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Purpose: The presence of dipole-inconsistent data due to substantial noise or artifacts 
causes streaking artifacts in quantitative susceptibility mapping (QSM) reconstructions. 
Often used Bayesian approaches rely on regularizers, which in turn yield reduced sharp-
ness. To overcome this problem, we present a novel L1-norm data fidelity approach that 
is robust with respect to outliers, and therefore prevents streaking artifacts.
Methods: QSM functionals are solved with linear and nonlinear L1-norm data fidel-
ity terms using functional augmentation, and are compared with equivalent L2-norm 
methods. Algorithms were tested on synthetic data, with phase inconsistencies added 
to mimic lesions, QSM Challenge 2.0 data, and in vivo brain images with hemorrhages.
Results: The nonlinear L1-norm-based approach achieved the best overall error met-
ric scores and better streaking artifact suppression. Notably, L1-norm methods could 
reconstruct QSM images without using a brain mask, with similar regularization 
weights for different data fidelity weighting or masking setups.
Conclusion: The proposed L1-approach provides a robust method to prevent streak-
ing artifacts generated by dipole-inconsistent data, renders brain mask calculation 
unessential, and opens novel challenging clinical applications such asassessing brain 
hemorrhages and cortical layers.
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1  |   INTRODUCTION

Gradient recalled echo (GRE) sequences encode voxel-wise 
information about the magnetic fields in the phase of the 
complex acquisition.1 The measured field is composed of the 
contributions of the main field—with its inhomogeneities—
plus the magnetic field perturbations introduced by all other 
objects inside the MR scanner. Such magnetic field pertur-
bations are related to the magnetization of the tissues with 
different magnetic susceptibilities. For human tissues, the 
relationship between the magnetic field perturbations and 
arbitrary susceptibility sources can be modeled as a convolu-
tion with the impulse response given by the magnetic dipole 
kernel.2,3 Since the appearance of this fast source-to-field 
method, many researchers have focused their work on solving 
the inverse problem, ie, finding the susceptibility distribution 
given the measured magnetic perturbations (field-to-source 
problem). Direct approaches by solving the system of linear 
equations are usually infeasible and prone to errors.4,5 Direct 
division in the Fourier domain is also discarded due to the 
ill-posedness of the problem, because the dipole kernel con-
tains a zero-valued double-shaped cone surface (the so-called 
magic cone) that produces divisions by zero. To avoid this in-
determination, truncated kernel strategies were proposed.6,7 
However, these approaches are prone to noise amplification 
and the appearance of double cone-shaped artifacts (called 
streaking artifacts). To reduce these effects, regularization 
strategies were introduced.8 Most of these strategies formu-
late the problem as a maximum-likelihood (or data fidel-
ity) term with an additional regularization term that acts as 
prior knowledge about the solution. The regularizers act as 
constraints to the solutions, such as imposing continuity or 
smoothness9 (classical Tikhonov approaches), piece-wise 
constant or piece-wise smooth solutions (variational penalties 
such as total variation [TV]10,11 and total generalized varia-
tion12-16), sparsity in a specific domain (ie, wavelets17 or re-
cent low-rank18 strategies), etc The likelihood of the solution, 
expressed in the data fidelity term, is typically associated with 
the L2-norm difference between the acquired phase and the 
susceptibility distribution convolved with the dipole kernel. 
From a Bayesian perspective, this is equivalent to assuming 
that the noise distribution in the phase data is Gaussian. This 
assumption is only valid for high signal-to-noise ration (SNR) 
areas, ie, with high magnitude signal.19 A noise-whitening 
weight matrix may be used in the data fidelity term to im-
prove the solutions at low-signal regions.10 Another approach 
is to change the domain of the data fidelity term and calculate 
the error in the complex image domain.20,21 This nonlinear 
approach is commonly implemented jointly with variational 
penalties,20 with proposed fast solvers22 based on the alter-
nating directions of multipliers method23-25 (ADMM). These 
Bayesian approaches improved the robustness against noise 
and reduced the impact of unwrapping artifacts and the 

streaking artifacts. However, strong streaking suppression 
is usually performed at the expense of reduced sharpness or 
detail loss.21,26 In addition, voxels with phase values incon-
sistent with the “dipole model” will still generate streaking 
artifacts. Strong inconsistencies may be generated by flow 
effects, intra-voxel dephasing, and extreme noise, among 
other sources. Some iterative solutions have been proposed 
to separate phase contributions that conform to the “dipole 
model” from other effects and prevent streaking artifact prop-
agation.27-29 This is also the basis of the dynamic model error 
reduction20 (MERIT) algorithm, which updates the weight 
matrix in the data fidelity term in an adaptive way at each 
iteration step. All these approaches have in common that 
they estimate the error using an L2-norm. Due to Parseval's 
theorem, the least squared error is equivalent to minimizing 
the energy of the error in the frequency domain. Frequency 
coefficients of the reconstructions along the magic cone and 
close to it are usually most affected by noise amplification30 
and by attenuation in over-regularized reconstructions. In the 
image (susceptibility) domain, this creates a “smearing ef-
fect.” The phase inconsistencies are propagated following the 
magic angle and its neighboring voxels to reduce the energy 
of the errors they create.

In the present work, we present novel data fidelity terms 
based on estimations of the error with an L1-norm. Instead 
of minimizing the energy of the errors (least squared error), 
the L1-norm is equivalent to a least absolute error problem. 
This promotes a sparser distribution of errors than the L2-
norm, preventing energy-spilling. Furthermore, an L1-norm 
data fidelity term tends to better adapt to non-Gaussian noise 
distributions, such as impulsive (salt-and-pepper) noise and 
outliers.25,31-33 We solve this problem with an ADMM-based 
approach and compare the performance of these new L1-
norm methods against their equivalent L2-norm versions in 
the phase (linear problem) and complex image domains (non-
linear problem).

2  |   METHODS

The phase of GRE acquisitions Φ is proportional to the mag-
netic field perturbations of the main field1-3:

where F is the Fourier Transform and FH its inverse, B0 is the 
main field strength, γ is the gyromagnetic ratio, TE is the echo 
time of the acquisition, kz the frequency domain index in the 
z-direction and k2 = k2

x
+ k2

y
+ k2

z
. D becomes the dipole kernel 

in the frequency domain (voxel-wise multiplication), and χ is 
the susceptibility of the tissues (or a convolution in the spatial 
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domain between χ and the dipole unit). We assume that Φ is 
the local phase, after background field removal, and removal 
of the offset through phase evolution estimation via multi-echo 
fitting. Flow, chemical shift, and fat-water-associated effects are 
ignored in this model.

Most QSM algorithms reformulate the problem as an opti-
mization problem with two or more additive terms26:

where the data fidelity term is a measure of the error between 
the phase calculated from the estimated χ and the acquired 
Φ data, with W a voxel-wise weight (defined by a region-
of-interest (ROI) binary mask, or a weight proportional to 
the signal-to-noise-ratio (SNR) or signal magnitude). Ω(χ) 
is an additional regularizer. The two terms are balanced by 
a Lagrangian multiplier (or regularization weight), α  >  0. 
Typical regularizers include the classical Tikhonov term,8 
TV9,34, and other variational penalties.10,14 Optimization of 
Equation (2) using TV as regularizer is hereafter named the 
“linear L2-norm” method.

From a Bayesian perspective, the data-fidelity term used 
in Equation (2) models Gaussian noise in the acquired phase 
data. Unfortunately, the noise distribution is Gaussian in the 
acquired complex signal, but not in the signal phase.19 This 
leads to reconstruction errors in low SNR regions and streak-
ing artifacts. Instead of modeling the non-Gaussianity of the 
noise distribution in the signal phase, a regularized solution 
of a nonlinear forward model was proposed.20 This functional 
projects the phase data onto the complex signal domain (with 
W typically the signal magnitude):

Optimization of Equation (3) using TV as regularizer 
is hereafter named the “nonlinear L2-norm” method. This 
functional is also robust against some unwrapping errors. 
Background field residuals may also propagate as errors into 
the reconstruction, usually in the form of low-frequency fea-
tures. These errors may be reduced by incorporating an addi-
tional phase component to the data fidelity term and forcing 
this component to be harmonic by a second regularizer 
(weak-harmonicity constraint).35 Other errors in the phase, 
such as coil combination errors, intravoxel and flow-related 
dephasing, echo combination errors, could still be a source 
of strong streaking artifacts. The effects of some of those 
errors may be reduced using L1-norm data fidelity terms. 
Although from a Bayesian point of view an L1-norm data 
fidelity term models a Laplacian noise, this is more robust 
than non-Gaussian noise distributions (for example, Poisson 
noise) and outliers.25,31-33

3  |   L1- NORM OPTIMIZATION

We present L1-type QSM solvers for both the linear and non-
linear problems.

3.1  |  Linear L1-norm solver

The linear L1-norm optimization problem is defined as:

where the anisotropic TV (�) = ∇�1 regularizer is used for 
simplicity, although the isotropic alternative and extension to 
Total Generalized Variation are feasible.16,22 We solve this op-
timization problem using the ADMM.23-25,36 In the ADMM 
framework, additional auxiliary (or splitting) variables are in-
troduced. These variables substitute the original variable to be 
optimized, or functions of it, and equality is imposed by new 
constraints reintroduced as penalties and Lagrange multipliers. 
The augmented functional is minimized for each variable (pri-
mal and auxiliary) while fixing the others. These subproblems 
may be easier to solve, often with closed-form solutions. To 
complete one iteration step, all subproblems are solved, and all 
Lagrange multipliers are updated. Iterations are stopped when 
the original variables reach convergence, indicated by an ap-
propriate criterion. In our Equation (4), an auxiliary variable 
z = FHDF� − � is needed to decouple the data fidelity term 
from the regularization term. Similarly, the splitting variable 
zTV = ∇� is used to deal with the L1-norm term in the TV reg-
ularizer. The augmented problem becomes:

In this framework, μ, μTV  >  0 are scalar Lagrangian 
weights, with s and sTV Lagrangian multipliers of the same 
size as z and zTV. The χ and zTV subproblems are solved as pre-
viously reported16,22 with closed-form solutions, described in 
the Supporting Information, which is available online.

The z subproblem is solved using a proximal operation:

For each iteration, the solutions for the χ, zTV and z sub-
problems are calculated sequentially. At the end of each (n) 
iteration, the Lagrange multipliers sTV and s are updated (see 
the Supporting Information for more details on these up-
dates). The update of s is given by:
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3.2  |  Nonlinear L1-norm solver

The analogous nonlinear20-22 L1-norm optimization problem 
is:

To minimize this functional, two auxiliary variables are 
introduced: z1 = FHDF� and z2 = eiz1 − ei�, in addition to 
zTV. The augmented problem becomes:

e χ and zTV subproblems are thus solved in the same augmenta-
tion way as in Equation (5). The z2 subproblem is again solved 
with a proximal operation:

The z1 subproblem is solved as in the Fast Nonlinear 
Susceptibility Inversion (FANSI)22 algorithm, with a 
Newton-Raphson iterative approach:

This inner iterative solver stops when a normalized update 
of 10-6 (or lower) is achieved or at a maximum of 10 itera-
tions, whichever is satisfied first, and is initialized with:

Finally, the updates for s1 and s2 are given by:

In all of our experiments we used μ = μ1 = μ2 = 1.0. Since 
the z and z2 updates for the solution of Equation (5) and 
Equation (9) require a proximal operation involving W, we 

analyzed how a positive scalar factor, λ, affected the results. 
We tested the following weighting methods: (a) no Mask: 
W = �, (b) ROI mask: W = � ⋅ mask and (c) magnitude 
weight: W =

� ⋅mask ⋅Magn

max(Magn)
. Here, mask is a binary volume de-

fined by a ROI that selects only the brain. We used μTV = 
100α as suggested by previous reports.22,35 The ADMM outer 
iterations are set to stop after a fixed number of iterations 
(default  =  300) or after a given update percentage, 
100 ⋅

�k −�k−1

�k−1

, is reached (default = 0.1%). The condition that 

is satisfied first stops the solver.

The proposed numerical solvers were implemented 
in MATLAB 2019a (The Mathworks Inc, USA) using an 
Intel i7 9750H processor (@4.5GHz/32GB RAM) and an 
Intel i7-2600 (@3.40GHz/32GB RAM). These new algo-
rithms were compared against linear and nonlinear solv-
ers with L2-norm data fidelity terms, as included in the 
FANSI22 Toolbox (also similar22 to other state-of-the-art 
methods10,20).

4  |   EXPERIMENTAL DESIGN

4.1  |  COSMOS-brain simulation

We used the Calculation Of Susceptibility through Multiple 
Orientation Sampling (COSMOS)37 reconstruction included 
in the 2016 QSM Reconstruction Challenge (RC1)38 dataset 
(available at http://qsm.neuro​imagi​ng.at) as susceptibility 
ground truth. We forward-simulated the phase and added 
complex Gaussian noise (using the provided magnitude 

data), with peak SNR = 100. This was used as input for the 
QSM reconstructions. We optimized the free reconstruction 
parameters (λ and α) for all three data-fidelity weighting 
methods (described in the previous section) by minimization 
of the normalized root mean square of error (RMSE, given 
in percentages, normalized by the L2-norm of the ground 
truth) and maximization of the Structural Similarity Index 
Metric39-41 (SSIM). To optimize λ and α, we set the stopping 
rule to the default values. For each optimal set of parameters 
found by this procedure, we measured the convergence rate 
(update percentage) and evolution of the error metrics up to 
2500 iterations.

The λ and α parameters and weighting method performing 
best for each algorithm were chosen to reconstruct additional 
simulations, where the phase data were modified in the fol-
lowing manner:
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4.1.1  |  Phase jump test

Five phase single-voxel jumps were introduced to generate 
dipole inconsistencies. Their values were chosen as −27π, 
−13.5π, 6.75π, 13.5π, and 27π. The purpose was to test the 
algorithm's response to localized large phase inconsistencies. 
These phase jumps were placed in the central XY plane at 
randomly selected locations inside the brain.

4.1.2  |  Extrapolation test

To test the algorithm's response to extended phase incon-
sistencies, two spheres of radius six voxels representing 
diamagnetic (−0.3 ppm) and paramagnetic (0.15 ppm) con-
centrations were added to the COSMOS ground truth. The 
spheres were randomly located along the z central axis within 
the brain, assuming strong dephasing inside them (zero value 
in the magnitude image). For simplicity, no extralesional sig-
nal dephasing is considered in this simulation. We compared 
reconstructions with and without masking the spheres (up-
dated ROI mask, with maskspheres = 0 inside the spheres, or 
the same mask as in (a), respectively).

4.1.3  |  Susceptibility jump test

Five single-voxel susceptibility jumps (−0.5, −0.25, 0.1, 
0.25, and 0.5 ppm) were introduced to the COSMOS ground 
truth to test the algorithm's response to high contrast suscep-
tibility sources. They were placed in the same XY plane as in 
(a), with transposed X and Y coordinates.

4.2  |  SIM2SNR1 data

The 2019 QSM Reconstruction Challenge (RC2 - Seoul, 
Korea) provided two simulated multi-echo GRE acquisitions 
(Sim1 and Sim2), with known ground-truth susceptibility 
maps.42-44 Sim2 has greater contrast between white and gray 
matter than Sim1, and it also contained a simulated calcifica-
tion. Since the susceptibility simulation was performed at a 
higher resolution than the simulated phases, strong dephas-
ing effects are present at the calcification and vessels. We 
used the supplied field map for the lowest SNR (SNR1) to 
make the evaluation more challenging. Optimal parameter 
settings were obtained to minimize global RMSE. We cal-
culated all the error metrics used for the challenge competi-
tion44: RMSE, RMSE detrended (dRMSE), RMSE in specific 
ROIs: Blood (dRMSE_Blood), Tissues (dRMSE_Tissue), 
and Deep Gray Matter (dRMSE_DGM), Calcification 
Streaking (CalcStreak), and deviation from calcification mo-
ment (DFCM), plus additional global metrics such as SSIM, 

high frequency error norm38 (HFEN), correlation coefficient 
(CC), mutual information (MI) and the normalized mean ab-
solute error (MAE, given in percentages, normalized by the 
L1-norm of the ground truth). To optimize λ and α we used 
the default stopping rule as described for the COSMOS-brain 
example. These optimal parameters were subsequently used 
to analyze the evolution of the metric scores up to 2500 itera-
tions (at a 10-iteration interval). Visualizing the results and 
calculating the error metrics were done using the source code 
supplied by the QSM Challenge committee in the Report 
paper.44

4.3  |  In vivo data

We performed an in vivo acquisition on a Siemens 3T scan-
ner (Magnetom Trio Tim; Siemens Healthcare, Erlangen, 
Germany) with a 12-channel phased-array head coil. GRE 
sequence with six echoes. A patient showing extensive hem-
orrhage in the brain was scanned with the following sequence 
parameters: TE1 = 4.92 ms, ΔTE = 4.92 ms, TR = 35 ms, flip 
angle = 15°, 232 × 288 × 64 matrix with 0.8 × 0.8 × 2 mm3 
voxel size, and Tacq = 4:51 min. Preprocessing included non-
linear multi-echo combination20 and background field re-
moval performed by the projection onto dipole fields method 
(PDF).45 Background field residuals were removed using the 
harmonic phase estimation obtained with the weak-harmonic 
QSM method (WH-TV)35 and generated a new corrected 
local field map. MRI data were acquired with the approval of 
the local institutional review board.

In addition, we used the provided single orientation 3T 
(Tim Trio, Siemens) in vivo acquisition from the RC138 data-
set to test our algorithms. TE/TR = 25/35 ms, and Tacq = 92s 
(15-fold acceleration) 160 × 160 × 160 matrix with 1.0 mm3 
isotropic voxels. Background field removal was performed 
by the Laplacian Boundary Value method46 followed by 4th 
order polynomial fit.38

Optimal reconstruction parameters were found by an ini-
tial estimation using the L-curve analysis,11 followed by visual 
fine-tuning to produce equivalent results for all algorithms.

5  |   RESULTS

5.1  |  COSMOS-brain simulation

Parameter optimization was performed for all three data fi-
delity weighting methods using RMSE (Figure 1) and SSIM. 
Due to instabilities in the Newton-Raphson inner solver, 
the nonlinear L2-norm algorithm was unable to achieve re-
sults without a brain mask (“no mask”). Optimal SSIM re-
constructions were achieved with similar parameters in all 
cases, except for the linear L2-norm method, which provided 
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optimal parameters considerably smaller than those obtained 
optimizing RMSE. In this case, the SSIM-optimized recon-
struction (shown with a red square in Figure 1) yielded more 
anatomical details than the RMSE-optimized reconstruction, 
although with large errors in the boundary (absolute errors 
shown in Supporting Information Figure  S1). Despite the 
chosen error metric, the linear L2-norm method returned 
over-regularized results. L1-norm results for the “no mask” 
method contained more anatomical details than L2-norm al-
gorithms, lacking noticeable errors at the boundary. Using 
either an “ROI mask” or “Magnitude weight” improved the 
reconstruction quality for both L1-norm and L2-norm meth-
ods (Supporting Information Table S1). Visually, the largest 
structural differences between “ROI mask” and “Magnitude 
weight” were found in cortical areas, where “Magnitude 
weight” results tended to over-smooth solutions and loose 
definition of the veins and other small details (see yellow ar-
rows in Supporting Information Figure S1). In this experi-
ment, the best results were achieved with “ROI mask” for 
the linear methods and “Magnitude weight” for the nonlinear 
ones. The nonlinear L1-norm method achieved overall the 
lowest RMSE and largest SSIM scores. MAE scores were 

highly correlated with RMSE. The best results for each 
method are also shown in other orientations in Supporting 
Information Figure  S2. L2-norm methods achieved opti-
mal results at λ = 1.0, but no relevant differences were ob-
tained when changing λ values around 1.0. L1-norm methods 
showed a larger sensitivity to λ. Large λ values may also 
cause the nonlinear L1-norm method to diverge.

All algorithms have a quasi-monotonic behavior in 
RMSE and SSIM, converging after approximately 100 iter-
ations (Figure 2). A slight degradation is produced for large 
numbers of iterations (Supporting Information Table S2). In 
most cases, a 0.1% update correlated well with optimal error 
metrics. The nonlinear L2-norm method required more itera-
tions to achieve optimal results, closer to a 0.01% update. The 
nonlinear L1-norm method seemed to be unstable in terms 
of the update rate for many iterations, although the error 
metrics showed little variation. Both the linear L2-norm and 
the nonlinear L1-norm methods showed faster improvement 
in error metrics for early iteration stages. Visually, most of 
the differences between the results at a 0.1% update and the 
final 2500 iterations were restricted to the vessels, as shown 
in Supporting Information Figure  S3. This also revealed 

F I G U R E  1   Reconstructions of forward-simulated noise-corrupted (peak SNR = 100) COSMOS data. Each column presents the results for 
a different data fidelity term. Rows show the results of using different data fidelity weighting strategies (no mask, ROI mask, and magnitude 
weighting). RMSE scores and optimal weighting parameters (α and λ) are also presented, calculated inside the ROI. Blue squares mark the results 
with the lowest RMSE for each algorithm. Please note that the nonlinear L2-norm algorithm diverged when no mask was used in the data fidelity 
term, and the best SSIM solution using the linear L2-norm algorithm is presented in its place (highlighted with a red box). All reconstructions 
are shown masked for displaying purposes (external noisy voxels set to zero). The same input phase was used in all cases (left). For all L2-norm 
methods we used λ = 1
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substantially larger errors for the nonlinear L2-norm method 
in large paramagnetic areas. Errors in the vessels were still 
present for all methods at 2500 iterations, again more no-
ticeable for the nonlinear L2-norm method. In terms of exe-
cuting times, the linear L1-norm method presented a similar 
per-iteration speed as its L2-norm counterpart, whereas the 
nonlinear L1-norm was up to 45% slower than the linear L1-
norm method.

When single-voxel phase inconsistencies were intro-
duced, the linear L2-norm solution presented strong streaking 

artifacts (Figure 3). The nonlinear L2-norm method mitigated 
this effect due to its robustness against 2π jumps. However, 
artifacts are still noticeable in the neighborhood of the phase 
jumps. Both L1-norm methods rejected the inconsistencies 
resulting in virtually streaking artifact-free reconstructions.

Figure 4 shows the results for the extrapolation test using 
two spheres. When inconsistencies are included in the ROI 
(Unmasked results, using the original mask instead of mask-
spheres), both L2-norm methods propagated the errors into 
streaking artifacts. Both L1-norm methods, on the contrary, 

F I G U R E  2   Evolution of the RMSE (A), SSIM (B), and algorithm convergence (C) (measured by the normalized change in the susceptibility 
map between each iteration) up to 2500 iterations, in the COSMOS-based forward simulation experiment

F I G U R E  3   Reconstructions of COSMOS-based forward simulations degraded with 5 single voxel large phase inconsistencies. Same 
weighting parameters used as in the ground-state (not degraded) simulation. Red arrows indicate the location of the single-voxel phase jumps. Note 
the presence of streaking artifacts in coronal and sagittal slices, visible as ringing in axial slices in L2-norm methods
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limited the extent of the errors within the discrepancy region. 
Quantitatively, mean values inside the spheres were also re-
constructed more accurately by the L1-norm methods than 
by the L2-norm methods (from 10% to 40% local RMSE for 
a 0.1% update as stopping criteria). As shown in Supporting 
Information Figure S4, all methods diverged after a few iter-
ations in global RMSE, whereas SSIM showed a similar be-
havior as for the ground-state case. Global RMSE showed at 
least 15% improvements for both L1-norm methods over the 
L2-norm methods. Results for Masked spheres (using mask-
spheres) are in practice inpainting the contents of the spheres 
(ie, inside the spheres, all the information is replaced or filled 
following the external phase data and is strongly regularized). 
In this case, L1-norm methods were also more accurate.

Finally, experiments with local strong susceptibility 
sources are shown in Supporting Information Figure S5. All 
methods obtained similar results, both visually and in terms 
of relative errors. The susceptibility source of 0.05 ppm, lo-
cated contiguous to a vessel, presented the largest relative 
errors, with the linear L2-norm method being considerably 
worse (65%) than the other methods (between 22% and 36%).

Global error metrics for all these experiments are pre-
sented in Table 1. Please note that normalization of the met-
rics was performed using the respective ground-truth for each 
experiment. This included the embedded spheres or strong 
susceptibility sources, yielding lower relative errors than the 
discrepancy-free experiment.

5.2  |  SIM2SNR1 data

Optimal reconstructions of the RC2 data are presented in 
Figure 5. Detailed metric scores and reconstruction param-
eters are presented in Table 2 for different numbers of itera-
tions. Overall, the nonlinear L1-norm method presented the 
lowest RMSE, HFEN, and MAE errors, the highest scores 
for the SSIM and MI metrics, reduced streaking propagation 
(CalcStreak), and the most accurate representation of the cal-
cification (DFCM).

In contrast to the previous COSMOS-simulated experi-
ment, the evolution of the SSIM metric showed a large deg-
radation with a large number of iterations (Figure 6), whereas 

F I G U R E  4   Reconstructions of COSMOS-based forward simulations which included two spheres simulating diamagnetic (red arrow, 
−0.30 ppm) and paramagnetic (green arrow, +0.15 ppm) tissues, and zero effective signal magnitude. Results are provided with and without 
masking of the spheres (data fidelity weighting). The latter provides an extrapolation test, while the first tests the robustness against signal 
inconsistencies. Same weighting parameters used as in the ground-state (not degraded) simulation. Error maps show the difference between the 
reconstruction and the ground truth
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RMSE-based and calcification-dependent scores benefited 
from more iterations. The linear L1-norm method needed 
more than 2500 iterations to reach proper convergence in the 
RMSE-based and Calcification-based metrics (CalcStreak 
and DFCM). As for the previous experiment, errors at the 

vessels were larger than for other structures, as reflected in 
dRMSE_Blood.

Results with a 0.1% update stopping criterion are presented 
in Supporting Information Figure S6. Some minor changes 
are visible at the calcification and streaking propagation, 

T A B L E  1   SSIM and RMSE metric scores of reconstructions for all the COSMOS-based forward simulated experiments

Stopping rule:

0.1% update Best reconstruction

L2-norm L1-norm L2-norm L1-norm

Linear Nonlinear Linear Nonlinear Linear Nonlinear Linear Nonlinear

Ground-state SSIM 0.810 0.799 0.788 0.812 0.810 0.813 0.788 0.813

RMSE 30.3 30.8 31.4 29.1 30.3 28.8 31.3 29.0

Phase errors 
(single-voxel)

SSIM 0.759 0.798 0.788 0.812 0.771 0.798 0.788 0.812

RMSE 143.8 31.1 31.4 29.1 52.3 31.1 31.4 29.1

Spheres 
(unmasked)

SSIM 0.779 0.783 0.785 0.804 0.783 0.785 0.785 0.806

RMSE 81.5 75.8 33.7 46.6 46.3 50.0 33.0 33.4

Masked SSIM 0.808 0.795 0.787 0.811 0.809 0.812 0.788 0.812

spheres RMSE 30.2 31.8 31.1 29.1 30.2 28.8 31.0 28.8

Susc. Sources 
(single-voxel)

SSIM 0.810 0.799 0.788 0.812 0.810 0.813 0.788 0.813

RMSE 30.3 30.8 31.4 29.1 30.3 28.8 31.3 29.0

Notes: All experiments shared the same reconstruction parameters for each algorithm. Metric scores are shown for a stopping criterion of a 0.1% update, and the best 
scores up to 2500 iterations. Note that the ground truth was modified for the experiments containing two spheres. Due to the large absolute susceptibilities of theses 
spheres, RMSE scores are normalized by a larger factor than for the other experiments. This resulted in lower RMSE scores for the Masked spheres case than for the 
Ground-state experiment (without spheres).

F I G U R E  5   Optimal (RMSE-based) reconstructions of the RC2 SIM2SNR1 dataset. The provided frequency map was used as input (left), 
scaled to radians with a simulated TE of 10 ms to minimize streaking in the L2-norm methods. A magnified view around the calcification is 
provided for each algorithm. Reconstructions were masked in accordance to the evaluation ROI (the ground truth contains two additional voxels at 
the boundaries in all directions)
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compared to the optimal results shown in Figure 5. The re-
sults with the final 2500 iterations are not shown, as they are 
visually indistinguishable from those presented in Figure 5.

5.3  |  In vivo data

In Figure 7 are presented the preprocessing steps followed 
to generate the corrected local field map used as input for 
the in vivo QSM recontruction of a patient with a brain 
hemorrhage. Due to background field residuals in the local 
field calculated using PDF, we used the WH-TV method 
to estimate these residuals.35 The estimated residual field 
was subtracted from the PDF result and masked. Figure  8 
shows optimal reconstructions using the corrected local field 
map according to the L-curve analysis30 with further visual 
fine-tuning to achieve similar reconstructions for all meth-
ods. Both L2-norm methods showed strong streaking arti-
facts around the lesions (see frontal and posterior lesions) 

and veins. In contrast, both L1-norm methods efficiently 
suppressed these artifacts (although they do not completely 
remove extralesional contributions). As for the previous 
experiments, the linear L1-norm produced a noisier image 
compared to all other methods, while the nonlinear L1-norm 
method produced smoother images, similar to those obtained 
with the L2-norm methods.

Results for the RC1 in vivo dataset are presented in 
Supporting Information Figure S7. This experiment also re-
vealed similar results for both L2-norm methods. L1-norm 
results differed notably for the largest vessel (great vein of 
Galen), where the nonlinear method seemed to underesti-
mate its susceptibility values. Still, it prevented the streak-
ing propagation originated at this vessel. Extravascular 
contributions were reduced for L1-norm methods. Both 
L1-norm approaches also showed better gray/white con-
trast in cortical areas compared to L2-norm methods. For 
comparison, the susceptibility ground truth47 built from 
a projection of the tensorial susceptibility components48 

F I G U R E  6   Evolution of the RMSE, SSIM, algorithm convergence, deviation from calcification moment (DFCM), calcification streaking 
(CalcStreak), and RMSE of the blood-related regions (dRMSE_Blood) of reconstructions using the RC2 SIM2SNR1 dataset. Metrics were 
calculated every 10 iterations, up to 2500 iterations
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is presented. Compared to L2-norm methods, L1-norm 
methods presented a lower discrepancy to this ground 
truth in cortical areas. This susceptibility tensor-derived 
ground truth was calculated using the complete RC1 
multi-orientation dataset. The resulting SNR and contrast 
are higher than for reconstructions performed with the 
provided highly accelerated and noisy single-orientation 
acquisition.

6  |   DISCUSSION

QSM is an ill-posed inverse problem where the dipole kernel 
is a nonlocal operator with a zero-valued surface (the magic 
cone) that spans both high- and low-frequency components. 
Traditional methods to solve this problem showed that small-
sized but strong phase inconsistencies propagate through the 
magic cone, degrading susceptibility maps with streaking 

F I G U R E  7   Pre-processing pipeline for the in vivo dataset of a patient with a brain hemorrhage. The total field map was estimated using 
nonlinear multi-echo fitting and scaled back to radians with the echo spacing time. A brain mask was generated using the R2* and the magnitude of 
the first echo (top). The local field generated by the PDF method still contained background field residuals, which were estimated using the WH-TV 
algorithm. Harmonic residuals were removed from the local field, and the resulting map was used as input for the final reconstructions shown in 
Figure 8
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artifacts. Less strong large-scale inconsistencies also propa-
gate, often leading to so-called ghosting artifacts. To mitigate 
this effect, most recent developments in the field relied on 
either regularization terms at the cost of loss of sharpness or 
small-scale structures or in excluding phase inconsistencies 
with iterative approaches. The fundamental problem with 
these approaches is that Bayesian methods model the noise in 
the phase or the complex image domain as Gaussian. Outliers 
are not well handled by this model, as it enforces solutions 
that minimize the energy of the discrepancies. This energy is 
more easily dissipated along the magic cone in the frequency 
domain, giving birth to streaking artifacts.

In this work, we proposed a different data fidelity term 
based on the least absolute error model. Our experiments 
showed that using an L1-norm, instead of the traditional L2-
norm, in the data fidelity term prevented streaking artifact 
propagation. In this framework, the energy of the discrep-
ancies is not minimized, but rather the discrepancy map is 
forced to be (weakly) sparse. This constrains the sources of 
potential streaking artifacts. Synthetic experiments showed 

that L1-norm based algorithms are more accurate in recon-
structing results, even without using a mask to reject incon-
sistencies in the data fidelity term. Furthermore, optimal α is 
within an order of magnitude despite the masking or weight-
ing choice in the data fidelity term, facilitating parameter 
optimization. L1-norm algorithms also better handled low-
signal data in cortical areas, preventing noise amplification 
or over-regularization of the structures. This is particularly 
noticeable for vessels, as shown in our analytic experiments. 
Both L2-norm and L1-norm methods can reconstruct suscep-
tibilities from the local phase of in vivo data with different 
acquisition parameters (voxel size, TE, etc), although optimal 
results require fine-tuning α through heuristic methods such 
as the L-curve analysis or the analysis of Fourier coefficients 
of the reconstructions.30 Normalization of the local phase to 
a specific dynamic range in radians (ie, using a predefined 
ppm-to-radians scaling factor based on a specific TE and 
field strength) enables to use a more generic set of parame-
ters,49 but this is largely constrained by SNR and the presence 
of phase discrepancies. Medium and large-scale background 

F I G U R E  8   Optimal (L-curve analysis) reconstructions of the 3T in vivo dataset of a patient with a brain hemorrhage. Further fine-tuning of 
the λ parameter was performed visually for L1-norm methods. Difference maps between algorithms are provided below. L2-norm methods show 
high agreement between both results. L1-norm methods show similar streaking suppression, with different low amplitude noise management. Both 
streaking and ghosting artifacts are reduced in L1-norm methods, compared to L2-norm methods
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field residuals should be carefully avoided, as they may be re-
constructed as susceptibility sources inside the ROI, instead 
of being considered as phase discrepancies.

A drawback of L1-norm based methods is that they are 
associated with a median filter31-33 instead of a mean filter. 
Median filters produce overall lower SNR than mean filters 
when the underlying noise distribution is Gaussian. While 
this noisier texture is visible in the linear L1-norm results, 
the nonlinear L1-norm solver mostly prevented this because it 
works in the complex image domain, with noise amplification 
only apparent in very low SNR areas such as the cerebrospinal 
fluid (CSF). Another minor drawback of L1-norm methods 
is the need for fine-tuning λ, the multiplicative factor of the 
data-fidelity weight. This parameter controls the thresholding 
process in the proximal operation. Increasing its value rejects 
fewer outlier voxels, allowing more streaks to be generated. 
Too large weighting values may also lead to divergence in 
the nonlinear solver (typically, λ > π/(TEγB0) or λ > 2). If this 
value is decreased too much, large contrast features such as 
vessels tended to be underestimated, although the solver is 
more stable. This may be further exploited to automate the 
search of the optimal weights in an incremental way (sim-
ilar to the a multiscale representation49). In vivo, optimiz-
ing λ could be done after optimizing α, by visually ensuring 
that no relevant features are being suppressed. Another route 
to explore could be the use of preconditioners50,51 or early-
stopping52 methods with different settings as initialization.

An example of more realistic phase inconsistency sources 
was presented for the SIM2SNR1 dataset, with strong intra-
voxel dephasing effects. This is an effect often neglected in 
QSM models, where a nonlinear behavior of the complex sig-
nal is generated by averaging the effects of in-homogenous 
sources within a voxel. The simple convolution model with 
the dipole kernel is unable to capture this effect, and discrep-
ancies are created. Both L1-norm methods were more suc-
cessful than their L2-norm counterparts in preventing streaks 
and minimizing the calcification moment's deviation. The 
nonlinear L1-norm solver yielded the best scores for most 
metrics. To contextualize our results compared to other RC2 
submissions, please refer to the additional text provided in 
the Supporting Information. To summarize, the results shown 
in Figure 5 using the L1-norm methods directly compete with 
the overall best results. While our nonlinear L1-norm method 
was not developed at the time of the challenge deadlines, 
our linear L1-norm method achieved the best overall score 
in the visual assessment and was among the highest-scoring 
submissions.

In terms of computational cost, both L1-norm methods 
require slightly more memory, as an additional splitting 
variable was introduced. The nonlinear L1-norm method 
also seemed to converge slower in the internal Newton-
Raphson loop, explaining an increase of 45% per iteration 
times. A faster outer convergence rate compensates for this. 

The suggested 0.1% update rate stopping criterion was met 
earlier. This stopping criterion was correlated with optimal 
RMSE and SSIM scores, rendering it a reasonable choice for 
in vivo clinical settings. For oximetry purposes, a larger num-
ber of iterations may be needed for optimal representation of 
the susceptibility values inside the vessels. The in vivo exper-
iments showed that L1-norm methods have a limited capacity 
to deal with low intensity and large-scale discrepancies, typi-
cally arising from background field and other phase residuals 
(from the coil combination or multi-echo fitting processes). 
Further extension of the functional, as proposed for the WH-
TV method,35 is a feasible alternative to account for these 
effects, with minor changes to the currently available source 
codes. As shown in Figure 7, the (nonlinear L2-norm) WH-
TV QSM reconstruction was able to suppress more back-
ground residuals than subsequent L2-norm and L1-norm 
reconstructions using the corrected field map. Further exten-
sions of these L1-norm methods may also be required to deal 
with anisotropic or microstructural effects, such as including 
diffusion tensor imaging information.53,54 Also, further in 
vivo validation should be performed to assess the application 
of L1-norm methods to reconstruct cortical areas or for full 
field of view (FOV) (whole-head) reconstructions.

7  |   CONCLUSIONS

L1-norm data fidelity term methods provided a new and 
efficient way to prevent streaking artifacts in QSM recon-
structions by improved handling of phase outliers. The least 
absolute error optimization usedprevents energy spilling 
along the frequency coefficients in the magic cone, allow-
ing a better reconstruction of structures in cortical and low-
signal regions. Reconstruction without tissue masking also 
becomes feasible. L1-norm methods improved the scores 
of their L2-norm counterparts, with the nonlinear L1-norm 
method scoring the best overall numerical results. Whereas 
the linear L1-norm method produces results with lower SNR 
at homogeneous regions, results with the nonlinear version 
are smooth, with proper representation of high-frequency 
structures. This framework may be extended in the future to 
allow QSM studies outside of the brain or in a single-step 
framework.15,35,50,55-57 Clinically, the L1 approach may en-
able novel challenging applications, such as assessing brain 
hemorrhages and cortical layers.
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SUPPORTING INFORMATION
Additional Supporting Information may be found online in 
the Supporting Information section.

Supplementary Material
FIGURE S1 Absolute error maps for all the algorithms and 
methods compared in Figure 1. Note the noise amplification 
effect near the superior cortical area for the “ROI mask” and 
“Magnitude weight” methods. “Magnitude weight” produced 
some loss of sharpness and details in the veins at the same 
region (yellow arrow). Both effects are less prominent in L1-
norm methods. Red arrows point out extreme errors in the 
boundary of the region of interest in L2-norm methods when 
the data fidelity term is not masked
FIGURE S2 Different orientations of the best reconstruc-
tions, for each method, in the COSMOS-based forward sim-
ulation experiment. No degradations are included (ground-
state simulation)
FIGURE S3 Top: Comparisons made between results 
achieved at 2500 iterations and a 0.1% update as stopping 
criterion (see Figure 2 for the respective number of itera-
tions, typically in the 100-300 range). Bottom: Error (dif-
ference) maps between the results of 2500 iterations and the 
COSMOS ground-truth. Increasing the number of iterations 
reduced errors in regions with higher absolute susceptibility 
values, such as the veins
FIGURE S4 Evolution of the RMSE (a), SSIM (b) up to a 
0.1% update, and algorithm convergence up to 2500 iterations 
(right), in the COSMOS-based forward simulation experiment 
that included the 2 unmasked spheres. Phase inconsistencies 
with the dipole model (due to extreme noise) impedes agree-
ment between the RMSE and SSIM metrics. A larger number 
of iterations tends to amplify the streaking artifacts
FIGURE S5 Reconstructions of the COSMOS-based forward 
simulations that included 5 strong single-voxel susceptibility 
sources (shown with red circles for the first algorithm). All 
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algorithms performed similarly, without relevant errors
FIGURE S6 Reconstructions of the RC2 SIM2SNR1 dataset 
using a stopping criterion of a 0.1% update ratio. A magnified 
view around the calcification is provided for each algorithm. 
Optimal reconstructions (Figure 5) showed weaker streaking 
originated from the calcification (red arrow)
FIGURE S7 Optimal (L-curve analysis) reconstructions of 
the RC1 (single orientation) dataset, using a 0.1% update as 
stopping criterion. Difference maps between algorithms are 
also provided. In all cases, the data-fidelity weight was set 
by the “Magnitude weight” method, with λ = 1. Differences 
between both L2-norm methods are minor. L1-norms meth-
ods showed larger errors in terms of overall texture (linear 
L1-norm seems noisier) and in the veins (such as the Galen 
vein, highlighted with red arrows). Nevertheless, L1-norm 
methods show increased contrast and details for small veins, 
as shown with green arrows for the nonlinear methods com-
parison. On top, a multi-orientation reconstruction based on 
a L2-norm closed-form projection of the anisotropic χ13 and 
χ23 susceptibility tensorial components onto the χ33 isotropic 
tensor component as described in Milovic et al47

TABLE S1 SSIM, RMSE, and mean absolute error (MAE) 
metric scores for reconstructions using noisy phase data sim-
ulated using a COSMOS-based susceptibility ground truth. 
RMSE and MAE scores are given in percentages, normalized 

by the norm of the ground truth. The weight of the data fi-
delity term was set according to: (a) “No mask” (full FOV 
included), (b) “ROI mask” (signal voids rejected), and (c) 
“Magnitude weight” (spatially variable weight proportional 
to the magnitude data). All methods were stopped when a 
0.1% update was achieved
TABLE S2 SSIM and RMSE scores for the reconstructions 
of the COSMOS-based forward simulation, changing the 
number of iterations (stopped when a 0.1% update is reached, 
when the best RMSE score is achieved, or at a total of 2500 
iterations). Linear algorithms used a ROI mask, whereas 
nonlinear algorithms used the magnitude weighting as data-
fidelity local weight. Average times per iteration are also pro-
vided. The effective number of iterations for the 0.1% update 
and the best reconstruction results are presented in Figure 2
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