48,647 research outputs found

    ColDICE: a parallel Vlasov-Poisson solver using moving adaptive simplicial tessellation

    Full text link
    Resolving numerically Vlasov-Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincar\'e invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli (1993) generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a "warm" dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.Comment: Code and illustration movies available at: http://www.vlasix.org/index.php?n=Main.ColDICE - Article submitted to Journal of Computational Physic

    A Moving Boundary Flux Stabilization Method for Cartesian Cut-Cell Grids using Directional Operator Splitting

    Full text link
    An explicit moving boundary method for the numerical solution of time-dependent hyperbolic conservation laws on grids produced by the intersection of complex geometries with a regular Cartesian grid is presented. As it employs directional operator splitting, implementation of the scheme is rather straightforward. Extending the method for static walls from Klein et al., Phil. Trans. Roy. Soc., A367, no. 1907, 4559-4575 (2009), the scheme calculates fluxes needed for a conservative update of the near-wall cut-cells as linear combinations of standard fluxes from a one-dimensional extended stencil. Here the standard fluxes are those obtained without regard to the small sub-cell problem, and the linear combination weights involve detailed information regarding the cut-cell geometry. This linear combination of standard fluxes stabilizes the updates such that the time-step yielding marginal stability for arbitrarily small cut-cells is of the same order as that for regular cells. Moreover, it renders the approach compatible with a wide range of existing numerical flux-approximation methods. The scheme is extended here to time dependent rigid boundaries by reformulating the linear combination weights of the stabilizing flux stencil to account for the time dependence of cut-cell volume and interface area fractions. The two-dimensional tests discussed include advection in a channel oriented at an oblique angle to the Cartesian computational mesh, cylinders with circular and triangular cross-section passing through a stationary shock wave, a piston moving through an open-ended shock tube, and the flow around an oscillating NACA 0012 aerofoil profile.Comment: 30 pages, 27 figures, 3 table

    A Zooming Technique for Wind Transport of Air Pollution

    Get PDF
    In air pollution dispersion models, typically systems of millions of equations that describe wind transport, chemistry and vertical mixing have to be integrated in time. To have more accurate results over specific fixed areas of interest---usually highly polluted areas with intensive emissions---a local grid refinement or zoom is often required. For the wind transport part of the models, i.e.\ for finite volume discretizations of the transport equation, we propose a zoom technique that is positive, mass-conservative and allows to use smaller time steps as enforced by the CFL restriction in the zoom regions only

    A Comparison of Two Shallow Water Models with Non-Conforming Adaptive Grids: classical tests

    Get PDF
    In an effort to study the applicability of adaptive mesh refinement (AMR) techniques to atmospheric models an interpolation-based spectral element shallow water model on a cubed-sphere grid is compared to a block-structured finite volume method in latitude-longitude geometry. Both models utilize a non-conforming adaptation approach which doubles the resolution at fine-coarse mesh interfaces. The underlying AMR libraries are quad-tree based and ensure that neighboring regions can only differ by one refinement level. The models are compared via selected test cases from a standard test suite for the shallow water equations. They include the advection of a cosine bell, a steady-state geostrophic flow, a flow over an idealized mountain and a Rossby-Haurwitz wave. Both static and dynamics adaptations are evaluated which reveal the strengths and weaknesses of the AMR techniques. Overall, the AMR simulations show that both models successfully place static and dynamic adaptations in local regions without requiring a fine grid in the global domain. The adaptive grids reliably track features of interests without visible distortions or noise at mesh interfaces. Simple threshold adaptation criteria for the geopotential height and the relative vorticity are assessed.Comment: 25 pages, 11 figures, preprin

    A Semicoarsening Multigrid Algorithm for SIMD Machines

    Get PDF
    A semicoarsening multigrid algorithm suitable for use on single instruction multiple data (SIMD) architectures has been implemented on the CM-2. The method performs well for strongly anisotropic problems and for problems with coefficients jumping by orders of magnitude across internal interfaces. The parallel efficiency of this method is analyzed, and its actual performance is compared with its performance on some other machines, both parallel and nonparallel

    A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow

    Full text link
    We present an efficient discontinuous Galerkin scheme for simulation of the incompressible Navier-Stokes equations including laminar and turbulent flow. We consider a semi-explicit high-order velocity-correction method for time integration as well as nodal equal-order discretizations for velocity and pressure. The non-linear convective term is treated explicitly while a linear system is solved for the pressure Poisson equation and the viscous term. The key feature of our solver is a consistent penalty term reducing the local divergence error in order to overcome recently reported instabilities in spatially under-resolved high-Reynolds-number flows as well as small time steps. This penalty method is similar to the grad-div stabilization widely used in continuous finite elements. We further review and compare our method to several other techniques recently proposed in literature to stabilize the method for such flow configurations. The solver is specifically designed for large-scale computations through matrix-free linear solvers including efficient preconditioning strategies and tensor-product elements, which have allowed us to scale this code up to 34.4 billion degrees of freedom and 147,456 CPU cores. We validate our code and demonstrate optimal convergence rates with laminar flows present in a vortex problem and flow past a cylinder and show applicability of our solver to direct numerical simulation as well as implicit large-eddy simulation of turbulent channel flow at Reτ=180Re_{\tau}=180 as well as 590590.Comment: 28 pages, in preparation for submission to Journal of Computational Physic
    corecore