3,631 research outputs found

    Optimizing artificial neural networks using LevyChaotic mapping on Wolf Pack optimization algorithm for detect driving sleepiness

    Get PDF
    Artificial Neural Networks (ANNs) are utilized to solve a variety of problems in many domains. In this type of network, training and selecting parameters that define networks architecture play an important role in enhancing the accuracy of the network's output; Therefore, Prior to training, those parameters must be optimized. Grey Wolf Optimizer (GWO) has been considered one of the efficient developed approaches in the Swarm Intelligence area that is used to solve real-world optimization problems. However, GWO still faces a problem of the slump in local optimums in some places due to insufficient diversity. This paper proposes a novel algorithm Levy Flight- Chaotic Chen mapping on Wolf Pack Algorithm in Neural Network. It efficiently exploits the search regions to detect driving sleepiness and balance the exploration and exploitation operators, which are considered implied features of any stochastic search algorithm. Due to the lack of dataset availability, a dataset of 15 participants has been collected from scratch to evaluate the proposed algorithm's performance. The results show that the proposed algorithm achieves an accuracy of 99.3%

    An energy-efficient cluster head selection in wireless sensor network using grey wolf optimization algorithm

    Get PDF
    Clustering is considered as one of the most prominent solutions to preserve theenergy in the wireless sensor networks. However, for optimal clustering, anenergy efficient cluster head selection is quite important. Improper selectionofcluster heads(CHs) consumes high energy compared to other sensor nodesdue to the transmission of data packets between the cluster members and thesink node. Thereby, it reduces the network lifetime and performance of thenetwork. In order to overcome the issues, we propose a novelcluster headselection approach usinggrey wolf optimization algorithm(GWO) namelyGWO-CH which considers the residual energy, intra-cluster and sink distance.In addition to that, we formulated an objective function and weight parametersfor anefficient cluster head selection and cluster formation. The proposedalgorithm is tested in different wireless sensor network scenarios by varyingthe number of sensor nodes and cluster heads. The observed results conveythat the proposed algorithm outperforms in terms of achieving better networkperformance compare to other algorithms

    Improved Wolf Pack Algorithm for Optimum Design of Truss Structures

    Get PDF
    In order to find a more effective method in structural optimization, an improved wolf pack optimization algorithm was proposed. In the traditional wolf pack algorithm, the problem of falling into local optimum and low precision often occurs. Therefore, the adaptive step size search and Levy's flight strategy theory were employed to overcome the premature flaw of the basic wolf pack algorithm. Firstly, the reasonable change of the adaptive step size improved the fineness of the search and effectively accelerated the convergence speed. Secondly, the search strategy of Levy's flight was adopted to expand the search scope and improved the global search ability of the algorithm. At last, to verify the performance of improved wolf pack algorithm, it was tested through simulation experiments and actual cases, and compared with other algorithms. Experiments show that the improved wolf pack algorithm has better global optimization ability. This study provides a more effective solution to structural optimization problems

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area

    Chaser Priori Wolf (CPW) Optimization an Improved Optimization Technique Video Content Classification and Detection

    Get PDF
    Optimizers play a crucial role in video object detection by promoting the training and improving the performance of the model. Optimizers are responsible for minimizing the loss function during training. The parameters of models are updated iteratively based on the gradients of the loss parameters. By continuously adjusting the parameters in the direction of the steepest descent, optimizers guide the model towards convergence, reducing the loss and improving the object detection performance. In the proposed paper hybrid optimizer named chaser priori wolf optimizer is proposed. The chaser priori wolf optimization is based on the hybridization of cat swarm optimization and coyote optimization. Well-known optimizers like SGD, ADAM, adagrad, adadelta and RMSprop are used as default optimizers by researchers. The proposed work introduced CPW optimizer which works for classification to improve the convergence and feature selection. The comparative result showed an increase in the performance of CNN based YOLO model. The results are compared concerning sensitivity, specificity and accuracy. Results clearly showed improvement in all performance metrics and the average improvement in comparison with state of art architecture is 10.3%

    A novel approach for estimation of above-ground biomass of sugar beet based on wavelength selection and optimized support vector machine

    Get PDF
    Timely diagnosis of sugar beet above-ground biomass (AGB) is critical for the prediction of yield and optimal precision crop management. This study established an optimal quantitative prediction model of AGB of sugar beet by using hyperspectral data. Three experiment campaigns in 2014, 2015 and 2018 were conducted to collect ground-based hyperspectral data at three different growth stages, across different sites, for different cultivars and nitrogen (N) application rates. A competitive adaptive reweighted sampling (CARS) algorithm was applied to select the most sensitive wavelengths to AGB. This was followed by developing a novel modified differential evolution grey wolf optimization algorithm (MDE-GWO) by introducing differential evolution algorithm (DE) and dynamic non-linear convergence factor to grey wolf optimization algorithm (GWO) to optimize the parameters c and gamma of a support vector machine (SVM) model for the prediction of AGB. The prediction performance of SVM models under the three GWO, DE-GWO and MDE-GWO optimization methods for CARS selected wavelengths and whole spectral data was examined. Results showed that CARS resulted in a huge wavelength reduction of 97.4% for the rapid growth stage of leaf cluster, 97.2% for the sugar growth stage and 97.4% for the sugar accumulation stage. Models resulted after CARS wavelength selection were found to be more accurate than models developed using the entire spectral data. The best prediction accuracy was achieved after the MDE-GWO optimization of SVM model parameters for the prediction of AGB in sugar beet, independent of growing stage, years, sites and cultivars. The best coefficient of determination (R-2), root mean square error (RMSE) and residual prediction deviation (RPD) ranged, respectively, from 0.74 to 0.80, 46.17 to 65.68 g/m(2) and 1.42 to 1.97 for the rapid growth stage of leaf cluster, 0.78 to 0.80, 30.16 to 37.03 g/m(2) and 1.69 to 2.03 for the sugar growth stage, and 0.69 to 0.74, 40.17 to 104.08 g/m(2) and 1.61 to 1.95 for the sugar accumulation stage. It can be concluded that the methodology proposed can be implemented for the prediction of AGB of sugar beet using proximal hyperspectral sensors under a wide range of environmental conditions

    Model Updating for Large-Scale Railway Bridge Using Grey Wolf Algorithm and Genetic Alghorithms

    Get PDF
    This paper proposes a novel hybrid algorithm to deal with an inverse problem of a large-scale truss bridge. Grey Wolf Optimization (GWO) Algorithm is a well-known and widely applied metaheuristic algorithm. Nevertheless, GWO has two major drawbacks. First, this algorithm depends crucially on the positions of the leading Wolf. If the position of the leaderis far from the best solution, the obtained results are poor. On the other hand, GWO does not own capacities to improve the quality of new generations if elements are trapped into local minima. To remedy the shortcomings of GWO, we propose a hybrid algorithm combining GWO with Genetic Algorithm (GA), termed HGWO-GA. This proposed method contains two key features (1) based on crossover and mutation capacities, GA is first utilized to generate the high-quality elements (2) after that, the optimization capacity of GWO is employed to seek the optimal solutions. To assess the effectiveness of the proposed approach, a large-scale truss bridge is employed for model updating. The obtained results show that HGWO-GA not only provides a good agreement between numerical and experimental results but also outperforms traditional GWO in terms of accuracy

    Model Updating for Large-Scale Railway Bridge Using Grey Wolf Algorithm and Genetic Alghorithms

    Get PDF
    This paper proposes a novel hybrid algorithm to deal with an inverse problem of a large-scale truss bridge. Grey Wolf Optimization (GWO) Algorithm is a well-known and widely applied metaheuristic algorithm. Nevertheless, GWO has two major drawbacks. First, this algorithm depends crucially on the positions of the leading Wolf. If the position of the leaderis far from the best solution, the obtained results are poor. On the other hand, GWO does not own capacities to improve the quality of new generations if elements are trapped into local minima. To remedy the shortcomings of GWO, we propose a hybrid algorithm combining GWO with Genetic Algorithm (GA), termed HGWO-GA. This proposed method contains two key features (1) based on crossover and mutation capacities, GA is first utilized to generate the high-quality elements (2) after that, the optimization capacity of GWO is employed to seek the optimal solutions. To assess the effectiveness of the proposed approach, a large-scale truss bridge is employed for model updating. The obtained results show that HGWO-GA not only provides a good agreement between numerical and experimental results but also outperforms traditional GWO in terms of accuracy

    Evolving CNN-LSTM Models for Time Series Prediction Using Enhanced Grey Wolf Optimizer

    Get PDF
    In this research, we propose an enhanced Grey Wolf Optimizer (GWO) for designing the evolving Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) networks for time series analysis. To overcome the probability of stagnation at local optima and a slow convergence rate of the classical GWO algorithm, the newly proposed variant incorporates four distinctive search mechanisms. They comprise a nonlinear exploration scheme for dynamic search territory adjustment, a chaotic leadership dispatching strategy among the dominant wolves, a rectified spiral local exploitation action, as well as probability distribution-based leader enhancement. The evolving CNN-LSTM models are subsequently devised using the proposed GWO variant, where the network topology and learning hyperparameters are optimized for time series prediction and classification tasks. Evaluated using a number of benchmark problems, the proposed GWO-optimized CNN-LSTM models produce statistically significant results over those from several classical search methods and advanced GWO and Particle Swarm Optimization variants. Comparing with the baseline methods, the CNN-LSTM networks devised by the proposed GWO variant offer better representational capacities to not only capture the vital feature interactions, but also encapsulate the sophisticated dependencies in complex temporal contexts for undertaking time-series tasks
    • …
    corecore