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Abstract— Economic load dispatch is a complex and significant problem in power generation. The inclusion of emission with economic 

operation makes it a Multi-objective economic emission load dispatch (MOEELD) problem. So it is a tough task to resolve a constrained 

MOEELD problem with antagonistic multiple objectives of emission and cost. Evolutionary Algorithms (EA) have been widely used for solving 

such complex multi-objective problems. However, the performance of EAs on such problems is dependent on the choice of the operators and 

their parameters, which becomes a complex issue to solve in itself. The present work is carried out to solve a Multi-objective economic emission 

load dispatch problem using a Multi-objective adaptive real coded quantum-inspired evolutionary algorithm (MO-ARQIEA) with gratifying 

all the constraints of unit and system. A repair-based constraint handling and adaptive quantum crossover operator (ACO) are used to satisfy 

the constraints and preserve the diversity of the suggested approach. The suggested approach is evaluated on the IEEE 30-Bus system consisting 

of six generating units. These results obtained for different test cases are compared with other reputed and well-known techniques. 

Keywords- power system; meta-heuristics; multi-objective; economic load dispatch, Quantum inspired Evolutionary Algorithms; 

 

Nomenclature 

tfcos  Fuel cost function 
emissionf  Emission function 

)( jj PGC  Fuel cost of jth unit )( jj PGE  Emission from jth units 

jjj zyx ,,  
Fuel cost coefficients 

jjjj cba ,,, j  Emission coefficients 

N Number of generating units 
demandP  Power demand of consumers 

maxmin
, jj PGPG  

Minimum and maximum power 

generation limits 
lossP  Transmission Power losses 

jPG  Power generation of jth unit 
,, 01 jj BB  00B

 
Coefficient of power losses 
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I.  INTRODUCTION  

The raise in the electric power demand every year leads to a 

focus on the profitable use of energy resources. The efficient use 

of energy sources and proper scheduling of the power-generating 

units are important aspects to generate power at a lower cost. 

Economic Load Dispatch is an important process in electrical 

power generation. The prime objective of this process is to 

minimize the cost. The present work is focused on the Economic 

load dispatch problem. Economic load dispatch (ELD) is a 

complex, non-aligned constrained optimization process of 

power generation level allotment to the power generating unit at 

the lowest possible cost of generation. The prime target of the 

ELD is to decrease the fuel cost of power production by 

gratifying all the constraints of the power generating units. The 

prime constraints are load balance constraint, and maximum and 

minimum power generation bounds [1].  A particle swarm 

optimization (PSO) technique is used to deal with an economic 

load dispatch problem (ELDP) [2] with two different unit tests 

(3 units and 6 units) systems. All the constraints are gratified in 

this work. An optimal ELD has a great impact on the stability, 

quality, and safety of the system. So, it becomes an important 

and complex task to solve ELDP to overcome these issues. A 

Jaya algorithm is used to solve the ELDP [3] to enhance the 

system stability, and safety. The valve point impact is also 

considered to reduce the cost of power generation. A Tasmanian 

devil optimization algorithm (TDOA) inspirited by the food 

search method of the Tasmanian devil is used to carry out the 

ELDP [4]. The prime focus of the suggested approach is on 

optimal dispatch and cost reduction while ignoring other issues. 

The results of the suggested approach are found quite effective. 

ELD has a significant role in emission reduction, lowering fuel 

costs, and conservation of energy. A fitness-dependent optimizer 

(FDO) approach along with the weight factor is used to solve the 

ELDP [5] to meet the fittest possible result to the problem. The 

suggested work carried out is to reduce emissions, losses, and 

cost reduction. A 24-unit test case is used to test the proposed 

approach of the FDO. Similar work to [3] is also carried out in 

[6] considering the effect of valve point loading to solve ELDP 

with constraint satisfaction. The ELDP is solved using the hybrid 

approach of the gravitational Search algorithm (GSA) and hill 

climbing algorithm (HCA). The current hybrid algorithm was 

tested on a 15-unit system. A teaching and learning-based 

optimization algorithm (TLBOA) is used to resolve an ELDP 

[7]. The TLBOA was tested on a six-unit test case with 

constraint satisfaction. 

A hybrid algorithm of the simplex search method (SSM) and 

artificial algae algorithm (AAA) is for the solution of an ELDP 

[8] addressed as a hybrid artificial algae algorithm (HAAA). The 

AAA algorithm is inspired by the life cycle of algae [8]. A 

similar approach to [3,6] is used in [9] considering the multiple 

fuels and loading effect of valve point to carry out an ELD 

problem using a crow search algorithm (CSA). The results of the 

suggested approach are found satisfactory. A grid service-based 

model of ELDP is suggested in [10] for the multi-area system. 

The suggested model is designed wonderfully so that each node 

is capable to provide a feasible solution for EDP. The utilization 

of a reliability indicator to settle an ELD problem with enhanced 

reliability is suggested in [11]. The exchange market algorithm 

(EMA) is used to search for the optimal ELD solution. A test 

case of 26 units is used for testing the efficiency of the algorithm 

to enhance reliability and reduce the cost of operation. 

Most of the ELDPs have a prime objective to reduce fuel 

costs and are solved as a solo-objective problem. The interest of 

the researcher is increasing to carry out a manifold objectives 

ELD problem. The most common second objective included in 

ELDP is the Emission reduction approach to solve the BI-

Objective/Multi-objective Economic Emission Load Dispatch 

Problem (BOEELDP/ MOEELDP). There are other objectives 

like turbine valve point loading, reliability, stability, etc also 

considered in different works suggested further.  A differential 

evolution algorithm is utilized for the solution of the multi-

objective EELDP (MOEELDP) to minimize the emission and 

the cost of fuel consumption [12]. The suggested approach is 

verified on the IEEE 30-bus test case system and (6 units and 40 

units) test case systems.  The suggested approach can lower the 

emission and cost of generation. A non-dominated sorting 

differential evolution algorithm (NS-DEA) is applied to solve 

the MOEELD problem [13]. The suggested NSDEA is capable 

to provide satisfactory and improved results. A bacterial colony 

chemo-taxis algorithm (BCCA) is used to solve a MOEELDP in 

[14] considering the reduction of CO2, SO2, and NO2.  The 

suggested BCCA can achieve the environmental objective with 

a low cost of fuel for power generation at fast convergence. A 

hybrid approach of steady-state genetic algorithm (SSGA) and 

ant colony optimization algorithm (ACOA) is used to figure out 

the solution for an economic emission load dispatch (EELD) 

problem [15]. The suggested technique attains robust nature and 

solves the EELD problem in a constrained environment.  An 

approach of non-dominated sorting genetic algorithm II 

(NDSGA-II) is applied to carry out the MOEELD problem [16] 

considering the emission index. The NSGA-II is also used to 

deal with a MOEELD in [17] considering adaptive crowding 

distance. The results are found very impressive in comparison to 

other algorithms. A multi-objective bacterial foraging (MOBF) 

algorithm is used to solve a MOEELD problem [18]. The 

proposed MOBFA used the IEEE 30-bus system consisting of 

six generators to evaluate the efficiency of the current method. 

The findings prove the capability of the suggested technique.  A 

hybrid method consisting of a local search (LS) and a Genetic 

algorithm (GA) is used to find the solution to a MOEELD 

problem [19]. The current work also adopts a repair-based 
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constraint handling technique and this technique is applied to 

repair the constraints. The present algorithm is evaluated on the 

IEEE 30-bus system consisting of six generating units and the 

outcomes support the capability of the algorithm. A combined 

approach of modified population variant differential evolution 

algorithm (MPVDEA) and modified NSGA-II (MNSGA-II) is 

applied to solve a MOEELD problem along a special operator to 

prevent \ convergence issue [20]. The suggested hybrid method 

was tested on various IEEE test systems to analyze the quality 

and efficiency of the algorithm. A moderate random search 

particle swarm optimization algorithm (MRPSO) was used to 

solve a MOEELD problem [21]. The testing of the suggested 

MRPSO was completed on IEEE 30 Bus system and the 

objective of emission and economic load dispatch with effective 

results are obtained. The particle swarm optimization (PSO) is 

also applied [22] to carry out the multi-area economic load 

dispatch (MAELD) problem. 

A multi-objective PSO (MOPSO) is used to solve an EELDP 

in [23] along with a test case of the IEEE system (30 bus system). 

The suggested MOPSO is capable of providing enhanced load 

allocation in comparison to other techniques. An NSGA_II is 

applied to clarify the solution for an emission-based ELD 

problem [24]. The suggested technique was also verified on 

IEEE (30-bus) system. The outcomes obtained are found 

competitive with other known methods. The works suggested in 

[1-11] are based on a single-objective ELDP.  The work 

suggested in [12-24] and [27-31] is focused on the emission-

based Multi-objective economic emission load dispatch problem 

(MOEELDP). The ELDP may be formulated as a solo-objective, 

Bi-objective, or multi-objective problem depending upon the 

system’s environment and researchers. The earlier discussed 

ELD problem has been solved in a constrained environment with 

various kinds of solution methods.  A variety of solution 

methods and algorithms are suggested in various works during 

different periods. Some other works are also considered in the 

literature survey. The NSGA-II is applied in [27] to solve a 

MOELDP. Similarly, the MOEELDP problems are solved in 

[28-30] by the authors using different algorithms and test cases. 

Some of the test cases from this work are also adopted in the 

current work. A multi-objective EELDP is carried out in [31] 

using a multi-objective stochastic search algorithm (MOSST).  

All the work discussed in [1-31] suggests various types of 

solution techniques (classical methods, nature-inspired methods, 

and hybrid methods) to figure out the ELDP with single/multiple 

objectives. 

Today the evolutionary algorithms are standing in the front 

row of solution methods/techniques to carry out a complex, 

optimization problem with different objectives in a constrained 

environment [25-26]. The evolutionary algorithms (EAs) are 

capable to find the fittest solution in the problem solving of ELD 

problems and other problems. The EAs have also some 

limitations like the issue of premature convergence, slow 

convergence issues, a requirement for efficient parameter tuning, 

etc. the performance of the EAs depends on different operator 

and input parameters used to settle the problem. EAs are not able 

to differentiate between the prime function and the various 

constraints of the system. So, EAs require a separate method to 

handle and satisfy the various constraints of the generating units 

and system. All issues discussed above are resolved by 

suggesting the enhanced variant of the Quantum-inspired 

evolutionary algorithm (QIEA).  

The current work is carried out to investigate the 

effectiveness of the suggested MO-ARQIEA in solving the 

EELDP and evaluate various parameters concerned with the 

problem. The present work is carried out using a bi-objective 

Adaptive real coded Quantum inspired evolutionary algorithm 

(MO-ARQIEA). The EELDP is solved efficiently in the present 

work by overcoming all issues faced by EAs. The suggested 

algorithm is inspired by quantum mechanics principles and it is 

structured as an evolutionary algorithm [25]. The suggested 

MO-ARQIEA is structured as a non-dominated sorting approach 

in the EAs framework with the adoption of quantum principles 

and real coded variables to solve a bi-objective EELDP. The 

advantage of the quantum principle is taken to overcome the 

issues of EAs and makes ARQIEA more efficient in comparison 

to ordinary EAs. The suggested work is arranged in different 

segments. The first segment provides an introduction to the 

EELD problem and literature survey. The formation of the 

Multi-objective EELD problem is provided in the second 

segment. The third segment introduces the ARQIEA and the 

application of ARQIEA to solve the EELDP with different test 

cases given in segment 4.  The results are provided in segment 

five and the conclusion is given in segment six and followed by 

references. 

II. FORMATION OF MULTI-OBJECTIVE ECONOMIC 

AND EMISSION DISPATCH PROBLEM (MO-EELDP) 

The cost of fuel depends upon the amount of total power 

generation from the electrical power generating units. The 

EELD problem is carried out to reduce the cost as a prime 

objective along with emission reduction as a second objective. 

The desired objective function is shown in equation (1).  


=

=
N

j

jjt PGCf
1

cos )(  $/hr.       (1) 

The fuel cost for the N electrical power generating units is 

given in equation (2) with the cost coefficients of the fuel 

function. Only the fuel cost ($/hr) is considered in the formation 

any other cost is not included in the objective function [23]: 

2
)( jjjjjjj PGzPGyxPGC ++=       (2) 

The second objective in the current work is the Emission 

reduction function. The emission function is given in equation 
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(3). The prime objective in the emission function is to 

minimization of the emission (ton./hr.) from the generating 

units.  


=

=
N

j

jjemission PGEf
1

)(  ton/hr.         (3) 

The emission value and the coefficient of the emission 

function are provided in equation (4). The emission level of jth 

unit depends upon the emission coefficients of the electrical 

power generating unit and the level of power produced from the 

unit.   

e jj
PG

jjjjjjjj PGcPGbaPGE


+++=
2

)(  (4) 

 

CONSTRAINTS 

Constraints and Constraint handling is the essential part of 

the constrained optimization problem. The present work also 

regarded the constraint of the power-generating units and the 

system.  The constraints are efficiently regarded in the solution 

of the suggested BI-EELDP.  

• Power generation limit constraint: the generating unit must 

regard the maximum and minimum power generation 

bounds of the units as provided in the constraint limit. This 

is a box constraint and the power generation from the unit 

must remain within the prescribed limit as given in 

equation (5) 

maxmin
 jjj PGPGPG  ,             (5) 

• Power demand Constraint: the power generated from all the 

electrical power generating units must full fill the demand 

of the consumers and overcome transmission losses. So, the 

sum of consumer demand and the transmission losses will 

be equal to generated power as given in equation (6) 


=

+=
N

j

lossdemandj PPPG
1

                 (6) 

• Power losses evaluation: Kron’s loss coefficients (32) are 

utilized to evaluate the loss level in the present work. the 

evaluation of losses is carried out as suggested in equation 

7 (23): 


== =

++=
N

i

ij

N

j

N

j

jjjloss BPGBPGBPGP
1

000

1 1

1
      

(7) 

Cost reduction and emission reduction are two goal 

functions that are incompatible with one another. So it becomes 

a very complex and difficult task to solve the BI-EELDP with 

achieving both objectives. Today researchers are more 

concerned about emission reduction so the emission objective 

function also becomes equally important to achieve as the cost 

reduction function. The emission from generating units contains 

various kinds of pollutants like carbon particles, CO2, SO2, NO2, 

and other harmful gases. The awareness of people about these 

pollutants also compels the utility to reduce the emission. 

Constraint satisfaction is also important to find an acceptable 

feasible solution to the problem.  

III. PROPOSED BI-OBJECTIVE ADAPTIVE REAL 

CODED QUANTUM-INSPIRED EVOLUTIONARY 

ALGORITHM (BO-ARQIEA) 

The quantum-inspired evolutionary algorithms (QIEA) 

were suggested by Narayanan and Moore [33]. The authors 

solved the traveling salesman problem using the QIEA. A 

detailed survey on QIEA is proposed in [34] by Gexiang Zhang. 

The QIEA comes under the family of EAs and is inspired by 

quantum mechanics principles. It is an algorithm designed to 

work on classical computers. The QIEA is much more advanced 

than ordinary EAs due to the magical impact of Qubits, 

quantum principles in solving an optimization problem with the 

probabilistic nature of the qubits [34-36]. The adaptation of 

different user choice-based operators makes the QIEA more 

effective [25].  The QIEA can handle the issues of convergence, 

diversity, parameter tuning, etc. as faced by the EAs. 

The present work chose to apply an enhanced variant of 

QIEA named multi-objective adaptive real coded quantum-

inspired evolutionary algorithm (MO-ARQIEA) due to several 

advantages and effective application of QIEA and its other 

variants in different works [37-57]. A problem of ceramic 

surface grinding is solved using an adaptive real-coded 

quantum-inspired evolutionary algorithm (ARQIEA) [37] in a 

constrained environment. An efficient quantum gate rotation 

methodology suggested in [38] for AQIEA is based on the 

Taguchi method. A complex task for optimal placement of 

distributed generators (DGs) is accomplished in [39] using 

AQIEA. A reconfiguration of a distribution network is carried 

out to reduce losses and improve the voltage regulation in [40] 

using the adaptive real-coded quantum-inspired evolutionary 

algorithm. An approach of loss reduction is utilized in [41] to 

reduce the power losses using AQIEA. A combined approach 

of DGs placement and network reconfiguration is used [42] 

using a similar solution algorithm as suggested in [39]. The 

optimal placement of the capacitor [43], DGs placement [43] 

capacitor sizing calculation [45], and power reduction approach 

[45] are used by similar authors using the AQIEA. The problem 

of unit commitment (UC) and ELDP using [QIEA] in [46], UC 

using improved QIEA (QIEA) in [47], and UC is solved in [52, 

54] using QIEA. An advanced variant of QIEA named 

multipartite adaptive binary-real quantum evolutionary 

algorithm to solve the various case of unit commitment 

problems under a constrained environment [56-57]. A process 

of image registration based on multiple sensors is solved in [48] 

using a novel QIEA. An approach to the economic operation of 

a smart grid is suggested in [49] using a fuzzy advanced QIEA.  

http://www.ijritcc.org/
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A power dispatch (real and reactive power) is solved using 

QIEA [50]. A knapsack problem is solved using a multi-

objective approach of QIEA [51]. An AQIEA is used to solve 

the multi-objective optimization problem [53] and the ELD 

problem is solved [55] using the same algorithms. An advanced 

variant of QIEA named multipartite adaptive binary-real 

quantum evolutionary algorithm to solve the various case of 

unit commitment problems under a constrained environment 

[56-57]. The literature on the above application of QIEA, 

AQIEA, and other enhanced variants of QIEA, drags the 

author's attention to the uses of ARQIEA in the current work.  

The results and effectiveness of these algorithms on 

different problem motivates us to use the MO-AQIEA in the 

present work. The present algorithm is advanced from the 

ordinary QIEA in different ways. The current approach used 

two sets of qubits instead of single qubits as used in QIEA. The 

EELD problem is solved by applying quantum principles and 

combining an adaptive quantum-inspired evolutionary 

algorithm (AQIEA) [25] with a non-dominated sorting strategy 

from NSGA -II [24]. A similar methodology is also used in [26]. 

MO-ARQIEA is inspired by the quantum principles like 

entanglement, interference, measurement, and superposition 

principles.  The role of these principles and other parameters is 

defined below. 

Qubit: this is the prime and smallest unit of information. It 

stores the value in the form of (0, 1). All the principles and 

quantum operations are performed on the qubits. It is similar to 

the classical bit but there is a major difference between them. 

The qubit has probabilistic nature and it stores the values the 

between (0 and 1).  Under the superimposed state it may be 

shown as [25]: 

+= 10
                                     (8) 

Where,
2

 and
2

 is the probability amplitude of the qubit 

for the two different states as 
0

and 
01 

with the Below given 

states of affair should be satisfied: 

│A│2 +│B│2 =1                                                (9) 

Superposition principle: under the influence of this principle the 

individual particle attains all possible states (0 and 1) and in 

between (0 and 1). 

Measurement Principle: this principle is used to measure the 

state of any quantum particle when it is under superimposed 

state both (0 and 1) or in between (0 and 1). 

Interference Principle: it defines the state of the quantum 

particle due to the natural ability of a particle to attain any state 

under a superimposed operator and the final possibility to attain 

either 0 or 1.  

Entanglement Principle: under the influence of this principle the 

two or more qubits show an entangled relation. Whenever any 

operation is performed on any qubit it just does not change the 

state of that particular qubit only but also changes the value of 

all other qubits which are entangled with the first qubit. 

Q-Bit register: the qubits are stored in the quantum register. The 

structure of the qubit register is shown below: 

     RQ1, K = [α1,1,K, α1,1,K,….. α1,1,M,] 

     RQ1, L = [α1,L,1, α1,L,1…… α1,L,M,]                                              

     RQ1, 20M = [α1, 20,1, α1, 20,2, …….. α1, 20,M,]    (10) 

 

The present MO-ARQIEA uses two sets of the qubit. The 

first qubit holds the objective function, input parameters, and 

scaled values of the variables. The second qubit stores the 

ranked and scaled values of all the solution vectors for every 

iteration. Both of the qubits are entangled in such a way that in 

every iteration value of the qubit is changed then the value of 

the second qubit changes accordingly. The first qubit uses and 

decides the probabilistic value of the second qubit. The number 

of qubits in a quantum register is always equal to the number of 

the variable used. The number of the quantum register is 

generally in the multiple of 100 times variables used in the 

problem. Several iterations are carried out and the fittest 

feasible solution is ranked and stored in the second qubits [25].  

An adaptive crossover operator (ACO) is also used in the 

suggested work to carry out parameter-free tuning with gate 

rotation methods. An efficient balance between exploitation and 

exploration is maintained. The gate rotation method moves the 

solution vectors towards achieving the best possible fittest 

value.  In the next three rotational techniques in the current 

study, RG-I rotates solution vectors in the direction of the best 

solution, RG-II spins them away from the worse solution, and 

RG-III rotates them in the direction of the best solution [40]. 

The first qubit's angle of rotation is established using the 

probabilistic value of the second qubit [25]. 

ψ1i(m+1) = ψ1i(m)+f(ψ2i(m), ψ2j(m)) * (ψ1j(m)- ψ1i(m)) (11) 

                                     

In the case when m is the generation number and ψ1j is the 

fittest vector, the vector may be selected at random otherwise. 

The present approach also uses multitudinous attractors in 

RG-II, which may be named RG-IIA. Constraint handling is an 

important and necessary part of optimization. A detailed study 

of various constraint handling methods is carried out before 

selecting the constraint handling method for the present work as 

provided in [62-68] A repair-based novel operator has been 

originated that makes certain that spinning reserve constraints 

are always fulfilled [60-61]. 

 

IV. APPLICATION OF BO-ARQIEA ALGORITHM ON 

TEST CASES 

The pseudo-code is as follows: 

Random Initialization (RQ1)  

While (terminate_ criteria) { 

http://www.ijritcc.org/
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Apply repair (RQ1) 

Fitness calculation = Calculate _fitness of (RQ1) 

Fitness calculation = Calculate _fitness of (RQ2) 

Sorting = RQ2A (non-dominated sorting) 

Ranking &Scaling= rank _scale RQ2B 

Apply AQCO= Produce _Children (RQ1, RQ2) 

Selection= Tournament selection (binary) (RQ1, children RQ1) 

Description of steps 

Step 1:  initialize the Quantum register RQ1 and assignee value 

(0, 1) randomly. Load the input data of generating units. 

Step 2: Apply the repair method to repair individuals to satisfy 

constraint limits including different parameters like maximum 

and minimum power, load demand, etc. evaluate the constraint 

violation and balance the violation. 

Step 3: Calculate the fitness function of solution vectors. 

Apply the approach of non-dominated sorting and evaluate 

RQ2A. 

  Step 4:  Compute ranked and scaled values of RQ2B. 

  Step 5:  Apply ACO operator and gate rotation strategy. 

  Step 6: Determine the rotation direction and angle using QR2 

and QR1. 

  Step 7: Generate a new generation using ACO. 

  Step 8: repeat iteration till termination criteria meet. 

TEST CASES 

 The present work considers the IEEE (30-bus) system along 

with six power-generating units to evaluate the effectiveness of 

the suggested algorithm (BO-ARQIEA). Similar test case 

systems (C1 and C2) are also used in [24], [27] and test case 

systems (C3 and C4) are adopted from the [65]. The suggested 

algorithm is verified on the following test cases: 

 

1. Test case system (C1) for the best cost($/hr) and best 

emission (ton./hr.) Considering six generating units 

2. Test case system (C2) for the best cost ($/hr) and best 

emission (ton. /hr.) Considering six generating units. 

3. Test case system (C3) for the best cost ($/hr) and best 

emission (ton. /hr.) Considering six generating units (500 

MW). 

4. Test case system (C4) for the best cost ($/hr) and best 

emission (ton. /hr.) Considering six generating units (700 

MW). 

 

 The test cases C1 and C2   are adopted from [24] and the loss 

coefficients are adopted [23] as used in equation (7). The total 

number of qubits registers is 300 in the present work. The 

Fitness evaluation limitation for the C1 and C2 are respectively 

10000 and 20000.  The suggested approach is not used a 

diversity operator but this is capable to achieve an efficient 

Pareto front as provided in Fig. 1 and Fig. 2 for the cases C1 

and C2.the outcomes received are compared with a different 

well-known algorithm like NSGA [28], NPGA [29], SPEA 

[30], NSGA – II [24] SOS [65], BBO [66], FCGA [67], BGO 

[68], and MOSST [31], Algorithms as shown in Table 1 and 

Table 2 for Case C1. 

V. RESULTS 

The results for all of the aforementioned test case systems 

obtained after using the proposed MO-ARQIEA are displayed 

in various tables (Tables 1 through table 8). (C1, C2, C3, and 

C4). Results for the test case system C1's best cost case are 

shown in Table 1, and results for the test case system C1's best 

emission scenario are shown in Table 2. The outcomes are 

contrasted with those of other widely used solution 

methodologies. Although the solution is not widely dispersed, 

MO-ARQIEA does a good job of maintaining the solution's 

variety. 

 

Fig. 1. the solution obtained by MO-ARQIEA (Non-dominated) for CASE 

C1 

 

Fig. 2. the solution obtained by MO-ARQIEA (Non-dominated) for CASE 

C2 
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Table 3 shows the results for the best cost for the test case 

system C2. Table 4 shows the best emission results for the test 

case system C2. The results are compared with various 

algorithms NSGA [28], NPGA [29], SPEA [30], NSGA-II [24], 

BBO [66], and BGO [68]. The findings for the test case system 

C3's best cost are displayed in Table 5. The test case system 

C3's top emission results are displayed in Table 6. Several 

algorithms, including NSGA [28], FCGA [67], NSGA-II [24], 

BBO [66], and SOS [65], are used to compare the results. 

Table 7 shows the results for the best cost for the test case 

system C4. Table 8 shows the best emission results for the test 

case system C4. The results are compared with various 

algorithms FCGA [67], NSGA-II [24], BBO [66], and SOS 

[65]. 

TABLE 1: RESULT FOR COST REDUCTION FOR CASE C1 (BEST FUEL COST) 

 MOSST [31] NSGA [28] NPGA [29] SPEA [30] NSGA-II [24] MO-ARQIEA 

TG 1 0.1125 0.1567 0.1080 0.1062 0.1059 0.1045 

TG 2 0.3020 0.2870 0.3284 0.2897 0.3177 0.2995 

TG 3 0.5311 0.4671 0.5386 0.5289 0.5216 0.5173 

TG 4 1.0208 1.0467 1.0067 1.0025 1.0146 1.0122 

TG 5 0.5311 0.5037 0.4949 0.5402 0.5159 0.5376 

TG 6 0.3625 0.3729 0.3574 0.3664 0.3583 0.3628 

Best cost ($/hr.) 605.889 600.572 600.259 600.15 600.155 600.123 

Corresp. Emission 

(ton./hr.) 0.22220 0.22282 0.22116 0.2215 0.22188 0.2221 

TABLE 2: RESULT FOR EMISSION FOR CASE C1 (BEST EMISSION) 

 MOSST [31] NSGA [28] NPGA [29] SPEA [30] NSGA-II [24] MO-ARQIEA 

TG 1 0.4095 0.4394 0.4002 0.4116 0.4074 0.4061 

TG 2 0.4626 0.4511 0.4474 0.4532 0.4577 0.4591 

TG 3 0.5426 0.5105 0.5166 0.5329 0.5389 0.5380 

TG 4 0.3884 0.3871 0.3688 0.3832 0.3837 0.3830 

TG 5 0.5427 0.5553 0.5751 0.5383 0.5352 0.5379 

TG 6 0.5142 0.4905 0.5259 0.5148 0.5110 0.5100 

Best Emission (ton./hr.) 0.19418 0.19436 0.19433 0.1942 0.19420 0.19420 

Corresp. Cost ($/hr.) 644.112 639.231 639.182 638.51 638.269 638.274 

TABLE 3: BEST FUEL COST FOR CASE C2 

 NSGA [28] NPGA [29] SPEA [30] NSGA-II [24] BBO [66] BGO [68] MO-ARQIEA 

TG 1 0.1168 0.1245 0.1086 0.1182 0.0500 0.1180 0.0500 

TG 2 0.3165 0.2792 0.3056 0.3148 0.4000 0.3053 0.2536 

TG 3 0.5441 0.6284 0.5818 0.5910 0.6875 0.6249 0.6136 

TG 4 0.9447 1.0264 0.9846 0.9710 0.9500 0.9588 1.0547 

TG 5 0.5498 0.4693 0.5288 0.5172 0.5500 0.5915 0.5962 

TG 6 0.3964 0.3993 0.3584 0.3548 0.2309 0.3503 0.2922 

Total Power Output 2.8683 2.9271 2.8678 2.867 2.8685 2.9488 2.8603 

Power Loss 0.0343 0.0931 0.0338 0.033 0.0345 0.1148 0.0263 

Best cost ($/hr.) 608.245 621.5644 607.807 607.801 612.334 626.395 607.645 

Corresp. Emission (ton./hr.) 0.21664 0.22364 0.22015 0.21891 0.223369 0.21878 0.23022 
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TABLE 4: BEST EMISSION FOR CASE C2 

 NSGA [28] NPGA [29] SPEA [30] NSGA-II [24] BBO [66] BGO [68] MO-ARQIEA 

TG 1 0.4113 0.3923 0.4043 0.4141 0.410500 0.408881 0.4056 

TG 2 0.4591 0.4700 0.4525 0.4602 0.463289 0.461795 0.4650 

TG 3 0.5117 0.5565 0.5525 0.5429 0.543820 0.541602 0.5499 

TG 4 0.3724 0.3695 0.4079 0.4011 0.389949 0.387349 0.3886 

TG 5 0.5810 0.5599 0.5468 0.5422 0.544118 0.541801 0.5463 

TG 6 0.5304 0.5163 0.5005 0.5045 0.515173 0.513311 0.5135 

Total Power Output 2.8659 2.8645 2.8645 2.865 2.866849 2.854739 2.8689 

Power Loss 0.0319 0.0305 0.0305 0.031 0.032849 0.020739 0.0349 

Best Emission (ton./hr.) 0.19432 0.19424 0.19422 0.19419 0.194179 0.194186 0.19418 

Corresp. Cost ($/hr.) 647.251 645.984 642.603 644.133 645.6366 642.9249 645.932 

TABLE 5: BEST FUEL COST FOR CASE C3 (500 MW) 

 NSGA-II [24] FCGA [67] BBO [66] SOS [65] MO-ARQIEA 

TG 1 50.86 49.47 50.58329 50.5853 50.04352 

TG 2 31.806 29.4 30.30182 30.3062 30.39399 

TG 3 35.12 35.31 35.00089 35.00 35 

TG 4 73.44 70.42 71.7444 71.7455 72.14708 

TG 5 191.988 199.030 195.24314 195.2382 195.3311 

TG 6 135.019 135.220 135.60388 135.6009 135.6616 

Total Power Output 518.209 518.85 518.47742 518.4738 518.57726 

Power Loss 18.209 18.85 18.4738 18.4738 18.57726 

Best cost ($/hr.) 28150.86251 
 

28150.25591 28149.25943 28149.13533 28148.87383 

Corresp. Emission (ton./hr.) 309.040318 314.5229968 311.7950199 311.7893175 311.7763965 

TABLE 6: BEST EMISSION FOR CASE C3 (500 MW) 

 NSGA-II [24] FCGA [67] BBO [66] SOS [65] MO-ARQIEA 

TG 1 56.931 81.08 57.40627 57.4008 57.71465 

TG 2 41.542 13.93 44.44419 44.4264 44.82106 

TG 3 73.896 66.37 76.03817 76.0771 75.8797 

TG 4 84.931 85.59 84.43863 84.4182 84.42277 

TG 5 136.502 141.7 134.3981 134.4163 134.0109 

TG 6 131.328 135.93 128.8418 128.8419 128.6197 

Total Power Output 525.13 524.6 525.5671 525.5807 525.4688 

Power Loss 25.13 24.6 25.56709 25.5807 25.46878 

Best Emission (ton./hr.) 275.5444 286.5870035 275.3854062 275.3886894 275.3808098 

Corresp. Cost ($/hr.) 28641.13 28756.4994 28706.59138 28706.90169 28711.28205 
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TABLE 7: BEST FUEL COST FOR CASE C4 (700 MW) 

 NSGA-II [24] FCGA [67] BBO [66] SOS [65] MO-ARQIEA 

TG 1 76.179 72.14 73.95336 73.9386 74.06864 

TG 2 51.81 50.02 50.35537 50.3639 50.72647 

TG 3 49.82 46.47 45.79807 45.8163 46.43572 

TG 4 103.407 99.33 104.059 104.023 103.7366 

TG 5 267.984 264.6 270.7745 270.8317 268.9035 

TG 6 184.734 203.58 189.7032 189.6709 190.6674 

Total Power Output 733.934 736.14 734.6435 734.6444 734.5383 

Power Loss 33.934 36.14 34.64347 34.6444 34.53827 

Best cost ($/hr.) 38370.75405 38383.89818 38364.42875 38364.42731 38359.46858 

Corresp. Emission (ton. /hr.) 534.924644 543.4685497 543.3733898 543.4094078 541.0329175 

TABLE 8: BEST EMISSION FOR CASE C4 (700 MW) 

 NSGA-II [28] FCGA [67] BBO [66] SOS [65] MO-ARQIEA 

TG 1 103.078 120.16 104.4574 104.3456 103.645 

TG 2 73.505 21.36 77.78433 77.8036 77.40206 

TG 3 91.556 62.09 93.51512 95.5137 93.59586 

TG 4 110.787 128.05 110.9113 110.8788 111.4225 

TG 5 187.869 209.65 185.5126 185.6437 186.0831 

TG 6 174.289 201.12 169.8277 169.8192 169.8602 

Total Power Output 741.084 742.43 742.0085 744.0046 742.0088 

Power Loss 41.084 42.43 42.00848 44.0046 42.00877 

Best Emission (ton. /hr.) 467.3886962 516.5474996 467.0347446 468.5260487 466.9628977 

Corresp. Cost ($/hr.) 39473.44945 39454.84581 39628.84477 39717.4206 39601.77518 

VI. CONCLUSIONS 

The prime aim of the cost reduction and emission reduction 

is achieved using the multi-objective Adaptive Real Coded 

Quantum inspired evolutionary algorithm to solve a 

MOEELD problem. The effectiveness of the suggested 

algorithm is tested on different test case systems efficiently 

in a constrained environment. Both objectives having 

opposite natures are achieved efficiently by gratifying all the 

constraints using repair-based constraint handling.  The result 

proves the capability of the algorithm in solving the 

constrained MO-EELD problem on the IEEE 30 bus system 

consisting of six generating units. The results are found 

impressive in comparison with other well-known state of art 

algorithms. Further work will be carried out using ARQIEA 

on different benchmark problems along with various test 

cases.  
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