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Recent researches have demonstrated that the Fuzzy Wavelet Neural Networks (FWNNs) are an efficient tool to identify nonlinear
systems. In these structures, features related to fuzzy logic, wavelet functions, and neural networks are combined in an architecture
similar to the Adaptive Neurofuzzy Inference Systems (ANFIS). In practical applications, the experimental data set used in the
identification task often contains unknown noise and outliers, which decrease the FWNNmodel reliability. In order to reduce the
negative effects of these erroneous measurements, this work proposes the direct use of a similarity measure based on information
theory in the FWNN learning procedure. The Mean Squared Error (MSE) cost function is replaced by the Maximum Correntropy
Criterion (MCC) in the traditional error backpropagation (BP) algorithm.The input-outputmaps of a real nonlinear system studied
in this work are identified from an experimental data set corrupted by different outliers rates and additive white Gaussian noise.
The results demonstrate the advantages of the proposed cost function using the MCC as compared to the MSE. This work also
investigates the influence of the kernel size on the performance of the MCC in the BP algorithm, since it is the only free parameter
of correntropy.

1. Introduction

System identification is a modeling procedure where the
mathematical representation of the input-output maps for
dynamical systems can be obtained with the aid of experi-
mental data.This procedure is a prominent alternative for the
efficient modeling of complex systems without the need for
using complex mathematical concepts. For this reason, this
system identification plays an important role in some control
engineering related tasks such as classification and decision
making, monitoring, control, and prediction [1–8].

Artificial Neural Networks (ANNs) represent one of
the most successful identification techniques used to model
nonlinear dynamical systems [9]. This is due to their ability
to learn by examples associated with intrinsic robustness

and nonlinear characteristics [10–13]. Recently, a wide variety
of network structures have been used to model the input-
output maps of nonlinear systems [5, 14, 15]. Multilayer
Perceptron (MLP), Radial Basis Function (RBF) network,
Neurofuzzy Hybrid Structures, for example, Adaptive Neu-
rofuzzy Inference Systems (ANFIS), and Wavelet Neural
Networks (WNN) are examples of ANNs commonly used in
applications involving nonlinear systems [9, 13, 16, 17].

WNNs combine the flexibility of ANNs and the curve
fitting ability of wavelet functions [18–20]. Besides, it can be
improved in terms of extending the domain of validity by the
addition of an extra layer of fuzzy structures to achieve the
course delimitation of the universe of discourse, resulting in
Fuzzy Wavelet Neural Networks (FWNNs) [5]. The architec-
ture of the FWNN is very close to the traditional ANFIS [21],
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although wavelets are used as membership functions (MFs)
[22, 23], or in the consequent part of fuzzy rules, through the
use ofWNNs as local models. In literature, it is often possible
to find several research works applying FWNN to deal with
modeling, control, function approximation, and nonlinear
system identification, among others [6, 24–28].

In [29], Linhares et al. evaluate an alternative FWNN
structure to identify the nonlinear dynamics of amultisection
liquid tank.The aforementioned proposed structure is similar
to the ones presented by Yilmaz and Oysal [5], Abiyev and
Kaynak [6], and Lu [24]. However, the FWNN presented
in [29] uses only wavelets in the consequent fuzzy rules.
The wavelets in each node of the FWNN consequent layer
are weighted by the activation signals of the fuzzy rules.
Therefore, the local models of such FWNN are solely rep-
resented by a set of wavelet functions, which differs from
[5, 6, 24]. The results presented in [29] demonstrate that
the modified FWNN structure maintains the generalization
capability and also other important features presented by
traditional FWNNs, despite the reduction in the complexity
of these structures.

In practical applications, the experimental data set used in
the identification procedure is often corrupted by unknown
noise and outliers. The outliers are incorrect measurements
which markedly deviate from the typical ranges of other
observations [30]. The main source of the outliers comes
from sporadic malfunctioning of sensors and equipments
[31]. The presence of noise and outliers in experimental
data negatively affects the performance and reliability of the
dynamical model under identification, because it tries to
fit such undesired measurements [30, 32, 33]. Despite the
fact that there are many outlier detection methods presented
in literature, many approaches are not able to detect all
the outliers. Therefore, the resulting data obtained after the
application of such methods may still be contaminated with
outliers [30, 31].

Generally, the learning process of the neural networks is
based on a given gradient method, for example, the classical
error backpropagation (BP) algorithm which uses the Mean
Squared Error (MSE) as its cost function. However, the
applicability of MSE to obtain a model that represents an
input-output relationship is optimal only if the probability
distribution function (pdf) of the errors is Gaussian [34].
However, the error distribution in most cases is nongaussian
and nonlinear [8]. In literature we can find some researches
that demonstrate that the use of the Maximum Correntropy
Criterion (MCC) replacing the traditionalMSE is an effective
approach to handle the problem of prediction and iden-
tification when the dynamical system has unknown noise
and outliers [7, 8, 30, 35]. The correntropy evaluation allows
the extraction of additional information from available data
because such similarity measure takes into account all the
moments of a probability distribution that are typically not
observed by MSE [7].

In this work, the reliability of the FWNN recently pro-
posed in [29] is evaluated when different percentages of
outliers and noise contaminate the experimental data used
to identify a nonlinear system. The aforementioned neural
network is used to identify the dynamic relationship between

the input and output of a multisection liquid tank. In order
to train the FWNN, the BP algorithm is used, although the
traditional MSE cost function is replaced by the Maximum
Correntropy Criterion using an adaptive adjustment of its
kernel size, which is the free parameter of the MCC. The
obtained models using each one of the quality measures are
properly evaluated and compared. Despite the advantages of
correntropy over MSE, little effort has been reported towards
the application of correntropy to identify nonlinear systems
using neural networks [7, 8]. The results presented in this
work demonstrate that the FWNN architecture proposed in
[29] is less sensitive to the presence of outliers and noise
when it is trained using the MCC. In addition, this work
also investigates the influence of the kernel size on the
performance of the MCC in BP algorithm.

This paper is organized as follows. Section 2 presents the
definition and the basic mathematical theory of the similarity
measure of correntropy.Then, Section 3 describes the FWNN
proposed in [29], which is applied in this work to identify
an experimental nonlinear dynamical system considering the
presence of outliers and noise. Section 4 presents the updat-
ing equations of BP algorithm, which are modified according
to the MCC. Section 5 describes the proposed identification
architecture in detail. Section 6 presents the multisection
liquid tank under study, while the performance of FWNN
models obtained using MSE and MCC cost functions is
evaluated, considering the presence of both outliers and noise
in experimental data. Finally, concluding remarks are given in
Section 7.

2. Correntropy

Correntropy is a generalized similarity measure between two
arbitrary scalar random variables𝑋 and 𝑌 defined by [36]
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where 𝜎 is the variance defined as the kernel size. The kernel
size may be interpreted as the resolution for which corren-
tropy measures similarity in a space with characteristics of
high dimensionality [36].

By applying a Taylor series expansion to the Gaussian
function in (1) and assuming that all the moments of the joint
pdf are finite, such equation becomes
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In practice, the joint pdf in (1) is unknown and only a
finite amount of data {(𝑥

𝑖
, 𝑦
𝑖
)}
𝑁

𝑖=1 is available, leading to the
sample correntropy estimator defined by

V̂
𝜎
(𝑋, 𝑌) =

1
𝑛

𝑁

∑

𝑖=1
𝑘
𝜎
(𝑥
𝑖
, 𝑦
𝑖
) . (4)

Correntropy involves all the even moments of difference
between 𝑋 and 𝑌. Compared with MSE 𝐸[(𝑋 − 𝑌)

2
] which

is a quadradic function in the joint input space, correntropy
includes second-order and higher-order statistical informa-
tion [37]. However, for sufficiently large values of 𝜎, the
second-order moment is predominant and the measure
approaches correlation [38].

Nowadays, correntropy has been successfully used in a
wide variety of applications where the signals are non-Gaus-
sian or nonlinear, for example, automaticmodulation classifi-
cation [39], classification systems of pathological voices [40],
and principal component analysis (PCA) [41].

2.1. Maximum Correntropy Criterion for Model Estimation.
The correntropy concept can be extended to the model esti-
mation. The variable 𝑋 can be considered as a mathematical
expression of the unknown function 𝑓(𝑋,𝑤), where 𝑋 is an
input set 𝑋 = {𝑥

𝑖
∈ 𝑅
𝑚

}
𝑖=1,...,𝑁 and the model parameters are

𝑤 = [𝑤1, . . . , 𝑤𝑚]
𝑇, which approximates the dependence on

an output set 𝑌 = {𝑦
𝑖
∈ 𝑅
𝑚

}
𝑖=1,...,𝑁 [42].

Therefore, it is possible to determine the optimal solution
for the MCC from (4) as [43]
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where 𝑒
𝑖
= 𝑓(𝑋,𝑤)−𝑦

𝑖
and 𝑖 = 1, . . . , 𝑁, which are the errors

generated by the model during the supervised learning for
each of the 𝑁 training samples. It is worth mentioning that
such criterion is used as the cost function of the BP algorithm
to adjust the parameters of the FWNN.

One of the advantages of using correntropy in system
identification lies in the robustness of such measure against
impulsive noise due to the use of the Gaussian kernel in
(5), which is close to zero; that is, 𝑘

𝜎
(𝑓(𝑋,𝑤), 𝑌) ≈ 0

when 𝑓(𝑋,𝑤) or 𝑌 is an outlier. Correntropy is positive and
bounded, and it gives 0 < V̂

𝜎
(𝑋, 𝑌) ≤ 1/√2𝜋𝜎 for the

Gaussian kernel.
The Gaussian variance (also called kernel size) is a free

parameter that must be selected by the user [38]. Therefore,
when the correntropy is estimated, the resulting values
depend on the selected kernel size. In addition, the kernel
size of correntropy influences the nature of the performance
surface, presence of local optima, rate of convergence, and
robustness to impulsive noise during adaption [37, 43]. If the
training data size is not large enough, the kernel size must
be chosen considering tradeoffs between outlier rejection and
estimation efficiency [44].

Some approaches can be employed to determine the ker-
nel size, for example, the statistical method [45], Silverman’s
rule [46], cross validation techniques [47, 48], and shape
of the prediction error distribution [44]. This work uses an
adaptive kernel size algorithm [42], which is given by

𝜎 =
max 󵄨󵄨󵄨󵄨𝑒𝑖

󵄨󵄨󵄨󵄨

2√2
, 𝑖 = 1, . . . , 𝑁. (6)

In order to assess the improved performance of an
adaptive kernel size over fixed ones, Section 6 is supposed to
show how the error evolves during the FWNN training for
different values of the kernel size.

3. Fuzzy Wavelet Neural Networks

3.1. Brief Review. Wavelets are obtained by scaling and trans-
lating a special function 𝜓(𝑥) localized in both time/space
and frequency called mother wavelet, which can be defined
in such a way to serve as a basis to describe other functions.
Wavelets are extensively used in the fields of signal analysis,
identification and control of dynamical systems, computer
vision, and computer graphics, among other applications
[49–52]. Given 𝜓(𝑥), the corresponding family of wavelets is
obtained by
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where x = {𝑥1, 𝑥2, . . . , 𝑥𝑛} andΨ𝑗(x) is obtained from𝜓(x) by
scaling it by a factor d

𝑗
= {𝑑1𝑗, 𝑑2𝑗, . . . , 𝑑𝑛𝑗} and translating it

by t
𝑗
= {𝑡1𝑗, 𝑡2𝑗, . . . , 𝑡𝑛𝑗}.

A WNN is a nonlinear regression structure that can
represent input-output maps by combining wavelets with
appropriate scalings and translations [53]. The output of a
WNN is determined as follows:
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where w
𝑗
are the synaptic weights, x is the input vector, and

d
𝑗
and t
𝑗
are parameters characterizing the wavelets.

In a concise manner, the purpose of FWNNs is to
incorporate WNNs into the ANFIS structure in order to
obtain faster convergence and better approximation capabil-
ities, eventually with a greater number of parameters to be
adjusted. The fuzzy rules allow tackling the uncertainties,
while wavelets contribute to improving the accuracy in the
process of approximating input-output maps [6].

3.2. FWNN Architecture. A particular instance of FWNN
proposed in [29] is applied in this work to identify a
real nonlinear system, investigating its performance and
reliability when the experimental data set is corrupted by
unknown noise and outliers. In this FWNN architecture,
the consequent part of its fuzzy rules is described only by
wavelet functions. It differs from other structures such as
those proposed in [5, 6, 24]. The basic architecture of the
FWNN can be seen in Figure 1 and its layers are described
as follows.
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Figure 1: Graphical representation of the FWNN architecture.

Layer 1. The input layer just transfers the input signal vector
x = {𝑥1, 𝑥2, . . . , 𝑥𝑛} to the next layer.

Layer 2. In the fuzzification layer, the membership functions
are parameterized to match the specific requirements of a
variety of applications. For instance, a Gaussian membership
function can be described by the following equation:

𝐴
𝑞𝑟
(𝑥
𝑞
) = exp[−1

2
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𝑥
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] , (9)

where for 𝑞 = 1, 2, . . . , 𝑛 and 𝑟 = 1, 2, . . . , 𝑘
𝑞
, 𝐴
𝑞𝑟

would
be associated with the 𝑟th membership function appearing
in a given rule and evaluated for the 𝑞th component of
the input vector. The adjustable parameters are 𝑎

𝑞𝑟
and

𝑏
𝑞𝑟
, representing the center and width of the membership

function, respectively.

Layer 3. This is the inference layer. Assuming that there are𝑚
rules, where 𝑅

𝑖
is a given rule and 𝑖 = 1, 2, . . . , 𝑚, each rule is

supposed to produce and output 𝜇
𝑖
by aggregating 𝐴

𝑞𝑟
using

a T-norm.The output of the 𝑝th rule in this layer is

𝜇
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𝑞
) , 𝑝 = 𝑟1, 𝑟2, . . . , 𝑟𝑛, (10)

where 𝑟1 = 1, . . . , 𝑘1, 𝑟2 = 1, . . . , 𝑘2, 𝑟𝑛 = 1, . . . , 𝑘
𝑛
.

All the rule outputs of this layer are added up to the
summation node located between Layers 3 and 4.The output
𝛽 of this node is later used in the normalization stage.

Layer 4. In the normalization layer, the normalization factor
for the output of the 𝑖th rule, denoted by 𝜇

𝑖
is given by

𝜇
𝑖
=
𝜇
𝑖

𝛽
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∑
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, 𝑖 = 1, 2, . . . , 𝑚. (11)

Layer 5. This is the consequent layer of the FWNN. In this
work, the Mexican Hat family of wavelets is adopted as in [5,
6, 54]. Its mathematical representation is given by

𝜓 (𝑥) =
1
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)

2
) exp [−0.5(𝑥 − 𝑡
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] . (12)

The inputs of the wavelet layer are the normalizedweights
𝜇
𝑖
and the input vector x = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, while the outputs

of this layer represented by 𝑓
𝑗
are given by
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(13)

where the term 𝑇
𝑖𝑗
= (𝑥
𝑖
− 𝑡
𝑖𝑗
)/𝑑
𝑖𝑗
, 𝑑
𝑖𝑗
> 0 is adopted to

simplify the mathematical notation and 𝑛 is the number of
wavelet functions in a node of Layer 5.

Layer 6. In the output layer, all signals from the wavelet
neurons are summed up as follows:

𝑦 =

𝑚

∑

𝑗=1
𝑓
𝑗
. (14)

By observing Figure 1 and considering (9) to (14), it is
possible to notice that the FWNN related parameters are
located in the second and fifth layers. The membership
functions and wavelet functions are adjusted according to
the application using any learning algorithm, such as BP
algorithm.
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4. Error Backpropagation
Algorithm with MCC

The classical BP algorithm is the learning algorithm used
in this work to adjust the free parameters of the FWNN
models. According to [54], this algorithm is probably the
most frequently used technique to train a FWNN. Despite
its functionality, it presents some shortcomings such as the
fact that it may get stuck on a local minimum of the error
surface and that the training convergence rate is generally
slow [55–57]. However, it is well known that the use of
wavelet functions in neural network structures reduces such
inconveniences [6, 58].

A neural system should be designed to present a desired
behavior; hence, it is necessary to define a cost function
for this task. It provides an evaluation of the quality of the
solution obtained by the neural model [59]. The gradient
based learning algorithms, such as the BP algorithm, require
the differentiation of the chosen cost function with respect to
the adjustable parameters of the FWNN model. Therefore, it
is necessary to obtain the partial derivatives of the chosen cost
function with respect to parameters 𝑑

𝑖𝑗
and 𝑡
𝑖𝑗
of the wavelets

and parameters 𝑎
𝑞𝑟
and 𝑏
𝑞𝑟
of the membership functions𝐴

𝑞𝑟
.

Typically, MSE is the cost function used with BP algo-
rithm [10]. Such classical cost criterion is replaced by MCC
in this work in order to increase the reliability of the FWNN
modelwhen the identified dynamical systempresents outliers
and noise. When using MCC, the main goal is to maximize
the correntropy similarity measure between two random
process variables. In the FWNN learning procedure, such
variables are the desired output 𝑦

𝑑
and the estimated output

𝑦 provided by the FWNNmodel. Considering the estimation
error of the FWNN model given by 𝑒 = 𝑦

𝑑
− 𝑦, maximizing

the MCC is equivalent to minimizing

E
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where 𝑁 is the number of samples in the experimental
data. Equation (15) corresponds to the cost function used
during the minimization process of the BP algorithm applied
to adjust the parameters of the FWNN models. As such
parameters are adjusted sequentially, (16) defines the instan-
taneous correntropy used to update thewavelet functions and
membership functions parameters of the FWNN after each
training pair is presented to this network. Consider
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𝜕𝐴

𝜕𝐴

𝜕𝑏
𝑞𝑟

,
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where

𝜕𝐴
𝑞𝑟

𝜕𝑏
𝑞𝑟

=
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{

𝐴
𝑞𝑟

(𝑥
𝑞
− 𝑏
𝑞𝑟
)

𝑎2
𝑞𝑟

, if 𝑥
𝑞
̸= 𝑏
𝑞𝑟
,

0, if 𝑥
𝑞
= 𝑏
𝑞𝑟
,

𝜕𝐴
𝑞𝑟

𝜕𝑏
𝑞𝑟

=

{{{

{{{

{

𝐴
𝑞𝑟

(𝑥
𝑞
− 𝑏
𝑞𝑟
)
2

𝑎3
𝑞𝑟

, if 𝑥
𝑞
̸= 𝑏
𝑞𝑟
,

0, if 𝑥
𝑞
= 𝑏
𝑞𝑟
.

(19)

Following the delta rule mentioned in [10], the parame-
ters of the proposed FWNN are updated as follows:

𝑑
𝑖𝑗
(𝑘 + 1) = 𝑑

𝑖𝑗
(𝑘) − 𝜂

𝜕E

𝜕𝑑
𝑖𝑗

,

𝑡
𝑖𝑗
(𝑘 + 1) = 𝑡

𝑖𝑗
(𝑘) − 𝜂

𝜕E

𝜕𝑡
𝑖𝑗

,

𝑎
𝑞𝑟
(𝑘 + 1) = 𝑎

𝑞𝑟
(𝑘) − 𝜂

𝜕E

𝜕𝑎
𝑞𝑟

,

𝑏
𝑞𝑟
(𝑘 + 1) = 𝑏

𝑞𝑟
(𝑘) − 𝜂

𝜕E

𝜕𝑏
𝑞𝑟

,

(20)

where 𝜂 is the learning rate. For the training algorithm initial-
ization, wavelets and membership functions parameters are
set with random numbers from a uniform distribution.

The replacement of the traditional MSE by MCC inserts
another learning parameter to BP algorithm. As already
explained, the success of the correntropy is based on the
appropriate adjustment of the kernel size of its Gaussian
functions. This new parameter influences the nature of the
performance surface, presence of local optima, rate of conver-
gence, and robustness. Therefore, if an unsuitable kernel size
is chosen, the expected improved performance of the MCC
will not be confirmed [60]. For this reason, an adaptive kernel
method is applied in this work (see (6)) to adjust the kernel
size over the learning epochs.

5. Proposed Identification Architecture

The proposed architecture adopted in this work identifies
the dynamic relationship between the input and output of a
multisection tank for water storage. The system is evaluated
when the experimental data used during the identification
task is corrupted with noise and outliers. The proposed
architecture is based on the series-parallel identification
scheme described in [13], with small modifications due to
the experimental data set characteristic and the learning
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Figure 2: Proposed identification architecture.

procedure used to adjust the parameters of the FWNN
model. Figure 2 presents a schematic diagramof the proposed
identification architecture in this work.

The inputs of the FWNN model are past values of input
signal 𝑢(𝑘) and the system output when corrupted with
noise and outliers 𝑑(𝑘) = 𝑦(𝑘) + 𝑛(𝑘), while the estimated
output is given by 𝑦(𝑘). The work developed in [9] shows
that well-known linear modeling structures, such as FIR
(Finite Impulse Response), ARX (AutoRegressive, eXoge-
nous input), ARMAX (AutoRegressive, Moving Average,
eXogenous input), OE (Output Error), and SSIF (State Space
Innovations Form) may be extended by using nonlinear
functions or representations, thus leading to the nonlinear
modeling structures NFIR, NARX, NARMAX, NOE, and
NSSIF.This concept is used to define the inputs of the FWNN
models obtained in this study.

According to [9], the advantage of a NARX model is that
none of its regressors depends on past outputs of the model,
which ensures that the predictor remains stable.This is partic-
ularly important in the nonlinear case since the stability issue
in this particular case is much more complex than in linear
systems. Considering that the inputs of the FWNN models
in this work are described exactly as the regression vector
of the NARX modeling structure, they inherit important
characteristics from such structure. Figure 3 shows more
details on the FWNN inputs in accordance with the NARX
structure, where 𝜆, 𝜏, and 𝛼 are constants that define a model
of order 𝛼 and delay 𝜏.

Figure 2 illustrates that the FWNNmodel parameters are
updated according to the error signal 𝑒(𝑘) = 𝑑(𝑘) − 𝑦(𝑘), by
using a learning algorithm, for example, the BP algorithm.
By adopting the MCC as its respective cost criterion, the
learning algorithm is applied to the FWNN model. As it was
previously explained in Section 2, the success of theMCCalso

ŷ(k)

y(k − 1)

y(k − 𝜆)

u(k − 𝜏)

u(k − 𝜏 − 𝛼)

...

...

F
W
N
N

Figure 3: NARX model structure using FWNN.

depends on the correct choice of the kernel size. Therefore,
the adaptive method described by (6) is used in this work to
adjust the kernel size during the learning epochs.

6. Experiments and Results

In order to evaluate the performance of the FWNNwhen the
traditional MSE cost criterion of the error backpropagation
algorithm is replaced by MCC, the aforementioned neural
network is used to identify a real dynamical system, consid-
ering that its experimental data is corrupted by noise and
outliers.

6.1. Multisection Liquid Tank. The multisection liquid tank
consists of an acrylic tank for containment of liquids with
three abrupt changes in its cross-sectional area, as it can be
seen in Figure 4. The liquid tank was originally designed
for educational purposes in order to be used in studies
of identification and control of dynamical systems [61].
It was also used in [29] to evaluate the performance of
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Figure 4: Three-section liquid tank with distinct cross-sectional areas.

the alternative FWNN structure employed in this work. In
addition to the acrylic tank structure, the system is composed
by a water reservoir, a water pump, a pressure sensor, an
electronic power driver, and an electronic interface with A/D
(analog-to-digital) and D/A (digital-to-analog) converters.

The nonlinearity presented in the liquid flow output,
which is due to the different pressure levels at the tank
base in accordance with the height of the liquid column,
can be clearly noticed in the aforementioned dynamical
system. Besides, the distinct cross-sectional areas make such
nonlinearity even more evident. It is worth mentioning that
the abrupt transitions between the tank sections are also
responsible for discontinuities.The whole system can be seen
as a set of three coupled nonlinear systems, since each tank
section has its own dynamic behavior.

6.2. System Identification. Initially, in order to collect the
experimental data set used during the learning and testing
phase of the identified FWNN models in this work, the
water pump is excited with anAPRBS (AmplitudeModulated
Pseudorandom Binary Sequence) and the water level inside
the tank is registered at a sample rate of 𝑇

𝑠
= 2Hz.

For the generation of the persistent excitation signal, the
following parameters are considered: theminimumhold time
𝑇
ℎ
= 10 s, minimal amplitude 𝐴min = 0V, and maximum

amplitude 𝐴max = 15V. Since only positive values of voltage
are considered in this case study, the pump only operates in
order to shift the liquid from the reservoir to themultisection
tank.

After the system excitation, the collected data is corrupted
with additive white Gaussian noise and two different percent-
ages of outliers (1% and 3%). The resulting data are divided
into two sets comprising approximately 80% and 20% of
the total amount. The first set is used to train the FWNN
model and the second one is used during the testing phase.

The whole data set is normalized to fit within the range [0, 1]
in order to avoid numerical problems during the FWNN
learning procedure. Since the multisection tank is a first-
order nonlinear system and also considering Figure 3, the
inputs of the FWNN models are defined with 𝜆 = 𝛼 = 1
and 𝜏 = 0.Thus, 𝑢(𝑘), 𝑢(𝑘− 1), and 𝑦(𝑘) are defined as inputs
to the FWNNmodels to predict 𝑦(𝑘 + 1).

The BP algorithm presented in Section 4 is used to adjust
the parameters 𝑑

𝑖𝑗
, 𝑡
𝑖𝑗
, 𝑎
𝑞𝑟
, and 𝑏

𝑞𝑟
of the FWNN. After a

trial-and-error procedure the learning rate 𝜂 = 0.0001 was
found as a good choice to identify the multisection tank. It is
worthmentioning that the results presented in this workwere
obtained after 350 learning epochs.

Figure 5 presents the model validation when 1% of the
original experimental data set is corrupted with outliers and
additive white Gaussian noise is inserted. In this figure, the
tank water level in cm is in function of the sample time
step, where each time step is equivalent to 0.5 seconds,
defined by the sample rate 𝑇

𝑠
= 2Hz. The terms FWNN-

MCC and FWNN-MSE are used to identify the FWNN
models obtained using MCC and MSE as cost criterion of
BP algorithm, respectively. It is evident that FWNN-MCC
has the best performance due to the use of the higher-
order statistical information. On the other hand, the FWNN-
MSE model based on second-order moments presents some
problems to efficiently identify the input-output dynamic
relationship of the multisection tank at some points of the
validation curve.The presence of outliers in the experimental
data has a significant negative impact on the FWNN model
when the MSE criterion is used in the learning procedure,
once the error due to the outliers is increased by a square
rate. The same behavior is not observed in FWNN-MCC
when 1% of the experimental data are corrupted by outliers
because the outliers power is weighted by the Gaussian
kernel.
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Figure 5: Validation of the FWNN-MCC with 1% outlier rate in experimental data.
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Figure 6: Validation of the FWNN-MCC with 3% outlier rate in experimental data.

Figure 6 shows the model validation when 3% of the
original experimental data is corrupted with outliers and
additive white Gaussian noise is inserted. In Figure 6, only
the validation points are plotted to allow the better visual-
ization of outliers and its respective effects in the FWNN-
MCC and FWNN-MSE models. Two regions are highlighted
in Figure 6, thus demonstrating the improvement of the
FWNN-MCCmodel. Both models present problems at some
points, although the performance of FWNN-MCC one is

improved in the identification of the multisection tank
dynamics, as it also seems to be less sensitive to outliers and
noise than FWNN-MSE model. It is noteworthy that MCC
has intrinsic robustness due to the local estimation produced
by the kernel size.

It is also important to mention that the correntropy
criterion has a free parameter, that is, the kernel size, which
is at the core of the learning process [38]. An adaptive
kernel is applied in this work to improve the performance of
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the FWNN learning procedure performance. Figure 7 shows
MSE obtained over the 350 epochs, for three different fixed
kernel sizes, that is, 0.01, 0.1, and 10, and also using the adap-
tive kernel. The adaptive kernel size method mathematically
described by (6) has the highest convergence rate and the best
performance in the attenuation of outliers and noise.

Figure 8 presents the behavior of the adaptive kernel size
during the learning stage of the FWNN-MCC model when
the experimental data is composed by 1% and 3% of outliers.
During the initial epochs of the BP algorithm, the kernel size
is quite oscillatory. However, the behavior of the kernel size
becomes more stable as it comes to the hundredth epoch.

7. Conclusions

This work has analyzed the performance of a FWNN when
applied to identify a real nonlinear dynamical system in the
presence of unknown noise and outliers. Such erroneous
measurements in experimental data reduce the reliability of
the identified model, once it tries to fit some behaviors that
are not part of the dynamical system. The most common
learning techniques applied to adjust the FWNN parameters
in identification applications are methods based on gradient
that use the MSE as their cost function. This paper has
then proposed the replacement of this traditional evaluation
measure by a similaritymeasure based on information theory
denominated correntropy. Therefore, the MCC was used in
this paper as the cost function of the error backpropagation
algorithm in order to reduce the negative effects of the
unknown noise and outliers. The results have demonstrated
that the FWNN-MCC models based on the MCC cost func-
tion represent the input-output dynamics of the multisection
liquid tank more properly, being also less sensitive to outliers
and noise than the FWNN-MSE models. This work also
has investigated the influence of the kernel size on the
performance of theMCC in the BP algorithm, since it is a free
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Figure 8: Adaptive kernel size behavior.

parameter of correntropy.The addition of this new parameter
in the learning procedure of the FWNN can be considered
a disadvantage of the proposed architecture, mainly because
theMCC is very dependent on its proper adjustment. Within
this context, the adopted adaptive kernel has shown to be
more efficient if compared to the case when this parameter
remains fixed during the whole FWNN learning process.The
adaptive kernel size method has improved the convergence
rate of the backpropagation algorithm and contributed to
attenuating the effects of the outliers and noise. Due to the use
of the BP algorithm, the proposed architecture is susceptible
to local minima falls, limiting the correntropy action to
remove the outliers.

The further research work will focus on the following
items: (1) analyzing the application of the MCC associated
with different algorithms in order to train the FWNN
architecture to avoid the outliers harmful effects. The meta-
heuristic algorithms such as Genetic Algorithm, Particle
Swarm Optimization, and Bat Algorithm are good options
since they are less sensitive to local minima than the BP
algorithm; (2) including and comparing different adaptive
kernel methods to improve the functionality of the MCC;
(3) applying the proposed architecture to identify reliable
dynamical models to be used in advanced control strategies,
such as the predictive controllers; (4) evaluating the feasibility
to apply the FWNN-MCC as an inferential system to estimate
chemical compositions, calibrate sensors [62], and fault
diagnosis, among others.

Acronyms

A/D: Analog-to-digital
ANFIS: Adaptive Neurofuzzy Inference System
ANN: Artificial Neural Network
APRBS: Amplitude Modulated Pseudorandom

Binary Sequence
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ARMAX: AutoRegressive, Moving Average,
eXogenous input model

ARX: AutoRegressive, eXogenous input model
BP: Error backpropagation algorithm
D/A: Digital-to-analog
FIR: Finite Impulse Response model
FWNN: Fuzzy Wavelet Neural Network
FWNN-MCC: FWNN obtained using MCC
FWNN-MSE: FWNN obtained using MSE
MCC: Maximum Correntropy Criterion
MF: Membership function
MLP: Multilayer Perceptron network
MSE: Mean Squared Error
NARMAX: Nonlinear AutoRegressive, Moving

Average, eXogenous input model
NARX: Nonlinear AutoRegressive, eXogenous

input model
NFIR: Nonlinear Finite Impulse Response model
NOE: Nonlinear Output Error model
NSSIF: Nonlinear State Space Innovations Form

model
OE: Output Error model
PCA: Principal component analysis
RBF: Radial Basis Function network
SSIF: State Space Innovations Form model
WNN: Wavelet Neural Network.
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