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A B S T R A C T 

This paper proposes a novel hybrid algorithm to deal with an inverse problem of a large-

scale truss bridge. Grey Wolf Optimization (GWO) Algorithm is a well-known and widely 

applied metaheuristic algorithm. Nevertheless, GWO has two major drawbacks. First, this 

algorithm depends crucially on the positions of the leading Wolf. If the position of the 

leaderis far from the best solution, the obtained results are poor. On the other hand, GWO 

does not own capacities to improve the quality of new generations if elements are trapped 

into local minima. To remedy the shortcomings of GWO, we propose a hybrid algorithm 

combining GWO with Genetic Algorithm (GA), termed HGWO-GA. This proposed 

method contains two key features (1) based on crossover and mutation capacities, GA is 

first utilized to generate the high-quality elements (2) after that, the optimization capacity 

of GWO is employed to seek the optimal solutions. To assess the effectiveness of the 

proposed approach, a large-scale truss bridge is employed for model updating. The 

obtained results show that HGWO-GA not only provides a good agreement between 

numerical and experimental results but also outperforms traditional GWO in terms of 

accuracy. 

F. ASMA & H. HAMMOUM (Eds.) special issue, 4th International Conference on Sustainability in 

Civil Engineering ICSCE 2022, Hanoi, Vietnam, J. Mater. Eng. Struct. 9(4) (2022) 

1 Introduction 

For many years, Structural Health Monitoring (SHM) of large-scale civil infrastructures, such as bridges, dams, 

skyscrapers, etc, has been under substantial deliberation among the engineering community [1-4]. The goal of SHM is to 

prevent any catastrophic damages which may hinder the serviceability and lifecycle of the structures. Within a SHM system, 
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structural identification plays a vital role in ensuring its accuracy and effectiveness. It requires the integration of Finite 

Element (FE) model, data processing, model updating, and decision-making [5]. Experimental measurement is conducted to 

identify the physical characteristics of the structure; any changes in these properties will result in changes within the 

experimental measurement data. Hence in order to accurately identify the physical characteristics of the structure, it is vital 

to conduct experimental measurements and correlate the data from the experimental and the numerical model. The process 

of calibrating FE model to represent as closely as possible the dynamic characteristic of the real-life structure is called model 

updating. In model updating, mathematical techniques are applied extensively to minimize the difference between the 

experimental and the numerical model. Brownjohn et al. [6] proposed a novel method combining dynamic testing and modal 

analysis for model updating of a refurbished highway bridge. The result shows that the accuracy level for modal updating of 

the bridge model has increased to 50% more than before. Feng et al. [7] proposed a novel model updating method based on 

in-situ dynamic displacements instead of modal parameters to update a railway bridge. The results have shown much better 

accuracy in updating the bridge model when compared with the traditional method using modal parameters. Innovative 

methods using strain energy and modal flexibility are also introduced by Jaishi et al. in [8] and [9] to update and detect 

structural damage of beam-like structures with a high level of efficiency. Ren et al. [10] proposed an improved method using 

the response surface model for FE model updating of a full-size bridge. The method not only has a high level of accuracy but 

also requires less computational cost than the traditional sensitivity-based method.  

During the FE model updating process, especially for complex structures, one of the main issues researchers have to face 

is the tendency of the updating methods to get trapped in local minima instead of the global minima, which may result in a 

high level of errors of the updating result. To alleviate this problem, many researchers have turned to use Optimization 

Algorithm (OA) as an assisting tool to improve the effectiveness of FE model updating. With the ability to solve complex 

problems at a fast convergent rate, OA has attracted the attention of many researchers [11]. Hoa Tran et al. [12] presented 

the application of Particle Swarm Optimization (PSO) and GA for model updating and damage detection of a real-life truss 

bridge. The proposed method helps to reduce the difference between the experimental and numerical models significantly. 

Deng et al. [13] introduced GA with the response surface method to update a beam structure, with GA being implemented to 

find the best solution for the objective function. Jung et al. [14] introduced a modified GA to update a small-scale bridge with 

much higher accuracy in comparison with the traditional GA.  

In this paper, we introduce a novel model-updating technique using a combination of the GWO and GA to update the 

model of a large-scale railway bridge. The proposed method can overcome drawbacks of tradional GWO based on crossover 

and mutation operators of GA and wide space search capacities of GWO.  

The paper is organized as follows: after the introduction, section 2 presents the methodology of this work including 

GWO, GA, and a combination of GWO and GA. Model updating for Nam O bridge is introduced in section 3. Finally, some 

key conclusions are given. 

 

Fig. 1 – Hierarchy of grey wolf (dominance decreases from top down) 

2 Methodology 

2.1 Grey Wolf optimization algorithm 

The GWO was first introduced by Mirjalili et al. [15] in 2014. Since then, GWO has quickly gained attention from the 

research community as a powerful optimization tool. GWO is a metaheuristic algorithm inspired by the hunting behavior of 

grey wolf and their hierarchy system within a pack. Each wolf pack usually consists of 5 to 12 individuals, with a strict 
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hierarchical system (see Fig. 1Erreur ! Source du renvoi introuvable.) applied to the whole pack to ensure the efficient 

hunting and survivability of the pack. The mathematical model of GWO mimics this hierarchy pyramid of a grey wolf pack, 

as shown in Fig. 1. The best possible solution selected is denoted as alpha (𝛼), which represents the leader of the wolf pack 

in real life. The second and third best solutions are assigned as beta (𝛽) and delta (𝛿), respectively. The rest of the candidate 

solutions are assigned as omega (𝜔). In GWO, the hunting process is led by 𝛼, 𝛽, and 𝛿,𝜔 will strictly follow the three 

solutions. The hunting process of GWO consists of three main steps: Encircling prey, Hunting, and attacking. The details of 

each step are explained in section 2.3 of this paper. 

2.2 Genetic Algorithm 

Since its first introduction in 1973, GA has become one of the most widely used metaheuristic optimizations in solving 

various complex engineering problems. The optimization is inspired by Charles Darwin’s theory of biological evolution [16], 

which indicates the survivability of species through a process of genetic selection, crossover, and mutation. The selection 

process determines the selection of input individuals randomly using different selection methods such as Boltzmann selection, 

Roulette Wheel selection, etc. The selection also determines the convergence rate of GA in solving optimization problems. 

In this research, the Roulette Wheel selection is chosen since it can prevent premature convergence from happening. 

Crossover and Mutation operators are tasked to generate and diversify the next offspring by a genetic combination of the 

“parents” individuals and genetic mutation of the breeding. These three operators are repeated until reaching the maximum 

iteration numbers to obtain the best possible solution, thus, they enable this algorithm to be capable of searching for the global 

optimum required. 

2.3 Hybrid Grey Wolf algorithm and Genetic Algorithm 

In this paper, a hybrid algorithm combining GWO and GA is proposed with the aim of fusing the strengths of both 

composing algorithms. In GWO, although the number of omega individuals is much higher than that of the leader alpha, beta, 

and delta wolves, they depend entirely on the commands of those three groups. This is one of the main shortcomings of GWO 

where the omegas are only tasked to store the best values instead of joining the search process. To remedy this issue, the 

hybrid HGWO-GA applies the crossover and mutation process of GA to the omega individuals to re-select the leader among 

the omegas to join the search. This helps to avoid the missing of global minima as well as increasing the convergent rate of 

the search. The main steps of HGWO-GA are detailed as follows: 

Step 1: Encircling prey 

In real life, the first step of a wolf pack’s hunting process is to encircle the prey once they are identified. The encircling 

prey is mathematical modeled as Equation (1) and (2) below to calculate the distance between the wolf and the prey: 

�⃗⃗� = |�⃗⃗⃗� ⋅ 𝑋𝑝
⃗⃗ ⃗⃗  (𝑖𝑡) − 𝑋 (𝑡)| 

(1) 

𝑋 (𝑖𝑡 + 1) = 𝑋𝑝
⃗⃗ ⃗⃗  (𝑖𝑡) − 𝐴 ⋅ �⃗⃗�  

(2) 

 Where i𝑡  is the current iteration,  𝑋𝑝
⃗⃗ ⃗⃗  indicates the position of the prey, 𝑋  indicates the position of the wolf,𝐴 and �⃗⃗⃗�  

are the distance coefficient vectors, which are calculated as follows:  

𝐴 = 2𝑎 ⋅ 𝑟1⃗⃗⃗  − 𝑎  
(3) 

�⃗⃗⃗� = 2 ⋅ 𝑟2⃗⃗⃗   
(4) 

Where 𝑟1⃗⃗⃗  , 𝑟2⃗⃗⃗   are random vectors in  0, 1 , 𝑎  is a vector that decreases linearly from 2 to 0. 

Fig. 2illustrates the possible distances in 2D and 3D between the wolf and the prey as calculated in Equations (1) and 

(2). (𝑋, 𝑌) is the coordinates of the wolf’s position, and (𝑋 ∗, 𝑌 ∗)is the coordinates of the prey’s position accordingly. The 

wolf can update its position as the prey moves. The best possible position for the wolf can be adjusted by modifying the 

coefficient vectors. The random vectors in (3)and (4) allow the wolf to update its positions arbitrarily between all the points 
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in both the 2D and 3D spaces. This idea can also be applied to a larger search space where the wolves can update their 

positions in hyper-spheres shapes.   

       

Fig. 2 – 2D and 3D solutions 

Step 2: Hunting 

In the original GWO, once the prey is located and encircled, the leader alpha wolf will lead the pack for hunting. The 

beta and delta wolves can also join the hunt. However, the position of the prey is unknown in their search space, In the 

mathematical model of the grey wolf’s hunting process, the alpha individual is assumed to be the best candidate solution, and 

beta and delta individuals are the second and the third best candidates, respectively. These three candidate solutions will be 

stored and used to update the position for the omegas to follow the search.  

 

The original GWO depends entirely on the alpha, beta, and delta individuals to update the positions for the rest of the 

solution without taking advantage of the search ability of the remaining omegas. Therefore, this paper proposed an improved 

method using genetic algorithm to further develop the set of leaders within the omegas to guide the hunt, so-called HGWO-

GA. A percentage of the population 𝑝𝑥 is selected to increase the chance of finding the position of the best possible solution. 

Crossover and mutation processes are applied to the selected percentage of population 𝑝𝑥  to generate the best candidate 

solution denoted as 𝐷𝜁
⃗⃗ ⃗⃗  and 𝐷𝜂

⃗⃗ ⃗⃗  ,respectively. In this case, instead of updating the positions entirely from alpha, beta, and delta 

as shown in Equation (6), two additional means to update the position based on crossover (Xζ
⃗⃗⃗⃗ ) and mutation (Xη

⃗⃗ ⃗⃗ ) are added 

as  𝑋4
⃗⃗⃗⃗  and  𝑋5

⃗⃗⃗⃗  in Equation (7). The mathematical equations of the hunting step are shown below:  

𝐷𝛼
⃗⃗⃗⃗  ⃗ = |𝑊1

⃗⃗⃗⃗  ⃗ ⋅ 𝑋𝛼
⃗⃗ ⃗⃗  − 𝑋 |; 𝐷𝛽

⃗⃗ ⃗⃗  = |𝑊2
⃗⃗ ⃗⃗  ⃗ ⋅ 𝑋𝛽

⃗⃗ ⃗⃗  − 𝑋 |; 𝐷𝛿
⃗⃗ ⃗⃗  = |𝑊3

⃗⃗ ⃗⃗  ⃗ ⋅ 𝑋𝛿
⃗⃗ ⃗⃗  − 𝑋 |;

𝐷𝜁
⃗⃗ ⃗⃗ = |𝑊4

⃗⃗⃗⃗  ⃗ ⋅ 𝑋𝐶
⃗⃗ ⃗⃗  − 𝑋 |; 𝐷𝜂

⃗⃗ ⃗⃗  = |𝑊5
⃗⃗ ⃗⃗  ⃗ ⋅ 𝑋𝑀

⃗⃗ ⃗⃗  ⃗ − 𝑋 |
 

(5) 

𝑋1
⃗⃗⃗⃗ = 𝑋𝛼

⃗⃗ ⃗⃗  − 𝐴1
⃗⃗⃗⃗ ⋅ (𝐷𝛼

⃗⃗⃗⃗  ⃗), 𝑋2
⃗⃗⃗⃗ = 𝑋𝛽

⃗⃗ ⃗⃗  − 𝐴2
⃗⃗ ⃗⃗  ⋅ (𝐷𝛽

⃗⃗ ⃗⃗  ), 𝑋3
⃗⃗⃗⃗ = 𝑋𝛿

⃗⃗ ⃗⃗  − 𝐴3
⃗⃗ ⃗⃗  ⋅ (𝐷𝛿

⃗⃗ ⃗⃗  ) 

𝑋4
⃗⃗⃗⃗ = 𝑋𝜁

⃗⃗⃗⃗ − 𝐴4
⃗⃗ ⃗⃗  ⋅ (𝐷𝜁

⃗⃗ ⃗⃗ ), 𝑋𝜂
⃗⃗ ⃗⃗ = 𝑋𝜂

⃗⃗ ⃗⃗ − 𝐴5
⃗⃗ ⃗⃗  ⋅ (𝐷𝜂

⃗⃗ ⃗⃗  ) 

(6) 

𝑋 (𝑡 + 1) =
𝑋1
⃗⃗⃗⃗ + 𝑋2

⃗⃗⃗⃗ + 𝑋3
⃗⃗⃗⃗ + 𝑋4

⃗⃗⃗⃗ + 𝑋5
⃗⃗⃗⃗ 

5
 

(7) 

Fig. 3 illustrates the position updating process for alpha, belta, delta, zeta and eta in a 2D search space, respectively. 

Alpha, belta, delta, zeta, and eta wolves can locate and encircle the prey to guide the rest of the omega wolves to update their 

position around the prey. 

Step 3: Attacking prey. 

The moment the prey stops moving, the wolves shall end the hunt by attacking the prey. This process is mathematically 

modelled by decreasing the value of the vector linearly 𝑎 as mentioned in the first step. It is noted that the variation of 𝐴 can 



 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 9 (2022) 507–519  511 

 

also lead to a decrease in the value of𝑎 . When 𝐴  has a random value from  1, 1 , the next position of the search agent can 

be one of the points between the current position and the position of the prey. When 𝐴 < 1, the wolf will attack its prey, and 

when 𝐴 > 1, the hunt will continue. Fig. 3presents the conditions for the wolf to attack its prey. 

 

Fig. 3 – Position updating in HGWO-GA  

    

Fig. 3 – Attacking prey versus searching for prey 

Search for prey (exploration). 

In the original GWO, the grey wolves entirely depend on the position of the alpha, beta and delta while ignoring the 

search ability of the omegas. Therefore, HGWO-GA has included zeta and eta selected from the omegas to increase the search 

agent to make use of the crossover and mutation process of the GA. To extend the search for random values of the algorithm, 

the parameters A and C are defined as shown in Equation (3) and (4) above. When 𝐴 < 1, the wolf will attack its prey, and 

when 𝐴 > 1, the wolf will look for another prey instead. C is a random parameter which weights the importance of the 

position of alpha, beta, delta, zeta, and eta in hunting the prey. 𝐶 < 1 means the position is less important than the others 

while 𝐶 > 1 is vice versa. The randomness of the algorithm is also expressed through the crossover and mutation process of 

a specific percentage of population 𝑝𝑥 . This helps HGWO-GA get the most stochastic states during the search for optimal 

global solution and avoid getting trapped in local minima. 

In summary, the search process begins with the generation of a random population of grey wolves (candidate solutions) 

in the HGWO-GA algorithm. During the iteration, the alpha, beta, and delta wolves estimate the probable location of the 

prey. Each solution updates its position from the prey. Linearly decreasing parameter 𝑎  is reduced from 2 to 0 to emphasize 

the exploration and exploitation phases of the search algorithm. Candidate solutions tend to diverge from prey when |𝐴| > 1 

and converge towards the prey when |𝐴| < 1. Finally, the HGWO-GA algorithm terminates when the criteria are satisfied. 
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The flowchart of the HGWO-GA algorithm is presented in Fig. 4. 

 

Fig. 4 – Flowchart of HGWO-GA  

3 Model updating for Nam O bridge 

3.1 Introduction of Nam O bridge 

Nam O Bridge (see Fig. 5) is a truss bridge crossing the Cu De River in Da Nang city. The bridge was first built in 19𝑡ℎ 

century. Being destroyed by the war, the bridge was re-built in 2010 and is playing a vital role in connecting the North - 

South railway route.  

 

Fig. 5 – Nam O Bridge 

3.2 Numerical Model 

To predict the structural behaviour of the bridge, a FE model is constructed using a toolbox developed on MATLAB [17]  

 

Fig. 6 – FE model of Nam O bridge 
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The model has 137 nodes, 156 elements, and 356 Degrees of Freedom (DOFs). Truss members consist of upper chords, 

lower chords, vertical chords, diagonal chords, stringers, upper wind bracings, lower wind bracings, and struts as shown 

inTable 1.  

Table 1 – Cross-sectional properties of truss members 

Members 
Lower 

chord 

Upper 

chord 

Diagonal 

chord 

Vertical 

chord 

Upper 

wind 

bracing 

Lower 

wind 

bracing 

Stringer 
Transverse 

Beam 
Strut 

Area (𝑚2) 0.020 0.056 0.014 0.010 0.0036 0.0049 0.020 0.026 0.020 

Moment of 

Inertia 𝐼𝑦 (𝑚4) 
6.30×10−04 3.1×10−03 2.78×10−04 1.15×10−04 1.09×10−05 4.38×10−06 6.27×10−04 3.61×10−03 2.80×10−03 

Moment of 

Inertia 𝐼𝑧 (𝑚4) 
2.10×10−04 6.70×10−04 1.24×10−04 5.49×10−05 8.00×10−06 2.38×10−06 2.07×10−04 2.03×10−04 6.25×10−04 

𝐼𝑦 is the moment of inertia of the strong axis (the same direction as the global 𝑌), and 𝐼𝑧 is the moment of inertia of the 

weak axis (the same direction as the global 𝑍).  

Beam elements with 6 DoFs at each node including 3 translational and rotational displacements in the 𝑥, 𝑦, and 𝑧 

directions are used. The 𝑋-axis is along the bridge length, the 𝑍-axis is vertical, and the 𝑌-axis coincides with the river flow 

direction. Bridge bearings and truss joints are modelled using spring elements. The material propeties of elements are 

summerised in Table 2. 

Table 2 – Material properties 

Elements ID 
Young's modulus Poison’s ratio Volumetric mass density Stiffness 

Gpa 𝝁 kg/m3  

All element 𝑬𝟏 23.00 0.3 7850 Inf 

3.3 Measurements. 

 Test description 

The modal identification test was performed on the first span. To acquire sufficient data for the structural dynamic 

identification and achieve compatibility with the numerical model, ideally, all directions (translational and rotational 

displacements in the 𝑥, 𝑦, and 𝑧 directions) of all DOFs of the bridge should be composed of in the measurement grid. 

However, because of the existing instrumentation and terrain difficulties, some displacement components (slaved nodes) 

could be used. Hence, there were 64 measured nodes in total, configured in two directions (𝑥 and 𝑦 or 𝑦 and 𝑧) of DOFs in 

which, 40 nodes were fixed, and 24 other ones were roving. 

 

 Fig. 7 – The measurement grid [12] 
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An overview of the measurement grid is depicted in Fig. 7 and Table 3. The red points were fixed sensors, whereas the 

blue ones represented the roving ones.  

Table 3 – The overview of 8 setups.  

Setups Setup 1 Setup 2 Setup 3 Setup 4 Setup 5 Setup 6 Setup 7 Setup 8 

Fixed 

channels 

106𝑧 106𝑧 

 
106𝑧 106𝑧 106𝑧 106𝑧 106𝑧 106𝑧 

206𝑦 206𝑦 206𝑦 206𝑦 206𝑦 206𝑦 206𝑦 206𝑦 

302𝑧 302𝑧 302𝑧 302𝑧 302𝑧 302𝑧 302𝑧 302𝑧 

402𝑦 402𝑦 402𝑦 402𝑦 402𝑦 402𝑦 402𝑦 402𝑦 

Roving 

channels 

101𝑧 102𝑧 102𝑦 101𝑦 102𝑦 100x 403𝑦 201𝑦 

103𝑧 104𝑧 103𝑦 105𝑦 103𝑦 100𝑦 404𝑦 207𝑦 

301𝑧 107𝑧 104𝑦 107𝑦 104𝑦 300𝑦 405𝑦 401𝑦 

303𝑧 304𝑧 304y 301𝑦 304𝑦 300𝑥 406𝑦 407𝑦 

305𝑧 306𝑧 306𝑦 303𝑦 306𝑦 308𝑥   

 307z 307𝑦 305𝑦 307𝑦    

Ten accelerometers were used for signal acquisition. In this case, 4 sensors played a role as reference sensors, and the 

remaining ones were roving. The division of sensors into “reference” and “roving” is necessary when the number of available 

sensors is less than the number of DOFs that need to be measured. It is noted that the fixed sensors are located in locations 

with high sensitivity and most reflect the structural dynamic behavior. The location of these sensors was determined based 

on experience with similar structures or a preliminary FEM. In addition, the location of the fixed sensors can be determined 

based on the optimal sensor placement algorithms. A fixed number of sensors should be used as much as possible since it not 

only shortens the field operation time but also possibly increases the accuracy of the measurement results. In the case of 

multiple setups, the remaining roving sensors are used to cover information of other points, then connected with fixed sensors 

to reflect the overall behaviour of the structure.  

Accelerometer (PCB-393B12) sensors with high sensitivity from 965 to 1,083 mV/m/𝑠2 were used for signal collection. 

It is noted that the sensitivity of these sensors needs to be carefully evaluated because this type of bridge often generates high 

amplitude vibration under the trainload. Therefore, the application of sensors with a too high sensitivity may lead to clipping 

the response or distortion. For this reason, the vibration of the bridge was only considered after a train passing. 

 Data acquisition process 

    A 12-channel data acquisition system with 3 NI 9234 modules (Fig. 8) was used for recording voltage signals from 

sensors and then converting them to digital data. To control the signal acquisition system, read, and save the data, a portable 

computer was utilised. 

 

Fig. 8 – Data acquisition process 

The time to complete each setup is about 10-20 minutes with a sampling frequency of 1651 Hz. Therefore, there were 

approximately 990.600 – 1.981.200 data points for each setup. Some setups required a shorter time depending on the 
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movement of the train. Basically, 10 minutes are enough to collect sufficient data for structural dynamic analysis. The 

measurement campaign was conducted for two days shows field measurement setups. 

(a) 

 

(b) 

 

Fig. 9 – Field measurement setups. 

(a) Setup 1 

 

 

(b) Setup 2 

 

Fig. 10 - The stabilization diagram from setups 1-2 

 Data pre-processing 

In order to deal with measured data, Macec software [18] was employed. The process of data pre-processing consists of 

four main steps as follows: 

First, structural geometrical features were built for visualization purposes.  

Establish measured parameters including measurement units, sample frequency, amplification factors, data types, 

sensitivities, labels, and so on for each channel. 
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Select the appropriate frequency range for the considered structure. For this type of large-scale truss bridge, the frequency 

range of interest is around 0-20 Hz. Therefore, it is necessary to remove the irrelevant frequency ranges to reduce the data 

and facilitate System Identification (SI).  

Connect measured data for the nodes including sensor positions, and measured directions. 

 Modal analysis 

To acquire a clear stabilization diagram, some criteria need to be established. (1% of deviation for natural frequency, 1% 

of deviation for mode shape, 5% of deviation for damping ratio). These chosen values were derived from experience with 

numerous other analogous bridges. The stabilization diagrams of setups 1-2 are depicted in Fig. 10.  

Structures, especially bridges, often contain multiple different vibration modes. Nevertheless, the lower vibration modes 

tend to play a more important role and most reflect the structural dynamic characteristics. Hence, in this work, we select the 

first four modes for model updating. The natural frequencies and mode shapes of the first four modes are shown in Fig. 11 

 

Mode 1; First lateral; 𝑓=1,45 Hz 

 

Mode 2; First torsion; 𝑓=3,11 Hz 

 

Mode 3; Second lateral; 𝑓=3,28 Hz 

 

Mode 4; First bending; 𝑓=4,62 Hz 

Fig. 11 – Measured modes [12] 

3.4 Model updating 

In this section, HGWO-GA is applied for model updating of Nam O bridge. To compare with HGWO-GA, traditional 

GWO is also applied. The number of populations used for both algorithms is 50; coefficients of crossover and mutation are 

0.7, and 0.2respectively. The objective function is the error between the calculated and measured natural frequencies and 

mode shapes of the first 4 modes. The upper and lower bounds of boundary condition variables are described in Table 4. 

These values are determined based on experience as well as other published studies [12]. The stopping condition of the 

algorithm is the error of the objective function is less than 10−7or the maximum number of iterations is 100. 
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Table 4 – The upper and lower bounds of boundary condition variables 

Boundary 𝑬 𝒌𝟏 𝒌𝟐 𝒌𝟑 𝒌𝟒 𝒌𝟓 𝒌𝟔 

Lower 1.9 1.0 1.0 1.0 1.0 1.0 1.0 

Upper 2.2 2.0 2.0 2.0 2.0 2.0 2.0 

Note: unit of 𝑘1,𝑘2,𝑘3,𝑘4, is 1010 N/m, unit of 𝑘5,𝑘6 is 107N/m, unit of 𝐸 is 105 MPa 

Fig. 12 shows the convergence of GWO and HGWO-GA. The red line represents the result of GWO, whereas the purple 

line indicates that of HGWO-GA. The results show that HGWO-GA has superior performance compared to the original 

GWO. Although the starting point of HGWO-GA is not as good as that of GWO, after 30 iterations, the convergence level 

of HGWO-GA surpasses that of GWO. GWO is stuck in local optimal regions, only jumping in the 5𝑡ℎ and 55𝑡ℎ iterations.It 

is understandable because this algorithm is crucially dependent on alpha, beta, and delta making the algorithm and does not 

cross and mutation operators to improve the results of the next generations. 

 

Fig. 12 – Convergence of model updating by GWO and HGWO-GA  

Table 5 summarizes the results of natural frequencies before and after model updating using GWO and HGWO-GA. The 

errors between numerical and experimental results using GWO and HGWO-GA are 0.67% and 0.59%, respectively, which 

is better than the pre-updated results, 1.26%. 

Table 5 – Natural frequencies before and after model updating using GWO and HGWO-GA  

Mode Frequency 

 Measurement 
Before Model 

updating 

Model updating - 

GWO 

Model updating - 

HGWO-GA 

  Hz Hz Hz Hz 

1 1.45 1.47 (1.38%) 1.45 (0.31%) 1.45 (0.30%) 

2 3.11 3.06 (1.61% 3.10 (0.15%) 3.10 (0.08%)  

3 3.28 3.29 (0.30% 3.28 (0.12%) 3.28 (0.02%) 

4 4.62 4.7 (1.73%) 4.52 (2.08%) 4.52 (1.98%) 

Fig. 13shows a good correspondence between calculated and measured mode shapes. The lowest and highest MAC 

values are 0.945 and 0.997, respectively. MAC calculated by HGWO-GA is better than GWO, specifically MAC of mode 4 

calculated by HGWO-GA and GWO is 0.946 and 0.945, respectively. 
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Fig. 13 – MAC values after model updating using (a) GWO, (b) HGWO-GA  

Table 6 shows the stiffness of the bearings and truss joint and the elastic modulus of the truss members. After updating, 

the elastic modulus of the truss members decreased, while the stiffness of the bearings and truss joint remained within limits. 

Table 6 – Result of variables before and after updating 

  𝒌𝟏 𝒌𝟐 𝒌𝟑 𝒌𝟒 𝒌𝟓 𝒌𝟔 𝑬 

Before 1.30E+10 1.30E+10 1.30E+07 1.30E+07 1.50E+10 1.50E+10 2.00E+11 

GWO 1.90E+10 1.42E+10 1.59E+07 1.03E+07 1.38E+10 1.45E+10 1.94E+11 

HGWO-GA  1.49E+10 1.00E+10 1.00E+07 1.00E+07 1.30E+10 1.00E+10 1.95E+11 

4 Conclusions 

This paper proposes a workable solution to deal with the inverse problems of a truss bridge using a hybrid algorithm 

combing GWO and GA. This proposed algorithm can remedy the shortcomings of traditional GWO and generate an updated 

model with a high degree of accuracy. To validate the effectiveness of the proposed method, a measurement campaign was 

carried out on the field. For comparison, traditional GWO is also employed. From the obtained results, we have drawn the 

following conclusions 

Both GWO and HGWO-GA provide a good agreement between numerical and experimental results. 

HGWO-GA outperforms GWO in terms of accuracy not only in natural frequencies but also in MAC values.  

Further investigation should be carried out to assess the efficiency of HGWO-GA to tackle optimization problems of 

other structures 
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