506 research outputs found

    Emulation of Narrowband Powerline Data Transmission Channels and Evaluation of PLC Systems

    Get PDF
    This work proposes advanced emulation of the physical layer behavior of NB-PLC channels and the application of a channel emulator for the evaluation of NB-PLC systems. In addition, test procedures and reference channels are proposed to improve efficiency and accuracy in the system evaluation and classification. This work shows that the channel emulator-based solution opens new ways toward flexible, reliable and technology-independent performance assessment of PLC modems

    Spatial Parameter Identification for MIMO Systems in the Presence of Non-Gaussian Interference

    Get PDF
    Reliable identification of spatial parameters for multiple-input multiple-output (MIMO) systems, such as the number of transmit antennas (NTA) and the direction of arrival (DOA), is a prerequisite for MIMO signal separation and detection. Most existing parameter estimation methods for MIMO systems only consider a single parameter in Gaussian noise. This paper develops a reliable identification scheme based on generalized multi-antenna time-frequency distribution (GMTFD) for MIMO systems with non-Gaussian interference and Gaussian noise. First, a new generalized correlation matrix is introduced to construct a generalized MTFD matrix. Then, the covariance matrix based on time-frequency distribution (CM-TF) is characterized by using the diagonal entries from the auto-source signal components and the non-diagonal entries from the cross-source signal components in the generalized MTFD matrix. Finally, by making use of the CM-TF, the Gerschgorin disk criterion is modified to estimate NTA, and the multiple signal classification (MUSIC) is exploited to estimate DOA for MIMO system. Simulation results indicate that the proposed scheme based on GMTFD has good robustness to non-Gaussian interference without prior information and that it can achieve high estimation accuracy and resolution at low and medium signal-to-noise ratios (SNRs)

    Streaking artifact suppression of quantitative susceptibility mapping reconstructions via L1-norm data fidelity optimization (L1-QSM)

    Get PDF
    Purpose: The presence of dipole-inconsistent data due to substantial noise or artifacts causes streaking artifacts in quantitative susceptibility mapping (QSM) reconstructions. Often used Bayesian approaches rely on regularizers, which in turn yield reduced sharpness. To overcome this problem, we present a novel L1-norm data fidelity approach that is robust with respect to outliers, and therefore prevents streaking artifacts. Methods: QSM functionals are solved with linear and nonlinear L1-norm data fidelity terms using functional augmentation, and are compared with equivalent L2-norm methods. Algorithms were tested on synthetic data, with phase inconsistencies added to mimic lesions, QSM Challenge 2.0 data, and in vivo brain images with hemorrhages. Results: The nonlinear L1-norm-based approach achieved the best overall error metric scores and better streaking artifact suppression. Notably, L1-norm methods could reconstruct QSM images without using a brain mask, with similar regularization weights for different data fidelity weighting or masking setups. Conclusion: The proposed L1-approach provides a robust method to prevent streaking artifacts generated by dipole-inconsistent data, renders brain mask calculation unessential, and opens novel challenging clinical applications such asassessing brain hemorrhages and cortical layers

    Fault detection in operating helicopter drive train components based on support vector data description

    Get PDF
    The objective of the paper is to develop a vibration-based automated procedure dealing with early detection of mechanical degradation of helicopter drive train components using Health and Usage Monitoring Systems (HUMS) data. An anomaly-detection method devoted to the quantification of the degree of deviation of the mechanical state of a component from its nominal condition is developed. This method is based on an Anomaly Score (AS) formed by a combination of a set of statistical features correlated with specific damages, also known as Condition Indicators (CI), thus the operational variability is implicitly included in the model through the CI correlation. The problem of fault detection is then recast as a one-class classification problem in the space spanned by a set of CI, with the aim of a global differentiation between normal and anomalous observations, respectively related to healthy and supposedly faulty components. In this paper, a procedure based on an efficient one-class classification method that does not require any assumption on the data distribution, is used. The core of such an approach is the Support Vector Data Description (SVDD), that allows an efficient data description without the need of a significant amount of statistical data. Several analyses have been carried out in order to validate the proposed procedure, using flight vibration data collected from a H135, formerly known as EC135, servicing helicopter, for which micro-pitting damage on a gear was detected by HUMS and assessed through visual inspection. The capability of the proposed approach of providing better trade-off between false alarm rates and missed detection rates with respect to individual CI and to the AS obtained assuming jointly-Gaussian-distributed CI has been also analysed

    Reports on industrial information technology. Vol. 12

    Get PDF
    The 12th volume of Reports on Industrial Information Technology presents some selected results of research achieved at the Institute of Industrial Information Technology during the last two years.These results have contributed to many cooperative projects with partners from academia and industry and cover current research interests including signal and image processing, pattern recognition, distributed systems, powerline communications, automotive applications, and robotics

    RF channel characterization for cognitive radio using support vector machines

    Get PDF
    Cognitive Radio promises to revolutionize the ways in which a user interfaces with a communications device. In addition to connecting a user with the rest of the world, a Cognitive Radio will know how the user wants to connect to the rest of the world as well as how to best take advantage of unused spectrum, commonly called white space\u27. Through the concept of Dynamic Spectrum Acccess a Cognitive Radio will be able to take advantage of the white space in the spectrum by first identifying where the white space is located and designing a transmit plan for a particular white space. In general a Cognitive Radio melds the capabilities of a Software Defined Radio and a Cognition Engine. The Cognition Engine is responsible for learning how the user interfaces with the device and how to use the available radio resources while the SDR is the interface to the RF world. At the heart of a Cognition Engine are Machine Learning Algorithms that decide how best to use the available radio resources and can learn how the user interfaces to the CR. To decide how best to use the available radio resources, we can group Machine Learning Algorithms into three general categories which are, in order of computational cost: 1.) Linear Least Squares Type Algorithms, e.g. Discrete Fourier Transform (DFT) and their kernel versions, 2.) Linear Support Vector Machines (SVMs) and their kernel versions, and 3.) Neural Networks and/or Genetic Algorithms. Before deciding on what to transmit, a Cognitive Radio must decide where the white space is located. This research is focused on the task of identifying where the white space resides in the spectrum, herein called RF Channel Characterization. Since previous research into the use of Machine Learning Algorithms for this task has focused on Neural Networks and Genetic Algorithms, this research will focus on the use of Machine Learning Algorithms that follow the Support Vector optimization criterion for this task. These Machine Learning Algorithms are commonly called Support Vector Machines. Results obtained using Support Vector Machines for this task are compared with results obtained from using Least Squares Algorithms, most notably, implementations of the Fast Fourier Transform. After a thorough theoretical investigation of the ability of Support Vector Machines to perform the RF Channel Characterization task, we present results of using Support Vector Machines for this task on experimental data collected at the University of New Mexico.\u2

    Fuzzy Wavelet Neural Network Using a Correntropy Criterion for Nonlinear System Identification

    Get PDF
    Recent researches have demonstrated that the Fuzzy Wavelet Neural Networks (FWNNs) are an efficient tool to identify nonlinear systems. In these structures, features related to fuzzy logic, wavelet functions, and neural networks are combined in an architecture similar to the Adaptive Neurofuzzy Inference Systems (ANFIS). In practical applications, the experimental data set used in the identification task often contains unknown noise and outliers, which decrease the FWNN model reliability. In order to reduce the negative effects of these erroneous measurements, this work proposes the direct use of a similarity measure based on information theory in the FWNN learning procedure. The Mean Squared Error (MSE) cost function is replaced by the Maximum Correntropy Criterion (MCC) in the traditional error backpropagation (BP) algorithm. The input-output maps of a real nonlinear system studied in this work are identified from an experimental data set corrupted by different outliers rates and additive white Gaussian noise. The results demonstrate the advantages of the proposed cost function using the MCC as compared to the MSE. This work also investigates the influence of the kernel size on the performance of the MCC in the BP algorithm, since it is the only free parameter of correntropy

    A flexible statistical framework for the characterization and modelling of noise in powerline communication channels.

    Get PDF
    Doctor of Philosophy in Electronic Engineering.One communication medium that has received a lot of interest in recent years is the power line channel, especially for the delivery of broadband content. This channel has been traditionally used to carry electrical power only. But with the recent advancements in digital signal processing, it is now possible to realize communications through the power grid, both in narrowband and broadband. The use of the power line network for telecommunication purposes constitutes what is referred to as powerline carrier communications or simply powerline communications (PLC). The biggest incentive for PLC technology use is the fact that the power line network is already in place, which greatly reduces the communication network set up cost, since no new cabling layout is required. PLC technology is widely applied in home networking, broadband internet provision and smart grid solutions. However, the PLC channel presents a very hostile communication environment. And as such, no consideration has been made in the design of traditional power line network to accommodate communication services. Of all the PLC channel impairments which include frequency-dependent attenuation, frequency selectivity, multipath and noise, noise is the biggest threat to communication signals. This noise manifests itself in form of coloured background noise, narrowband interference and impulsive noise. A thorough understanding of this noise distribution is therefore crucial for the design of a reliable and high performing PLC system. A proper understanding of the noise characteristics in the PLC channel can only be realized through noise measurements in live power networks, and then analyzing and modeling the noise appropriately. Moreover, the noise scenario in power line networks is very complex and therefore cannot be modeled through mere analytical methods. Additionally, most of the models that have been proposed for the PLC noise previously are mere adaptations of the measured noise to some existing impulsive noise models. These earlier modeling approaches are also rigid and model the noise via a fixed set of parameters. In the introductory work in this thesis, a study of orthogonal frequency division multiplexing (OFDM) as the modulation of choice for PLC systems is presented. A thorough survey of the salient features of this modulation scheme that make it the perfect candidate for PLC modulation needs is presented. In the end, a performance analysis study on the impact of impulsive noise on an OFDM based binary phase shift keying (BPSK) system is done. This study differs from earlier ones in that its focus is on how the elementary parameters that define the impulsive noise affect the system, a departure from the usual norm of considering the overall noise distribution. This study focuses on the impact of interarrival times (IAT), pulse amplitudes as well as pulse widths, among other parameters. In the first part of the main work in this thesis, results of an intensive noise measurement campaign for indoor low voltage power line noise carried out in various power line networks, in the Department of Electrical, Electronic and Computer Engineering buildings at the University of KwaZulu-Natal, Howard campus are presented. The noise measurements are carried out in both time and frequency domains. Next, the noise measurements are then analyzed and modeled using two very flexible data modeling tools; nonparametric kernel density estimators and parametric alpha stable (Ī±-stable) distributions. The kernel methodā€™s ability to overcome all the shortcomings of the primitive histogram method makes it very attractive. In this method, the noise data structure is derived straight from the data itself, with no prior assumptions or restrictions on the data structure, thus effectively overcoming the rigidity associated with previous noise models for power line channels. As such, it results in density estimates that ā€œhugā€ the measured density as much as possible. The models obtained using the kernel methods are therefore better than any parametric equivalent; something that can always be proven through goodness of fit tests. These models therefore form an excellent reference for parametric modeling of the power line noise. This work forms the authorā€™s first main contribution to PLC research. As a demonstration of the kernel models suitability to act as a reference, parametric models of the noise distribution using the alpha stable (Ī±-stable) distribution are also developed. This distribution is chosen due to its flexibility and ability to capture impulsiveness (long-tailed behaviour), such as the one found in power line noise. Stable distributions are characterized by long/fat tails than those of the Gaussian distribution, and that is the main reason why they are preferable here since the noise characteritics obtained in the kernel technique show visible long/heavy tailed behavior. A parameter estimation technique that is based on quantiles and another on the empirical characteristic function are employed in the extraction of the four parameters that define the characteristic function of the Ī±-stable distribution. The application of the Ī±-stable distribution in other signal processing problems has often been over-simplied by considering the symmetric alpha stable distribution, but in this thesis, the general Ī±-stable distribution is used to model the power line noise. This is necessary so as to ensure that no features of the noise distribution are missed. All the models obtained are validated through error analysis and Chi-square fitness tests. This work forms the authorā€™s second main contribution to PLC research. The authorā€™s last contribution in this thesis is the development of an algorithm for the synthesis of the power line as a Levy stable stochastic process. The algorithm developed is then used to generate the PLC noise process for a random number of alpha stable noise samples using the alpha stable noise parameters obtained in the parametric modeling using stable distributions. This algorithm is generalized for all admissible values of alpha stable noise parameters and therefore results for a Levy stable Gaussian process are also presented for the same number of random noise samples for comparison purposes
    • ā€¦
    corecore