frame decoding tasks will de-

crease whilst not affecting the communication cost. Processor and NoC bandwidth differences

could also give rise to different CCRs.

When the computation cost is reduced (i.e. CCR is increased), the rate flow injection into

the NoC will also increase; resulting in higher NoC contention. This can increase the end-to-

end job response time even though the computation cost has been reduced, and effectively

the flow latency becomes a bottleneck. The mapping techniques should be designed in such a

way, that it is either easy to adapt the level of clustering based on the workload CCR or it should

dynamically adapt to the CCR of the workload at runtime. The latter implies more sophisticated

heuristics, which may result in higher mapping overhead.

8.2.4 Efficient memory traffic management

Based on the task to PE mapping configuration the level of contention and congestion on NoC

links will vary. An example arbitrary mapping of 2 jobs on a NoC platform is shown in Figure 8.4.

In this illustration, the links are colour coded according to the amount of congestion (i.e. with

respect to the number of flows and total payload). In the figure, RTi denotes the routers and

MMCPi denotes the MMCPs. Note than in the platform model each MMC has 2 ports. In the

figure, for convenience, the MMC ports are displayed but not the MMCs themselves (e.g. MMCP0

and MMCP1 is connected to the same north-MMC). It can be seen that in majority of the cases,

the local links (i.e. PEi � RTi) and the MMCP links (i.e RTi � MMCPi) are heavily congested.

Especially the RTi → MMCPi links are heavily congested as memory write flows have a much

larger payload than memory read or data flows.

The local-link congestion occurs, when the clustered tasks are placed on the same PE and

the each of the task’s incoming/outgoing flows interfere with each other. This issue, along with

general data traffic NoC congestion can be alleviated by mapping approaches which manage/-

control the level of task clustering efficiently. The congestion issue due to memory traffic how-

ever may not always be solved by task mapping. For example in Figure 8.4, placing the B1,3 task

on PE6 instead of PE2 can help more evenly balance the NoC data traffic congestion, but the

RT2 → MMCP1 link may still be congested as B1,3 would still communicate with MMCP1 due to

close proximity. However, if task B0,2 communicated with MMCP2 the RT2→MMCP1 link conges-

tion can be reduced. Similarly, if some of the tasks in PE1 communicated with MMCP7 instead of

MMCP0, then the congestion on link RT1→MMCP0 can also be reduced. The reduction in con-

gestion will in turn lead to lower flow and job response-times. Therefore, the resource allocation
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Figure 8.4: Example showing NoC link congestion. Assume the 2 Jobs (J0 and J1 are from different video streams).

protocol should also consider efficient task-to-MMCP mapping schemes (also simply referred

to as MMCP selection schemes). As these MMCP selection heuristics will add further overhead

to the task mapping process, it is crucial they are lightweight.

8.3 Tile mapping schemes for HEVC stream decoding

This section introduces several runtime tile-level task mapping heuristics which attempt to ad-

dress the problems outlined in Section 8.2. The terms tile mapping and task mapping are used

interchangeably in this chapter. The primary concerns of the mapping heuristics can be cate-

gorised as follows:

• Determine which tasks to cluster/group together to reduce communication cost.

• Determine the level of task clustering (sparsely/densely) to balance parallelism and com-

munication cost.

• Adapt the level of clustering based on the CCR of the video stream jobs.

• Determine the distance between the child and parent tasks as well as the distance between

tiles of the same frame-level task.

• Take into account task interference induced to already active/mapped lower priority tasks

when selecting a PE.

To this extent, two primary tile mapping heuristics are introduced. The first heuristic does

not make any assumptions regarding the length/structure of the GoP and hence, can be used to

map complex, random dependency patterns. The second heuristic, is fine-tuned to target video

streams encoded using adaptive, hierarchical B-frames. Hence, it is relatively less robust than

the first but can be used to give better mapping results for the aforementioned type of videos.

Fast variations of these heuristics are also presented for comparison.
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Similar to Chapter 5, the mapping schemes proposed in this chapter follows an open-loop

resource management technique. Therefore, the runtime task mapping table T MT is used to

track previous mappings and approximately determine the worst-case utilisation of the PEs at

runtime.

8.3.1 Generic longest-path aware tile task mapping (CL)

The first proposed task clustering-based mapping scheme (denoted CL) groups the tasks based

on the TG’s longest-path. Algorithm 8.1 presents the pseudo-code of the CL algorithm. The

primary level of clustering is achieved by grouping the frame-level tasks that lie on the longest-

path (denoted Lpath(Ji)) of the TG (line 1). The longest path of a topologically sorted TG with

no weights can be obtained in linear time [198]. In Algorithm 8.1, τ0
0 denotes the first tile of the

first frame (usually an I-frame) in the job; τ0
i denotes the first tile of tasks τ

j
i /∈ Lpath(Ji).

Algorithm 8.1: CL: CCR and blocking-aware clustered tile mapping pseudo-code
Input : Ji = topologically sorted frame-level task graph of ith job,

JT
i = topologically sorted tile-level task graph of ith job,

T MT : the runtime task mapping table,
PE list : list of PEs in the platform

Output: Updated T MT with new tile to PE mapping (τi→ PEi)
/* Find the frames-level task subset that is in the longest path of the job */

1 Lpath(Ji) = getLongestPath(Ji)
/* Determine the CCR specific hop count parameters */

2 Calculate analytical CCR of the job : CCR(Ji)
3 {NHT ,NHCT ,NHCH}= getCCRspecificHopCount(CCR(Ji))

/* map each tile task iteratively */

4 foreach τ
j
i ∈ JT

i do
/* manage task clustering density based on if task is part of Lpath(Ji) or not */

5 if τ
j
i ∈ Lpath(Ji) then
/* place first tile of first task (τ0

0) on PE with minimum lower priority tasks; place other

tiles close to τ0
0 */

6 if τ
j
i == τ0

0 then
7 PEi = getPEwithMinLPTasks(T MT,τ0

0,PE list)// constrained PE search

8 else
9 sPE N == getPENeighbours(PE(τ0

0),NHCT )

10 PEi = getPEwithMinLPTasks(T MT,τ j
i ,sPE N)// constrained PE search

11 end
12 else

/* place first tile of non Lpath(Ji) tasks (τ0
i ) closest to its parent with most probable

data dependency. Other tiles mapped closer to τ0
i */

13 if τ
j
i == τ0

i then
14 P τ

j
i = parent task with largest probable data dependency

15 sPE N = getPENeighbours(PE(P τ
j
i ),NHCH )

16 PEi = getPEwithMinLPTasks(T MT,τ j
i ,sPE N )// constrained PE search

17 else
18 sPE N = getPENeighbours(PE(τ0

i ),NHT )

19 PEi = getPEwithMinLPTasks(T MT,τ j
i ,sPE N ) // constrained PE search

20 end
21 end
22 Map τ

j
i → PEi ; Update T MT{PEi,τ

j
i }

23 end

The algorithm, iteratively assigns tiles to PEs in topological order (similar to frame decoding

order). At each iteration a constrained set of PEs (sPE N) are obtained according to the maxi-

mum hop-distance specified in Table 8.1. The hop distances control the level of task clustering

and are chosen according to the CCR(Ji). Higher number of hops will result in larger number
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of PEs to be considered (more dispersion). As shown in Table 8.1, the algorithm can be config-

ured to increase the hop parameters slightly, when the cumulative cost of the TG longest-path

is higher than the job end-to-end deadline (i.e. cost(Lpath(Ji)) > De2e). If this condition is true,

it indicates the video stream requires more parallelism; often in the case of UHD video streams

with very high computational and communication requirements. sPE N is then searched to ob-

tain the PE with the minimum number of mapped lower-priority tasks with respect to the target

task τ
j
i ; such that interference to already mapped tasks can be minimised. This is done via the

getPEwithMinLPTasks() helper function (lines 6, 9, 15 and 18).

Table 8.1: CL task clustering hop count parameters based on CCR of a job CCR(Ji)

CCR range
IF [cost(Lpath(Ji))≤ De2e],
{NHCT ,NHT ,NHCH}

IF [cost(Lpath(Ji))> De2e],
{NHCT ,NHT ,NHCH}

Low (CCR(Ji)< 0.18) {Max hops, Max hops, Max hops} {Max hops, Max hops, Max hops}
Med (0.18≤CCR(Ji)≤ 0.23) {2, max(NOCW

2 ,NT ), max(NOCW
2 ,NT ) } {NT

2 , NT , NT
2 }

High (CCR(Ji)> 0.23) {2, 2, 2} {NT
2 , NT

2 , NT
2 }

Figure 8.5 has been provided to illustrate the NHT ,NHCH and NHCT hop distance parame-

ters. The figure shows 5 frame-level tasks with NT = 3 tiles per frame. NHT denotes the maxi-

mum hop distance between τ
j
i /∈ Lpath(Ji) and τ0

i (the initial tile of the respective frame-task τi).

NHCT is the maximum hop distance between the τ
j
i ∈ Lpath(Ji) and τ0

0. NHCH denotes the max-

imum hop distance from a τ0
i /∈ Lpath(Ji) and their parent task with the highest probable data

dependency (P τ
j
i ). The RM estimates P τ

j
i intuitively using the reference data volume analysis

in Section 7.6.1 (i.e. pI > pP > pB).

NHT NHT NHT NHT

NHCH

NHCT NHCT

NHCT

NHCT

NHCT

NHCT

NHCTNHCT

NHCH
Hop distance (NHT, NHCH, NHCT)

Data dependency

Tile task 0

i of non-longest path

Tile task 0

0 (first tile of TG root node)

Other tile tasks of nodes in longest-path

Other tile tasks of non-longest path

Frame-level task (   )i

tile-level task (   )ji

Longest-path
Lpath(Ji)

Figure 8.5: Illustration of CL clustered mapper hop parameters

Sparse clustering (i.e larger hop parameters) is performed for low-CCR jobs, in order to in-

crease data-parallelism. For high-CCR (e.g. communication-heavy) jobs, the clustering density

is increased (i.e. small hop counts) to reduce communication-energy and network interference.

The low/medium/high CCR ranges as shown in Table 8.1 are estimated from the analytical CCR

calculations as per Section 8.1.1.1 and Figure 8.3. These ranges, and associated hop counts are

parameters that can be adjusted to achieve the required balance between communication cost

and job lateness reduction. The hop counts shown in Table 8.1 gave a reasonable trade-off be-

tween the two metrics. The number of CCR ranges can also be changed if more knowledge

about the workload scenarios are known a priori.

Figure 8.6 shows an example of tile mapping on a 4x4 NoC using the proposed CL mapper

and the least utilised (LU) mapper. Both mapping schemes, scatter the low CCR job’s tasks over
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the PEs. The CL mapper has constrained about 1/3 of the tasks of the medium CCR job to

PE(0,0) and the rest have been placed in other regions of the NoC in order to balance clustering

vs. spreading. The high CCR job has been allocated mainly to 5 PEs in the system - PE(0,1),

PE(1,1), PE(0,2),PE(1,0) and PE(2,0); tighter groupings using less number of PEs would increase

the contention in the system, hence is avoided by CL. LU produces an even load distribution,

regardless of the CCR of the stream, causing increased NoC usage.

Least utilised mapping (LU)

Low CCR Medium CCR High CCR

0 1 2 30 1 2 3

0

1

2

3

0

1

2

3

Clustered tile mapper (CL)

Figure 8.6: Task allocation example of least-utilised PE mapper (LU) vs the proposed cluster-based mapper (CL). 4x4
NoC, 3 video streams, 1 GoP each. Markers represent individual tasks

8.3.1.1 CL mapping complexity analysis

The CL mapper algorithm complexity is dependent on the number of tasks in a job |JT
i |, number

of PEs |PE| and number of tasks in a task queue |T Q|. The worst-case complexity would be

O(|JT
i |× |PE|× |T Q|) ≡ O(n3). Realistically |T Q| � |PE|, even under very high workloads, as the

admission controller would detect the system is overloaded and start to reject new jobs/video

streams. Therefore, the worst-case scenario can be considered unrealistic.

8.3.1.2 Variants of the CL tile mapper

Three variants of the CL mapper are presented in order to reduce its execution overhead and to

evaluate the usefulness of CCR based task clustering.

The first variant, termed CL-F is a faster O(n2) implementation of CL, where the PEs are first

sorted in increasing order of number of lowest priority mapped tasks. This fast version is more

suited to map streams with shorter GoP lengths (i.e. lower inter-job arrival time). The algorithm

pseudo-code of CL-F is shown in Algorithm 8.2. The sorted PE list is used in each iteration of

the main loop (lines 5-26). Unlike in CL, CL-F does not invoke getPEwithMinLPTasks() at each

iteration, to reduce the complexity of the mapping, but as a result loses mapping accuracy. In

lines 10 and 18 of Algorithm 8.2, the sorted PE list sorted(PE list) is used and the speed-ups are

gained when selecting a PE for τ
j
i ∈ Lpath(Ji) (line 12) and τ

j
i /∈ Lpath(Ji) (line 22).

The second variant of CL, termed CL-NoCCR is exactly similar to Algorithm 8.1, but the hop

distance parameters (i.e. NHT ,NHCH ,NHCT ) are fixed rather than varying them based on the

job CCR. This results in the distribution of the tasks on the PEs to be independent of the CCR

of the job. As a preliminary investigation the parameters are fixed at NHT = NT , NHCT = 1 and

NHCH = 1. A comparison of CL vs. CL-NoCCR will allow us to evaluate the benefit of adaptive,

CCR-aware clustering over a fixed task clustering approach.
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Algorithm 8.2: CL-F: Fast first-fit increasing variant of the CL mapper
Input : Ji : topologically sorted frame-level task graph of ith job,

JT
i : topologically sorted tile-level task graph of ith job,

T MT : the runtime task mapping table,
PE list : list of PEs in the platform

Output: Updated T MT with new tile to PE mapping (τi→ PEi)
/* Find the frames-level tasks in the longest path of the job */

1 Lpath(Ji) = getLongestPath(Ji);
2 Sort PE list inc. order of num. of low-pri. tasks w.r.t τ0

0 and store in sorted(PE list)
/* Determine the CCR specific hop count parameters */

3 Calculate analytical CCR of the job : CCR(Ji)
4 {NHT ,NHCT ,NHCH}= getCCRspecificHopCount(CCR(Ji))

/* map each tile task iteratively */

5 foreach τ
j
i ∈ JT

i do
/* manage task clustering density based on if task is part of Lpath(Ji) or not */

6 if τ
j
i ∈ Lpath(Ji) then
/* place first tile of first task (τ0

0) on PE with minimum lower priority tasks; place other

tiles close to τ0
0 */

7 if τ
j
i == τ0

0 then
8 PEi = sorted(PE list)[0] // get first element
9 sPE N = getPENeighbours(PEi,NHCT )

10 Sort sPE N according to sorted(PE list); store in circular list : sorted{sPE N(τ0
0)}

11 else
12 PEi = sorted{sPE N(τ0

0)}.next() // get next element in circular list

13 end
14 else

/* place first tile of non Lpath(Ji) tasks (τ0
i ) closest to its parent with most dependent

data. Other tiles mapped closer to τ0
i */

15 if τ
j
i == τ0

i then
16 P τ

j
i = parent task with largest probable data dependency

17 sPE N = getPENeighbours(PE(P τ
j
i ),NHCH )

18 PEi = sort sPE N according to sorted(PE list) and get first element
19 ot sPE N = getPENeighbours(PEi,NHT ), (circular list)
20 else
21 PEi = ot sPE N.next() // get next element in circular list

22 end
23 end
24 Map τ

j
i → PEi ; Update T MT{PEi,τ

j
i }

25 end

The third variant of the CL mapper is similar to the IPC mapper presented in Chapter 5,

where the longest-path frame subset (Lpath(Ji)) is assumed to be the clustering of I and P frames.

This variant of CL is termed CL-IPC and it avoids calculation of the longest-path of the TG. Apart

from the Lpath(Ji) selection criteria, all other algorithmic characteristics of CL-IPC is similar to

CL.

8.3.1.3 Limitations of the CL tile mapper

A drawback of the CL mapping heuristic is the number of parameters that requires tuning to

obtain good performance. The 3 hop parameters for 3 CCR ranges which gives (MAX HOPS)9

permutations where MAX HOPS denotes the maximum hop distance in the NoC. The number

of parameters are doubled if a separate set of parameters are chosen for the cost(Lpath(Ji))>De2e

case. Hence, finding parameter combinations that balance communication cost and lateness

may be cumbersome. Generally, better results were seen when NHCT was lower than NHT or

NHCH (i.e. the Lpath(Ji) tasks are densely clustered than others). The robustness and generic

nature of the CL mapper also gives rise to some limitations. The clustering can be too dense for
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video stream GoPs with a high number of P-frames all lying in the job’s longest path. In dense

clustering scenarios task-contention can become more severe than flow-contention.

8.3.2 B-frame grouping-aware tile task mapping (CL-BG)

The second tile mapping heuristic proposed in this chapter attempts to target the native B-

frame grouping property seen in videos encoded using adaptive, hierarchical B-frames. This

clustered tile mapping heuristic is termed CL-BG. The hierarchical B-frame grouping structure

seen in GoPs were discussed in Section 7.4, and examples illustrated in Figure 7.4. In these

structures, B-frames can be used as reference by other B-frames (generalised B-frames). In

Chapter 7, it was observed that in these GoP structures, groups of B-frames are separated by

P-frames and due to high temporal correlation between frames the B-frame groups only refer to

frames within the group. Similarly, P-frames tend to only refer to other I/P frames immediately

before it. Note that these observations are typically true for videos encoded with lower number

of reference frames targeted towards systems with low-memory and low-decoder complexity

(e.g. smart phones).

To illustrate the B-frame grouping property, consider the example hierarchical B-frame GoP

structure shown in Figure 8.2. In the frame group P10 to P15, there are 6 frames (2 P-frames and

4 B-frames). The B11 to B14 group of B-frames lie between P10 and P15. A high number of in/out

edges exist between these 6 frames. A similar grouping behaviour can be seen in frames P2 to

P6. In hierarchical B-frame GoPs, a significant amount of communication occurs between the

B-frame groups and the P-frames surrounding the B-groups. This inherent grouping property

in hierarchical B-frames, is exploited in this specialised mapping heuristic, to form task clusters

surrounding these B-frame groups.

Figure 8.7(top) shows how multiple task clusters can be formed at I/P-frame boundaries with

each cluster having a maximum of 1 P-frame. In all instances the first P-frame (e.g. P1) and the

subsequent B-frame group (e.g. B2 to B4) will be clustered together, whilst the following P-frame

(e.g. P5) will be placed in the next cluster. In this preliminary version of CL-BG, isolated P-

frames (e.g. P13,P14,P15) are clustered individually as single element clusters; however, future

work can explore merging consecutive P-frames. As shown in Figure 8.7(top), each cluster has

a cluster primary frame-level task which is either the I or P frame in the cluster. In the example,

I0,P1,P5..P15 are primary frame-level tasks of each cluster; their corresponding tile-level primary

tasks (e.g. the first tile of the primary task : I0
0 ,P

0
1 etc.) are denoted as clpt . It can be observed that

the cluster primary task has a high number of out-going edges to its child tasks. Algorithm 8.3

shows the pseudo-code to perform this clustering, which sequentially places each frame in the

GoP into a separate cluster.

Once the clusters have been formed they are mapped onto the NoC as shown in Figure 8.7(bot-

tom). Two parameters are used in the mapping phase of the algorithm. The cluster region hop

distance parameter (denoted as NHGT ) controls the distance between the clpt and the other clus-

ter tiles. The inter-cluster hop distance parameter (denoted as NHGP) controls the distance be-

tween primary tasks of different clusters (i.e. inter-cluster distance). Distance between clusters

must be kept short in order to reduce long communication routes but clusters must reduce

overlapped regions to avoid inter-cluster interference (i.e. NHGP > NHGT ). For this reason, NHGP

is set as (NHGP = NHGT +1), thus reducing the complexity of the parameter tuning process.

Algorithm 8.4 shows the pseudo-code of the CL-BG mapping technique. In line 1 of the al-

gorithm the cluster hop parameters are obtained according to the CCR(Ji). For this work, the
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Figure 8.7: Illustration of hierarchical B-frame grouping-aware task clustering. Top: Virtual clustering of frame GoPs,
Bottom: Mapping of clusters onto a 9x9 NoC

parameters given in Table 8.2 gave the best compromise between job lateness and communica-

tion cost reduction. Similar to CL, the hop counts are increased by 1 if cost(Lpath(Ji)) > De2e is

true, where in CL-BG, the Lpath(Ji) is assumed to be the I and P-frame combined task chain. A

comprehensive tuning of the NHGT parameter can be found in Appendix D.2. The clpt of the first

cluster is mapped on the PE with the minimum number of low-priority tasks (line 6), and the

rest of the tasks in the first cluster is mapped according to the PE utilisation and at NHGT hop

distance away from the clpt . The algorithm attempts to map each cluster in regions which have

the least occupancy of tasks, by ranking each possible PE with respect to the unused number

of neighbouring PEs (lines 17-27). Non-primary tasks of the clusters are mapped similar to the

first cluster (lines 28-31).

8.3.2.1 CL-BG mapping complexity analysis

The cluster formation in CL-BG (Algorithm 8.3) mainly consists of a single loop and several

conditional statements, thus its runtime complexity is O(|Ji|). The CL-BG mapping algorithm

(Algorithm 8.4) is similar to CL, where it has O(|JT
i |×|PE|×|T Q|)≡O(n3) worst-case complexity.

Note that the NHGT parameter limits the PE search space, and is usually kept small to balance

communication and lateness; hence, the average case complexity of CL-BG can be considered

as O(|JT
i |× |T Q|)≡ O(n2) and the worst-case complexity is impractical.

8.3.2.2 Fast variant of CL-BG

Similar to the CL mapper, a fast variant of CL-BG termed (CL-BG-F) is also explored. CL-BG-F

is similar to CL-F (Algorithm 8.2), where the PEs are initially sorted by their mapped number of
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Algorithm 8.3: CL-BG: clustering frames according to hierarchical B-frame groupings
Input : Ji : topologically sorted frame-level task graph of ith job
Output: clustered(Ji) : clustered GoP frames

1 tmp c = {} // temporary single cluster list

2 clustered(Ji) = {} // all clusters 2D list

/* Group frames iteratively */

3 foreach τi ∈ Ji do
4 if [( ft(τi) == I) or (( ft(τi) == P) and (|tmp c|== 0))] then
5 Insert τi→ tmp c

6 else if [( ft(τi) == P) and (|tmp c|> 1) and ( f rix(τi) == |Ji|−1)] or
[( ft(τi) == P) and (|tmp c|== 1) and ( f rix(τi) == |Ji|−1)] then

7 Insert {tmp c,{τi}}→ clustered(Ji) // insert τi as a single element set

8 else if [( ft(τi) == P) and (|tmp c|> 0)] then
9 Insert tmp c→ clustered(Ji); tmp c = {} // reset

10 Insert τi→ tmp c
11 else if [( ft(τi) == B) and (|tmp c|> 0) and ( f rix(τi) == |Ji|−1)] then
12 Insert τi→ tmp c
13 Insert tmp c→ clustered(Ji)
14 else if [( ft(τi) == B) and (|tmp c|> 0)] then
15 Insert τi→ tmp c
16 end
17 Return clustered(Ji)

Table 8.2: CL-BG task clustering hop count parameters based on CCR of a job CCR(Ji)

CCR range NHGT NHGP = NHGP +1

Low (CCR(Ji)< 0.18) 4 5
Med (0.18≤CCR(Ji)≤ 0.23) 1 2
High (CCR(Ji)> 0.23) 1 2

low-priority tasks, and then sequentially selected for each mapped tile task. Therefore, CL-BG-F

does not call the getPEwithMinLPTasks() and getLowestUtil() at each iteration in the algorithm,

thus greatly reducing the execution overhead.

8.4 Smart memory controller selection

This section introduces several heuristics that can be used for MMCP selection, in order to re-

duce the memory traffic congestion problem as described in Section 8.2.4. A task’s main mem-

ory read/write transactions would go via the NoC through the assigned MMCP. Reducing mem-

ory traffic contention is very challenging as there are only 8 MMCPs in the platform, and poten-

tially hundreds or thousands of flows that can utilise these MMCPs simultaneously. The tasks in

a job are first mapped to PEs and then they are each assigned a MMCP at runtime. The following

MMCP selection heuristics are explored in this chapter.

• Closest MMCP selection (MMCP-Dist):

In this heuristic, the MMC with the shortest route between source (src = τ
j
i ) and destina-

tion (dst = MMCPi) is selected. This is the default MMC port selection scheme used in the

current system model and only considers the distance (i.e. number of hops/links) between

task location and MMCP.

• Least utilised route selection (MMCP-LU):

In this heuristic, for each task τ
j
i , the utilisation of the route (i.e. the cumulative payload of

the flows using the route as per Eq. (8.6)) between τ
j
i →MMCPi is considered. In Eq. (8.6),

the total worst-case payload (w.c.PL(Msgi)) and period Ti of all flows on all links in the route
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Algorithm 8.4: CL-BG mapping algorithm pseudo-code
Input : Ji : topologically sorted frame-level task graph of ith job,

JT
i = topologically sorted tile-level task graph of ith job,

T MT : the runtime task mapping table,
PE list : list of PEs in the platform,
clustered(Ji) : clustered frames using Algorithm 8.3

Output: Updated T MT with new tile to PE mapping (τi→ PEi)
1 {NHGT ,NHGP}= getCCRspecificHopCount CLBG(CCR(Ji))

/* Iteratively, map tiles to PEs according to clusters */

2 foreach τ
j
i ∈ JT

i do
3 Get cluster index clix for τ

j
i ; Get cluster primary task clpt for clix

/* first cluster */

4 if clix == 0 then
/* if task is a primary task of cluster */

5 if τ
j
i == clpt then

6 PEi = getPEwithMinLPTasks(T MT,τ j
i ,PE list)// constrained PE search

7 else
/* other tasks of first group */

8 PEi = getLowestUtil(T MT , getPENeighbours(PE(clpt),NHGT ))// constrained PE search

9 end
10 else

/* primary task of other groups */

11 if τ
j
i == clpt then
/* Attempt to map new clusters in unsed regions of the NoC */

12 Get mapped PE of previous group’s primary task : PE(clpt(clix−1))
13 sPE N = getPENeighbours(PE(clpt(clix−1)),NHGP)
14 Get PEs used by all and prev. other clusters (via T MT ) : {all cl sPE, prev cl sPE}
15 tmp PE ranks = {} // track PE ranks

16 foreach pe j ∈ sPE N do
17 ssPE N = getPENeighbours(pe j,NHGT )
18 unsed PEs all = ssPE N \all cl sPE // set difference

19 unsed PEs prev = ssPE N \ prev cl sPE // set difference

20 if |unsed PEs all|> 0 then
21 tmp PE ranks[pe j] = |unsed PEs all|/|ssPE N|
22 else
23 tmp PE ranks[pe j] = |unsed PEs prev|/|ssPE N|
24 end
25 end
26 PEi = getPEwithMinLPTasks(T MT,τ j

i ,max(tmp PE ranks))// constrained PE search

27 else
/* other tasks of other groups */

28 PEi = getLowestUtil(T MT , getPENeighbours(PE(clpt),NHGT )) // constrained PE search

29 end
30 end
31 Map τ

j
i → PEi ; Update T MT{PEi,τ

j
i }

32 end

are taken into account. Route utilisation evaluation has to be performed for each MMCPi.

The structure of the algorithm is similar to the LU mapping algorithm, where each task

τi ∈ Ji is iteratively assigned the least utilised MMCP. The utilisation change made by an

MMCP assignment for one task is carried over into the next iteration, when selecting the

MMCP for the next task in the job.

U(route) = ∑
∀links∈route{src→dst}

∑
∀Msgi∈link

[
w.c.PLMsgi

Ti

]
(8.6)

• Shortest least utilised route selection (MMCP-DistLU):
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This heuristic, combines the above MMCP-Dist and MMCP-LU techniques to take into

account both the distance of the MMCP and the utilisation of the route to the MMCP. Each

MMCPi is weighted according Eq. (8.7) and the one with the minimum weight is selected.

Load and distance metrics were also used by Awasti et al. [94] to assign threads to MMCs.

MMCP-DistLU weighting : w(MMCPi) = norm(U(route))+norm(|route|) (8.7)

• Proportionate blocking-aware MMCP selection (MMCP-LBP):

In this scheme, the worst-case blocking of the flows are taken into account. Firstly, the

number of higher priority flows already mapped to each MMCP, with respect to a tar-

get priority (priority of τ0
0), is calculated. The overall mean number of high priority flows

across all MMCPs is also calculated (referred to as µ(|hp f lows|)). A list of MMCPs (of length

|JT
i |) is then created; referred to as prop MMCP list. MMCPs that have a lower number of

mapped high priority flows than µ(|hp f lows|) are included twice as more in the list. Each

task in JT
i is then assigned sequentially to each MMCP in prop MMCP list. A proportion-

ately scaled list is formed to avoid over-utilising a single MMCP.

• Fair distribution of tasks to MMCPs (MMCP-Fair):

In this heuristic, each MMCP will have a uniform number of tasks assigned to them. When

a new job is received, the MMCP is sorted (increasing order) according to the number of

tasks already allocated to them and the new tasks are assigned iteratively.

• Select MMCP different to parent task (MMCP-InvPar):

This scheme attempts to select MMCPs not already selected by its parent tasks. Tasks write

back to the main memory as soon as they complete execution. If both parent and child

tasks are mapped on the same PE or in close proximity and the same MMCP is selected for

both parent and child, under high CCR conditions the MMCP selected and its respective

links will be heavily congested by multiple MEM WR flows. The objective is to reduce

the impact of MEM WR flow congestion on the same set of links, by diverting the child

task MEM WR flows to a different MMCP. The pseudo-code of MMCP-InvPar is shown in

Algorithm 8.5. Tasks are iteratively assigned an MMCP and at each iteration the parents

MMCPs are omitted from the selection range (lines 5-12). If the parents have already been

assigned a higher number of MMCPs than NT , then already used MMCPs are included

when assigning MMCPs to the children. Therefore, if NT and/or number of parent tasks are

high, this scheme behaves similar to MMCP-Fair. However, unlike in MMCP-Fair, multiple

children of the same parent can have a similar MMCP assignment.

• Random MMCP selection (MMCP-Random): In this simple heuristic, an MMCP is se-

lected at random for each tile task τ
j
i in the job.

Some of the MMCP selection schemes introduced above require keeping track of task-to-

MMCP assignments of tasks already admitted and active in the system from previous jobs. This

is mainly a requirement for the MMCP-LU, MMCP-DistLU and MMCP-LBP heuristics. It is

assumed the RM keeps track of the MMCP assignment similar to the runtime mapping table,

without requiring monitoring feedback from the application/platform. The RM combines the
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MMCP assignment and the information within the runtime task mapping table (TMT) to derive

a set of flows for a given network route.

Under certain workload conditions the MMCP-LU assignment can lead to uneven number

of tasks assigned to each MMCP. For example, consider the scenario where a 31 frame job of a

2160p video arrives into the system and due to the nature of the MMCP-LU heuristic, it assigns

4 tasks to the first 7 MMCPs and only 3 tasks to the 8th MMCP. Next, a job of a low resolution

288p, 16 frames per job, video arrives into the system. Due to the large difference in the route

utilisation induced by high/low resolution videos, the 8th MMCP will now get a large number of

the low-res video’s tasks assigned to it.

Algorithm 8.5: MMCP-InvPar main memory controller port selection algorithm pseudo-
code

Input : JT
i : topologically sorted tile-level task graph of ith job,

NT : number of tiles per frame T MT : the runtime task mapping table,
MMCP clist : list of MMCPs in the platform as circular list,

Output: New tile task to MMCP mapping (τ j
i →MMCPi) : MMCPT

/* Iteratively, map tiles to MMCPs, but try to avoid same MMCP as parents */

1 foreach τ
j
i ∈ JT

i do
/* first task : (i.e. I0

j ) of the job - root node */

2 if τ
j
i == τ

j
0 then

3 MMCPi = MMCP clist.next()
4 else

/* if first tile of a task */

5 if τ
j
i == τ0

i then
6 s pMMCP : get all MMCPs assigned to parent tasks of τ

j
i

7 s uMMCP = MMCP clist \ s pMMCP // find MMCPs unused by parents (set diff.)

8 if |s uMMCP|< NT then
9 Extend s uMMCP by obtaining more MMCPs from MMCP clist

10 end
11 MMCPi = s uMMCP.next()
12 else
13 MMCPi = s uMMCP.next()
14 end
15 end
16 Map τ

j
i →MMCPi ; Update MMCPT{MMCPi,τ

j
i }

17 end

8.5 Evaluation

This evaluation section conducts two primary experiments as follows:

• Experiment A (ExpA): Evaluates the predictability, performance and overhead of the pro-

posed cluster-based tile mapping techniques (including their variants) against non-clustered

and existing task mapping baseline mappers. The behaviour of the tile mappers are eval-

uated under different workload CCR levels.

Two hypotheses are being tested in this experiment: (a) the proposed CL mapper can offer

lower communication costs than the baseline mappers; (b) the proposed CL-BG mapper can

offer comparable or lower maximum job lateness levels but with lower communication cost

than the baseline mappers, thereby balancing predictability and communication energy

savings.
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• Experiment A (ExpB): Evaluates the predictability, performance and overhead of the dif-

ferent MMCP selection heuristics discussed in the previous section, combined with the

primary clustered/non-clustered tile mappers.

The primary hypothesis being tested in this experiment is that the MMCP-InvPar selection

scheme can reduce the maximum job lateness levels compared to the other baseline MMCP

selection schemes.

8.5.1 Experimental design

The application and platform models described in Section 8.1 are used for all experiments in

this section. All experiments assume an 8×8 NoC platform. The workload is generated using the

parameters and analysis derived from Chapter 7. Therefore, it can be assumed that the PEs have

an operating frequency of 3GHz (corresponding to the HEVC decoder platform in Section 7.3.1),

with necessary scale adjustments made to compensate for DRAM latencies (as explained in Sec-

tion 7.8.3). Message flow header routing cost is assumed to be 7 clock-cycles, NoC frequency is

set at 100MHz and the link width is set to 16 bytes. As explained in Section 3.3, a lower NoC

frequency (i.e. low bandwidth) is assumed, in order to induce a reasonable amount of network

utilisation/congestion. A platform with 4 memory controllers (2 ports each) on either side of the

NoC was considered for all experiments in this evaluation. In ExpA, the task-to-MMCP selection

scheme is fixed as MMCP-Dist for each mapping type.

The workload for the experiments are 24 parallel video streams (WL = 6.13×107) with vary-

ing video resolutions (low-res 288p to UHD 2160p). Each video in the workload has 5 GoPs, 16 or

31 frames per GoP (randomly selected) and different video type (randomly selected out of those

shown in Figure 8.3). In the previous chapters all video streams had a fixed frame rate of 25fps

and 12 frames per GoP, which effectively gave a job end-to-end deadline of De2e = 0.48s. How-

ever, to reflect modern video streaming workloads, low/med resolution videos (e.g. 288p-720p)

were randomly assigned a frame rate of either 30fps or 60fps. Videos with very high resolution

(e.g. 1080p-2160p) were assigned a fixed frame rate of 60fps. Hence, different video streams

will have a variable De2e with respect to its frame rate and number of frames per GoP. Simula-

tions were carried out for 30 unique seeds for every experiment, which results in varying video

stream characteristics such as arrival patterns, task computation costs, reference data payloads,

job dependency structures etc. The proposed tile mappers are compared against the LU and PP

mappers, both introduced in Section 5.6.1.1 and a random mapper (termed RND) which as-

signs tasks to PEs randomly. Table 8.3 summarises the experimental conditions, parameters

and metrics used to explore the aforementioned evaluation objectives.

For the ExpA experiment the tile mappers are evaluated under two workload CCR levels: a

normal workload CCR level as shown in Figure 8.3 and a higher workload CCR level. To induce

a high workload CCR condition the computation cost of all frames have been scaled down by

a factor 0.1 and the communication cost is unaltered. This effectively scales up the job CCR

ranges shown in Figure 8.3. ExpB is only evaluated under the high workload CCR condition.

Hereafter, the normal workload CCR profile will be denoted as CCR NORMAL and the higher

workload CCR profile will be denoted as CCR HIGH.

The primary metrics measured in both experiments are the job lateness, cumulative basic la-

tency of all flows (commonly referred to as communication cost) and mapping execution over-

head. The job lateness primary metric can be further broken down into the data/memory flow

response time and the task turn-around time, in order to give more insight into the causes of

167



8.5. EVALUATION

Table 8.3: Summary of experimental evaluation design parameters

Eval.
obj.

Workload configuration Independent variables Response variables

ExpA
Normal workload CCR
High workload CCR

(comp. cost×0.1)

Mapping techniques:
CL, CL-F, CL-NoCCR,

CL-IPC, CL-BG, CL-BG-F,
PP, LU, LU-F, RND

Primary: Job lateness,
communication cost (cumulative
flow basic latency), mapping exec.
overhead, data/memory flow
response time and task turn-around
time.

Secondary: Communication cost
breakdown (number of flows, route
lengths and payload sizes) and NoC
PE busy time distribution

ExpB
High workload CCR

(comp. cost×0.1)

Mapping techniques:
CL, CL-BG, LU, PP

MMCP selection schemes:
MMCP-Dist, MMCP-LU,

MMCP-DistLU,
MMCP-LBP, MMCP-Fair,

MMCP-InvPar,
MMCP-Random

lateness. Recall from Section 3.2.1 that the task turn-around time does not include the flow

response-time but includes the blocking time due to interference from higher priority tasks.

Lower variability and mean/maximum job lateness values are desirable in terms of predictabil-

ity (Section 3.2.1) whilst lower communication costs directly reduce NoC energy consumption

(Section 3.2.3). The secondary metrics include the NoC PE busy time distribution and a break-

down of the communication cost (number of flows, total payload and flow route length). As

explained in Section 3.2.3, a higher mean PE busy time variation in the NoC cores is desirable,

in order to facilitate dynamic PE power saving techniques.

Note that the hop parameters of the cluster based mappers and their variants (i.e. CL, CL-

BG etc.) have not been changed for the different CCR specific workload profiles. However, the

CCR(Ji) ranges (Table 8.1, Table 8.2) which are used to select the fixed hop parameters for CL

and CL-BG, have been scaled up by 10 to proportionally match the reduction of the task com-

putation cost in CCR HIGH.

8.5.2 Results discussion

8.5.3 ExpA - Investigating cluster mappers under different workload CCRs

The results of ExpA under the CCR NORMAL workload scenario is shown in Figure 8.8. The

top row displays the primary metrics (job lateness, communication cost and mapping execu-

tion overhead) and the bottom row displays the secondary metrics - the data/memory flow re-

sponse time and task turn-around time. Due to the large magnitude of the sample size of the

secondary metrics (e.g. 4.8× 106 total number of flows per mapping type for all seeds), only

the mean, minimum (Min.) and maximum (Max.) of each seeded simulation run are shown in

plots. A similar set of plots are shown in Figure 8.9 for the CCR HIGH workload scenario. First

a discussion of the mapping results under CCR NORMAL is presented followed by a discussion

of the CCR HIGH results.

8.5.3.1 Primary metric evaluation

All evaluated mappers have a high amount of outliers in the job lateness distributions, repre-

senting jobs that encountered severe blocking and delay by higher priority jobs. All mappers

have comparable mean and inter-quartile (IQR) job lateness levels but varying outlier lateness

168



CHAPTER 8. TASK MAPPING FOR PARALLEL HEVC TILE DECODING

1

0

1

2

3

Jo
b
 l
a
te

n
e
ss

 (
s)

20

22

24

26

28

30

32

34

36

C
u
m

u
la

ti
v
e
 c

o
m

m
. 
b
a
si

c 
la

te
n
cy

 (
s)

0
10-4

10-3

10-2

10-1

100

N
o
rm

a
lis

e
d
 m

a
p
p
in

g
 e

x
e
c.

 o
v
e
rh

e
a
d

C
L

C
L-

IP
C

C
L-

N
o
C

C
R

C
L-

F

C
L-

B
G

C
L-

B
G

-F P
P

LU

LU
-F

R
N

D

0

10-3

10-2

10-1

D
a
ta

 f
lo

w
 r

e
sp

o
n
se

 t
im

e
 (

s)

C
L

C
L-

IP
C

C
L-

N
o
C

C
R

C
L-

F

C
L-

B
G

C
L-

B
G

-F P
P

LU

LU
-F

R
N

D

0

10-3

10-2

10-1

100

M
e
m

o
ry

 f
lo

w
 r

e
sp

o
n
se

 t
im

e
 (

s)

C
L

C
L-

IP
C

C
L-

N
o
C

C
R

C
L-

F

C
L-

B
G

C
L-

B
G

-F P
P

LU

LU
-F

R
N

D

0

10-3

10-2

10-1

100

T
a
sk

 t
u
rn

-a
ro

u
n
d
 t

im
e
 (

s)

Mean Min Max

Figure 8.8: Evaluation results of the tile mapping schemes - normal workload CCR (CCR NORMAL). Top row: job late-
ness, communication cost (cumulative basic latency), normalised mapping execution overhead. Bottom row: data flow
response time, memory flow response time, task turn-around time. Bottom row results indicate mean/max/min of each
seeded simulation run. Note that the top-right and bottom-row plots use a logarithmic scale in their y-axis.

levels. Hence, the job lateness of the mappers can be primarily evaluated based on their outliers

(maximum job lateness) and the variability of the job lateness distributions.

Discussion of CL, CL-BG and variants:

Under the CCR NORMAL workload scenario, the CL mapper and its variants (CL-IPC and

CL-NoCCR) show a higher maximum job lateness than the other evaluated techniques; how-

ever, they have a clear advantage in communication cost reduction (≈ 3s lower cumulative

communication basic latency reduction). Both CL and CL-IPC show similar results in terms

of lateness and communication cost but CL-IPC has a slightly lower mapping execution over-

head. CL-NoCCR has the worst job lateness, which indicates that using a dynamic CCR-aware

hop parameter technique (as in CL), is more beneficial than having fixed hop parameters. CL-F

shows a similar maximum job lateness level to CL but has slightly increased mean job lateness

and higher communication cost. Note however that CL-F has 1-2 orders of magnitude lower

mapping overhead than the other mappers due to its inaccurate but fast mapping technique.

The proposed CL-BG mapper (and variants) shows a lower job lateness than CL but at the

cost of higher communication cost. Compared to the LU, LU-F and RND mappers, CL-BG has

comparable maximum job lateness but lower communication cost. Unlike CL, the CL-BG tech-

nique has fewer parameters, therefore it can be easily tuned (as shown in Appendix D.2) to bal-

ance communication cost and lateness reduction or to optimise a single metric depending on

the system requirements. For example, the parameters NHGT = {2,4,6} for the low/med/high

CCR(Ji) ranges can give low job lateness results but at the cost of increased communication

cost. The chosen parameters of CL-BG (Table 8.2) gave the best trade-off for both workload

CCR levels. The CL-BG-F variant shows higher lateness than CL-BG but has an order of magni-

tude lower mapping overhead. CL-BG has lower mapping overhead than CL; on the evaluation
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platform (Python 2.7 based simulator executed on a 2.8GHz AMD Opteron 6386 CPU, 256GB

RAM platform) the CL-BG mapper has a mean absolute mapping execution overhead of 0.07s

and maximum overhead of 0.8s.

Discussion of baseline mapper results:

The LU mapper distributes the tasks evenly across the PEs, hence it incurs higher communi-

cation cost. LU incurs lower task contention therefore leading to lower overall job lateness levels

than the cluster-based mappers under CCR NORMAL workload conditions. The LU mapper has

a lower mapping overhead than the clustering-based mappers due to its simple heuristic and

the fast variant (LU-F) has lower mapping overhead to LU.

In large complex workload scenarios, the RND mappers mapping quality is similar to LU (i.e.

sparse distribution of tasks), therefore shows similar lateness and communication cost results.

Due to its simplicity, the RND mapper has the lowest mapping execution overhead. The PP

tile mapper shows comparable job lateness and communication cost to CL-BG but its mapping

execution overhead is 2-3 orders of magnitude higher than the other mappers. This is primarily

due to the computationally intensive task-graph operations carried out by the PP algorithm

(Algorithm 2.1) such as searching for nodes and edges with max/min weights and node merging.

Note the high variability in execution overhead of the PP mapper, which relates to the variation

in the number of nodes and edges in the TG. For very high number of nodes or edges (e.g. in the

order of 100 or 1000) the PP mapper performs rather poorly.

Breakdown of the job lateness:

The bottom row of Figure 8.8 gives an indication of the timing bottlenecks of the mapping

techniques. For all mappers, under the CCR NORMAL workload scenario, the memory flow

response times are much higher than the data flow response times due to the larger memory

write traffic payloads. Memory traffic also typically encounters higher amounts of contention

because only 8 MMCPs are available in the platform. Note than in ExpA, all mappers use the

same MMCP-Dist memory controller port selection scheme, hence all mappers show a simi-

lar maximum memory flow response time. The overall task turn-around times are also higher

than the data flow response times. This is especially true in the case of the CL type mappers,

where the results indicate the task contention is the bottleneck for the CL mappers due to tight

clustering. LU-F has the lowest and CL-NoCCR has the highest task turn-around time.

Discussion of the high CCR workload results:

Figure 8.9 shows the results of the tile mappers under the CCR HIGH workload condition.

In this scenario, as the computation costs are scaled down by an order of magnitude, the flow

response time (especially the memory traffic) is clearly a dominant factor for all mappers. Mem-

ory flow response-time are about 4-5 times higher than data flow response-times and more than

an order of magnitude higher than task turn-around times. This means, a slight increase in the

mean/maximum memory latencies can severely impact the job lateness.

The results show that unlike in CCR NORMAL, under the CCR HIGH condition the CL-NoCCR

mapper variant has the lowest maximum job lateness as well as the lowest communication cost

due to its tight clustering. Note that its task turn-around time is higher than the others, but

this does not impact the overall job lateness significantly, as the mean memory response time

is lower. The job lateness gap between the CL and LU mappers have also decreased. When CCR

is increased the job lateness of LU, LU-F and RND mappers increase whilst CL’s job lateness
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reduces. When the workload CCR is higher, the CL-BG mapper has a lower job lateness distri-

bution (IQR and maximum) than the LU mapper. The CL-F and CL-BG-F mapper variants show

a much worse lateness levels than in CCR NORMAL mainly due to their higher maximum mem-

ory flow response times. PP has a lower IQR job lateness than CL-BG but as in CCR NORMAL,

its mapping execution overhead is still much larger.
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Figure 8.9: Evaluation results of the tile mapping schemes - high workload CCR (CCR HIGH). Top row: job lateness,
communication cost (cumulative basic latency), normalised mapping execution overhead. Bottom row: data flow re-
sponse time, memory flow response time, task turn-around time. Bottom row results indicate mean/max/min of each
seeded simulation run. Note that the top-right and bottom-row plots use a logarithmic scale in their y-axis.

8.5.3.2 Secondary metric evaluation

The communication cost breakdown for the different mapping techniques are presented in Ta-

ble 8.4. The results for both CCR NORMAL and CCR HIGH conditions are similar hence, only

the CCR NORMAL results are shown. Higher number of flows and route lengths are the causes

of higher communication cost in LU, LU-F and RND compared with the cluster-based tile map-

ping techniques. CL-BG has slightly lower mean route length than CL but injects higher number

of flows into the NoC. PP shows a high number of flows and total payload compared with CL but

has the lowest mean route length out of all the evaluated mappers. RND has the highest mean

route length but lower number of total flows and total payload than LU due to arbitrary group-

ing of tasks.

The variation of the mean PE busy time across the different PEs in the NoC are shown in

Figure 8.10. In the distributions, each data point represents a PE’s mean busy time percentage.

Essentially these plots represent the distribution of the load across the PEs. A large variation is

seen in the cluster-based mappers due to the nature of the task dispersion. CL (and variants)

have a larger workload distribution spread than CL-BG or PP out of the cluster mappers. The

variation is higher in the CCR NORMAL condition (≈ 30% min-max variation seen in CL) than

171



8.5. EVALUATION

Table 8.4: Communication cost breakdown for all tile mappers - CCR NORMAL workload scenario

Mapping type
Total payload

(GB)
Mean route

length
Mean # flows
×104

Total # flows
×105

CL 1187 5.42 13.46 40.37
CL-IPC 1191 5.45 13.51 40.54
CL-NoCCR 1159 5.34 13.10 39.30
CL-F 1267 5.47 14.98 44.93

CL-BG 1246 5.20 14.47 43.42
CL-BG-F 1227 4.83 14.21 42.62

PP 1237 4.70 14.36 43.07

LU 1284 6.66 15.26 45.78
LU-FFI 1286 6.67 15.32 45.96

RND 1280 6.72 15.21 45.63

in the CCR HIGH condition. CL-BG-F has the highest variation and LU has the lowest varia-

tion in the CCR NORMAL condition. A similar trend can be seen in the CCR HIGH scenario

although here, the CL-NoCCR mapper has the largest variation. Overall, a lower PE busy time

can be seen in the LU/LU-F non-clustered tile mapping schemes, as more time is spent on NoC

communication than the cluster-based mappers. As LU and LU-F evenly spreads the workload

across the NoC its PE busy time variation is smaller than RND.
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Figure 8.10: Distribution of PE busy times for different mapping types. Each data point in each distribution represents
the mean busy time for a PE in the NoC

8.5.4 ExpB - Investigating different MMCP selection schemes

The primary metric results of experiment ExpB is shown in Figure 8.11. The x-axis of each sub-

plot is first categorised into the different mapping types (CL, CL-BG, PP and LU) and within

each mapping category, the results of using different MMCP selection schemes are presented.

In the ExpB experiment there are two treatments - the task mapping technique and the MMCP

selection scheme. The presentation of the results in Figure 8.11, are similar to Figure 8.8 and Fig-

ure 8.9; the top row shows the job lateness, the cumulative basic latency (communication cost)

and the normalized mapping execution overhead, the bottom row shows the data/memory flow

response time and the task turn-around time. Note that the y-axis scales for each sub-plot are

different. There are negligible differences in communication cost by using different MMCP se-

lection schemes, as the amount of total memory traffic flows and total payload do not change;

172



CHAPTER 8. TASK MAPPING FOR PARALLEL HEVC TILE DECODING

only the mean communication route length will vary slightly. Similarly, the task turn-around

times also does not vary significantly based on the MMCP selection type. Hence, this results

discussion will mainly focus on the other 4 primary metrics.

The MMCP-LU and MMCP-Dist schemes show the highest amount of job lateness distri-

bution out of the evaluated MMCP selection techniques. MMCP-LU and MMCP-Dist schemes

produce highly uneven assignment of tasks to MMCPs as explained in Section 8.4. This leads

to higher memory traffic contention for certain MMCPs in the NoC leading to larger memory

flow response times and in turn higher overall job lateness results. Therefore, under every map-

ping type, using the MMCP-LU heuristic can result in a high maximum lateness level. A higher

job lateness IQR variability is seen in the MMCP-LU and MMCP-Dist schemes when compared

with the other MMCP selection techniques. The combination of the MMCP-Dist and MMCP-LU

schemes, termed MMCP-DistLU, shows a relatively lower lateness distribution especially when

used in conjunction with the CL, CL-BG and PP mappers.

The job lateness of the MMCP-LBP varies based on the mapping type; it has slightly lower

maximum job lateness in CL, than compared to MMCP-Rand but performs poorly under the LU

mapper. The MMCP-Rand heuristic show results comparable to MMCP-LBP under the CL-BG

and PP mappers but has slightly higher maximum lateness under the CL mapper. MMCP-Fair

and MMCP-InvPar heuristics show the lowest job lateness out of all the evaluated MMCP se-

lection techniques. Using the MMCP-InvPar heuristic, the mean job lateness of the CL mapper

can be brought down by 0.21s compared with the default MMCP-Dist heuristic, which is ≈20%

of a job’s De2e (assuming 31 frames per GoP and 30fps) and the maximum job lateness can be

reduced by 1.5s. The lateness reductions are due to the significant decrease in the memory flow

response times as shown in Figure 8.8 (bottom-right). When compared with the MMCP-Dist

heuristic, the MMCP-InvPar and MMCP-Fair have higher mean/max data flow response times;

however, these increases do not impact the job lateness as the memory traffic response times

are about an order of magnitude higher than the data traffic response times. MMCP-InvPar

shows slightly lower number of total late jobs than MMCP-Fair under the CL-BG, PP and LU

mappers (Table 8.5), even though its maximum job lateness is comparable.

All MMCP selection schemes adds further overhead into the runtime resource allocation

procedure in the system. The mapping execution time results of the different MMCP selec-

tion schemes are shown in Figure 8.8(top-right). These measurements include the overhead

incurred by both the mapping technique and the MMCP selection heuristic. The MMCP-LU

and MMCP-DistLU techniques have about 2-orders of magnitude higher execution overhead

than the other heuristics, as the utilisation change made by an MMCP assignment for one task

is taken into account when selecting a MMCP for the next task. The MMCP-InvPar scheme has a

slightly lower maximum and mean mapping execution overhead than the MMCP-Fair scheme

under all mapping types. Note that the MMCP selection schemes under the PP mapper has

large overheads primarily due to the overhead of the PP mapper itself.

Table 8.5: Number of late jobs per MMCP selection scheme (columns) and mapping type (rows)

MMCP-
Dist

MMCP-
LU

MMCP-
DistLU

MMCP-
LBP

MMCP-
Rand

MMCP-
Fair

MMCP-
InvPar

CL 1415 1311 1015 792 795 615 620
CL-BG 1491 1485 1016 719 683 507 503
PP 1495 1436 985 647 639 460 455
LU 1518 1398 1086 1416 768 517 515
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8.5.5 Results summary

The results from ExpA confirms the hypothesis that the proposed tile clustering-based map-

pers, can be used to lower the communication cost of HEVC tile decoding at the expense of

reasonable job lateness degradation (in the case of CL) or at the same job lateness level (in the

case of CL-BG).

The proposed CL mapper and its variants showed significantly lower communications costs

over the other evaluated mapping types. CL can be used to obtain an average communication

saving of ≈ 10% over a uniform or random workload distribution method (LU and RND). How-

ever, this saving comes at the cost of ≈ 0.2s− 0.5s higher maximum job lateness increase com-

pared with the LU mapper. For certain SRT video streaming applications, where buffering can

be used, this lateness may be acceptable. The CL mapper also has an advantage over the others

in terms of PE busy time distribution. Its uneven distribution of workload can be exploited to

facilitate further power saving techniques such as putting idle/unused PEs to low-power mode.

The proposed CL-BG mapper can be used to obtain slightly lower/comparable job lateness

to LU and RND but with≈ 4−6% lower average communication cost. Most importantly, unlike

the other evaluated techniques, the CL-BG mapper shows a good balance between job late-

ness (i.e. predictability improvement) and communication cost reduction (i.e. NoC energy cost

reduction) under both normal and higher CCR workload conditions. Note that both CL and

CL-BG have parameters that can be re-adjusted to improve one metric over the other.

The communication cost saving of the proposed mappers are mainly due to the low num-

ber of flows injected into the NoC, as well as short message flow route lengths. Uniform (LU)

and random (RND) mapping can lead to long message routes and higher number of flows due

to inefficient use of the network. The PP mapper clusters tasks together to efficiently balance

computation and communication and it shows slightly lower mean/max job lateness levels to

CL-BG and LU under the CCR HIGH workload condition but its mapping execution overhead is

2-3 orders of magnitude higher than the other mappers, which makes it unsuitable for runtime

mapping of large and complex task-sets.

The evaluation results from ExpB, partially confirms the experimental hypothesis stated ear-

lier. The MMCP-InvPar MMCP selection heuristic can reduce the maximum job lateness, lower

than all baseline except the MMCP-Fair heuristic. However, MMCP-InvPar has slightly lower

number of late jobs compared with MMCP-Fair when combined with the CL-BG, PP and LU

mappers. MMCP-InvPar heuristic can provide a maximum job lateness that is≈ 75% lower than

the default MMCP-Dist heuristic and≈ 25−50% lower compared to MMCP-DistLU and a simple

random assignment (MMCP-Rand). The maximum overhead of the MMCP-InvPar technique is

also lower than MMCP-Fair and comparable to MMCP-Dist. The experiments also showed that

a non-uniform distribution of number of tasks to MMCPs (as seen in MMCP-Dist or MMCP-LU)

was not efficient as MMCP contention can be uneven, leading to larger memory flow response-

times. The results also showed that in certain MMCP selections techniques may have varying

lateness results depending on the type of task mapping profile used (e.g. in the case of MMCP-

LBP).

8.6 Summary and novel contributions

To summarise, this chapter presented the following contributions to existing work on tile-parallel

HEVC video decoding on many-core platforms:
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• Tile parallel HEVC video encoding on NoC-based multi-core platforms have been explored

in the past by [187] and decoding has been explored in [25, 26]. However, they assume a

thread-based programming model which uses shared memory communication, which is

known to have performance bottlenecks as the platform size and number of threads in-

crease. To the best of the author’s knowledge, this is the first work to explore, open-loop,

tile-parallel, multiple HEVC video stream decoding on a distributed memory model (com-

monly seen in NoC based many-cores), where inter-task communication is performed di-

rectly via the on-chip interconnect.

• This work introduced several application specific challenges in tile-level parallel HEVC

video decoding. Dynamic GoP structures with complex dependency patterns, task graph

scale increase due to tile-partitioned parallelisation and varying video stream CCRs due

to different video types were explored. This work also presented the problem of balancing

two conflicting mapping objectives - lateness and NoC communication cost reduction.

• Two runtime HEVC tile mapping techniques were presented. The first proposed tile map-

per (CL) is a generic technique which takes into account the job’s longest path and com-

bines it with a blocking and CCR-aware clustering heuristic. The second proposed mapper

(CL-BG) is a stream specific task clustering technique targeted at streams encoded using

hierarchical B-frame structures. These two mappers are used to improve the job lateness

reduction (i.e. predictability) and reduce the NoC communication cost (i.e. communi-

cation energy) in the platform whilst having a low mapping overhead. Faster, variants of

these mappers were also introduced, although they offer less predictability.

• Several main memory control port selection heuristics were presented and their predictabil-

ity, performance and overhead evaluated. The proposed MMCP-InvPar heuristic attempts

to reduce memory contention by trying to assign tasks different MMCPs than their parent

tasks.

The proposed mappers and MMCP selection techniques were evaluated in terms predictabil-

ity (job lateness), NoC energy savings (communication cost) and overheads (mapping execution

overhead). The job lateness and communication cost metrics were further broken down to anal-

yse the bottlenecks in finer granularity. Evaluations of the proposed tile mappers were carried

out in both normal and high CCR workload conditions.

The CL mapper is mainly aimed at reducing the NoC communication cost whilst maintain-

ing reasonable decoding lateness. The predictability of the CL-BG mapper is slightly better than

the CL mapper in both CCR conditions evaluated and its communication cost saving is higher

than a uniform utilisation-based runtime mapper. Both proposed mappers have parameters

that can be tuned to control the level of task clustering, in order to trade-off or balance pre-

dictability and communication cost in the platform. CL-BG has fewer parameters than CL,

making it simpler to customise. However, unlike CL, CL-BG is constrained to video streams

encoded using hierarchical B-frames which is a common but optional encoder setting. CL-BG

illustrates that task clustering can be customised with some application domain knowledge in

order to balance the level of task/flow contention and the two conflicting metrics. The evalu-

ation also showed that existing dynamic task mappers such as PP can be very computationally

inefficient when handling large and complex workloads. The LU mapper can be used when

saving NoC energy is not a concern and workloads have a low CCR.
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Section 8.2.1 and Section 8.2.4 discusses in detail the strengths and weaknesses of task clus-

tering and the effect it has on contention, communicating cost saving and lateness reduction.

With limited knowledge of certain application characteristics CL-BG can be efficiently used to

balance the level of task/flow contention and the two conflicting metrics. The parameters of the

proposed techniques can also be adjusted based on the job CCR level which is necessary when

the video stream CCR can change dynamically due to the level of motion in the video.

Lastly, the memory contention bottlenecks identified during preliminary evaluation of the

proposed mappers were addressed, by exploring several MMCP selection heuristics. Experi-

mental results showed that a task distance/locality-based heuristic can cause high levels of

memory contention and the benefits that a good mapper can bring are limited by inefficient

MMCP selection schemes. Instead, a uniform MMCP to task assignment scheme with paren-

t/child task MMCP selection awareness can help to significantly reduce memory traffic con-

tention and improve predictability over a distance-based or utilisation-based selection scheme.
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Chapter 9

Conclusions and future work

Large-scale, complex, video decoding on many-core systems brings upon many new challenges

to the runtime resource allocation problem. This thesis proposed possible approaches that can

be used in the context of admission control, resource management organisation and resource

allocation for hard and soft real-time multiple video decoding on NoC based many-cores. This

conclusion chapter contains a summary of the key findings and contributions made in this the-

sis. Several potential future research ideas to extend this work are also presented.

9.1 Review of contributions in this thesis

The work presented in this thesis was based upon the following two thesis hypotheses made in

Chapter 1:

• Application and blocking-aware, runtime mapping heuristics combined with a determin-

istic admission controller can be used to guarantee timing requirements and improve sys-

tem utilisation for HRT video streams encoded using classical video codecs; a low-overhead,

distributed, remapping technique, can be further used to reduce the lateness, of SRT video

streams.

• Application-specific task clustering and mapping combined with better memory controller

selection heuristics, can be used to balance communication cost and lateness reduction of

SRT decoding of complex video streams, encoded using modern video codecs

The above hypotheses have been confirmed by a series of experiments carried out in Chap-

ters 4-8 in this thesis. The primary theme in this research work has been to improve predictabil-

ity and performance in the system when only limited knowledge of the workload is available

at runtime. To this extent, several novel dynamic task allocation and resource management

policies have been proposed and evaluated against existing techniques under varying work-

load conditions and platform sizes. The following sub-sections will summarise the contents

and main contributions made in this thesis, along with a critical assessment of each proposed

technique.

9.1.1 A data-parallel multiple video stream decoding application model

A gap exists between the multicore embedded multimedia systems design research community

and the parallel video coding research community. The former often adopts a generic task-

parallel application model with direct core-to-core communication via message passing. The

latter almost always considers a multi-threading based data-parallel model using shared mem-

ory communication.
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Chapter 3 introduced a DAG based application model for frame parallel stream decoding

on NoC-based distributed memory architectures. The proposed application model follows a

generic hierarchical structure, sufficient to describe decoding of time-varying number of paral-

lel streams and reference frame data dependencies transmitted between cores, via a NoC inter-

connect. This type of model enables system designers to explore existing multicore scheduling

and resource allocation techniques on data-parallel video decoding workloads, thus helping to

reduce the gap between the two above mentioned research communities. Several of the con-

straints and assumptions made in the model are subsequently lifted in Chapters 5,7 and 8.

Summary of novelty: A hierarchical, data-parallel multi-stream video decoding application

model, that is targeted towards modern communication-centric NoC-based many-core plat-

forms.

9.1.2 Deterministic and heuristic-based admission control strategies

In Chapter 4, several admission control techniques were presented which can be used in the

context of real-time video decoding systems. A hard real-time deterministic admission con-

troller (D-AC) was introduced which performs end-to-end video stream schedulability tests, to

determine if any stream deadlines will be missed by admitting a new stream. A stream-level run-

time mapping procedure and certain constraints to the stream encoding enables the D-AC to

perform worst-case response time analysis on the video streams. The platform model assumes

priority-preemptive task and message flow scheduling and arbitration.

The second admission controller relies on a closed-loop, heuristic-based strategy, to deter-

mine the admission decision, and hence aimed at soft real-time time workloads. Here, the late-

ness metric of the tasks within the system buffers/task queues, is used within the closed-loop

admission control heuristic (Heu-AC). Individual subtask deadlines were estimated as a ratio of

the end-to-end job deadline.

Evaluation results showed that the D-AC provides a high level of predictability with none of

the admitted video streams being late. The drawback in the D-AC approach is that the conserva-

tive nature of the schedulability analysis enforces strict admission control, thereby significantly

under-utilising the system resources. This issue is subsequently addressed by the work in Chap-

ter 5. The Heu-AC approach on the other hand has parameters that can be tuned to achieve a

reasonable balance between predictability and utilisation, which makes it suitable for soft-real

time video decoding. However, the Heu-AC relies on a closed-loop system, where the admission

controller queries the status of the PE task queues to make an admission decision.

Summary of novelty and new insights: Two novel admission control strategies are proposed.

Firstly, a deterministic admission controller that uses end-to-end schedulability analysis to pro-

vide hard real-time timing guarantees to admitted multi-stream video decoding workloads. Sec-

ondly, a heuristic-based admission controller that uses video stream lateness as a tunable deci-

sion metric, that can be used to serve soft real-time video streams to balance predictability and

utilisation. Experimental evaluation provided a new insight that, task and message flow con-

tention should be minimised or appropriately taken into account in the D-AC analysis in order

to improve the admission rates.
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9.1.3 Runtime task mapping for hard real-time video stream decoding

The distance of communicating tasks and the level of contention in the system are primary

factors that can affect the worst-case response time of tasks. These properties can vary depend-

ing on the task to PE mapping configuration. Therefore, certain task allocations can lead to

increased end-to-end job worst-case response times, resulting in the D-AC to reject a higher

amount of video streams, over other more efficient task placements. To this extent, Chapter 5

presented two dynamic task mapping techniques, to efficiently map the video decoding tasks

on the NoC, in order to improve the admission rate and utilisation of the D-AC.

The first proposed technique (LWCRS) can be used to map generic DAG based applications

with fixed task priorities. The worst-case remaining slack metric is used to decide on which PE

to map each task in a job. LWCRS attempts to ensure balanced-blocking, such that tasks are

temporally packed tightly as long as their deadlines are not missed. The second technique (IPC)

is application-specific and uses known properties of the GoP dependency structure to make

mapping decisions. IPC groups the I and P frame decoding tasks together thus reducing the

contention and response time of the overall job. Both techniques are facilitated by an open-loop

resource manager which does not incur system monitoring overhead unlike existing techniques

in the literature.

The proposed heuristics were compared against several dynamic and static baseline map-

ping techniques existing in the literature. The proposed techniques showed higher utilisation

and D-AC admission rates than the baseline runtime mappers. This shows that taking into ac-

count the blocking, the inter-task communication distance and limited knowledge of the ap-

plication characteristics can help to improve the quality of the mapping. The experiments also

showed that certain mappers may behave differently based on the communication to compu-

tation ratio (CCR) of the workloads evaluated.

Summary of novelty and new insights: Two novel dynamic task mapping techniques are pro-

posed. The first technique (i.e. LWCRS) takes into account both the blocking incurred by target

task and existing tasks in the system. A second runtime mapper (i.e. IPC) introduces minimal

application-knowledge into the mapping heuristic to further reduce network contention. Both

approaches, can be used in conjunction with a deterministic admission-controller to improve

admission rates; evaluations showed improvement over existing runtime mappers. Further-

more, certain experimental results showed that the workload communication-to-computation

ratio should be considered in the mapping heuristic to account for diverse workloads

9.1.4 Bio-inspired, distributed task remapping for NoCs

Centralised resource management techniques suffer from scalability and reliability issues (Sec-

tion 2.3.2.1). The state-of-the-art cluster-based/hierarchical resource management techniques

can incur high communication protocol cost (Section 2.3.2.2). The few fully distributed NoC

management techniques existing in the literature have complex protocols, rely on custom hard-

ware or rely on code duplication (Section 2.3.2.3). Thus, in Chapter 6 the possibility of using

a bio-inspired, distributed task remapping technique (termed PSRM) for NoCs is investigated.

The proposed remapping technique attempts to reduce the job lateness, whilst maintaining low

resource management communication overhead. Each PE autonomously makes remapping

decisions using a balanced-blocking heuristic and an existing swarm-inspired, load-balancing

protocol. Chapter 6 also introduces several significant adaptations to an existing cluster-based
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resource management approach.

PSRM is evaluated against the adapted cluster-based remapper as well as centralised and

random remapping baselines. Due to lack of global view of network traffic at runtime, certain

reallocations can cause positive or negative job lateness improvement. Overall, PSRM showed

marginally better predictability than the baselines but with a much lower communication over-

head. PSRM showed comparable workload distribution to the cluster-based remapping ap-

proach. Furthermore, unlike the cluster-based or centralised approaches, PSRM provides a

higher degree of reliability as the remapping decisions are completely decentralised.

The relatively high number of PSRM’s parameters and their sensitivity, makes the parameter

search process challenging. A simple random parameter search showed marginal predictabil-

ity improvements over the baseline remappers; however, more efficient tuning strategies such

as in [201], can be used to obtain better results. Furthermore, if more information regarding

the workload is known a priori (e.g. periodicity, number of streams and their resolutions), the

parameters tuning could be more focused and can yield better timing improvements.

Summary of novelty and new insights: A decentralised, bio-inspired task remapping technique

for NoCs is proposed. The technique has significantly lower communication overhead than a

state-of-the-art cluster-based/hierarchical management protocol. The proposed technique can

be used to further reduce job lateness and perform load-balancing. Experimental evaluation

provided insight that whilst the proposed scheme can provide several scalable benefits over ex-

isting management approaches, properly tuning such an algorithm to obtain good performance

can be challenging.

9.1.5 Workload characterisation of HEVC video stream decoding

The application model used in the technical Chapters 4-6 represent video streams encoded

using classical codecs such as MPEG-2. In Chapter 7, the application model was extended to

capture the complex properties of HEVC video streams with adaptive hierarchical B-frame GoP

structures. GoP-level and coding-unit level properties of real HEVC video stream trace data

was analysed. Tractable workload generation algorithms were introduced in Chapter 7, which

use the statistical properties obtained from the stream analysis stage, to generate realistic, ab-

stract DAG-based HEVC decoding workloads. These algorithms are robust enough to create

any amount of synthetic video stream workloads with varying spatial and temporal properties,

which is useful in high-level design space exploration.

The evaluation of these synthetically generated video decoding workloads showed that the

variation of the different frames were not accurately captured using this model. This was due to

several video stream characteristics being analysed at the stream-level, rather than on a frame-

by-frame basis. However, properties such as frame execution time bounds, data dependency

patterns and communication volumes of the synthetically generated workloads matched the

real video stream.

Summary of novelty and new insights: DAG-based, abstract, HEVC video stream decoding

workload generation models were proposed. These models were derived using CU/GoP-level

statistical analysis that have not been investigated before. Evaluation revealed that the CCR of a

stream is not completely random and has direct relationship with the level of spatial/temporal

redundancies in the video and the encoder options used.
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9.1.6 Runtime task clustering and mapping for Tile-parallel HEVC decoding

Tile-parallel HEVC stream decoding improves the decoding throughput by enabling the decod-

ing of several portions (i.e. tiles) of a frame simultaneously. In Chapter 8, the complexities of

decoding tile-parallel HEVC video streams with adaptive, hierarchical B-frame GoP structures

is explored. Several application specific problems such as dynamic job dependency structures,

variable video stream CCRs and HEVC tile parallelisation challenges are addressed. The work in

Chapter 8 primarily attempts to balance the conflicting objectives, job lateness (predictability)

and NoC communication cost reduction (energy).

Chapter 8, introduced two tile-level task clustering and mapping techniques to address the

above mentioned issues. The first heuristic, termed CL, clusters the tile tasks in the longest path

of the job differently than the rest of the tiles. It also considers the task blocking and the inter-

task communication distance. The second heuristic, termed CL-BG, is stream-specific, such

that it explicitly performs clustering based on hierarchical B-frame structures. Both mapping

techniques use job CCR related parameters to control the level of task clustering (sparse/dense).

Chapter 8 also explored several main memory controller (MMCP) to task selection schemes in

order to reduce memory traffic bottlenecks especially seen in high CCR workloads. An MMCP

selection scheme that attempts to assign different MMCPs to child tasks compared to their par-

ent tasks is investigated (termed MMCP-InvPar). MMCP selection heuristics based on hop dis-

tance, link utilisation, uniform and random selection were also explored.

Evaluations were carried out against a load-balancing uniform mapper (LU), an existing

computation and communication load balancer (PP) and variants of CL and CL-BG. CL showed

superior communication cost reduction but it had a higher job lateness than the other map-

pers. LU showed lower job lateness levels but at the cost of high NoC usage. The CL-BG mapper,

showed a good balance in communication cost and lateness reduction in both high/normal

CCR conditions. The high mapping execution overhead of PP, makes it unsuitable for larger

task-sets. MMCP evaluation showed that both MMCP-InvPar and uniform selection performed

best in terms of job lateness reduction. Furthermore, the results showed that certain MMCP

selection schemes can have different job lateness results based on the type of mapper used,

indicating a relationship/dependency between them.

The experiments showed that it is infeasible to derive a lightweight runtime mapping heuris-

tic that optimises on both target metrics under all workload conditions. Nevertheless, using a

certain degree of application knowledge, a heuristic can be formed to provide a satisfactory bal-

ance between the two conflicting metrics. The primary challenge in MMCP selection is that

there are only a small set of MMCPs to select from and a large number of concurrent memory

transactions. More intelligent MMCP selection schemes can be employed which takes into ac-

count the overall memory traffic interference patterns when assigning MMCPs to tasks, however

this would incur a large resource allocation overhead.

Summary of novelty and new insights: Tile-parallel HEVC decoding introduces new challenges

to the task allocation problem as discussed above. Two, novel runtime task clustering and map-

ping techniques are presented, specifically for multi-stream tile-level parallel HEVC decoders,

to decrease lateness and communication cost. The first mapper is general-purpose and at-

tempts to reduce the latency of the tasks in the jobs longest path. The second is stream-specific

and takes into account the popular B-frame grouping encoding option of video streams to form

task clusters. Preliminary evaluations gave new insight to bottlenecks in memory traffic man-

agement, which lead to investigation of several task-to-MMCP selection schemes.
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9.2 Future research directions

This section presents several research directions that can be taken to extend/build-upon the

work carried out in this thesis.

• Hardware prototyping: The findings in this thesis were produced via simulation, albeit

using abstract workloads with a high degree of realism. Having shown that the proposed

techniques show promising results in simulation, future work can explore implementing

them on an actual many-core hardware platform. To begin with, a wormhole switched

NoC, with priority-preemptive arbitration would need to be implemented. The resource

manager can either be a PE within the NoC or an individual entity outside main PE net-

work. The distributed algorithms proposed in this work can be implemented as a middle-

ware layer on top the PEs. However, hardware prototypes would have to address imple-

mentation specific issues, such as develop methods for multiple video stream workload

input, data collection and tracking capabilities. Existing video decoders developed for

shared memory, multi-threaded systems would need to be ported to a message passing

programming model.

• Investigating priority assignment schemes: The resource management techniques pro-

posed in this thesis purely consider the optimisation of task placement, and assume the

task/flow priority assignment scheme is provided by the designers or users. Hence, the op-

timisation of task priority assignment is not explored. However, it is evident from the liter-

ature that jointly optimising both mapping and priority assignment can lead to better pre-

dictability in a system and therefore needs to be explored as part of future work. Dynamic

priority assignment can also be investigated; for example, dynamically adjusting the pri-

ority with respect to the lateness/deadline of the task. The schedulability analysis would

also need to be changed to support dynamic priorities. Independent priority assignment

heuristics for tasks and flows can also be investigated. It would also be interesting to ex-

plore the behaviour of priority assignments at different levels of stream granularity i.e.

coarse grain - stream level or fine-grain - tile/block-level. Similarly, periodicity-dependent

priority assignment needs to be explored when video streams with varying frame rates are

considered.

• Fully distributed task dispatching: In the bio-inspired task remapper proposed in Chap-

ter 6, each PE autonomously arrived at remapping decisions, but notified a centralised

dispatcher. A distributed task dispatching mechanism can be explored; this eliminates

the need for a dispatcher notification, which only introduces very low communication

overhead, but improves reliability further. One approach would be to send a single, short

message around the network notifying each PE sequentially (e.g. zig-zag order), that a

new job has arrived. PE’s with high amounts of slack (i.e. Queen Nodes from the PSRM

algorithm), can decide to take on additional load from the new job, and label the task(s)

as taken and continue to pass the message to the next PE in the network. Each PE can also

load task data from memory without the assistance from a central dispatcher/resource

manager; this would enhance the reliability of the system further.

• Application model adaptations: There are several ways the application model can be fur-

ther extended. Lower stream granularity (e.g. CTU/CU level) parallel decoding can be ex-

plored, which would be suited for systems with constrained local memory. The limitations
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mentioned in the existing HEVC workload generator (Chapter 7) can also be addressed - to

capture the frame-by-frame variations within the stream. The application model can also

be adapted to represent streams with different encoding settings - e.g. intra-only streams

or I/P-frame or I/B-frame only streams, different bit-depths etc. Realistic video stream,

job arrival patterns can also be integrated into the application model. More realistic in-

ternet/network traffic models can be used such as Poisson or Pareto distributed models

which capture the bursty nature of streaming video.

• Parallelisation granularity vs. local memory utilisation and network contention: The

work in this thesis explores parallel video decoding only at the frame and Tile granular-

ities. Coarser-grain parallelism such as at the GoP-level, requires much larger local PE

memory requirements but no inter-task communication and memory transactions with

large payloads. On the other hand, finer-grain parallelism such as at the CTU/CU-level,

can have very small computation and memory costs, but introduces a higher amount of

small payload data and memory communication transactions. System models at different

granularity levels can behave differently in terms of network contention, energy consump-

tion and latency. It would be interesting to carry out a design space exploration on hybrid

stream parallelisation techniques. A decoder can dynamically combine different levels of

granularity at runtime, in order to optimise the response time (when needed), whilst con-

strained by a local memory capacity and/or power budget.

• Jointly optimise memory controller port selection and PE mapping: In this work, all

tasks in a job are first mapped onto PEs and then they are assigned MMCPs. Thus, the

MMCP selection is a secondary phase of the resource allocation process. Future work can

explore heuristics where both task-to-PE mapping and MMCP selection can jointly be per-

formed for each task in the job within a single heuristic. For example, isolate consecutive

P-frame/tile decoding tasks to trade-off communication cost reduction to reduce memory

traffic contention. These type of sophisticated heuristics would be mainly required when

managing high CCR workloads.
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Appendix A

Heu-AC parameter combination

evaluation

A range of different Heu-AC parameters (IBLα,T QLα) were tested under the high workload (16

worklfows) condition and results are given in Figure A.1. A higher rejection rate, zero late streams

and low PE utilisation is seen for very low values of IBLα. Higher IBLα,T QLα values cause more

admissions and late streams and therefore more resource utilisation.
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Figure A.1: Heu-AC ratio parameter (IBLα,T QLα) combinations evaluation results for admission rate vs. mean PE busy
time
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Appendix B

PSAlgo algorithm supplementary

information

B.1 PSAlgo algorithm events

This appendix section contains the pheromone propagation (Algorithm B.1) and decay cycles

(Algorithm B.2) as given in [104].

Algorithm B.1: PSAlgo - Propagation Cycle (PSPropagation)
Input : thresholdhc - propagation threshold,

Khdecay - hop decay factor,
hi - local pheromone level

Output: hd - updated pheromone dose
1 if hd received then
2 if hd[0]< thresholdhc then
3 hi = hi +hd[2]
4 broadcast hd = {hd[0]+1,hd[1]×Khdecay,hd[2],hd[3]}
5 else
6 drop hd
7 end
8 end

Algorithm B.2: PSAlgo - Decay Cycle PSDecay
Input : TDECAY - decay cycle period,

Ktdecay - decay factor,
hi - local pheromone level

Output: hi - updated local pheromone level
1 while true do
2 hi = hi×Ktdecay
3 wait for TDECAY
4 end

B.2 PSRM parameter tuning results

The results of the random parameter search of the PSRM remapping technique is given in Fig-

ure B.1. The left y-axis (related to the box-plots) represent the distribution of mean job lateness

improvement (per seeds) and the right y-axis (related to the line plot) represents the cumulative

job lateness improvement (mean of all seeds). The x-axis indicates the respective parameter

combination values evaluated; definitions of the notation used are given below:

• TQN : QN differentiation cycle period
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• TDECAY : decay cycle period

• HC : pheromone propagation range (hop count)

• TRM : task remapping cycle period

• HQN : initial pheromone dosage propagated by the QN

• Qα
T H : QN threshold increment factor

• Qβ

T H : QN threshold decrement factor

• KHDECAY : hormone decay per hop

• KT DECAY : rate at which hormone will decay at each decay cycle

The best parameter combination is one which gives a higher job lateness improvement. It

can be noticed that certain combinations can result in a larger range of lateness improvement

distributions than others.
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Appendix C

HEVC workload model -

supplementary information

This appendix section includes certain settings, parameters and statistical properties extracted

from the video streams analysed in Chapter 7. This supplementary material will also be benefi-

cial for the reproducibility of the analysis and experiments performed in Chapter 7.

C.1 Encoder and decoder settings

This section provides the encoder and decoder settings (Listing C.1 and Listing C.2 respectively),

used during the creation and playback of the video sequences tested.

Listing C.1: x265 encoder command-line arguments

x265 --input video_raw.yuv -o video_enc.bin -I 35 --b-adapt 2 --bframes 4 --no-weightp

--no-weightb --no-open -gop --b-intra --ref 2 --csv video_stats.csv --csv -log-level 2

--log -level 4

Listing C.2: OpenHEVC decoder command-line arguments

ohevc -i video_enc.bin -f 1 -o video_dec.yuv -p 1 -n

C.2 Distribution fitting parameters

The following tables contain the workload parameters obtained via stream analysis/evaluation:

• Parameters of the exp-Weibull distribution fitted to the CU decoding time (I-CU, P-CU

and B-CU) - Table C.1

• Coefficients of the polynomial fit to the Skip-CU decoding time - Table C.2

• Parameters of the exp-Weibull distribution fitted to the encoded frame size - Table C.3

• CU-decoding time scale factors obtained through evaluation - Table C.4

C.3 Parameters used for evaluation

The workload generator was used to synthetically generate video stream GoPs that represented

the LionWildlife video characteristics. Table C.5 shows the workload generator parameters used.
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APPENDIX C. HEVC WORKLOAD MODEL - SUPPLEMENTARY INFORMATION

Table C.1: I/P/B-CU decoding time distribution, exp-Weibull fit shape parameters

CU type a c scale

FastFurious5

I-CU 1.77E+01 6.56E-01 3.05E-06
P-CU 7.47 1.28 8.42E-06
B-CU 1.38 2.55 4.51E-05

LionWildlife

I-CU 9.24 7.43E-01 5.06E-06
P-CU 3.29 1.57 1.58E-05
B-CU 1.38 2.78 5.78E-05

Football

I-CU 2.87E+03 3.21E-01 1.02E-08
P-CU 9.12E+02 4.46E-01 1.44E-07
B-CU 7.13 1.35 1.99E-05

ObamaSpeech

I-CU 1.23E+03 3.25E-01 2.09E-08
P-CU 8.07E+02 3.93E-01 1.08E-07
B-CU 6.54 1.14 2.49E-05

BigBuckBunny

I-CU 6.56E+02 3.08E-01 1.93E-08
P-CU 3.47E+01 5.62E-01 1.49E-06
B-CU 4.74 9.47E-01 1.91E-05

Table C.2: Skip-CU decoding time distribution, polynomial fit coefficients

FastFurious5

f (x) = 2.34×1053−4.62×1049x+3.87×1045x2−1.78×1041x3 +4.84×1036x4−
7.63×1031x5 +5.82×1026x6 +4.03×1020x7−4.09×1016x8 +2.45×1011x9−2.99×105x10

LionWildlife

f (x) =−8.75×1049 +3.92×1046x−7.60×1042x2 +8.35×1038x3−5.71×1034x4 +
2.52×1030x5−7.21×1025x6 +1.30×1021x7−1.38×1016x8 +7.40×1010x9−9.15×104x10

Football

f (x) =−8.54×1050 +3.41×1047x−5.87×1043x2 +5.71×1039x3−3.43×1035x4 +
1.32×1031x5−3.24×1026x6 +4.90×1021x7−4.22×1016x8 +1.75×1011x9−1.82×105x10

ObamaSpeech

f (x) = 5.45×1052−4.99×1048x−3.55×1044x2 +7.47×1040x3−4.81×1036x4 +
1.65×1032x5−3.32×1027x6 +3.93×1022x7−2.61×1017x8 +8.51×1011x9−9.65×105x10

BigBuckBunny

f (x) =−1.13×1050 +5.22×1046x−1.04×1043x2 +1.16×1039x3−8.05×1034x4 +
3.58×1030x5−1.03×1026x6 +1.84×1021x7−1.92×1016x8 +9.95×1010x9−1.16×105x10
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C.3. PARAMETERS USED FOR EVALUATION

Table C.3: Encoded frame size distributions, exp-Weibull fit shape parameters.

Fr. type a c loc scale.

FastFurious5

I-Fr 4.76E+01 5.15E-01 5.81E-04 1.93E-04
P-Fr 1.57E+01 7.90E-01 2.71E-05 4.41E-04
B-Fr 1.29 7.38E-01 2.46E-05 3.08E-04

LionWildlife

I-Fr 1.31E+02 4.50E-01 0.00 1.52E-04
P-Fr 1.20E+01 5.07E-01 0.00 1.27E-04
B-Fr 1.17 7.79E-01 1.99E-05 2.47E-04

Football

I-Fr 6.05E-01 2.74E+00 2.74E-03 1.81E-02
P-Fr 4.15 9.49E-01 1.45E-04 1.56E-03
B-Fr 1.16 8.88E-01 1.92E-05 4.15E-04

ObamaSpeech

I-Fr 4.56E-01 6.21E+00 1.29E-02 3.69E-03
P-Fr 1.60 1.18E+00 3.79E-05 4.17E-04
B-Fr 8.45E+01 2.66E-01 2.31E-05 1.10E-07

BigBuckBunny

I-Fr 3.36 1.23 0.00 1.39E-02
P-Fr 5.51 4.59E-1 2.23E-05 1.70E-04
B-Fr 9.80E-01 7.34E-01 3.17E-05 2.57E-04

Table C.4: CU-decoding time scale factors

CU-type Scale factor

I-CU random.uniform(1.4, 1.5)
P-CU random.uniform(1.4, 1.9)
B-CU random.uniform(1.0, 1.0)

Skip-CU random.uniform(1.0, 1.01)

NB. Further scaling by 0.6 is applied when accounting for
memory transactions.
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Table C.5: Workload generator parameters used for evaluation (GoP size : N=36, 200 GoPs)

Contiguous B-frame probabilities
B-frame groups of size 1, 2, 3, 4 =

{0.005, 0.49, 0.505, 0.001}

Reference distance probabilities
RFD: {1, 2, 3} = {0.194, 0.752, 0.054}

Number of P-frames
exp-Weibull PDF (a, c, scale, loc) = {68.03, 0.72, 1.5, 0.0}

CU type probabilities (I/P/B/Skip-CU)
I-fr = {1.0, 0.0, 0.0, 0.0}

P-fr = {0.22, 0.404, 0.0, 0.377}
B-fr = {0.041, 0.179, 0.094, 0.686}

CU size probabilities
(64×64,32×32,16×16,8×8,4×4):

Intra-frame = {0.098, 0.262, 0.404, 0.183, 0.053}
Inter-frame = {0.27, 0.31, 0.27, 0.15, 0.0}

I/P/B-CU decoding exp-Weibull parameters
(a, c, scale, loc):

I-CU = {9.24, 7.43E-01, 5.06E-06, 0.0}
P-CU = {3.29, 1.57, 1.58E-05, 0.0}
B-CU = {1.38, 2.78, 5.78E-05, 0.0}

min/max timing ranges :
I-CU: {3.28E-06 ,1.76E-04}
P-CU: {3.33E-06 ,1.33E-04}
B-CU: {3.08E-06 ,1.75E-04}

Skip-CU decoding polynomial parameters
f (x) =−8.75×1049 +3.92×1046x−7.60×1042x2 +8.35×1038x3−5.71×1034x4 +2.52×1030x5−

7.21×1025x6 +1.30×1021x7−1.38×1016x8 +7.40×1010x9−9.15×104x10

min/max timing ranges: {1.20E-06, 8.04E-05}

Reference data frame selection probabilities
Target frame : Reference frame

P-fr : {I-fr: 0.55, P-fr: 0.45, B-fr: 0.0},
B-fr : {I-fr: 0.60, P-fr: 0.30, B-fr: 0.10}
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Appendix D

HEVC tile mapping - supplementary

information

D.1 Computation and communication requirements of synthet-

ically generated HEVC streams

The figures contained in this section show the computation and communication requirements

of several synthetically generated HEVC streams (as per Chapter 7). The workloads have been

generated using the parameters obtained from real video stream analysis carried out in Chap-

ter 7. In the figure, the video types represent the streams that were analysed in Chapter 7. AC-

TION, DOCUMENTARY (DOC), SPORT, ANIMATION (ANIM) and SPEECH represent the Fast-

Furious5, LionWildlife, Football, BigBuckBunny and ObamaSpeech videos respectively. The

communication cost of the jobs assume a 100MHz NoC and the computation costs assume the

CU-level decoding time characteristics as per Chapter 7.

Figure D.1 shows the B-frame computation cost for increasing resolution levels and varying

video genres. The I and P-frame computation costs follow a similar trend. The varying com-

putation costs arises from the different CU types in a frame based on the temporal and spatial

dependency in the video sequence. Note that, to omit the memory latencies within the decod-

ing computation cost measurements, the CU-level decoding times have been scaled down by a

factor of 0.6 (further discussed in Section 7.8.3). 2160p frame decoding cost is over an order of

magnitude higher than 288p videos. A similar rate of increase can be seen in reference frame

data payloads for varying resolution levels as shown in Figure D.2. Figure D.3 shows the number

of edges in a GoP/job for different video resolutions, GoP lengths and video genres.
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Figure D.1: Synthetic HEVC B-frame computation cost for varying video stream resolutions and types (GoP length
N = 31)
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Figure D.2: Reference data payloads per synthetically generated HEVC frame, for varying video stream resolutions and
types (GoP length N = 31)
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Figure D.3: Number of edges in synthetically generated GoPs with max. 4 contiguous B-frames and max. 2 reference
frames per fwd/bwd direction. For varying video stream resolutions and types (GoP length N = 16,31)

D.2 CL-BG HEVC tile mapper parameter tuning results

Figure D.4 shows the NHGT hop count parameter being varied between 1-6 for all 3 (low/med/high)

CCR ranges defined in Table 8.2. The metrics presented in the figure are the job lateness (for 3

seeded experimental runs) and the cumulative communication basic latency of the message

flows. NHGT = 1 for med/high CCR ranges gave very low communication costs. Relatively, larger

NHGT values gave a low maximum job lateness but at the cost of increased communication cost

(e.g. 2,4,6, 6,6,3).
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Abbreviations

AC Admission Control

AVC Advanced Video Coding

BN Best Neighbour

CCPRM Castilho’s Cluster based Protocol based ReMapping

CCR Communication to Computation Ratio

CL Clustering based

CL-BG Clustering based on B- frame Grouping

CPU Central Processing Unit

CTU/CU Coding Tree Unit/Coding Unit

D-AC Deterministic Admission Controller

DAG Directed Acyclic Graphs

DPB Dependency Picture Buffer

DRAM Dynamic Random Access Memory

DSE Design Space Exploration

DVFS Dynamic Voltage and Frequency Scaling

E2ERTA End-to-End Response Time Analysis

EQF EQual Flexibility

FCFS First Come First Served

FPGA Field Programmable Gate Array

GA/GA-MP Genetic Algorithm/Genetic Algorithm based Mapper

GoP Group of Pictures

H-AC Heuristic-based Admission Controller

HEVC High Efficiency Video Coding

HRT/SRT Hard/Soft Real Time

IBL/TQL Input Buffer Lateness/Task Queue Lateness

IDCT Inverse Discrete Cosine Transform

IPC I and P frames Combined

IQR Inter-Quartile Range

LM/LU Least Mapped/Least Utilised

LMP/GMP Local cluster Manager/Global manager

LWCRS Least Worst Case Remaining Slack
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ABBREVIATIONS

MMC/MMCP Main Memory Controller/Main Memory Controller Port

MP&PR Mapping and Priority assignment

MPEG Motion Picture Experts Group

MPSoC Multiprocessor System-on-Chip

NoC Network-on-chip

PDF Probability Density Function

PE Processing Element

PP Preprocessing Procedure

PSRM Pheromone Signalling based ReMapping

QoE Quality of Experience

QoS Quality of Service

RAM Random Access Memory

RFD Reference Distance

RM Rate Monotonic

RTA Response Time Analysis

RTS Real Time System

SD/HD standard/high definition

TDM Time Division Multiplexing

TG Task Graph

TMT Task Mapping Table

TQ Task Queue

UHD Ultra-high definition

VBR Variable Bit Rate

VLC Variable Length Coding

WCET Worst Case Execution Time

WCRT Worst Case Response Time

WN/QN Worker Node/Queen Node

WPP Wavefront Parallel Processing
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