298 research outputs found

    Solution of the Multi-objective Economic and Emission Load Dispatch Problem Using Adaptive Real Quantum Inspired Evolutionary Algorithm

    Get PDF
    Economic load dispatch is a complex and significant problem in power generation. The inclusion of emission with economic operation makes it a Multi-objective economic emission load dispatch (MOEELD) problem. So it is a tough task to resolve a constrained MOEELD problem with antagonistic multiple objectives of emission and cost. Evolutionary Algorithms (EA) have been widely used for solving such complex multi-objective problems. However, the performance of EAs on such problems is dependent on the choice of the operators and their parameters, which becomes a complex issue to solve in itself. The present work is carried out to solve a Multi-objective economic emission load dispatch problem using a Multi-objective adaptive real coded quantum-inspired evolutionary algorithm (MO-ARQIEA) with gratifying all the constraints of unit and system. A repair-based constraint handling and adaptive quantum crossover operator (ACO) are used to satisfy the constraints and preserve the diversity of the suggested approach. The suggested approach is evaluated on the IEEE 30-Bus system consisting of six generating units. These results obtained for different test cases are compared with other reputed and well-known techniques

    A conservative framework for obtaining uncertain bands of multiple wind farms in electric power networks by proposed IGDT-based approach considering decision-maker's preferences

    Get PDF
    Exploiting clean energy resources (CERs) is an applicable way to enhance sustainable development and have the cleaner production of electricity. On the other hand, variability and intermittency of these clean resources are the important disadvantages for determining the reliable operation of electrical grids. Thus, using the uncertainty modeling techniques seems necessary to have more practical values for the decision-making variables. The current paper demonstrates a novel architecture based on Information Gap Decision Theory (IGDT) to model the randomness of multiple Wind Farms (WFs) existing in electric power networks. Note that employing only the IGDT technique cannot consider the preferences defined by the decision-maker. In contrast, the proposed method tackles this issue by considering different values for radii of uncertainty related to the uncertain parameters. It has been proven that the presented approach is time-saving if compared with Monte Carlo Simulation (MCS) and the Epsilon-constraint-based-IGDT. Moreover, the execution time of the presented methodology does not considerably depend on the number of WFs for a power system. It means that if the number of WFs increases in a particular case study, consequently, the execution time does not noticeably rise if compared with the MCS and the Epsilon-constraint-based-IGDT. Furthermore, the equivalent Mixed Integer Linear Programming (MILP) of the original model is employed to guarantee the optimum solution. The performances of the presented methodology have been demonstrated by utilizing IEEE 30 BUS and IEEE 62 BUS systems.© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Review of Metaheuristic Optimization Algorithms for Power Systems Problems

    Get PDF
    Metaheuristic optimization algorithms are tools based on mathematical concepts that are used to solve complicated optimization issues. These algorithms are intended to locate or develop a sufficiently good solution to an optimization issue, particularly when information is sparse or inaccurate or computer capability is restricted. Power systems play a crucial role in promoting environmental sustainability by reducing greenhouse gas emissions and supporting renewable energy sources. Using metaheuristics to optimize the performance of modern power systems is an attractive topic. This research paper investigates the applicability of several metaheuristic optimization algorithms to power system challenges. Firstly, this paper reviews the fundamental concepts of metaheuristic optimization algorithms. Then, six problems regarding the power systems are presented and discussed. These problems are optimizing the power flow in transmission and distribution networks, optimizing the reactive power dispatching, optimizing the combined economic and emission dispatching, optimal Volt/Var controlling in the distribution power systems, and optimizing the size and placement of DGs. A list of several used metaheuristic optimization algorithms is presented and discussed. The relevant results approved the ability of the metaheuristic optimization algorithm to solve the power system problems effectively. This, in particular, explains their wide deployment in this field

    Optimize Scheduling of Generating Unit for Economic Load Dispatch using ANN: A Review

    Get PDF
    Electrical power frameworks are structured and worked to meet the nonstop variety of intensity request. In power framework limiting, the task cost is critical. Monetary Load Dispatch (ELD) is a strategy to plan the power generator yields regarding the heap requests, and to work the power framework most financially, or at the end of the day, we can say that primary target of financial load dispatch is to distribute the ideal power age from various units at the least cost conceivable while meeting all framework imperatives Over the years, numerous endeavors have been made to tackle the ELD issue, consolidating various types of requirements or different goals through different numerical programming and advancement systems. In any case, these traditional dispatch calculations require the steady cost bends to be monotonically expanding or piece-wise straight. The information/yield qualities of present day units are inalienably profoundly nonlinear (with valve-point impact, rate limits and so forth) and having numerous nearby least focuses in the cost work. Their qualities are approximated to meet the prerequisites of traditional dispatch calculations prompting imperfect arrangements and thusly, bringing about gigantic income misfortune over the time. Thought of profoundly nonlinear qualities of the units requires exceptionally vigorous calculations to abstain from stalling out at neighborhood optima

    An efficient and reliable scheduling algorithm for unit commitment scheme in microgrid systems using enhanced mixed integer particle swarm optimizer considering uncertainties

    Get PDF
    The use of an electrical energy storage system (EESS) in a microgrid (MG) is widely recognized as a feasible method for mitigating the unpredictability and stochastic nature of sustainable distributed generators and other intermittent energy sources. The battery energy storage (BES) system is the most effective of the several power storage methods available today. The unit commitment (UC) determines the number of dedicated dispatchable distributed generators, respective power, the amount of energy transferred to and absorbed from the microgrid, as well as the power and influence of EESSs, among other factors. The BES deterioration is considered in the UC conceptualization, and an enhanced mixed particle swarm optimizer (EMPSO) is suggested to solve UC in MGs with EESS. Compared to the traditional PSO, the acceleration constants in EMPSO are exponentially adapted, and the inertial weight in EMPSO decreases linearly during each iteration. The proposed EMPSO is a mixed integer optimization algorithm that can handle continuous, binary, and integer variables. A part of the decision variables in EMPSO is transformed into a binary variable by introducing the quadratic transfer function (TF). This paper also considers the uncertainties in renewable power generation, load demand, and electricity market prices. In addition, a case study with a multiobjective optimization function with MG operating cost and BES deterioration defines the additional UC problem discussed in this paper. The transformation of a single-objective model into a multiobjective optimization model is carried out using the weighted sum approach, and the impacts of different weights on the operating cost and lifespan of the BES are also analyzed. The performance of the EMPSO with quadratic TF (EMPSO-Q) is compared with EMPSO with V-shaped TF (EMPSO-V), EMPSO with S-shaped TF (EMPSO-S), and PSO with S-shaped TF (PSO-S). The performance of EMPSO-Q is 15%, 35%, and 45% better than EMPSO-V, EMPSO-S, and PSO-S, respectively. In addition, when uncertainties are considered, the operating cost falls from 8729.87to8729.87 to 8986.98. Considering BES deterioration, the BES lifespan improves from 350 to 590, and the operating cost increases from 8729.87to8729.87 to 8917.7. Therefore, the obtained results prove that the EMPSO-Q algorithm could effectively and efficiently handle the UC problem

    Optimization Methods Applied to Power Systems â…¡

    Get PDF
    Electrical power systems are complex networks that include a set of electrical components that allow distributing the electricity generated in the conventional and renewable power plants to distribution systems so it can be received by final consumers (businesses and homes). In practice, power system management requires solving different design, operation, and control problems. Bearing in mind that computers are used to solve these complex optimization problems, this book includes some recent contributions to this field that cover a large variety of problems. More specifically, the book includes contributions about topics such as controllers for the frequency response of microgrids, post-contingency overflow analysis, line overloads after line and generation contingences, power quality disturbances, earthing system touch voltages, security-constrained optimal power flow, voltage regulation planning, intermittent generation in power systems, location of partial discharge source in gas-insulated switchgear, electric vehicle charging stations, optimal power flow with photovoltaic generation, hydroelectric plant location selection, cold-thermal-electric integrated energy systems, high-efficiency resonant devices for microwave power generation, security-constrained unit commitment, and economic dispatch problems

    The doctoral research abstracts. Vol:6 2014 / Institute of Graduate Studies, UiTM

    Get PDF
    Congratulations to Institute of Graduate Studies on the continuous efforts to publish the 6th issue of the Doctoral Research Abstracts which ranged from the discipline of science and technology, business and administration to social science and humanities. This issue captures the novelty of research from 52 PhD doctorates receiving their scrolls in the UiTM’s 81st Convocation. This convocation is very significant especially for UiTM since we are celebrating the success of 52 PhD graduands – the highest number ever conferred at any one time. To the 52 doctorates, I would like it to be known that you have most certainly done UiTM proud by journeying through the scholastic path with its endless challenges and impediments, and by persevering right till the very end. This convocation should not be regarded as the end of your highest scholarly achievement and contribution to the body of knowledge but rather as the beginning of embarking into more innovative research from knowledge gained during this academic journey, for the community and country. As alumni of UiTM, we hold you dear to our hearts. The relationship that was once between a student and supervisor has now matured into comrades, forging and exploring together beyond the frontier of knowledge. We wish you all the best in your endeavour and may I offer my congratulations to all the graduands. ‘UiTM sentiasa dihati ku’ Tan Sri Dato’ Sri Prof Ir Dr Sahol Hamid Abu Bakar , FASc, PEng Vice Chancellor Universiti Teknologi MAR
    • …
    corecore