200 research outputs found

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions

    Context Aware Middleware Architectures: Survey and Challenges

    Get PDF
    Abstract: Context aware applications, which can adapt their behaviors to changing environments, are attracting more and more attention. To simplify the complexity of developing applications, context aware middleware, which introduces context awareness into the traditional middleware, is highlighted to provide a homogeneous interface involving generic context management solutions. This paper provides a survey of state-of-the-art context aware middleware architectures proposed during the period from 2009 through 2015. First, a preliminary background, such as the principles of context, context awareness, context modelling, and context reasoning, is provided for a comprehensive understanding of context aware middleware. On this basis, an overview of eleven carefully selected middleware architectures is presented and their main features explained. Then, thorough comparisons and analysis of the presented middleware architectures are performed based on technical parameters including architectural style, context abstraction, context reasoning, scalability, fault tolerance, interoperability, service discovery, storage, security & privacy, context awareness level, and cloud-based big data analytics. The analysis shows that there is actually no context aware middleware architecture that complies with all requirements. Finally, challenges are pointed out as open issues for future work

    System for monitoring and supporting the treatment of sleep apnea using IoT and big data

    Full text link
    [EN] Sleep apnea has become in the sleep disorder that causes greater concern in recent years due to its morbidity and mortality, higher medical care costs and poor people quality of life. Some proposals have addressed sleep apnea disease in elderly people, but they have still some technical limitations. For these reasons, this paper presents an innovative system based on fog and cloud computing technologies which in combination with IoT and big data platforms offers new opportunities to build novel and innovative services for supporting the sleep apnea and to overcome the current limitations. Particularly, the system is built on several low-power wireless networks with heterogeneous smart devices (i.e, sensors and actuators). In the fog, an edge node (Smart IoT Gateway) provides IoT connection and interoperability and pre-processing IoT data to detect events in real-time that might endanger the elderly's health and to act accordingly. In the cloud, a Generic Enabler Context Broker manages, stores and injects data into the big data analyzer for further processing and analyzing. The system's performance and subjective applicability are evaluated using over 30 GB size datasets and a questionnaire fulfilled by medicals specialist, respectively. Results show that the system data analytics improve the health professionals' decision making to monitor and guide sleep apnea treatment, as well as improving elderly people's quality of life. (C) 2018 Elsevier B.V. All rights reserved.This research was supported by the Ecuadorian Government through the Secretary of Higher Education, Science, Technology, and Innovation (SENESCYT) and has received funding from the European Union's "Horizon 2020'' research and innovation program as part of the ACTIVAGE project under Grant 732679 and the Interoperability of Heterogeneous IoT Platforms project (INTER-IoT) under Grant 687283.Yacchirema-Vargas, DC.; Sarabia-Jácome, DF.; Palau Salvador, CE.; Esteve Domingo, M. (2018). System for monitoring and supporting the treatment of sleep apnea using IoT and big data. Pervasive and Mobile Computing. 50:25-40. https://doi.org/10.1016/j.pmcj.2018.07.007S25405

    A Framework for Service-Oriented Architecture (SOA)-Based IoT Application Development

    Get PDF
    Funding: This research was partially supported by funds provided by the European Commission in the scope of FoF/H2020-723710 vf-OS, ICT/H2020-825631 ZDMP projects, and by the FCT— Fundação para a Ciência e a Tecnologia in the scope of UIDB/00066/2020 related to CTS—Centro de Tecnologia e Sistemas research unit.In the last decades, the increasing complexity of industrial information technology has led to the emergence of new trends in manufacturing. Factories are using multiple Internet of Things (IoT) platforms to harvest sensor information to improve production. Such a transformation contributes to efficiency growth and reduced production costs. To deal with the heterogeneity of the services within an IoT system, Service-Oriented Architecture (SOA) is referred to in the literature as being advantageous for the design and development of software to support IoT-based production processes.The aim of SOA-based design is to provide the leverage to use and reuse loosely coupled IoT services at the middleware layer to minimise system integration problems. We propose a system architecture that follows the SOA architectural pattern and enables developers and business process designers to dynamically add, query or use instances of existing modular software in the IoT context. Furthermore, an analysis of utilization of modular software that presents some challenges and limitations of this approach is also in the scope of this workpublishersversionpublishe

    Connecting ROS and FIWARE: Concepts and Tutorial

    Get PDF
    Nowadays, the Cloud technology permeates our daily life, spread in various services and applications used by modern instruments, such as smartphones, computer, and IoT devices. Besides, the robotic field represents one of the future emerging markets. Nevertheless, these two distinct worlds seem to be very far from each other, due to the lack of common strategies and standards. The aim of this tutorial chapter is to provide a walkthrough to build a basic Cloud Robotics application using ROS and the FIWARE Cloud framework. At the beginning, the chapter offers step-by-step instructions to create and manage an Orion Context Broker running on a virtual machine. Then, the firos package is used to integrate the ROS topic communication using publishers and subscribers, providing a clear example. Finally, a more concrete use case is detailed, developing a Cloud Robotics application to control a ROS-based robot through the FIWARE framework. The code of the present tutorial is available at https://github.com/Raffa87/ROS_FIWARE_Tutorial, tested using ROS Indigo

    Breaking vendors and city locks through a semantic-enabled global interoperable Internet-of-Things system: a smart parking case

    Get PDF
    The Internet of Things (IoT) is unanimously identified as one of the main technology enablers for the development of future intelligent environments. However, the current IoT landscape is suffering from large fragmentation with many platforms and vendors competing with their own solution. This fragmented scenario is now jeopardizing the uptake of the IoT, as investments are not carried out partly because of the fear of being captured in lock-in situations. To overcome these fears, interoperability solutions are being put forward in order to guarantee that the deployed IoT infrastructure, independently of its manufacturer and/or platform, can exchange information, data and knowledge in a meaningful way. This paper presents a Global IoT Services (GIoTS) use case demonstrating how semantic interoperability among five different smart city IoT deployments can be leveraged to develop a smart urban mobility service. The application that has been developed seamlessly consumes data from them for providing parking guidance and mobility suggestions at the five locations (Santander and Barcelona in Spain and Busan, Seoul and Seongnam in South Korea) where the abovementioned IoT deployments are installed. The paper is also presenting the key aspects of the system enabling the interoperability among the three underlying heterogeneous IoT platforms.This research was funded by European Union’s H2020 Programme for research, technological development and demonstration within the projects “Worldwide Interoperability for Semantics IoT (WISE-IoT)” (under grant agreement No 723156) and “Bridging the Interoperability Gap of the Internet of Things (BIG-IoT)” (under grant agreement No. 688038) and, in part, by the Spanish Government by means of the Project ADVICE “Dynamic Provisioning of Connectivity in High Density 5G Wireless Scenarios” under Grant TEC2015-71329-C2-1-R

    Delivering elder-care environments utilizing TV-channel based mechanisms

    Get PDF
    In this paper, we present a smart environment for elderly. What makes the development of such system challenging is that the concept of smartness for elderly brings to the extreme the idea of invisibility of the technology. In our experience, elders are well-disposed to new technologies, provided that those will not require significant changes - namely, they are invisible - to their habits. Starting from this consideration, 200 caregivers responses were collected by questionnaire, so as to better understand elders' needs and habits. A system was subsequently developed allowing elders to access a number of "modern web services" as standard TV channels: at channel 43 there is the health status, at channel 45 the photos of the family, at 46 the agenda of the week, just to mention few of the available services. The content of such services is automatically generated by the smart devices in the environment and is managed by the caregivers (e.g., family members) by simple web apps. Fourteen families were asked to install the system in their house. The results of these experiments confirm that the proposed system is considered effective and user-friendly by elders

    FIWARE-based application for control of Smart Cities

    Get PDF
    Esta tesis es un estudio teórico sobre el framework FIWARE, su ecosistema y sus aplicaciones prácticas. Primero se hace una descripción de FIWARE como ecosistema, los principios en los que está basado, así como su misión y un histórico de su implementación. Después se detallan los programas que forman el ecosistema y su comunidad. En la parte técnica, se describe, con el uso de ejemplos, la tecnología que utilizan los distintos componentes que forman FIWARE y el mercado en el que adquirir las soluciones. Por último se muestran algunos casos de éxito de la implementación de FIWARE.This thesis is a theoretical study about the FIWARE framework, its ecosystem and its practical applications. First, a description of FIWARE as an ecosystem and the principles it is based on, as well as its mission and a timeline of its implementation is done. Then, the main programs and the community that form the ecosystem are detailed. On the technical section, it is described, with the use of examples, the technology employed in each FIWARE component and the market where the solutions can be acquired. Finally, some success stories are shown where FIWARE was implemented.Grado en Ingeniería Informátic

    Advancing IoT Platforms Interoperability

    Get PDF
    The IoT European Platforms Initiative (IoT-EPI) projects are addressing the topic of Internet of Things and Platforms for Connected Smart Objects and aim to deliver an IoT extended into a web of platforms for connected devices and objects that supports smart environments, businesses, services and persons with dynamic and adaptive configuration capabilities. The specific areas of focus of the research activities are architectures and semantic interoperability, which reliably cover multiple use cases. The goal is to deliver dynamically-configured infrastructure and integration platforms for connected smart objects covering multiple technologies and multiple intelligent artefacts. The IoT-EPI ecosystem has been created with the objective of increasing the impact of the IoT-related European research and innovation, including seven European promising projects on IoT platforms: AGILE, BIG IoT, INTER-IoT, VICINITY, SymbIoTe, bIoTope, and TagItSmart.This white paper provides an insight regarding interoperability in the IoT platforms and ecosystems created and used by IoT-EPI. The scope of this document covers the interoperability aspects, challenges and approaches that cope with interoperability in the current existing IoT platforms and presents some insights regarding the future of interoperability in this context. It presents possible solutions, and a possible IoT interoperability platform architecture

    An Edge-Cloud based Reference Architecture to support cognitive solutions in Process Industry

    Get PDF
    Process Industry is one of the leading sectors of the world economy, characterized however by intense environmental impact, and very high-energy consumption. Despite a traditional low innovation pace in PI, in the recent years a strong push at worldwide level towards the dual objective of improving the efficiency of plants and the quality of products, significantly reducing the consumption of electricity and CO2 emissions has taken momentum. Digital Technologies (namely Smart Embedded Systems, IoT, Data, AI and Edge-to-Cloud Technologies) are enabling drivers for a Twin Digital-Green Transition, as well as foundations for human centric, safe, comfortable and inclusive workplaces. Currently, digital sensors in plants produce a large amount of data, which in most cases constitutes just a potential and not a real value for Process Industry, often locked-in in close proprietary systems and seldomly exploited. Digital technologies, with process modelling-simulation via digital twins, can build a bridge between the physical and the virtual worlds, bringing innovation with great efficiency and drastic reduction of waste. In accordance with the guidelines of Industrie 4.0 this work proposes a modular and scalable Reference Architecture, based on open source software, which can be implemented both in brownfield and greenfield scenarios. The ability to distribute processing between the edge, where the data have been created, and the cloud, where the greatest computational resources are available, facilitates the development of integrated digital solutions with cognitive capabilities. The reference architecture is being validated in the three pilot plants, paving the way to the development of integrated planning solutions, with scheduling and control of the plants, optimizing the efficiency and reliability of the supply chain, and balancing energy efficiency
    corecore