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Abstract: Metaheuristic optimization algorithms are tools based on mathematical concepts that are
used to solve complicated optimization issues. These algorithms are intended to locate or develop
a sufficiently good solution to an optimization issue, particularly when information is sparse or
inaccurate or computer capability is restricted. Power systems play a crucial role in promoting envi-
ronmental sustainability by reducing greenhouse gas emissions and supporting renewable energy
sources. Using metaheuristics to optimize the performance of modern power systems is an attrac-
tive topic. This research paper investigates the applicability of several metaheuristic optimization
algorithms to power system challenges. Firstly, this paper reviews the fundamental concepts of meta-
heuristic optimization algorithms. Then, six problems regarding the power systems are presented
and discussed. These problems are optimizing the power flow in transmission and distribution net-
works, optimizing the reactive power dispatching, optimizing the combined economic and emission
dispatching, optimal Volt/Var controlling in the distribution power systems, and optimizing the size
and placement of DGs. A list of several used metaheuristic optimization algorithms is presented and
discussed. The relevant results approved the ability of the metaheuristic optimization algorithm to
solve the power system problems effectively. This, in particular, explains their wide deployment in
this field.

Keywords: metaheuristic; optimization; power systems; transmission networks; power dispatching;
emission dispatching; distribution power network; distributed generations (DGs)

1. Introduction

Optimization is a mathematical and computer science discipline that explores strate-
gies and approaches for finding the perfect solution to the considered optimization issue.
Solving such problems involves minimizing or maximizing one or multiple objective func-
tions using the dependent optimization variables, which can be integers or real values [1].
Engineering, economics, logistics, medicine, and other disciplines can use optimization
algorithms for decision-making. Traditional (or exact) optimization methods, including lin-
ear programming (LP) [2], nonlinear programming (NLP) [3], and dynamic programming
(DP) [4], have been established to address multiple optimization issues. These algorithms
have several advantages, such as being time efficient and ensuring convergence to local
optima. Nevertheless, these optimization methods suffer from significant problems, such
as escaping from local solutions, divergence probability, complex handling constraints, or
computational challenges in computing first or second-order derivatives [5]. Metaheuristic
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algorithms can solve optimization problems with a lower possibility of falling into the
previously mentioned problems [6]. In contrast to traditional algorithms, metaheuristic
algorithms are often based on empirically inspired theoretical foundations. They can be in-
spired by natural phenomena or the behavior of living beings. They are flexible algorithms
that can be adjusted, combined, or modified to fit the intended problem, such as combining
three algorithms to resolve the power system stability [7]. These algorithms stochastically
explore high-dimensional search spaces, offering robustness and global search capacity
benefits. However, their stochastic behavior cannot guarantee a successful optimal solution
selection [8]. These algorithms have been used for multiple fields, such as medicine [9],
industry [10], and chemical applications [11,12].

Enhancing the power system performance is one of the sustainable development ob-
jectives. For this reason, power systems are quickly evolving with the large-scale adoption
of renewable energy sources (RESs) and the extensive incorporation of modern ICT tech-
nologies [13]. The integration of smart grid technologies into power systems also promotes
environmental sustainability by enabling more efficient use of electricity through demand
response programs that encourage consumers to shift their usage during peak hours when
electricity is expensive or generated from non-renewable resources. This advancement,
however, may entail increased difficulties in system operation and control [14]. To tackle
diverse power optimization issues, effective optimization techniques are required. On the
other hand, optimizing a power system, including various constraints to achieve a specified
degree of performance, has to be considered in the problem formulation. In this procedure,
each constraint helps the optimizer be more efficient when handling the system behavior.
Physical characteristics and the available information for each system component determine
the system elements. The constraints might be based on the capacity, accessibility, and cost
of the components. These constraints ensure system reliability. Optimization algorithms
are required to enhance the performance of the power system against the uncertainties
in the generation and demand while meeting all system constraints [15]. Power network
issues cannot be efficiently solved by deterministic control and management systems due
to a number of issues, including the uncertainties brought forth by irregular renewable
generators and fluctuating electricity demand [16]. Using machine learning theories to
enhance deterministic algorithms can provide better performance [17,18]. However, this
will increase the complexity. Metaheuristic algorithms can be employed to solve multiple
problems in the field of power systems. Furthermore, adopting these algorithms to solve
power systems issues is becoming increasingly appealing due to power engineers’ vast
diversity and complexity of difficulties [19]. A comprehensive review of the application of
metaheuristic optimization algorithms to enhance the parameter identification of several
power systems has been reported in [20]. This paper focused on the deployment of the
metaheuristics on the extraction of the parameters of the PV systems, the Li-ion batteries,
and the PEM fuel cells. A comprehensive review of the role of metaheuristics in optimizing
microgrid operation and management problems is presented [21].

The proposed paper has many common points with the other articles that talk about
metaheuristic optimization algorithms and their applications in electrical engineering. As
mentioned previously, enhancing the power system performance is crucial. For this reason,
we have focused in this paper on deploying metaheuristic optimization algorithms to
optimize power system performance. So, this study provides a comprehensive review
of several electrical engineering problems. Then, this study provides an overview of
the most common metaheuristic algorithms for resolving these optimization issues in
the power systems field. We have cited and discussed some papers that present the
employment of metaheuristic optimization algorithms to solve these problems. This
paper is organized as illustrated in Figure 1. The paper starts with an introduction that
presents the paper’s context, its objectives, and the research gap. Then, the metaheuristic
optimization algorithms are explained in Section 2, including a global presentation of
these algorithms, their fundamental properties, and classification. The main problems
of the power systems are presented and discussed in Section 3. A set of papers that use
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metaheuristic optimization algorithms for solving these problems are also presented. Then,
this paper ends with a conclusion that summarizes the whole paper.
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2. Metaheuristic Optimization
2.1. Overview

The optimization process may be presented as the process of determining the best
method to use existing resources while not breaking any restrictions that may exist. This
strategy consists of multiple steps: mathematically defining a system model that reproduces
its behavior, determining its variables and constraints, establishing the objective function,
and, finally, seeking the states that produce the most desirable results by maximizing or
minimizing the objective function. The optimization search strategy can be performed
using any of its appropriate categories, such as quantum-based techniques, meta-heuristic-
based approaches, and multi-objective-based techniques [22]. However, the main purpose
of solving complicated optimization issues is to find a solution, regardless of how good it
is. When at least a solution is found, numerous methods can be used to enhance it. This is
the fundamental principle behind developing metaheuristic optimization algorithms.

Meta means upper level or beyond, while heuristic means to know, find, or direct an
investigation, which is where the word heuristics originates. On the other hand, heuristics
represents a collection of rules applied while addressing a problem based on experience [23].
Metaheuristics are approximate methods that combine basic heuristic principles to produce
a more efficient exploration and exploitation of research space [24], where the search space
is the space that includes all the possible solutions that are bounded by the physical system
limitations. The dimensions of the search space depend on the number of optimization
variables that represent the set of the required parameter. Voß et al. [25] define a meta-
heuristic as a repeated process that leads and modifies tasks while employing subordinate
heuristics to facilitate obtaining optimal or near-optimal outcomes. The MA can function
with single or many solutions using a minimization or maximizing approach at each itera-
tion. Metaheuristic algorithms have been created to deal with the increasing complexities
of the problem, particularly with the inclusion of uncertainties into the system, which may
surpass the constraints of traditional algorithms.
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Designing and implementing a new metaheuristic optimization algorithm takes time,
but there are several pressing basic needs for them that motivate academics to develop a new
algorithm [26]. Some new research papers have focused on integrating these algorithms
with features of artificial intelligence (AI) to improve their performance [27–29]. Many
academic papers, including [30,31], have described their fundamental properties and
advantages as follows:

• The fundamental principles of these algorithms may be explained abstractly without
reference to any specific situation, from simple local search techniques to complicated
learning processes.

• Metaheuristic algorithms are ways of directing the search process to explore the search
space efficiently. They often use updating coefficients that balance global and local
search methods. These coefficients are initialized with large values, raising the global
searching ability. At the end of the optimization process, this coefficient should be
small to converge to the best solutions.

• Metaheuristic algorithms use domain-specific information in the form of heuristics
regulated by a higher-level approach.

• The objective function in the metaheuristic algorithm formulation does not include the
gradient or Hessian matrix. Therefore, they are no-deterministic algorithms, providing
near-optimal solutions.

• These algorithms memorize the results of the previous searches and are used to guide
the actual search process.

• These algorithms contain a number of parameters that must be adapted to the con-
sidered task, as well as techniques to prevent becoming stuck in local solutions in
the search space. Considering the solved problem, these parameters are selected to
provide better performance [32].

2.2. Basic Concepts

Each MOA has its own set of mechanics. Because numerous methods are available, a
significant question arises: how much difference is there between one MOA and another?
To answer the question, a collection of core concepts was proposed [33]. These concepts are
presented in Table 1.

Table 1. List of the concepts of the metaheuristic optimization algorithms.

Concept Description

Parallelism (used for
population-based algorithms)

A number of individuals are assigned simultaneously to perform a single function, and the
results are compared. This idea affects the evolution of individuals inside the population or
produces new ones.

Acceptance

Case 1: Accept interim solutions that weaken objective function as a result of the expansion of
the search space.

Case 2: Management of the constraints of
the objective function

Method 1: Any solution that includes any violation
is rejected. When the initial conditions meet any
conceivable solution, this procedure is used.

Method 2: In this case, all solutions are
automatically accepted, and the initial conditions
could correspond to inconceivable solutions. If any
solution can be assigned a numerical value, this
approach is used.

Case 3: Adding constraints on approved solutions that improve the best solution by at least the
restricting level. When comparing values produced from previous calculations, this strategy
aids in avoiding numerical issues.

Elitism (for population-based
algorithms)

The elitism concept is used to uphold the best-found solutions and utilize them as a reference
for the following iteration or update them if other best solutions are identified.
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Table 1. Cont.

Concept Description

Selection A probability-based approach for producing new random solutions from existing ones.

Decay Allows for more initial flexibility,
followed by incremental flexibility
constraints.

Each repetition includes a multiplicative factor of
less than one.

Reinforcement Each repetition includes a multiplicative factor
greater than one.

Immunity Identifying characteristics of certain solutions that lead to appropriate setups. It promotes
solutions with characteristics similar to those criteria.

Self-Adaptation A method that permits adjusting the algorithms’ parameters based on the optimization
progression.

Topology This concept is involved if the examined problem must be subjected to special limitations.

2.3. Classification

A metaheuristic algorithm should have exploration and exploitation capabilities al-
lowing it to obtain the global optimum solution. Its principal characteristics are its ability
to explore wide search spaces quickly, locate global solutions, and prevent falling into local
optimums. Exploration is the capacity to extend the search space, whereas exploitation is
the capacity to locate the optimal solution from the surrounding solutions. The principal
distinctions between existing algorithms are their attempt to balance exploration and ex-
ploitation. Trajectory-based and population-based algorithms are the two main categories
of metaheuristic optimization algorithms. The number of tentative solutions employed in
each algorithmic step is the primary distinction between these two categories [30].

• Trajectory-based (single solution) algorithms, including tabu search (TS), hill climbing
(HC), and simulated annealing (SA), start with a single solution and replace it with a
better solution located nearby at each iteration.

• Population-based algorithms employ a group of possible solutions at the same task
to address the same task. The population is randomly initialized, and an iterative
method is used to improve it. After each iteration, a new generation is created based
on the elitism strategy. The best-adapted individuals (representing the elite group)
from the last generation are moved to the new generation. Meanwhile, the newly
generated individuals have a relationship with this elite.

On the other hand, these algorithms can be classified according to the inspiration
source of the following four categories

• Evolutionary algorithms are biological evolution-inspired algorithms, which include
genetic recombination, mutation, and natural selection.

• Swarm-based algorithms use the collective behavior of multiple individuals. Each
individual wants to engage with others to develop themselves based on the collective
experience of the swarm.

• Physics-based algorithms are based on physical concepts, such as electromagnetism,
momentum, and gravity.

• Human-based algorithms are algorithms based on human social acts.

The classification of these algorithms is presented in Figure 2. This figure illustrates the
classification according to the number of solutions above the dashed red line and according
to the inspiration source below it.
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2.4. Formulation

The optimization problem formulation can be expressed as a function of the primary
objective function F(x), the constraints function g(x), and the modified objective function
h(x) as: 

F(x, y)
g(x, y) = 0
h(x, y) ≤ 0

(1)

where x expresses the optimization variables, and y expresses the dependent variables.

3. Metaheuristic Algorithms for Power System Applications

A power system combines electronic parts that provide, transmit, and consume elec-
tricity, such as the electrical grid, which supplies electricity to individuals and businesses
over a broad region. The electrical grid is divided into three parts: generator systems
that generate electricity, transmission systems that carry power from producing centers to
load centers, and distribution systems that distribute power to adjacent households and
companies [34]. A typical power system is presented in Figure 3. The transmission system
uses aerial electric transmission wires to connect generating stations to substations and
load centers. The distribution system employs aerial or underground transmission wires
and distributes electricity to a whole district [35].
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Metaheuristic optimization algorithms can be used to solve a large number of optimiza-
tion issues in the context of power systems. The most prevalent metaheuristic technique
applications in power system optimization are briefly described here.

After specifying the studied problem, a model of the considered power system is
required to evaluate the candidate solutions provided by the optimizer. Then, the objec-
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tive function will be determined based on the desired goals. Its equality constraints are
determined based on the system specifications. On the other hand, these constraints will
be used to determine the optimization search space limits. Then, the optimizer sends the
candidate solutions to the model. Based on its outputs, the objective function block will
calculate the fitness and send it to the optimizer to update the candidate solutions based on
the fitness of each solution. This iterative process will repeat until the last iteration of the
fitness value achieves the stop criterion. Figure 4 summarizes these steps.
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3.1. Optimal Power Flow for Transmission Power Systems

The power networks are large-scale, dynamic systems with various users, cables,
transformers, and generation units. A power system’s primary goal is to safely, consistently,
and cost-effectively supply users with enough high-quality energy. Several system factors
are control variables, such as the generator’s active power, the compensator’s reactive
power, and the common bus voltage. They may be regulated independently and directly
influence power flows and the system’s stability. Other variables, such as the voltages of
the load bus, the reactive power, and the power flows in the branches, are included as
dependent variables [36,37]. Changing the control variables combinations can lead to the
power-balance equation, but only certain combinations permit achieving the predefined
objectives. Determining the best combinations which provide the desired state can be
achieved by solving the optimal power flow problem (OPF) issue [38]. By making opti-
mal adjustments to the control variables, the considered objective function may include
reducing fuel consumption, power loss, and attenuating voltage deviation (VD), respecting
the system restrictions. Both deterministic (traditional) and metaheuristic optimization
algorithms can be used to overcome this issue [39]. Gradient, Newton’s approach, linear
programming (LP), and quadratic programming (QP) are examples of classical optimiza-
tion methods applied to OPF issues. Unfortunately, due to the high nonlinearity and
nonconvexity issues, these approaches cannot give a global solution and only obtain local
solutions [40].

The optimization variables in this problem are the ith generator’s active power (PGi),
its voltage (VGi), shunt Var compensations (QCi), and transformer tap settings (Ti). On the
other hand, the dependent variables include the power of the slack bus (PGsl), the voltage



Sustainability 2023, 15, 9434 8 of 27

of the load bus (VLi), the reactive power (QGi), and the loadings in the ith transmission
line (Sli) [41]. Accordingly, vectors x and y can be expressed as

x =
[
PG2 . . . PGng, VG1 . . . VGng, T1 . . . Tnt, QC1 . . . QCnc

]
y =

[
PG1(= PGsl), VL1 . . . VLnl , QG1 . . . QGng, Sl1 . . . Slntl

] (2)

where ng is the number of generators, nt is the number of transformers, nc is the number of
Var compensators, nl is the number of loads, and ntl is the number of transmission lines

The equality constraints can be expressed as{
PGi − Pload_i − Vi∑nb

j=1 Vj
(
αij cos(θij) + βij sin(θij)

)
= 0

QGi − Qload_i − Vi∑nb
j=1 Vj

(
αij sin(θij) + βij cos(θij)

)
= 0

(3)

where nb is the number of buses, Pload_i and Qload_i are the load’s active and reactive power,
θij is the i-j buses angle, and αij, and βij represent real and imaginary parts extracted from
the admittance matrix.

The inequality constraints can be expressed as

PGmin
i ≤ PGi ≤ PGmax

i , i = 1 · · · ng
VGmin

i ≤ VGi ≤ VGmax
i , i = 1 · · · ng

Tmin
i ≤ Ti ≤ Tmax

i , i = 1 · · · nt
QCmin

i ≤ QCi ≤ QCmax
i , i = 1 · · · nc

VLmin
i ≤ VLi ≤ VLmax

i , i = 1 · · · nl
QGmin

i ≤ QGi ≤ QGmax
i , i = 1 · · · ng

Sli ≤ Slmax
i , i = 1 · · · ntl

(4)

According to [42], the objective function for the operating cost can be constructed
as follows

minF(x, y) = min∑ng
i=1

(
PDi

2 · c1_i + PDi · c2_i + c3_i

)
(5)

where c123_i denotes the cost coefficients.
The objective function for the loose reduction can be formulated as follows

minF(x, y) = min∑ntl
i=1 Ploss_i (6)

where Ploss_i represents the power loses at the ith transmission line. Its value can be
calculated as follows

Ploss_ab = αab

(
V2

a + V2
b − 2VaVb cos(θa − θb)

)
(7)

where a and b are the ath and the bth buses, αab denotes the transmission lines conductance
between buses a and b, Va and Vb are the voltage, and θa and θb are the angles between
the buses.

The objective function for the voltage profile enhancement can be formulated as follows

minF(x, y) = min∑nl
i=1

∣∣∣Vre f
i − Vi

∣∣∣ (8)

where Vi is the ith bus voltage and Vre f
i is its reference value.

Various metaheuristic optimization algorithms for tackling the OPF issue have been
proposed during the last two decades. Their principal benefit over traditional (exact)
optimization algorithms is that they can handle objective function differentiability, nonlin-
earity, nonconvexity, and constraints. One of the most extensively utilized metaheuristic
algorithms for OPF issues is the genetic algorithm (GA). As explained in [43], restrictive
terms, including quadratic penalty terms in the objective function, are added to dependent
variables, such as the bus power, reactive generator power, the voltages in the load buses,
and transmission line loadings. Authors in [42] used the GA for the OPF problem for
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the first time. They developed an enhanced GA based on the coding system’s dynamical
hierarchy. Authors of [43] developed an improved GA specific for more significant OPF
issues. Unlike the method reported in [42], their proposed method used discrete control
variables to simulate switchable shunt devices and transformer taps. Authors in [44] sug-
gest a GA-based strategy considering FACTS (flexible AC transmission system) devices.
Following single-line outages, the FACTS devices reduce line overloads in the electrical
system. The authors [45] suggested an effective parallel GA considering shunt FACTS
devices under extreme loading circumstances to reduce execution times and enhance the
quality of the solutions in real-world, large-scale OPF issues. The OPF issue is divided into
two sub-issues: controlling the active power to reduce the operating cost and managing
the reactive power to regulate the generator’s voltage, attenuate the VD, and decrease the
losses of the transmission lines. In [46], a customized GA with population size adjustment
is utilized to solve OPF with multi-objective functions, such as cost minimization and
voltage-profile enhancement.

Particle swarm optimization also has been utilized widely to resolve OPF issues.
Authors in [47] used the PSO in the OPF issue for the first time. The authors [48] used an
improved PSO (IPSO) version. The conventional PSO has been improved by introducing a
biological notion of the passive congregation. A modified PSO has been proposed in [49] to
resolve the OPF issues. Particles in this modified PSO increase the possibility of finding the
global solution while decreasing the particles’ initial positions effect. The authors of [50]
employed the PSO incorporated with reconstruction operators while keeping operational
security restrictions and capacity needs. In [51], a hybrid fuzzy logic PSO strategy (FLPSO)
is used to improve power system security. For the multi-objective OPF, the reported
works in [52] suggested an improved PSO (IPSO) by the chaotic approach to calculate
the PSO parameters, such as inertia weight and self-adaptive acceleration coefficients. A
fuzzy decision-based process is employed in this strategy to choose the optimal acceptable
option from the Pareto set provided by the IPSO. The reported study in [53] presented a
developed evolutionary PSO comprising thermal and wind turbine generators, taking into
account up-spinning reserves, down-spinning reserves, and the operating restrictions of
the generation unit.

Numerous researchers have used differential evolution (DE) to tackle OPF issues.
In [54,55], the authors employed the DE to reduce the cost of consumed fuel by the gener-
ator with FACTS. A DE technique was utilized in [56] for two OPF subproblems: active
power dispatching and cost/emission reduction as a multi-objective function. The reactive
power dispatch, the power loss, and VD can be included in another multi-objective func-
tion. Authors of [57] developed a robust DE algorithm based on adaptive recombination
operators. The used generator model has valve loading implications, numerous fuel alter-
natives, and banned working zones. A modified DE with nonconvex generator fuel cost
curves is suggested in [58]. The authors of [59] presented a forced-initialization-based DE
to reduce fuel costs, minimize power losses, and enhance voltage profiles and stability. The
paper [60] presents the earliest utilization of the gravity search algorithm (GSA) to the OPF
issue. The authors evaluated a variety of objective functions, including the improvement of
voltage stability in standard and emergency cases, the piecewise quadratic cost function
for fuel cost reduction, and the objective function that includes the valve-point impact. A
multi-objective OPF problem, including fuel cost, power loss, and VD, has been resolved
using GSA [61]. The authors in [62] proposed a more robust GSA to improve exploration
capabilities and prevent getting caught in local minima. The GSA is incorporated with
a mutation operator to create new masses throughout the solution space. The resolving
technique is divided into two stages: economic dispatch is used to develop initial candi-
date solutions, and security-constrained is used to discover the global optimum. Other
metaheuristic optimization algorithms for resolving the OPF problem are listed in Table 2.
As provided in this table, the ACO has been widely used to solve this problem, and the
GWO is one of the MOAs most frequently used to solve this problem.
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Table 2. List of metaheuristic optimization algorithms for the OPF problem in transmission networks.

Refs. Algorithm Description and Objectives

Fuel Cost P/Q VD Transformer
Tap Set

Transmission
Losses Emissions

[63,64] Ant colony optimization (ACO) x x x x x

[65] Ant colony optimization (ACO) x x

[66] Ant colony optimization (ACO) x x x

[67] Backtracking search
algorithm (BSA) x x x

[68] Colliding bodies
optimization (CBO) x x x

[69] Black-hole optimization (BHO) x x x x

[70] Gray wolf optimizer (GWO) x x x

[71] Firefly algorithm (FFA) x x

[72] Cuckoo search (CS) x x x x

[73] Moth swarm algorithm (MSA) x x x

[74] Krill herd algorithm (KHA) x x

[75,76] opposition-based
Krill herd algorithm x

[77] Shuffled frog leaping
algorithm (SFLA) x

[78] Bacterial foraging
algorithm (BFA) x x x x

[79] modified Bacterial
foraging algorithm x x x

[80] Sine cosine algorithm (SCA) x x x x

[81] Jaya algorithm (JA) x x x

[82] Salp swarm algorithm (SSA) x

[83] Honey Badger
Optimizer (HBO) x x x

[84]
Quasi-Oppositional-Chaotic

Symbiotic Organisms
Search algorithm

x x x

The OPF issue solution’s goal is to meet various operational limitations while optimiz-
ing a specified objective function by adjusting the power system control variables as best as
possible. These control variables include the active power, voltages, tap settings for trans-
formers, shunt Var compensations, etc. The findings in the literature study demonstrate
that the metaheuristic algorithms deliver reliable, high-quality, efficient, resilient solutions.

3.2. Optimal Reactive Power Dispatching

Optimal reactive power dispatch (ORPD) is one of the essential prerequisites for an
electric power system’s economic and secure functioning. By adequately coordinating the
equipment that controls the reactive power fluxes, the ORPD is achieved [85]. The purpose
of resolving ORPD is to solve the selected objective function that may include power loss or
VD by making the best possible adjustments to the control variables while simultaneously
meeting a number of operating restrictions [86]. Precisely, the goals of ORPD are to
minimize active power loss [38], enhance voltage profile [87], reduce transmission costs [88],
and increase voltage stability [89].
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The ORPD problem may be expressed as a constrained nonlinear optimization prob-
lem. The optimization variables include the voltage of each generator ith (VGi), shunt Var
compensations (QCi), and transformer tap settings (Ti). On the other hand, the dependent
variables include the power of the slack bus (PGsl), the voltage of the load bus (VLi), re-
active power (QGi), and loadings in the transmission line (Sli). The vectors x and y are
presented as

x =
[
VG1 . . . VGng, T1 . . . Tnt, QC1 . . . QCnc

]
y =

[
PG1(= PGsl), VL1 . . . VLnl , QG1 . . . QGng, Sl1 . . . Slntl

] (9)

The equality and inequality constraints are similar to the ORPD. The objective function
can include the ones mentioned in the ORPD associated with other terms related to the
inequality constraints. The objective function can include overall cost, minimizing power
losses in the transmission line, maximizing the power handling capacity, and minimizing
the stability index. It can be formulated as follows [90]:

FRRPD = F + αV∑nl
i=1

(
Vi − Vlim

i

)2
+ αQ∑ng

i=1

(
QGi − QGlim

i

)2
(10)

where αV and αQ are penalty coefficients. Vlim
i and QGlim

i are limiting values of the two
dependent variables, VL and QG. The term F can be defended as (A multi agent-based
particle swarm optimization approach for reactive power dispatch; Optimal reactive power
dispatch using an adaptive genetic algorithm):

F = ∑nb
k=1 gk

(
V2

i + V2
j − 2ViVj cos(θij)

)
(11)

where gk is the branch conductance.
This function is submitted to the following constraints:

Vmin
i ≤ Vi ≤ Vmax

i ,
QGmin

i ≤ QGi ≤ QGmax
i ,

(12)

Numerous metaheuristic algorithms have been used recently to resolve this. Their key
benefit over traditional (exact) optimization algorithms is that specifications on the objective
function’s nonconvexity, differentiability, and continuity or kinds of control variables do not
constrain them. Considering various objective functions and restrictions, these techniques
may also be used in real-world power systems. According to [91], the OPRD problem has
received a great deal of interest in the scientific community, where numerous metaheuristic
algorithms have been reported in the literature review. A list of several metaheuristic
algorithms for solving the ORPD problem is reported in Table 3. The PSO and the GA are
well-known MOAs that have been extensively deployed for this problem.

The ORPD findings from different optimization algorithms proposed in the literature
review were accurately presented. From their results, the metaheuristic optimization
algorithms allow for the development of superior solutions to the ORPD problem.

Table 3. List of metaheuristic optimization algorithms for the ORPD problem.

Ref. Algorithm Objectives

Voltage
Profile

Voltage
Stability

Power
Losses

Transformer
Tap set

Power
Losses

VAR
Compensation

[92] Particle swarm
optimization (PSO) x

[93] Multi-agent and PSO x x

[94] Learning PSO x x



Sustainability 2023, 15, 9434 12 of 27

Table 3. Cont.

Ref. Algorithm Objectives

Voltage
Profile

Voltage
Stability

Power
Losses

Transformer
Tap set

Power
Losses

VAR
Compensation

[95] Differential
evolution (DE) x x x

[96] Quasi-oppositional DE x x x x

[97] Adaptive DE x x

[98] Genetic algorithm (GA) x x x

[99] Biogeography-based
optimization (BBO) x x x

[100] Gravitational search
algorithm (GSA) x

[101] Opposition-based GSA x x

[102] Chaotic krill herd
algorithm (CKHA) x x

[103] Harmony search (HS) x x x

[104] Teaching learning-based
optimization (TLBO) x x x

[105] Ant colony
optimization (ACO) x x

[106] Gray wolf
optimizer (GWO) x x

[107] Exchange market
algorithm (EMA) x x

[108] Firefly Algorithm (FA) x x

3.3. Optimal Combined Economic and Emission Dispatching

Resolving the economic dispatching (ED) issue tries to reduce the generated electricity
cost by optimizing the generating units’ commitment while fulfilling all unit and system
restrictions. The ED cost function (in $/h) can be described as follows:

FED = ∑n
i=1

(
aiP2

Gi + biPGi + ci

)
(13)

where ai, bi, and ci are the cost coefficients of the ith DG. This function has the following
constraints:

∑n
i=1 PGi = Pload + Plooses (14)

Pmin
Gi ≤ PGi ≤ Pmax

Gi (15)

Under power balance and unit capacity limitations, the emission dispatch objective
function (in kg/h) is stated as follows

FE = ∑n
i=1

(
PDi

2 · Ai + PDi · Bi + Ci + ξieλi PDi
)

(16)

where Ai, Bi, Ci, ξi, and λi are the emission coefficients of the ith DG.
However, the ED ignores the pollutant emissions of thermal plants’ fossil fuels and

other environmental requirements. To this end, the ED has been combined with the
requirement of formulating the combined economic and emission dispatch (CEED) problem.
The CEED is a complex, multi-objective problem with two goals: reducing fuel costs and
emissions from thermal power facilities [109]. This can increase the nonlinearity and
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complexity of the ED problem. Usually, there are three methods used to resolve this
problem [110]. The emission is constrained with an allowed limit in the first method.
This approach, however, has a significant challenge in obtaining cost-emission trade-off
relationships. The second method considers emission as an additional objective to the
cost. Here, this issue is turned into a single-objective problem by linearly combining or
optimizing both goals. In the last method, both goals are optimized concurrently in solving
the CEED issue. Traditional optimization methods were used to tackle the ED problem
successfully. However, they cannot discover appropriate solutions for medium or large
CEED problems. Deploying metaheuristic optimization algorithms to overcome these
limitations has been approved. In this problem, the optimization variables (x) include the
generator’s active power, and the dependent variables (y) include the slack power [111].
The objective function for this problem can be defined as follows [112]:

FCEED = [w · FED + (1 − w)β · FE] (17)

where w is a constant [0, 1], and β is a scaling factor.
This objective function is submitted to the following constraints:

∑
ng
i=1 PGi − Pload − Ploss = 0

PGmin
i ≤ PGi ≤ PGmax

i , i = 1 · · · ng
(18)

Many metaheuristic algorithms have been developed recently to address the compli-
cated restrictions of this optimization issue. Many metaheuristic optimization algorithms
have been used to solve ED/CEED. Applications of metaheuristic optimization algorithms
for resolving the CEED problem are shown in Table 4. This PSO is the most used MOA to
solve this problem.

Table 4. List of metaheuristic optimization algorithms for the CEED problem.

Ref Algorithm Description and Objectives

[113]

Genetic algorithm (GA)
Evolutionary programming (EP)

Particle swarm optimization (PSO)
Differential evolution (DE)

Solve CEED for the IEEE 30-bus and 15-unit systems.

[114] Pareto-based, multi-objective evolutionary algorithms
(MOEA) Solve CEED for the IEEE 30-bus and 6-unit systems.

[115] Hybrid evolutionary algorithm (HEA) Solve CEED problems for the IEEE 57 and 118-bus systems.

[116] Improved particle swarm optimization (IPSO) Used three ED problems applied to the large-scale power
system in Korea.

[117] PSO with smart inertia factor
(PSO-SIF) Used 6, 15, 20, and 40 units testing systems.

[118] Improved COOT optimization
Algorithm (iCOOT)

Reduce the generating cost, pollutant emissions, and
satisfaction weight coefficient of the unit.

[119]
Hybrid gravitational search algorithm and random

forest regression
(GSA-RFR)

Solve the CEED for combined cooling, heating, and power
(CCHP) and power-to-gas (P2G)-based microgrid.

[120] Artificial bee colony (ABC) Assess the combined cost and emission targets to decrease
losses and raise transmission line efficiency.

[121] Adaptive Bat Algorithm Resolve large-scale ED with reduced execution time

[122] Artificial ecosystem optimization (AEO)
Reduce the economic charges as well as the three harmful
gas emissions of sulfur dioxide (SO2), nitrous oxide (N2O),
and carbon dioxide (CO2).
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Table 4. Cont.

Ref Algorithm Description and Objectives

[123] Spiral optimization algorithm (SOA) Reduce costs and emissions while meeting load
requirements and operating restrictions.

[124] Hybrid PSO-FA Reduce costs and emissions while meeting load
requirements and operating restrictions.

[125] Flower pollination algorithm (FPA)
Solve the CEED problem while taking into account the
environmental consequences of fossil-fueled power stations’
emissions of gaseous pollutants.

[126]

Levy-based glowworm swarm optimization (LGSO)
Grey wolf optimization (GWO)

Whale optimization algorithm (WOA)
Dragonfly algorithm (DA)

Glowworm swarm optimization (GSO)

The LGSO provided the best solution by choosing the
generation of renewable energy sources.

3.4. Optimal Power Flow in Distribution Networks

Large-scale, extremely complex, linked systems make up modern electric power sys-
tems and require decisions about resource generation, transmission, and distribution over
various time horizons. Fuel cells, diesel generators, and microturbines are among the
dispatchable DG units that may be coupled to the distribution system at any point. They
can be linked via a machine and/or power electronic converter. Using synchronous or
asynchronous machines requires the introduction of constant active/reactive power (P/Q)
or active power and voltage amplitude (PV) control modes [127,128]. The active distribu-
tion network can be kept safe, stable, and cost-effective only by efficiently coordinating
the operation of DG units, voltage control, and reactive power compensation. This can be
achieved by solving an OPF problem. The OPF suffers common issues with all problems
represented by nonlinear power flow limitations, which can alter the robustness, scalability,
and availability of the accommodated DER [129]. Optimizing the OPF can decrease fuel
costs, enhance voltage profiles and Var/Volt harmony, and minimize power losses by
optimizing control variable setups while meeting different distribution network operating
restrictions [130]. The set of optimization variables includes the active power of the dis-
patchable sources (PD), their terminal voltages (V), transformer tap setting (T), and the Var
compensator output (QC). On the other hand, the dependent variables include the active
grid power (Pgrid), load voltage (VL), reactive generator power (QD), and branch flow (Sl).
They can be presented as follows

x =
[

PG1 . . . PGndg, V0, VG1 . . . VGndg, T1 . . . Tnt, QC1 . . . QCnc

]
y =

[
Pgrid, VL1 . . . VLnl , QG1 . . . QGndg, Sl1 . . . Slntl

] (19)

where ndg is the number of dispatchable sources (without including the renewable sources),
and V0 is the primary bus voltage.

If the objective functions express the operating cost, it can be described based on
Equation (2) as follows:

minF(x, y) = min
[

EM
(

Pgrid

)
+ ∑ndg

i=1

(
PDi

2 · ai + PDi · bi + ci

)]
(20)

where EM is the electricity market prices.
The objective function can include the power losses as a multi-objective function

by adding the losses term to Equation (15). The multi-objective function can then be
formulated as follows:

minF(x, y) = min
[

EM
(

Pgrid

)
+ ∑ndg

i=1

(
PDi

2 · ai + PDi · bi + ci

)
+ w∑nb

i=1 Ploss_i

]
(21)
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where w is a penalty factor.
The objective function is submitted to several equality constraints, such as

∑ndg
i=1 PGi + ∑nrg

i=1 PGi + Pgrid − Pload − Ploss = 0 (22)

where nrg is the number of renewable generators, the inequality constraints are similar to
the OPF case.

The nonlinear and nonconvex power flow restrictions of the OPF are linearized in
the literature using a generalized linear-constrained optimal power flow (GLOPF) model
based on the first-order Taylor series approximation method [131]. This linearized model
allows for the numerical optimization of the OPF problem. However, the approximations
used in the linearization process can reduce the model fidelity. In addition, because of the
various random disturbances or uncertain factors in the loads, the network configurations,
and renewable production, the traditional optimization methods cannot provide suitable
performance. For this reason, metaheuristic optimization algorithms have been used widely
to resolve the OPF. The objective function might include all the DG units, including the
renewable and nonrenewable sources. For distribution networks to operate economically,
securely, and dependably, the OPF is a crucial instrument. Table 5 presents a set of the
metaheuristic algorithms utilized to solve the OPF.

Table 5. List of metaheuristic optimization algorithms for the OPF problem in distribution networks.

Ref Algorithm Description and Objectives

[132] Genetic algorithm (GA) DG units include fuel cells (FCs), microturbines (MTs), diesel generators
(DGs), photovoltaic systems (PVs), and wind turbines (WTs).

[133] Genetic algorithm (GA) Resolving the OPF considering the spatial electrothermal coupling effect.

[134] Particle swarm optimization (PSO)
Use the PSO to determine each DG unit’s active and reactive power and
the tap of tap-changer transformers to reduce the cost, considering various
physical and technical restrictions.

[135] Gravitational search algorithm (GSA)
The GSA successfully resolved the OPF problem on two distribution
systems, and its results were compared to those obtained using the
GA method.

[136] Improved GSA DGs with unpredictable power outputs are included in the distribution
networks’ optimum reactive power flow issue-solving.

[137] Spotted hyena optimizer (SHO) Reducing the overshoot/undershoot peaks and time response of a power
system with various DERs.

3.5. Optimal Volt/Var Controlling in the Distribution Power Network

VD levels that exceed the permitted limits can cause abnormal performance, reduced
efficiency, and, in severe circumstances, breakdown. For this reason, the voltage magnitude
is a crucial power quality factor. The voltage must be within acceptable bounds at every
point in the distribution power network. The permitted VD limits are expressed as a
percentage of the rated voltage (standardized between ±5% or ±10% for medium-voltage
(MV) and low-voltage (LV) power grids) [138]. Various voltage control devices are used
to keep the voltage within permitted limits under varying load levels. Voltage is usually
controlled by altering transformers’ transmission ratio and correcting for reactive power.
This control process involves the Static Var Compensators (SVCs), which can adjust reactive
power, incorporated with capacitors with fixed capacities, and are known as reactive
power compensation devices [112]. Underload tap-changing transformers (ULTCTs) are
also involved in MV/HV power grids, whereas Off-voltage tap-changing transformers
(OVTCTs) are required in MV/LV power grids [112].

Optimizing the Volt/Var control in distribution networks is considered a constrained
optimization problem for distribution networks that include the ULTCT, SVCs, shunt
capacitor banks, and DG generators. The control variables may consist of
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• VRs, OVTCTs, and ULTCTs tap-changer settings;
• voltage magnitudes in PV buses;
• capacitors and SVCs’ reactive powers.

The load buses’ voltages are the dependent variables that define the distribution
network’s operation state. The objectives function may be VD minimization [139,140], total
power loss minimization [141,142], operating costs minimization [143–147], number of
switching operations minimization [148,149], harmonic distortion minimization [150–152],
and voltage stability [153]. Because distribution networks frequently include a significant
number of nodes and branches based on the network’s topology, there are a considerable
number of control factors to consider in the objective function. These factors must be
considered while developing an effective model for optimal voltage management. The
Volt/Var control (VVC) problem has been successfully solved using metaheuristic optimiza-
tion algorithms. Usually, the VVC problem can be expressed as a multi-objective function
as follows (Optimal Volt/VAR control in distribution systems with prosumer DERs):

F1 = ∑T
i=1 βiPi

loos

F2 = ∑T
i=1

(
∑Ncb

m=1 αcb
∣∣qt

m − qt−1
m
∣∣+ ∑Noltc

j=1 αoltc

∣∣∣Tt
j − Tt−1

j

∣∣∣
+∑

Reg
r=1 αReg

∣∣Rt
r − Rt−1

r
∣∣

)
(23)

where F1 minimizes the power loss and F2 minimizes the cost of adjusting voltage control
assets for the entire time horizon, Ncb is the number of capacitor banks, Noltc is the trans-
formers’ number with on-load tap changers, NReg is the voltage regulators’ number, αcb
is the capacitor banks’ adjustment cost, αoltc is the OLTC transformers’ adjustment cost,
αReg is the voltage regulators’ adjustment cost, qm is of the mth capacitor bank’ status, Tj is
the jth OLTC transformer’s status, and Rr is the rth voltage regulator status. Each variable
must be limited within its upper and lower limits.

Some of these algorithms are listed in Table 6. This GA is the MOA used most
frequently to solve this problem, followed by the PSO.

Table 6. List of metaheuristic optimization algorithms for the VVC problem.

Ref Algorithm Description and Objectives

[154] Genetic algorithm (GA)

Based on the day-ahead load projection, create optimal dispatch
schedules for on-load tap changer (OLTC) settings at
substations and all shunt capacitor switching to minimize the
loss and enhance the voltage profile.

[155] Genetic algorithm (GA)
Reduce the operation numbers of ULTC and switching
capacitors to minimize the loss and enhance the voltage profile
for 24 h.

[156] Genetic algorithm (GA)
GA controls the load ratio of the transformer, the step voltage
regulator (SVR), the shunt capacitor, the reactor, and the static
Var compensator.

[148] Genetic algorithm (GA)

Minimal power losses and capacitor banks’ switching are the
goals of the proposed day-ahead coordinated reactive power
dispatch technique while forecasting the DG errors to assess
their reactive power capability.

[151] Genetic algorithm (GA)
The PV solar reactive power is an additional control variable for
substation capacitors, feeder capacitors, and OLTC tap
positions.

[157] Evolutionary programming (EP) Microgeneration shedding is included to enhance the Volt/Var
solving performance.

[158] Particle swarm optimization (PSO) The distribution networks are feeder capacitors, paired
substation capacitors, and OLTC.
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Table 6. Cont.

Ref Algorithm Description and Objectives

[145] Fuzzy adaptive PSO (FAPSO)
Find the best active and reactive power distribution for the DG
units, including the capacitor banks and the tap settings for the
transformers, for 24 h.

[147] Particle swarm optimization (PSO) Eliminate the active power loss, the VD, and the reactive power
compensation device’s capacity (or reduce its investment cost).

[146] Fuzzy adaptive PSO (FAPSO) Minimize operation cost of transformers and capacitors and
power loss while meeting the system constraints.

[136] Improved gravitational search algorithm (IGSA) Active network loss minimization in the IEEE-33 node standard
test system.

[159] modified Teaching-Learning Algorithm (mTLA) Solve the Volt/Var problem considering the loads and
generated power uncertainties.

[160] Bacterial Foraging Algorithm (BFA)
Solve the Volt/Var problem for several DGs as a weighted
combination of a single objective, and then determine the best
Pareto-front for different combinations of objective functions.

[161] Gravitational Search Algorithm (GSA) Optimal capacitor power control to reduce power losses and the
reactive power cost generated by capacitors.

3.6. Optimizing the Size and Placement of DGs

Recent updates to the distribution network structure have opened up possibilities for
a wide range of technical features, including integrating distributed generations (DGs).
Inadequate DG unit sizing and placement (S&P) can result in excessive power losses, poor
voltage profiles, and harmonic propagations [162]. Therefore, determining the optimal size
and location of DG units is required. DGs may be classified into two groups based on their
nature [163]. The first group includes the DGs with weather or location dependability, such
as RESs. Geographic, hydrological, and meteorological factors are the first group’s principal
factors in location and size determination. Optimizing the connection point is feasible
by specifying the collection of buses to which the DG will be linked. The second group
consists of those DGs that may be linked in a distribution network at any point and have
dispatchable power generation, such as microturbines, fuel cells, and diesel generators.
The locations technique determines the change in a dispersed network’s total power loss
caused by a change in bus injection power. This process involves active and reactive power
losses P and Q. As a result, the power loss variations are stated as a function of the Jacobian
matrix (J) as follows [2]:  ∂Ploss

∂P
∂Ploss

∂Q

 = J−1

 ∂Ploss
∂θ

∂Ploss
∂V

 (24)

J =−1

[ ∂∆P
∂θ

∂∆P
∂V

∂∆Q
∂θ

∂∆Q
∂V

]
(25)

The bus location coefficients (BLCs) express the DG linking favorability. The BLCs can
be defined as:

BLCi = wi
∂Ploss

∂Pi
+ (1 − wi)

∂Ploss
∂Qi

wi = 1 − 1
(ri/xi)+1

(26)

where xi and ri denote the reactance and resistance in the ith branch.
The objective function can be formulated to minimize the total power losses. This

sizing problem is related to the DG operation and planning. The operation problem seeks
to determine the ideal DG operation in a given static network mode in order to reduce
power loss. The planning problem aims to choose installed electricity for DGs that will be
connected to predetermined locations.
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In published research, a variety of methods for choosing the best location and size of
DGs are offered. They include analytical [164–166], linear [167], and quadratic program-
ming [168] methods. Recently, metaheuristic optimization algorithms have gained more
popularity in the optimal sizing and placement of DGs. Table 7 presents a set of these
algorithms applied to resolve this problem. Various GA and PSO versions have been widely
used to solve this problem.

Table 7. List of metaheuristic optimization algorithms optimal S&P of DGs.

Ref Algorithm Description and Objectives

[169] Genetic algorithm (GA) The best allocation of several DG types is established using GA to
minimize total mean daily active power losses.

[170] Genetic algorithm (GA) Optimal sizing and placement of DGs considering power quality
improvement.

[171] GA-based tabu search (GA-TS) Determine the best position of DG units in a distribution system as the
independent private sector.

[172] Non-dominated sorting GA (NSGAII) Solve this problem as a multi-objective probabilistic optimization
problem that includes total costs, power losses, and investment charges.

[173] An analytical method with GA The objective function includes the minimization of the distribution
network power loss.

[174] Particle swarm optimization (PSO) PSO is used to handle the problem of optimal DG unit placement while
accounting for load changes in the distribution network.

[175] Multiobjective PSO (MOPSO) Determine the best position and size of DGs and shunt capacitor banks in
distribution networks while considering load randomness.

[176] Improved MOPSO (IMOPSO) Determine the best location and size for DG units in the distribution
network.

[177] Multiobjective PSO (MOPSO) Determine the best DG size and location by considering several metrics,
such as active and reactive power losses, VD, and reliability.

[178] Particle swarm optimization (PSO) Consider the time-varying features of electrical load demand to calculate
DGs’ appropriate size and position to minimize yearly power loss.

[179] Particle swarm optimization (PSO)
Determine the appropriate position and size of various DG units by
considering factors, such as total power losses, voltage profile
enhancement, and greenhouse gas emissions.

[180] Improved Gravitational Search
Algorithm (IGSA)

Find DG’s appropriate location and sizing in a radial distribution
network to reduce power losses, harmonic distortion, and VD.

[181] Gravitational Search Algorithm (GSA) Enhance nodal pricing and voltage profiles in the distribution network
using the GSA.

[182] Backtracking search algorithm (BSA) In a radial distribution network, optimal sizing and location of DGs,
capacitor banks, and a thyristor-controlled series compensator.

[183] Fuzzy-BSA
Increasing operational performance, reducing the loss, and enhancing the
voltage profile goals are included in the objective function. The combined
power factor and network reactive power loss decrease are also included.

[184] Hybrid ACO–ABC Reducing electrical energy costs, power losses, and total emissions from
substations and resources enhances voltage stability.

[185] Gray wolf optimizer (GWO) Reduce reactive power losses and enhance distribution system voltage
profiles while remaining within power system restrictions.

[186] Bacterial foraging optimization (BFO)
Reduce power loss and enhance voltage profile of radial distribution
network on 12-bus, 34-bus, and 69-bus radial distribution systems with
11, 33, and 68 sections, respectively.
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3.7. Unit Commitment

Unit commitment (UC) is regarded as one of the essential duties in the effective,
trustworthy, and ideal planning of the power systems’ short-term operation. Commit-
ment/Decommitment (ON/OFF) schedules and economic dispatch of committed units
are the two phases in the UC problem. The start-up and shut-down timetables of each
unit employed to fulfill anticipated demand over a short period of time are determined by
solving the UC issue in a power system [187]. The problem comprises both continuous and
integer variables, as well as a complex collection of unit-related constraints, such as mini-
mum up- and down-timings and start-up behavior. Usually, stochastic programming and
mathematics have been used to solve this problem [188,189]. However, using metaheuristic
optimization algorithms to solve this problem has received a great deal of attention in
the last few years. The reduction of overall production costs over the time horizon is the
ultimate objective of the UC issue. The total costs include [190]:

• Start-up costs; these costs are described as an exponential (for cooling) or linear (for
banking) function of the number of hours the machine has been down.

• Shut-clown costs; these expenses are specified as a set sum for each unit per shutdown.
• Fuel costs; however, using multiple fuels for flame stability while the machine is

operating at low output levels might make this aspect more complicated.

The UC problem may be expressed mathematically as follows:

FUC = ∑Ng
i=1 ∑T

t=1(Ii(t)Fi(Pi(t)) + Si(t)(1 − Ii(t − 1))Ii(t)) (27)

where Ng expresses the generators’ number, T symbols the overall scheduling hours, Pi(t)
is the ith unit power generated at instant t, Ii(t) represents the switching status (ON/OFF)
of ith unit at instant t, Fi(Pi(t)) is the ith unit fuel cost which is given in Equation (27), Si(t)
is the ith unit start-up cost, which is presented as

Si(t) =

{
Shi i f Ti,o f f (t) ≤ Ti,Down + Ti,cold

Sci i f Ti,o f f (t) > Ti,Down + Ti,cold
(28)

where Shi and Sci are the hot and cold start-up costs, Ti,off(t) is the duration of ith unit’s
continuous inactivity, Ti,Down is the minimum downtime of ith unit, and Ti,cold is the cold
start-up time of the ith unit.

The following restrictions must be met throughout the optimization process [190]:

• Power balance.
• System reserve requirements.
• Initial conditions.
• High and low production limits.
• Unit minimum-up and minimum-down times.
• Rate limits.
• Unit start-up and shut-down ramps.
• Flame stabilization using dual or alternate fuel.

Metaheuristic optimization algorithms have been used widely for solving this problem.
Table 8 presents a set of MOAs that are used to solve the UC problem.

Table 8. List of metaheuristic optimization algorithms used to UC problem.

Ref Algorithm Description and Objectives

[190] Genetic algorithm (GA) Provide enhanced binary coding performance for each unit on/off switching states.

[191] Evolutionary algorithm (EA) A comprehensive review of the UC problem using evolutionary optimization algorithms

[192] Particle swarm optimization (PSO) Use three versions of PSO algorithms: Binary PSO, Improved binary PSO, and PSO with
Lagrangian relaxation for unit commitment problems.

[193] novel binary ant colony
optimization (NBACO)

Consider all possible solution sets as well as drawbacks, such as large memory size and
a long execution time while solving the UC problem.

[194] Hybrid Taguchi-ant colony system (HTACS) Better UC solutions are rapidly chosen to reflect possible UC schedules.
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4. Conclusions

This paper provided an extensive study relating the use of metaheuristic optimization
techniques to solve power system problems in order to guarantee sustainable environments.
As power system topologies and sizes expand, so do the associated concerns. These issues
can include optimizing power flow in transmission and distribution systems, optimizing
reactive power dispatching, optimally combining economic and emission dispatching,
optimizing Volt/Var regulating in the distribution power network, and optimizing DG
scale and location and unit commitment. The significant goal of this study is to examine the
application of numerous metaheuristic optimization methods to power system challenges.
These difficulties and their restrictions can be described mathematically as optimization
problems that can be addressed using optimization techniques. Metaheuristic optimization
algorithms represent methods for addressing complicated optimization problems that are
mathematically grounded. These algorithms are intended to locate or provide sufficiently
feasible solutions to a given problem. In the beginning, this research examined the funda-
mental concepts of metaheuristic optimization algorithms as well as their classifications.
The seven problems concerning electricity systems were then presented and explored. For
each task, a list of various metaheuristic optimization strategies was provided. According to
the results, employing the metaheuristic optimization algorithm to tackle the performance
of current power systems is an appealing issue for academic researchers and industry
patterns because of their exceptional ability to successfully manage these challenges. Based
on the achieved results, the particle swarm optimization (PSO) and the genetic algorithm
(GA) are the most used metaheuristic optimization algorithms due to several reasons, such
as the date of their first utilization, and their simplicity to understand and to implement.
However, due to the recent progress in these algorithms, newer algorithms can replace
them. For example, the salp swarm algorithm (SSA) can be implemented more easily with
higher performance and limited camping time. In terms of accuracy, the bald eagle search
algorithm (BES) can generate excellent results but requires more computing time. So, the
choice of an appropriate algorithm depends on the nature of the problem and the accuracy
of the desired results.

With raised interest in AI in the last months, they may replace the current solving al-
gorithms (including the metaheuristic algorithms). However, the metaheuristic algorithms
are increasingly enhanced, so merging them with existing algorithms can provide enhanced
performance for each problem.
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170. Savić, A.; Ðurišić, Ž. Optimal Sizing and Location of SVC Devices for Improvement of Voltage Profile in Distribution Network
with Dispersed Photovoltaic and Wind Power Plants. Appl. Energy 2014, 134, 114–124. [CrossRef]

171. Mohammadi, M.; Nafar, M. Optimal Placement of Multitypes DG as Independent Private Sector under Pool/Hybrid Power
Market Using GA-Based Tabu Search Method. Int. J. Electr. Power Energy Syst. 2013, 51, 43–53. [CrossRef]

https://doi.org/10.1016/j.apenergy.2010.01.003
https://doi.org/10.1049/iet-gtd.2014.1059
https://doi.org/10.1016/j.ijepes.2014.04.040
https://doi.org/10.1109/TPWRS.2015.2466435
https://doi.org/10.1016/j.ijepes.2015.05.046
https://doi.org/10.1049/iet-gtd.2010.0168
https://doi.org/10.1016/j.ijepes.2014.02.038
https://doi.org/10.1080/15325008.2014.1002585
https://doi.org/10.1002/etep.2034
https://doi.org/10.1049/ip-gtd:20030562
https://doi.org/10.1109/TPWRS.2007.895168
https://doi.org/10.1109/TPWRD.2007.908816
https://doi.org/10.1049/iet-rpg.2008.0064
https://doi.org/10.1016/j.epsr.2016.07.012
https://doi.org/10.1109/TPWRD.2012.2209900
https://doi.org/10.1016/j.energy.2013.03.058
https://doi.org/10.1016/j.ijepes.2014.07.041
https://doi.org/10.3906/elk-1205-35
https://doi.org/10.1049/iet-gtd.2013.0803
https://doi.org/10.1049/iet-gtd.2014.0603
https://doi.org/10.1016/j.ijepes.2014.11.017
https://doi.org/10.1109/TPWRS.2005.852115
https://doi.org/10.1016/j.ijepes.2013.05.033
https://doi.org/10.1016/j.apenergy.2014.08.014
https://doi.org/10.1016/j.ijepes.2013.03.003


Sustainability 2023, 15, 9434 27 of 27

172. Dehghanian, P.; Hosseini, S.H.; Moeini-Aghtaie, M.; Arabali, A. Optimal Siting of DG Units in Power Systems from a Probabilistic
Multi-Objective Optimization Perspective. Int. J. Electr. Power Energy Syst. 2013, 51, 14–26. [CrossRef]

173. Vatani, M.; Alkaran, D.S.; Sanjari, M.J.; Gharehpetian, G.B. Multiple Distributed Generation Units Allocation in Distribution
Network for Loss Reduction Based on a Combination of Analytical and Genetic Algorithm Methods. IET Gener. Transm. Distrib.
2016, 10, 66–72. [CrossRef]

174. Gkaidatzis, P.A.; Bouhouras, A.S.; Doukas, D.I.; Sgouras, K.I.; Labridis, D.P. Load Variations Impact on Optimal DG Placement
Problem Concerning Energy Loss Reduction. Electr. Power Syst. Res. 2017, 152, 36–47. [CrossRef]

175. Zeinalzadeh, A.; Mohammadi, Y.; Moradi, M.H. Optimal Multi Objective Placement and Sizing of Multiple DGs and Shunt
Capacitor Banks Simultaneously Considering Load Uncertainty via MOPSO Approach. Int. J. Electr. Power Energy Syst. 2015, 67,
336–349. [CrossRef]

176. Cheng, S.; Chen, M.-Y.; Fleming, P.J. Improved Multi-Objective Particle Swarm Optimization with Preference Strategy for Optimal
DG Integration into the Distribution System. Neurocomputing 2015, 148, 23–29. [CrossRef]

177. Bohre, A.K.; Agnihotri, G.; Dubey, M. Optimal Sizing and Sitting of DG with Load Models Using Soft Computing Techniques in
Practical Distribution System. IET Gener. Transm. Distrib. 2016, 10, 2606–2621. [CrossRef]

178. Kumawat, M.; Gupta, N.; Jain, N.; Bansal, R.C. Swarm-Intelligence-Based Optimal Planning of Distributed Generators in
Distribution Network for Minimizing Energy Loss. Electr. Power Components Syst. 2017, 45, 589–600. [CrossRef]

179. Sharma, D.; Kumar Yadav, N.; Gunjan; Bala, A. Impact of Distributed Generation on Voltage Profile Using Different Optimization
Techniques. In Proceedings of the 2016 International Conference on Control, Computing, Communication and Materials (ICCCCM),
Allahabad, India, 21–22 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6.

180. Fazliana Abdul Kadir, A.; Mohamed, A.; Shareef, H.; Asrul Ibrahim, A.; Khatib, T.; Elmenreich, W. An Improved Gravitational
Search Algorithm for Optimal Placement and Sizing of Renewable Distributed Generation Units in a Distribution System for
Power Quality Enhancement. J. Renew. Sustain. Energy 2014, 6, 033112. [CrossRef]

181. Sarkar, B.K.; Chakrabarti, A. OPF Governed Determination of Location and Size of Distribution Generators Using Gravitational
Search Algorithm. In Proceedings of the 2016 2nd International Conference on Control, Instrumentation, Energy & Communication
(CIEC), Kolkata, India, 28–30 January 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 446–450.

182. Fadel, W.; Kilic, U.; Taskin, S. Placement of Dg, Cb, and Tcsc in Radial Distribution System for Power Loss Minimization Using
Back-Tracking Search Algorithm. Electr. Eng. 2017, 99, 791–802. [CrossRef]

183. El-Fergany, A. Optimal Allocation of Multi-Type Distributed Generators Using Backtracking Search Optimization Algorithm. Int.
J. Electr. Power Energy Syst. 2015, 64, 1197–1205. [CrossRef]

184. Kefayat, M.; Lashkar Ara, A.; Nabavi Niaki, S.A. A Hybrid of Ant Colony Optimization and Artificial Bee Colony Algorithm
for Probabilistic Optimal Placement and Sizing of Distributed Energy Resources. Energy Convers. Manag. 2015, 92, 149–161.
[CrossRef]

185. Sultana, U.; Khairuddin, A.B.; Mokhtar, A.S.; Zareen, N.; Sultana, B. Grey Wolf Optimizer Based Placement and Sizing of Multiple
Distributed Generation in the Distribution System. Energy 2016, 111, 525–536. [CrossRef]

186. Devi, S.; Geethanjali, M. Application of Modified Bacterial Foraging Optimization Algorithm for Optimal Placement and Sizing
of Distributed Generation. Expert Syst. Appl. 2014, 41, 2772–2781. [CrossRef]

187. Chicco, G.; Mazza, A. Metaheuristic Optimization of Power and Energy Systems: Underlying Principles and Main Issues of the
“Rush to Heuristics”. Energies 2020, 13, 5097. [CrossRef]

188. Zheng, Q.P.; Wang, J.; Liu, A.L. Stochastic Optimization for Unit Commitment—A Review. IEEE Trans. Power Syst. 2015, 30,
1913–1924. [CrossRef]

189. Tejada-Arango, D.A.; Lumbreras, S.; Sanchez-Martin, P.; Ramos, A. Which Unit-Commitment Formulation Is Best? A Comparison
Framework. IEEE Trans. Power Syst. 2020, 35, 2926–2936. [CrossRef]

190. Kazarlis, S.A.; Bakirtzis, A.G.; Petridis, V. A Genetic Algorithm Solution to the Unit Commitment Problem. IEEE Trans. Power
Syst. 1996, 11, 83–92. [CrossRef]

191. Muralikrishnan, N.; Jebaraj, L.; Rajan, C.C.A. A Comprehensive Review on Evolutionary Optimization Techniques Applied for
Unit Commitment Problem. IEEE Access 2020, 8, 132980–133014. [CrossRef]

192. Logenthiran, T.; Srinivasan, D. Particle Swarm Optimization for Unit Commitment Problem. In Proceedings of the 2010 IEEE 11th
International Conference on Probabilistic Methods Applied to Power Systems, Singapore, 14–17 June 2010; IEEE: Piscataway, NJ, USA,
2010; pp. 642–647.

193. Jang, S.H.; Roh, J.H.; Kim, W.; Sherpa, T.; Kim, J.H.; Park, J.B. A Novel Binary Ant Colony Optimization: Application to the Unit
Commitment Problem of Power Systems. J. Electr. Eng. Technol. 2011, 6, 174–181. [CrossRef]

194. Yuan-Kang, W.; Chih-Cheng, H.; Chun-Liang, L. Resolution of the Unit Commitment Problems by Using the Hybrid Taguchi-Ant
Colony System Algorithm. Int. J. Electr. Power Energy Syst. 2013, 49, 188–198. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ijepes.2013.02.014
https://doi.org/10.1049/iet-gtd.2015.0041
https://doi.org/10.1016/j.epsr.2017.06.016
https://doi.org/10.1016/j.ijepes.2014.12.010
https://doi.org/10.1016/j.neucom.2012.08.074
https://doi.org/10.1049/iet-gtd.2015.1034
https://doi.org/10.1080/15325008.2017.1290713
https://doi.org/10.1063/1.4878997
https://doi.org/10.1007/s00202-016-0448-4
https://doi.org/10.1016/j.ijepes.2014.09.020
https://doi.org/10.1016/j.enconman.2014.12.037
https://doi.org/10.1016/j.energy.2016.05.128
https://doi.org/10.1016/j.eswa.2013.10.010
https://doi.org/10.3390/en13195097
https://doi.org/10.1109/TPWRS.2014.2355204
https://doi.org/10.1109/TPWRS.2019.2962024
https://doi.org/10.1109/59.485989
https://doi.org/10.1109/ACCESS.2020.3010275
https://doi.org/10.5370/JEET.2011.6.2.174
https://doi.org/10.1016/j.ijepes.2013.01.007

	Introduction 
	Metaheuristic Optimization 
	Overview 
	Basic Concepts 
	Classification 
	Formulation 

	Metaheuristic Algorithms for Power System Applications 
	Optimal Power Flow for Transmission Power Systems 
	Optimal Reactive Power Dispatching 
	Optimal Combined Economic and Emission Dispatching 
	Optimal Power Flow in Distribution Networks 
	Optimal Volt/Var Controlling in the Distribution Power Network 
	Optimizing the Size and Placement of DGs 
	Unit Commitment 

	Conclusions 
	References

