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Abstract: Context aware applications, which can adapt their behaviors to changing 

environments, are attracting more and more attention. To simplify the complexity of 

developing applications, context aware middleware, which introduces context awareness into 

the traditional middleware, is highlighted to provide a homogeneous interface involving 

generic context management solutions. This paper provides a survey of state-of-the-art 

context aware middleware architectures proposed during the period from 2009 through 

2015. First, a preliminary background, such as the principles of context, context awareness, 

context modelling, and context reasoning, is provided for a comprehensive understanding of 

context aware middleware. On this basis, an overview of eleven carefully selected 

middleware architectures is presented and their main features explained. Then, thorough 

comparisons and analysis of the presented middleware architectures are performed based 

on technical parameters including architectural style, context abstraction, context 

reasoning, scalability, fault tolerance, interoperability, service discovery, storage, security 

& privacy, context awareness level, and cloud-based big data analytics. The analysis shows 

that there is actually no context aware middleware architecture that complies with all 

requirements. Finally, challenges are pointed out as open issues for future work. 

Keywords: context; context awareness; context aware middleware; ontology;  

modelling; reasoning 
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1. Introduction 

Due to the rapid development and penetration of ubiquitous computing and the Internet of Things 

(IoT) into daily life, a boom of context data which continually represents changes of the environment 

is generated and can be available for further use [1]. It is believed that the full utilization of this large 

volume of context data can introduce possibilities for many new applications. Taking one possibility as 

an example, context aware applications have attracted a lot of attention from academia and industry. 

Context aware applications are able to adapt their behaviours to the changing environment with a 

minimum of human intervention, but meanwhile introduce a new challenge for application developers. 

Therefore, the underlying challenge is to explore an efficient solution to increase the usability of context.  

In general, three typical approaches have been of much value to develop context aware applications [2]: 

(1) Each application interacts, obtains, processes and uses the context of its interest in its own manner;  

(2) Some libraries/toolkits aiming at acquiring and processing context can be added and reused for 

building context aware applications; (3) Applications are built on the basis of context aware 

middleware in which context management is enabled. The third approach outperforms the other two 

since it can decrease the complexity of developing context aware applications. Hence, context aware 

middleware is highlighted as an essential requirement for building context aware applications. 

Traditional middleware, acting as a software layer, is usually defined adhering to the metaphor of a 

black box which hides the heterogeneity of hardware and eases the development of upper applications. 

To distinguish from the traditional middleware, context aware middleware should provide fundamental 

context management, such as modelling context, processing context, etc. As a result, applying context 

aware middleware can free developers from the concern of managing the context and allow them to 

focus on designing desired application functions and business logic. 

Many context aware middleware architectures [3–6] have been proposed to proactively provide 

adaptive behaviour to the continually changing environment in recent years. Thus it is valuable to 

review these recent publications and attempt to derive the development trend(s). However, a literature 

review on context aware middleware architectures reveals two major shortcomings: one is the lack of 

published surveys on this topic and their missing extension & comprehensiveness since many of them 

are outdated and do not include newer context aware middleware proposals. The other shortcoming is 

the big overlap between those published surveys as they repeatedly investigate the same knowledge 

base (several well-known context aware middlewares). Due to this background, this paper provides an 

extensive survey on context aware middleware architectures by means of presentation, comparison and 

evaluation of newly proposed context aware middleware architectures that have not been mentioned in 

the review published literature. In this way, readers could refresh their knowledge and stay up on the 

latest context aware middleware developments. Our aim is to present the current status of context 

aware middleware, point out the challenges behind as well as potential work in order to help researchers 

and developers to choose a desired middleware for their own use or probably design a brand-new 

solution inspired by existing proposals. 

The remaining part of this paper is organised as follows: Section 2 provides the background of 

context aware middleware. Herein, the principles of context, context awareness and their role in the 

middleware are introduced. Familiar readers could skip this part. Section 3 gives an extensive survey 



Sensors 2015, 15 20572 

 

 

of context aware middleware architectures along with analysis and evaluation. Section 4 gives an 

outlook of open issues and actual challenges. Finally, Conclusions are presented in Section 5. 

2. Principles of Context Aware Environments 

The middleware, as a software layer to abstract the heterogeneity of the lower layer (e.g., hardware) 

and ease the complexity of developing a higher layer (e.g., applications), is often proposed to be 

enhanced with the ability of context awareness. Context aware middleware can be adaptive to the 

environment and provide relevant services according to the changing needs from the external side 

(e.g., users).  

Before digging into the interior composition of context aware middleware, it is necessary to have a 

fundamental knowledge base regarding context and context awareness. To this end, an introduction to 

those preliminary concepts is provided in the following subsections. 

2.1. Context 

Context is the key knowledge source for systems to achieve context awareness. The Oxford 

Dictionary gives a general definition for context as “the circumstances that form the setting for an 

event, statement, or idea and in terms of which it can be fully understood.” Nevertheless, many 

researchers try to define context in their own way, depending on the necessities and investigated 

environment, e.g.,  

Context is… 

• “…the set of location, identities of nearby people and objects and changes to those objects.” [7] 

• “…location, identities of the people around the user, the time of day, season, temperature and 

so forth.” [8] 

• “…the combination of the user’s location, environment, identity and time.” [9] 

• “…what is happening at this moment.” [10] 

• “…the state of the application’s surroundings.” [11] 

• “…just the aspects of a current situation.” [12] 

• “…extending to model the activities and tasks that are taking place in a location.” [13] 

• “…the set of circumstances surrounding it are of relevance to its completion.” [14] 

• “…any information that can be used to characterize the situation of entities (i.e., whether a 

person, place, or object) are considered relevant to the interaction between a user and an 

application, including the user and the application. Context is typically the location, identity, 

and state of people, groups and computational and physical objects.” [15] 

Taking a holistic view on the aforementioned definitions, it can be found that most of them only 

focus on a particular application or just enumerate the entities for context. In other words, they lack 

generality and standardization. 

In this paper, we hold the opinion that context is any piece of information that can represent 

changes of the circumstance (either static or dynamic). Further, it could be useful for understanding the 

current situation and predicting potential changes. 
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2.1.1. Context Categorization 

A clear and accurate classification of context is helpful to uncover, understand, manipulate and sort out 

a variety of contexts in an efficient way. Also, it can provide great help for users to identify the type of a 

given context before using it. As context could be categorized from different perspective, the list in Table 1 

summarizes a few well-known forms of context classification given in the current literature [16–22]. 

Table 1. Context categorizations. 

Context Categorization Observation Aspects and Context Features Examples 

5W1H (Who, When, 

Where, What, Why  

and How)  

Analysis of the environment from different 

points of view. Intuitive to understand. 

Life assistance of elderly  

Peter, 8 o’clock, garden, picking fruit, 

apples are ripe, with a ladder. 

Physical/Virtual  

Differentiation according to sources: sensing 

devices (physical); user, context servers, etc. 

(virtual). Simple but ambiguity to identify the 

same context as it can be physical or virtual 

depending on different situations. 

Rehabilitation  

Physical: heart rate  

Virtual: patient’s medical history from 

database 

Static/Dynamic  

Observation over time: always equal (static) or 

adaptive to changes in the environment 

(dynamic). Intuitive to understand. 

Plant inspection  

Static: the place where a tree grows  

Dynamic: the aspect of the tree due to 

the current season 

Direct/Indirect  

Differentiation through obtainment 

complexity, indirect context is more complex 

to acquire and needs computation, inference 

etc. Simple to identify. 

Birthday  

Direct: actual date is the birthday  

Indirect: which birthday is it and does 

this mean something (e.g., 50th Birthday) 

Sensed, Combined, 

Inferred and Learned  

Refined differentiation of obtainment 

complexity by sub-categorizations. Ambiguity 

in identifying the complexity of obtainment, 

difficult to distinguish clear differences of sub-

categorizations 

Navigation  

Sensed: proximity to an object  

Combined: speed and direction of motion 

Inferred: check distance (rules)  

Learned: compare with similar situations  

Internal/External  

Differentiation of sources from the user’s point 

of view. Ambiguity in classifying the same 

context. 

Life assistance  

Internal: desire to get up from the bed  

External: it is the time to get up 

Primary/Secondary  

Obtainment complexity similar to 

direct/indirect. Simple. Ambiguity in 

identifying the complexity of obtainment. 

Health monitoring  

Primary: check blood pressure  

Secondary: comparison of historical 

blood pressure data 

None of those seven presented types of classification can be called the best or the worst, as each is 

suitable and reasonable in a certain situation. Hence, depending on certain situation, environment and 

purpose, a specific classification scheme would be used to handle the context from the desired perspective. 

2.1.2. Context Features 

It is possible that different kinds of context share several features to some extent. Here, a clear and 

accurate extraction of context features is beneficial for users to achieve a better understanding of 
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context characteristics so that the shortcomings of context can be minimized or even hidden as much 

as possible. Van Bunningen et al. [23] have identified eight features of context: context is obtained 

though individual sensors or networks (1); it is sensed by small and constrained devices (2); it 

originates from distributed sources (3); it is continuously changing (4); it comes from mobile objects (5); it 

has a temporal (6) and a spatial (7) character and it is imperfect and uncertain (8). 

However, from our point of view, some statements are too absolute and inaccurate to be extracted 

as sharing characteristics for context. Besides, this analysis is not comprehensive enough to represent 

all aspects of context. So based on this survey, we refine and summarize the following five features  

for context. 

Context Sources 

Context can be acquired from diverse sources. Generally, obtaining context can be categorized into 

hardware and virtual sources. From the perspective of hardware, context can be monitored and 

collected by a variety of sensing devices. The majority of physical context is obtained through sensors 

or sensor networks. The present trend for hardware development is to become smaller and cheaper 

from an economic perspective. In the meanwhile, this leads to the restriction of computing capability 

and storage capacity. Moreover, battery capacity should also be increased to support longer work life. 

In addition, context can be either provided manually or derived from virtual sources such as context 

agents, context servers, middleware modules, big data, etc. 

Context Scope 

The scope of context types and context data is not limited to a fixed number. On the contrary, it has 

a wide range and the scope is dynamic, depending on different situations. For instance, a set of information 

including brightness, temperature, humidity and heart rate can be collected as context in a home healthcare 

scenario. In addition, the same piece of context information could have different importance in 

different environments. Due to the fact of enormous context data on behalf of reflecting changes, the 

raised concerns are computing burden and storage stress. 

Context Variety 

Context can have a lot of alternatives [24]. Different context can reflect similar or even the same 

changing aspects of a current state so that a big range of flexibility is available for users to choose  

the most suitable context to use. For example, both address name and latitude/longitude coordinates 

can record the location of a person. However, the feature results in an extra concern: context 

redundancy. The increasing context redundancy will pave the way to improve the efficiency of 

computing capability, extend storage capacity and refine context filtering algorithms, etc. 

Context Temporal Validity 

It is known that the majority of context is attributed to the dynamic category. For dynamic context, 

context data values are only valid for a short period of time until they are replaced by new values. For 

example, only the real time location is significant for observing a moving person. 
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Context Flexibility 

Context is responsive to mobile objects (or persons). Users move around and change from one 

environment to another which probably is an unfamiliar one. Context data is then collected from the 

mobile persons and reflects their changes. In this manner, a system is able to accommodate its 

behavior to each environment. In other words, context is obtained from mobile objects as well as used 

to serve them in the end. 

2.2. Context Awareness and Its Categorizations 

The term context awareness is often referred to be sentient, reactive, context-sensitive,  

environment-oriented, situated, responsive and adaptive, it firstly appeared in the Active Badge 

research project of Olivetti Research Ltd. (Cambridge, UK) in 1992 [25]. From then on, many 

researchers had interests in generalizing this term and discussing its definition, e.g., 

• “...the ability of computing devices to detect and sense, interpret and respond to aspects of a 

user’s local environment and the computing devices themselves.” [26] 

• “...limited to the human-computer interface [27], and the notion of adaptation [28].” 

• “...provide the maximum flexibility of service based on real time context.” [29] 

• “...automatically provide information or take actions according to the user’s present context 

and need.” [30] 

• “...if an application has the ability to monitor input from sensing devices and choose the 

suitable context according to user’s need or interests, then it can be labelled as a context-aware 

application.” [31] 

The authors consider the aforementioned definitions as too one-sided to identify if a system is 

context aware. As an alternative, the statement found in [22] “a system is context-aware if it uses 

context to provide relevant information and/or services to the user, where relevancy depends on the 

user’s task” could be viewed as general and accurate enough to suit any context aware application and 

therefore shared in this paper. 

A context aware system is usually designed for a particular purpose or focused on solving certain 

problems. Therefore, it surely would not be implemented as “all knowing”, but covering necessary 

aspects. Additionally, differences lie in the degree of awareness which can be expressed as “levels”. 

For each particular application, those levels have been defined in different ways, so the first aim is to 

get an overview and then possibly find similarities to achieve a common classification for generally 

useful levels. Table 2 summarizes different types of classification found in [32–35] and gives a brief 

explanation for each level. As can be seen from the Table 2, the focus of each classification is set on very 

different aspects: 

• Observing from the user interaction based viewpoint, the level of context awareness increases 

as the demand for the invention from users reduces. 

• The hardware’s point of view focuses on the acquisition of context data which could be 

independent (the system itself obtains all necessary data) or based on an external 

infrastructure of devices. Hereby, intermediate levels could exist, as e.g., context awareness 

achieved by self-contained hardware could be augmented by using other technologies or 



Sensors 2015, 15 20576 

 

 

infrastructures. The work reported in [32] states a close relation between active context 

awareness and infrastructure-based context awareness because of some common characteristics. It 

is believed that the extra infrastructure support is needful for the realization of active context 

awareness. The prominent commonality is that both try to reduce or even eliminate unnecessary 

user intervention in order to make the performance as “intelligent” as possible. 

• If the measurement by hardware is the only means to realize context awareness, then the 

corresponding achievement is limited to be in the hard level. Soft context awareness is achieved 

by means of applying operations, e.g., analysis, inference, and learning on context knowledge 

base. However, it is difficult to apply and use to examine the level of a real context aware 

middleware, as most architectures simultaneously depend on both hardware and knowledge 

repository (context history). 

• Based on the different models used to express context, context awareness can be grouped into 

three levels: location aware, medium and semantic. The investigation of [35] on the history of 

context aware systems shows that the development went over three generations which happen 

to represent one level, respectively. The first level is provided merely according to user's location. 

In the 2nd generation, more kinds of context information are employed to enable systems to 

know more about the environment. However, due to ambiguity, only a medium level of awareness 

is reached here. Later, common semantic technologies (e.g., ontology) were adopted to 

unambiguously represent context structures and their relationships in the 3rd generation. Here, 

context awareness can take advantage of semantic techniques to ensure formality, flexibility, 

interoperability and scalability. 

Table 2. Comparison of context awareness classifications. 

Classification 
Aspect 

Context Awareness 
Levels 

Description 

User interaction 

Personalized Interaction is available for users to set preferences 

Passive Execution of appropriate options is subject to users’ decisions 

Active Execution of appropriate options acts autonomously 

Acquisition 
hardware 

Self-contained 
Context awareness is achieved by independent hardware 

without any external support 

Infrastructure-based 
External systems or infrastructures provide additional support 

to realize context awareness 

Information 
acquisition tool 

Hard Context awareness is obtained solely by hardware 

Soft 
Knowledge inference based on context repository is applied to 

achieve context awareness 

Context model 

Location aware Context awareness is limited to location awareness 

Medium-level Various context is used but not unambiguously managed 

Semantic 
Semantic technologies are employed to enhance  

context awareness 

The four aforementioned categorizations for context awareness could widen users’ vision to observe 

context aware systems from different aspects. However, those categorizations differ in their generality 

and rationality. e.g., it is difficult to attribute a context aware system to a specific level from the aspect 
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of acquisition, because context is obtained from both hard and soft sources in most cases. Similarly, it 

is blurry to identify the involvement of user interaction as personalized, passive or active. In general, the 

last classification is the most applicable proposal compared with the others. In Section 3, this classification 

will be adopted as an important criterion to evaluate different context aware middleware proposals. 

2.3. Context Lifecycle 

Although current proposals for context aware middleware contain different components or modules 

to manage context, they obey a general rule which is the context lifecycle. The life of context, which is 

the period of time from its obtainment to destruction, is demarcated by six significant events as 

Context Acquisition, Context Modelling, Context Reasoning, Context Distribution, Context 

Repository, and Context Visualization as illustrated in Figure 1. The way to realize context awareness 

begins with the acquisition of various kinds of context followed by the formalization and inference 

process, and finally ends up with the distribution of useful context to the corresponding applications. 

At the stage of context modelling and reasoning, historical context data needs to be recorded for 

further use or queries and also can be visualized by users. In the following, the major phases of the 

lifecycle are outlined in detail. 

Context 
Acquisition

Context 
Modelling

Context 
Reasoning

Context 
Distribution

Physical 
Context

Formalized Model Reasoning Algorithms

Context Repository

Virtual 
Context

Dessimination 
Mechanisms

Context 
Visualization  

Figure 1. General context lifecycle. 

2.3.1. Context Acquisition 

The aim of context acquisition is to obtain a maximum amount of data, such that the possibilities for 

applications to be intelligent could be maximized due to richer context information. As stated in Table 1, 

one possibility to classify context is the differentiation into physical and virtual, and the following 

introduction for context acquisition will be based on this classification. 

Physical Context 

Physical context is obtained from sensing devices which are selected according to the requirements 

of a certain application or system. It is worth noting that simple sensors (temperature, humidity, etc.) 

and sensor networks are the most widely employed appliance for obtaining context from the 

surrounding, but with the collaboration of other more complex devices (e.g., Snap2Play [36] and 

CACH [37]), more types of context can be obtained. 

Generally, a sensor is sensitive to only one special phenomenon and monitors some relevant 

change. Then, it converts the change into data (normally electronic signals). In this way, context 
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consumers are provided with the real time information of a particular property which cannot be 

obtained directly by observing or touching. However, for detecting all necessary aspects of a certain 

environment, more sensors are needed. A quite complete list of sensors can be found on the Wikipedia 

webpage [38]. 

Virtual Context 

Virtual context refers to context which could not be sensed (e.g., knowledge, preferences, historical 

data, estimations, etc.) and has to be obtained in different ways. It could be either provided manually or 

derived from other context. Users serve as an important source and provide a lot of useful personal 

information, such as birthday, age, preference, height, weight, etc. Besides, already obtained context 

data can be used to infer other context meanings by employing certain reasoning rules. 

2.3.2. Context Modelling 

In the acquisition phase, a huge amount of context data which is structured in multiple formats is 

obtained. To make use of them, the premise is to define and store it in a machine readable and 

processable form, hereby all data should be converted into a unified format such that the context can 

be understood and shared. This can be achieved by a model that defines, represents and processes the 

object “context”.  

Many surveys on popular context modelling techniques have been published like e.g., [17,33].  

The description for each context modelling technique is quite detailed, however, those surveys are not 

complete, because some newly proposed modelling techniques are not included, as e.g., multidisciplinary, 

chemistry inspired etc. In the following, ten modelling techniques including “Key-value”, “Markup”, 

“Graphical”, “Object-oriented”, “Logic-based”, “Multidisciplinary”, “Domain-focused”, “User-centric”, 

“Ontology-based” and “Chemistry-inspired” will be summarized to give an overview of the most 

common techniques. The fundamental scheme to examine the available context modelling techniques 

is based on the data structure used for representation. 

Key-Value Context Modelling 

Key-value pairs are used to enumerate attributes and values in this model. The model can be  

written in different formats (e.g., text and binary). Because of its simplicity and ease of use, it was 

widely employed in early research and various service frameworks. For example, Schilit [39] describes 

the limited number of location information as key-value pairs. However, it lacks capabilities for 

complex structuring for enabling efficient context retrieval algorithms. 

Markup Context Modelling 

This is referred to as tagged encoding, as context information is stored within tags, i.e., symbols and 

annotations which represent and format the data. Those symbols and annotations originate from typical 

markup languages such as XML. Typical representatives of this model are profiles. The limit of this model 

is that its hierarchical structure should be pre-defined and also it is useless to capture context relationships. 
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Graphical Context Modelling 

Graphical diagrams enabled by this model are able to specify relationships. Three widely used 

model examples are Unified Modelling Language (UML), Entity Relationship Model (ERM) and 

Object Role Model (ORM). The UML is a standardized general-purpose language which expresses 

different kinds of context information in an own graphical notation, whereas ERM and ORM work for 

designing and querying databases at the conceptual level. However, the interoperability among different 

storage databases which are used in the actual low level of graphical model poses a challenge.  

Object-Oriented Modelling 

The object-oriented model [40] employs class hierarchies and relationships to represent context  

data and incorporates encapsulation, inheritance and reusability into context expression. Instances can 

be allowed to access the context by inheritance mechanisms. The core component is called entity and it 

forms the subject of structured context information. An entity is linked to other entities by means of 

attributes which are also called associations. This technique stresses developers in terms of being 

aware of the whole context taxonomy. 

Logic-Based Context Modelling 

In a logic-based model, context is defined as facts, expressions and rules. It is flexible to add, 

update or remove data in this model. This model thus offers a high degree of formality. A variety of 

applications have adopted this model. e.g., in [41] a model in a seven field data structure (subject, 

predicate, object, time, area, certainty, freshness) is developed which helps to organize the information 

in a sequence. This model is an enabling method to check context consistency and to support the 

reasoning task as well. However, standards and validation tools are still lacking. 

Multidisciplinary Context Modelling 

This model [42] involves, as the name says, multiple disciplines like psychology, computer science 

and linguistics. It demonstrates context from different points of view and specifies the relationships 

among multiple disciplines. The idea is to widen the vision to examine context and to construct a 

general model, but the complex modelling process introduces difficulties as it incorporates the 

information concerning many applications, various types of users, and multiple environments. This 

proposal still remains at the conceptual level. The specific procedures are not clearly figured out and 

thus the practical usage of this technique is rare. 

Domain-Focused Context Modelling 

Domain-focused context modelling, also referred to as W4 context model, is tailored to model an 

application domain. Therefore, [43] elaborates the specific mechanism: a four fields tuple [Who, What, 

Where, When] (the elements are also called knowledge atoms) is recognized in “Someone or 

something (who) does/did some activity (What) in a certain place (Where) at a specific time (When)”. 

This model is very expressive and flexible for data usages, and queries, modification and deletion are 

allowed on context tuples. 
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User-Centric Context Modelling 

As the name says, this model is built from a user’s perspective and explores how context 

information is perceived by users instead of devices, services or applications [44]. Here, “How” and 

“Why” is added to the formerly presented W4-tuple and leads to the 5W1H-tuple: [Who, When, 

Where, What, How, Why]. More details about this model are presented in [44]. This method can 

express context in a very organized way, however, it is just a trade-off between the complexity of 

expression and ease of use.  

Ontology-Based Context Modelling 

Studer [45] defined ontology as “…a formal, explicit specification of a shared conceptualization” in 

the semantic field. Concepts, instances, and relationships (as main components of ontology) can 

formally and comprehensively represent the knowledge. This modelling method is regarded to as the 

most promising method in [17,33], and it can address the conceptual confusion among people and 

systems because it shares the common understanding. Ontology is competitive over other models in 

terms of interoperability, formality and reusability. 

Chemistry Inspired Context Modelling 

Ikram et al. [46] explored similarity between chemistry and context modelling to fully use chemical 

reactions and periodic table representation. The general scheme is that context is represented in a 

reactive model called “Smart Space” [47,48] where associated services can be triggered like chemical 

bonding or chemical reactions. It is capable of representing various kinds of context and invoking right 

reactions automatically. However, it is still known by just few people due to its infancy. Besides, it is 

difficult for the Smart Space model and corresponding graphical visualization to dynamically evolve 

when the amount and type of context grow. 

It is valuable to provide an overview of the introduced models. Therefore, Table 3 summarizes the 

most important features of every technique such as advantages and disadvantages. 

Table 3. Comparison of existing context modelling techniques. 

Context Modelling 

Technique 
Advantages Disadvantages Applicability 

Key-value Simple; Ease of use; Flexible 

Lack of standards; Useless 

when big in size; Cannot 

represent relationships; 

Difficult to retrieve 

information; Lack of validation 

tools; Lack of scalability; Only 

exact matching. 

Adequate to model limited context 

in simple and self-independent 

applications which do not need to 

share data with other applications.  

Examples: [39,49] 
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Table 3. Cont. 

Context Modelling 

Technique 
Advantages Disadvantages Applicability 

Markup 
Structured; Some validation 

tools are available; Flexible. 

Lack of standards; Problems in 

capturing relationships; 

Timeless; Dependencies; 

Inconsistency checking; 

Reasoning and Uncertainty. 

Efficient as mode of data transfer 

about shallow context over 

network; Applications in which 

levels of information are few.  

Examples: [50,51] 

Graphical 

Rich expressiveness; 

Relationships are allowed; 

Validation is possible through 

constraints; Different 

standards and 

implementations are available. 

Interoperability is unsolved; 

Configuration must be 

required; A generic and well-

developed standard is needed. 

Particularly applicable to derive an 

ER-model which is useful as 

structuring instrument for a 

relational database.  

Examples: [52,53] 

Object-oriented 

Relationships are allowed; 

Some development tools are 

available; Can be fused by 

using programming languages. 

Lack of standards; Lack of 

validation; Hard to retrieve 

information; Reasoning is not 

supported. 

Suitable to be used in code-based 

(high-level programming 

languages) applications with high 

computational capability.  

Examples: [40,54] 

Logic-based 

Rich expressiveness; Support 

reasoning; Consistency check; 

Simplicity; Processing tools 

are available. 

Lack of standards; Lack of 

validation. 

Suitable for applications in which 

high-level information is needed 

and developers are willing to 

specify constraints.  

Examples: [41,55,56] 

Multidisciplinary 

Comprehensive understanding 

for context based on multiple 

disciplines; The division of 

context is concrete. 

Too complex; Still at the  

first stage; Interoperability  

is unsolved. 

Tailored to applications in which 

key human and social issues should 

be identified.  

Examples: [42] 

Domain-focused 
Expressive; Flexible; 

Structured. 

Lack of standards; Lack  

of validation. 

Suitable to single domain-focused 

applications.  

Examples: [43] 

User-centric 

Express context in an 

organized way; Scalability; 

Allow reasoning. 

Lack of standards; Complex to 

use; Lack of validation; Lack 

of formality. 

Suits applications focused on 

perspectives of users; data 

expression is in an intuitive manner. 

Examples: [44] 

Ontology-based 

Support reasoning; Rich 

expressiveness; Relationships 

are allowed; Strong 

validation; Processing tools 

available; Mature standards; 

Interoperability. 

Representation can be 

complicated; It will be 

complex to retrieve context 

information; Unable to  

address uncertainty. 

Suitable to applications which 

highly need to exchange 

information with others; Sufficient 

knowledge engineering skills  

are available.  

Examples: [45,57–59] 

Chemistry 

inspired 

Medium expressivity to 

represent many kinds of 

context; Support for triggering 

services autonomously; Cross-

domain inspired. 

Lack of standards; Lack of 

validation; Not dynamic and 

scalable; In a nascent stage. 

It is possible to apply this model to 

applications which require 

spontaneous interaction and 

composition of information.  

Examples: [46] 
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Recalling the introduction for each modelling technique and observing Table 3, it seems obvious that 

none of the methods is ideal as a standalone technique because all have some limitations. Some of them are 

only applicable in very simple applications such as key-value and markup methods. The usage of 

multidisciplinary and chemistry inspired models is considerably limited as they are emerging techniques 

lacking theoretical support. For the rest of the methods, including graphical, object-oriented, logic-based, 

domain-focused and user-centric, drawbacks such as lack of interoperability and complexity prevent them 

from being widely used. The comparison leads to the conclusion that the ontology-based context modelling 

method could be the most promising technique to model context, because many technical obstacles like 

interoperability, support for reasoning, strong validation and expressivity are overcome by adopting 

ontology. However, a fact, that classical ontology is not appropriate to deal with uncertainty, imprecision 

and vagueness in knowledge, which is inherent to most of real applications [60], should not be negligible. 

Reference [33] defends that the best way to model context is to create a novel technique to integrate the 

existing context modelling techniques. For example [61] introduces a hybrid model that combines 

graphical and ontological techniques, while [62] proposes the integration of fuzzy logic with ontology so as 

to advance the classical ontology to fuzzy ontology. Since a single model cannot satisfy the requirements 

arising from complex environments, future efforts could be made to combine different modelling 

techniques for different purposes in order to mitigate individual shortcomings and fully represent context.  

2.3.3. Context Reasoning 

Reasoning is also called inference. The demand for context reasoning derives from the fact that 

context data is imperfect and uncertain by nature [63]. The task of context reasoning is to deduce high 

level context from raw context associated with some basic functionalities such as validating the 

context values, filling in missing values, removing outliers, checking context inconsistencies and 

applying some calculations to obtain new values. In the following subsections, a brief introduction to 

five popular reasoning techniques is given.  

Bayesian Network  

The core of this technique [64], which belongs to supervised learning, is based on probabilistic 

reasoning concepts. Entities and relationships among them are represented by directed acyclic graphs 

and probabilities. Two drawbacks limit its usage: huge demands for exhaustive and exclusive 

hypotheses and exponential computational overhead. 

Probabilistic Logic-Based Reasoning  

In this reasoning method [65], probabilities are assigned to the context data to make logic 

assertions. This allows sensor data fusion from two different resources. When conflicts occur, the 

probabilities can be helpful to make decisions. This technique can only be applied in a scenario with the 

premise of probability already known.  
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Case-Based Reasoning  

Context knowledge is deduced from previous similar cases in the case-based reasoning approach [66]. 

However, it is difficult to accurately calculate the similarity of different cases. 

Rule-Based Reasoning  

In the rule-based reasoning approach [67], high level information is inferred on the basis of 

predefined rules.  

Ontology-Based Reasoning  

Semantics are incorporated into the reasoning procedure [68]. Based on descriptive logic, it is 

supported mainly by two semantic web languages: RDF and OWL. However, it is unable to find 

missing values or accommodate ambiguous information but compensates with expressiveness. 

To conclude, the selection of context reasoning technique is subject to two factors: the performance 

and the requirements arising from the modelling technique used. It is shown that ontology-based 

reasoning is efficient to deduce high level context because of its predominance of knowledge sharing, 

logic inference and knowledge reuse. To design a specific application, the selection of the appropriate 

modelling and reasoning technique should be made carefully taking as many criteria and requirements 

as possible into account.  

2.3.4. Context Distribution 

Context distribution is responsible for disseminating useful context information to corresponding 

applications. Two typical distribution mechanisms (subscribe/publish and polling) are widely used in 

current solutions [69]. 

Subscribe/Publish 

It is also called Notification. Applications interested in certain context information can subscribe to 

the middleware and be notified when updates of the registered context information occur.  

Polling 

Context consumers are able to actively make queries for their interested context information at  

any moment. Depending on the used modelling and reasoning techniques, different query methods can 

be employed.  

2.3.5. Context Visualization 

Context visualization offers new ways of seeing data. There is a growing need for an effective 

visualization to provide a visual overview, explore, analyze, and present phenomena which are often 

difficult to understand or imagine. Since ontology-based modelling is selected as the best modelling 

method in the context modelling phase, research on context visualization will be focused on reviewing 

current approaches to visualize ontology-based context data. 

Visualization of ontology-based context data is not an easy task because it means to enrich data with 

hierarchy, relationships, etc. Hence, context visualization ways can be ontology-tailored visualization 

methods or adapted from other generally used techniques like graph or file system visualization. 
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In general, ontology-based context data visualization can be grouped into six types: Indented list, 

Node-link and tree, Zoomable, Space-filtering, Focus + context, and 3D information [70]. Apart from 

those aforementioned ways, the use of web services and graphical interfaces to present context data is 

becoming more popular. Different ways of visualization can be adopted according to the users’ 

preferences. The trend of designing a satisfactory visualization for context should be in line with a more 

human, interactive, and instinctive manner. Besides, it is worth noting that several properties should be 

guaranteed in a data visualization approach such as real-time, accuracy and contextual awareness. 

3. Survey on Context Aware Middleware Architectures 

In order to be “smart”, middleware architectures have first to be “aware”. Consequently, apart from 

a set of general-purposed capabilities, the ability of context awareness is introduced so as to upgrade 

traditional middleware architectures to context aware middleware architectures. In this light, it is necessary 

for context aware middleware architectures to provide relevant functionalities to process context 

concerning the lifecycle of context data. Further, systems or applications built on the top of context 

aware middleware are able to provide services which automatically adapt to the changing environment. 

Indeed, the concept of context aware middleware/systems is not a buzzword emerging in very 

recent years. It can be traced back to the early 90s, when the first endeavours to develop context aware 

systems focused merely on exploiting location data, e.g., The Active Badge System [25] and Cricket 

Compass [71]. Later on, context aware middleware architectures have evolved to achieve more 

generality and provide support for more types of context information. Many off-the-shelf middleware 

platforms, including Context Toolkit [72], Gaia [73], Cobra [74], SOCAM [75] just to name a few, can 

come in handy for developers to build personalized applications. However, they are less likely to be 

widely used in real implementations due to different limitations, e.g., the adoption of a key-value 

method in Context Toolkit considerably restricts this middleware to use in very simple applications. 

Reference [35] claims that early context aware middleware proposals tend to lack several key capabilities 

such as fault tolerance, semantic interoperability, distributed data computation, and precise reasoning. 

Along with many technical breakthroughs, such as Cloud Computing, Big Data Analytics, and Artificial 

Intelligence, in the Information and Communications Technology (ICT) area, the evolution of context 

aware middleware is also notable. Those aforementioned technologies have favoured the current 

evolution of context aware middleware. It is thus significant to research the current status of the 

development of context aware middleware by means of examining the latest middleware proposals. 

A holistic view on the latest literature shows that, to organize and evaluate existing context aware 

middleware, many surveys have been made, e.g., [32,76–78]. However, they are largely outdated since 

all the examined context aware middlewares were proposed before 2010. Two representative ones are 

shortly outlined in the following. 

Kristian [76] presented a survey of a few context aware middleware systems, such as Aura [79], 

CARMEN [80], CRISMA [81], Cooltown [82], CORTEN [83], Gaia [73], MiddleWhere [84], 

MobiPADS [85] and SOCAM [75]. A taxonomy of context aware middleware was developed on the 

basis of several factors such as environment, storage, reflection, quality, composition, migration and 

adaption. However, these studied middleware proposals are not new and cannot represent the current 

development status. 
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Saeed et al. [77] gave an overview which contains several typical and old-fashioned middleware 

architectures. Context aware middleware architectures are analyzed based on several parameters 

including fault tolerance, adaptability, location transparency, etc. However, the focus is placed merely 

on the comparison of different context aware middlewares. The introduction for each middleware is 

not substantiated to help readers to get a correct understanding so this survey is not suitable for every 

kind of reader, and especially it cannot be helpful to beginners without pre-existing middleware 

experience and knowhow. 

As an extension to the aforementioned surveys, the subsequent part of this review aims at providing 

a critical summary of context middleware architectures proposed during the period from 2009 through 

2015 and pointing out potential challenges. Although there is a plethora of so-called context aware 

middleware proposals in recent the literature, the majority of them are as an afterthought rather than a 

defined component [86]. More precisely, the overall impression in many proposals is that the context 

aware middleware layer is not included in the initial design of different context aware systems. 

Keeping this in mind, eleven well-chosen proposals in terms of defining dedicated context aware 

middleware architectures are analyzed on the basis of a set of major technical features in the  

following subsections. 

3.1. Technical Considerations for Context Aware Middleware 

It is feasible to analyze the performance of context aware middleware architectures from various 

points of view. The following list identifies nine of the most crucial technical attributes for evaluating 

context aware middleware architectures. In addition, these nine features can also act as the primary 

considerations at the initial design of context aware middleware architectures. 

Architectural Style 

This defines the way the context aware middleware architecture is constructed. It is the most 

elementary factor to be initially considered. Four classical architectural fashions can come in handy to 

organize and arrange the inner composition of middleware.  

• The stand-alone architecture is the simplest and least powerful in which only a fixed amount 

of context is processed in an independent module. Besides, context sharing is not allowed. 

• In the layered manner, different responsibilities are allocated to multiple layers. However, the 

interaction and dependence among all layers raises concerns. 

• As the core of the centralized middleware architecture, a central server is endowed with 

crucial computational capabilities and rich storage capacity. Communication exists between 

the central server and other devices for exchanging information. The prominent limitation is 

once the central server fails, the entire architecture will be influenced dramatically. 

• The distributed architecture is widely applied and it enables developers to design middleware 

in a more flexible manner. Different components hold distributed responsibilities and they are 

independent of each other. However, every component involved in the distributed architecture 

needs to cope with the stress of computation and storage. 
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Keeping in mind that the architectural style can considerably affect other significant features such  

as flexibility and adaptability [77], it is vital to select an appropriate architectural style to conceive  

the middleware. 

Fault Tolerance 

Fault tolerance means the adaptive capability to respond to unexpected failures. Different 

middleware may have different reactions to failures. Middleware with high-level fault tolerance can 

keep the intended operations running and get rid of the influences that failures bring or just be affected 

in an acceptable degree. Inversely, for some middleware, a minor failure may lead to a sudden stop. 

Scalability  

Scalability is a desired attribute valued in any middleware architecture. Scalability indicates the 

capability of middleware architectures to accommodate an increasing number of entities, to process a 

growing volume of work gracefully, and/or to handle a larger scale. Four different types of scalability 

including load scalability, space scalability, space-time scalability, and structural scalability are 

summarized in [87]. Since the research of context awareness is the main interest of our survey, the ability 

to handle an increasing amount of context data will be the exclusive factor to examine if the middleware  

is scalable. 

Security & Privacy 

Extraordinary focus should be placed on ensuring security and privacy since a lot of sensitive and 

private data is used. Hence, the middleware should contain security functionalities that can monitor 

and detect anomalies or unauthorized access to data. Two basic mechanisms can be useful to perform 

security and privacy functions. On the one hand, context data could be encrypted or authenticated in 

both the transmission and storage process. On the other hand, access control needs to be clearly identified.  

Interoperability 

The definition of interoperability is “the ability of two or more systems or components to exchange 

information and to use the information that has been exchanged” [88]. Two possible types of 

interoperability can be achieved. On the one hand, inner components can interact with each other and 

share information. On the other hand, different context aware middleware can communicate with each 

other and make use of exchanged information. 

Service Discovery 

Lots of benefits can be obtained by means of service discovery, such as discovering, combining and 

orchestrating services. Repositories can be exploited to store corresponding service profiles including 

attributes, parameters and locations for further queries, the location of repositories can either be 

centralized or distributed. Some service discovery protocols are available, e.g., the Simple Service 

Discovery Protocol (SSDP) [89] or Service Discovery Service (SDS) [90]. 
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Context Abstraction 

Context abstraction explains how context is expressed and formalized. The increase of the 

abstraction level can improve the ability of reading, understanding and using context. Besides, it can 

be beneficial to the reasoning procedure. 

Storage 

The storage of context is highly demanded as historical context is still meaningful for further use. 

Based on the context trend, predictions for next actions can be made. The history of context is a good 

knowledge source for the reasoning process. Taking into account the huge data volume, an appropriate 

storage container should be carefully chosen. 

Cloud-Based Big Data Analytics 

According to IBM data scientists, four characteristics (the 4 V’s) can be used to define the concept 

of big data: volume, variety, velocity, and veracity [91]. Due to the nature of context data, context can 

fit into the definition of big data and be regarded as big data. Context data is of massive volume and 

presents a big variety of types. Besides, it changes continuously in terms of velocity and its veracity 

can also be satisfied since it can accurately represent the real changes of involving circumstance. 

Therefore, “big” context data introduces new challenges but also brings new capabilities to context 

aware middleware architectures. The realization of context awareness can be supercharged by existing 

big data techniques such as massive parallel and in-memory databases, deep packet inspection 

technology etc. Here, the outstanding technology that could considerably drive context aware 

middleware from holding “big data” to “big wisdom” is cloud-based big data analytics. It can enable 

context aware middleware to access needed computing resources from the cloud computing, foresee 

trends over big data and mine more useful information for context aware decision making. 

3.2. Context Aware Middleware Architectures 

The following list contains 11 new and representative context aware middleware architectures 

proposed during the period from 2009 through 2015 to find the newest development tendency. 

3.2.1. Context Aware Middleware for Pervasive Elderly Homecare (CAMPH) 

CAMPH [92] is a middleware to glue hardware infrastructure with various context aware 

applications, especially with emphasis on the pervasive homecare area. Generally, this middleware 

offers several key-enabling system-level services, including context data acquisition, context storage, 

context reasoning, context query processing, service organization and discovery. The overall architecture 

consists of four logical layers: Physical Space Layer, Context Data Management Layer, Service 

Management Layer, and Application Layer. 

• Physical Space Layer: Each Physical Space (PS) may contain physical entities such as sensors, 

actuators and computing devices. At this layer, data is modelled as a pair of attribute-value.  

PSs with high relevance, such as having similar attributes, are sorted into the same class 

named context domain or context space. 
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• Context Data Management Layer: Main components allocated in this layer are Context 

data/events database, Query processing, Context space management, and Context reasoning. 

A hierarchical reasoning scheme, in which low-level reasoning performs on single PS data while 

high-level reasoning makes inference from context domain, is applied. Besides, SQL-based 

context query interface is available to acquire context data or subscribe to event notifications. 

• Service Management Layer: Context data is fully utilized to enable context aware service 

organization and discovery. 

• Application Layer: Different homecare applications can invoke and orchestrate context aware 

services or make requests for context data directly in this layer. 

An example of a personalized homecare application mashed from web services running this 

middleware was developed to demonstrate the working principles of CAMPH. However, this 

prototype is still far from usable. The usability of CAMPH should be examined in a larger scale field 

trial. Besides, context data exchangeability/interoperability among different context domain is a 

concern since context data is structured in key-value model. How to manage the massive amount of 

context data from various spaces is still an unsolved issue. Although it is declared that a hierarchical 

and comprehensive reasoning scheme will be deployed, explanation about detailed procedures is still 

missing. Security and privacy are not considered during the entire conception/design. 

3.2.2. ACoMS+ 

ACoMS+ [93], as an enhancement of ACoMS [2], offers a solution of resource efficient and 

context aware management of sensing infrastructure. The core of ACoMS+ is composed of a Context 

Source Manager (models raw context information and performs actions on low-level communication), an 

Application Context Subscription Manager (allows applications to subscribe interested context by 

specifying quality of information and service), and a Reconfiguration Manager (reconfigures sensing 

devices to offer fault-tolerant provisioning of information). Context Modelling Language (CML) is 

selected as the modelling method which leverages the graphical notations to represent context information. 

To make the reconfiguration process more elaborate, a mining algorithm called HiCoRE [94]  

is incorporated into ACoMS+. While dealing with different applications, decisions can be made wisely 

based on those correlated rules of context which are mined by HiCoRE. ACoMS+ adopts the HiCoRE 

algorithm to fully utilize operational objectives and discover correlations among sensing infrastructure. 

However, HiCoRE is able to mine and rank correlations on the premise that every sensing entity can 

only perform a single sensing aspect (such as temperature, humidity). Future efforts can be focused to 

make the mining algorithm more comprehensive by taking into account complex sensing devices (e.g., 

camera, tablet) with multiple sensing capabilities at the same time. Besides, the presented design has 

just been partially implemented and tested. Continuous research is still needed for improving this proposal. 

3.2.3. Octopus 

Octopus [95] is conceived as an open-source, dynamically extensible middleware to facilitate smart 

home/office domain-specific applications. Octopus is constructed in a simple layered architecture 

while it is ambitious to tackle two technical problems: data management and data fusion. Five 
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distinguishable layers form the whole infrastructure: Sensing layer, Aggregation layer, Analysis layer, 

World model layer, and Application layer. The World model layer builds a world model to insert all 

context data abstracted from Aggregation layer to predefined objects. Multiple tiers of solvers run in the 

Analysis layer to process context information, such as generating high-level information from  

lower-level world model information. Solver, as an independent module, can be added into or removed 

from the middleware based on different requirements. Multiple solvers can be integrated to execute 

more complex operations. 

It is claimed in [95] that Octopus, which has been deployed on two different university campuses 

and tested for over 6 months, is simple-yet-powerful. However, it lacks proof of concept since the 

implementation details and also evaluation results have not been demonstrated to the public. 

3.2.4. FIWARE 

The FIWARE [96] FP7 project has an ambitious intention to strengthen the competitiveness of the 

EU economy by presenting a cutting-edge infrastructure in which creation and delivery of services, 

high QoS and security are enabled. This platform is conceived to be considerably generic and could 

adaptively fit into various usage areas, e.g., safety, logistics, environment, energy, traffic and mobility, 

and agriculture. This platform is built based on public cloud with a rich library of modules offering 

various added-value functions (referred as services). These modules, regarded as Generic Enablers 

(GEs), fulfil all the capabilities of different chapters of this architecture, such as service delivery, cloud 

hosting, Internet of Things, support services, developer tools, and interface to the network and devices. 

Among all, it is worth stressing that enablers dedicated to manage context data from heterogeneous 

resources are playing an important role in the whole platform. These aforementioned enablers could be 

grouped into two categories: the Semantic Virtualization Enablers and the Cognitive Enablers. 

Three main concepts, which are Actors, Resources, and Applications, are virtualized so as to lay the 

basic foundation of semantics of this cognitive middleware. The Semantic Virtualization Enablers are 

responsible for abstracting the heterogeneous Actors, Resources, and Applications by means of 

attaching homogeneous, context aware and semantic aggregated metadata. On the basis of 

semantically abstracted metadata available through well-defined Restful APIs, Cognitive Enablers are 

capable of making decisions regarding the best solution of exploiting the available resources to 

efficiently satisfy Application requirements and needs. To meet a specific application’s needs, different 

Cognitive Enablers can be dynamically orchestrated. In the real deployment, all the functionalities of 

enablers can be distributed into different physical network entities. 

The design of the Semantic Virtualization Enablers and Cognitive Enablers allows Applications to 

transparently, efficiently and flexibly employ available Resources and become customer-tailored. With 

the collaboration of other Enablers such as Security Enablers, Cloud Hosting Enablers and IoT  

Enablers etc., the proposed FIWARE is upgraded to be a full-fledged middleware with context 

awareness, interoperability, cloud hosting, big data analytics, and service delivery and composition. 

What’s more appealing for developers is that, so far, all the Enablers developed in the FIWARE project 

are available as open-source implementations associated with detailed user manuals. However, it still 

will not be an easy task to move the pilot tests to real commercial usages. More potential constraints 
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introduced by harsh environments such as underwater and off-shore should be taken into account when 

adapting FIWARE to actual operations. 

3.2.5. Context Awareness for Internet of Things (CA4IOT) 

A sensing-as-a-service middleware presented in [97] is called CA4IOT. It appears that this 

middleware is conceived merely to solve a single issue of how to select the most suitable sensors 

according to the tasks/problems at hand rather than providing a complete middleware solution for 

managing context data. An overview of CA4IOT architecture is displayed in Figure 2. 

 

Figure 2. CA4IOT architecture, as described in [97].  

Four major layers form the middleware which are listed as follows: 

• SDAL. The main components located in this layer are sensor wrappers, wrapper repository, 

wrapper generator, sensor device definition (SDD) local repository and SDD cloud repository. 

This layer is responsible for acquiring a variety of context data.  

• CSDL. This layer is in charge of discovering context and semantic. Relevant components are 

context and semantic discoverers, context and semantic discoverer generator, and context and 

semantic discoverers repository. 

• CPRL. A collection of important functions are distributed in this layer like processing data, 

reasoning high-level context, fusing context, knowledge generating and storing. 

• DSCDL. Users can make requests via multi-model interfaces. Local repository can interact 

with repositories which reside in the cloud or open linked data to provide better answers for 

those queries by means of big data analytics. 

In the CSDL and CPRL layers, context data related to sensors are represented in XML. In addition, 

users submit their requests for querying context using XML data format. In general, this middleware is 

quite complex and mature with detailed explanations for different functional component. Many 

technical factors such as context abstraction, context process and context dissemination are carefully 

considered while a significant technical consideration which is security and privacy are missing in this 

middleware. Compared with other middleware solutions, this middleware can act as either a standalone 

middleware or an auxiliary technique to be integrated with other framework solutions to fulfil the 
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demands from different paradigms. However, only a simple use case is employed to show the specific 

procedures of developing the proposed middleware, and implementation of this middleware is still missing. 

3.2.6. CAMPUS 

CAMPUS [98], short for Context-Aware Middleware for Pervasive and Ubiquitous Service, is 

proposed to automate context aware adaptation decisions with the influence of three key technologies: 

compositional adaptation, ontology, and description logic/first-order logic reasoning. It has taken an 

enormous step to advocate automated run-time adaptation decisions instead of depending on 

predefined adaptation policies that only take limited contextual changes potentially operating in a 

dynamic situation. 

CAMPUS, as a typical layered architecture, consists of three tiers: the programming layer, the 

knowledge layer, and the decision layer. 

• The programming layer. It is responsible for constructing and reconfiguring context aware 

applications by adopting the instructions from the decision layer. 

• The knowledge layer. Three ontologies including Context Model, Tasklet Model, and Service 

Model are proposed to represent semantics of knowledge which is necessarily required by 

CAMPUS to make adaptation decisions. The knowledge could be the requirements desired  

by target service, the properties of the available tasklets, the context requirements imposed by 

tasklets, and the properties of run-time context. 

• The decision layer. Decision maker uses a multi-stage normative decision model, which 

includes preprocessing, screening and choice, to choose the best tasklet alternatives for a 

given task. The automated adaptation decisions will be forwarded to the programming layer. 

CAMPUS provides an effective middleware solution for integrating context awareness to 

application development. CAMPUS could automatically derive context-aware adaptation decisions at 

run time by means of semantic-enhanced decision making. The initial implementation of CAMPUS is 

built in Java SE 1.6 along with additional plug-ins such as Pellet 1.5.1 for description reasoning and 

Jess 7.1p2 for logical reasoning. However, security has not been mentioned in this proposal and 

collaborative decision making among multiple CAMPUS middleware instances can be a future extension. 

3.2.7. Context-Aware Services Framework (CASF) 

A middleware proposal, here abbreviated as CASF, aiming at providing a variety of context aware 

services was presented in [99]. The authors Juyoung et al. realized that many context aware 

middleware architectures lack service discovery and composition capability. Consequently, they came 

up with this new architecture aiming at tackling this gap. Basically, this framework is built based on 

semantic web services as they are well-known for supporting automatic service discovery and 

integration. To achieve the integration of services, which also refers to as selection and combination of 

context information, this proposal separates context aware services with context aware information. 

The core of this architecture, named as context mediation framework, is shown in Figure 3. 

The context mediation framework consists of three different tiers: physical sensor layer, public 

context layer and context service layer.  



Sensors 2015, 15 20592 

 

 

• Physical sensor layer. It can only recognize sensor data. Physical sensors are the only context 

information source. 

• Public context layer. Two types of context providers in terms of complexity of context 

information process are located in this layer. A basic context provider only processes sensor 

data from physical sensors while a combined context provider can make use of information 

from both sensors and other context providers. All context information generated in this layer 

is served based on web services so that openness and interoperability are achieved. By using  

a proposed context ontology and OWL-S, context providers are able to be constructed in  

web services. 

• Context service layer. Context information is consumed in this layer so that context aware 

services can be generated and provided to users.  

 

Figure 3. CASF, as described in [99]. 

The major novelty of this proposal is the adoption of the concept of semantic web services. By 

publishing context information based on semantic web services, it is also feasible to achieve automatic 

discovery and integration for context information. However, many follow-up studies should be 

conducted to make the proposal complete. Firstly, more detailed protocols and ontologies should be 

specified to translate context information to web services. e.g., SOAP-based messaging protocol could 

be adopted to connect the communication between public context layer and physical sensor layer with 

more details explained. Besides, there is still lack of implementation, therefore evaluation. This 

architecture lacks prototyping test by building various advanced context aware services with regard to 

real environments. 

3.2.8. Semantic Web-Based Context Management (SeCoMan) 

SeCoMan [100], as the abbreviation of Semantic Web-based Context Management, is intended to 

provide a privacy-preserving solution for developing context-aware smart applications. In SeCoMan, 

ontology is employed to model the description of entities, reason over data to obtain useful knowledge, 

and define context-aware policies. The whole architecture of SeCoMan is shown in Figure 4. 
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All the modules making up SeCoMan are placed in a layered structure including Application, 

Context Management, and Plug-in (from top to bottom). 

• Application. Different applications reside on top of SeCoMan in order to offer desired 

services for users. 

• Context Management. As the core of the SeCoMan framework, it provides context aware 

supports for applications. Three kinds of actors with different rights to interact with SeCoMan 

are defined including Framework Administrator, Application Administrator, and Users. A set 

of predefined queries are allowed for applications to get information about indoor location of 

users and objects. Semantic rules are used to specify policies regarding restricted access to 

location information so that privacy is guaranteed. 

• Plug-in. It provides SeCoMan with context information, which is especially focused on 

locations. In other words, the plug-in layer acts as an independent context source. 

 

Figure 4. SeCoMan, as described in [100]. 

In fact, the so-called context aware solution offered by SeCoMan is limited to get aware of 

locations. Therefore, privacy protection is fulfilled in a location-limited level which enables users to 

share their location with the right users, at the right granularity, at the right place, and at the right time. 

SeCoMan, especially the context management layer, is planned to be integrated in the cloud 

architecture in future work. In this way, this middleware could take advantage of the features of cloud 

computing to achieve extra capabilities, such as elasticity, monitoring, load balancing, and address 

security issues. Besides, the current privacy schema will be augmented by introducing anonymity and 

hashing policies to hide and disguise the identity of a user. The exploration of outdoor usage could be 

the next step to improve the generality of this middleware. 

3.2.9. CoCaMAAL 

Forkan et al. [101] presented a novel Cloud-oriented Context-Aware Middleware in Ambient 

Assisted Living (AAL) which is abbreviated as CoCaMAAL. The motivation behind is that biomedical 

sensors which are widely used in AAL lack the processing power to perform key monitoring and  
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data-aggregation tasks. Therefore, cloud computing is adopted to address computing needs. In 

particular, this proposal is believed to serve as a scalable and context aware framework which can ease 

the flow between data collection and data processing in AAL scenarios. Basically, CoCaMAAL is 

built on the basis of Service-Oriented Architecture (SOA) which performs context modelling for raw 

data, context data management and adaption, context aware service mapping, service distribution, and 

service discovery. CoCaMAAL comprises five main cloud-oriented components: AAL systems, context 

aggregator and providers (CAP) cloud, service providers cloud, context aware middleware (CaM) 

cloud, and context data visualization cloud. 

• AAL systems. This component, as the hardware architecture, includes different BSN (Body Sensor 

Network) foundations and monitoring systems for meeting different target user requirements. 

• Context aggregator and providers (CAP). Raw data from AAL systems is converted and 

abstracted to high-level context by CAP. More specifically, context providers categorize 

sensor data into context based on pre-designed ontology. Afterwards, different context is 

integrated by context aggregator to provide complete information. In addition, reasoning 

mechanisms are applied to infer more useful information. 

• Service providers. They are the producers of context aware services, such as applications.  

• Context aware middleware (CaM). By utilizing existing knowledge and incoming context, 

CoM is able to indentify assistive services for the given context and trigger associated actions. 

CaM is the core component of CoCaMAAL with multiple key functions, such as context 

management, context storing, context retrieval, context manipulation, service mapping,  

self-adaptation, service discovery, and security service. 

• Context data visualization. Proper interfaces (e.g., GUI) are available for users to visualize 

context data. 

A prototype based on CoCaMAAL was developed in Java. The implementation examines the 

performance of the proposed architecture, such as the influence of increasing context and service load 

on service response time. The results prove that CoCaMAAL is efficient at collecting, abstracting, and 

using context from AAL environments to provide context aware services. The major novelty is the 

adoption of cloud computing which provides powerful computing capabilities to process context. 

However, several concerning issues cannot be ignored. e.g., conflicts in context are not considered and 

reliability analysis is not accomplished. Although [101] states that the context aware role-based access 

control and privacy-preserving context service protocol can be adopted to ensure privacy in this 

middleware, those two mentioned approaches are not included in the test. 

3.2.10. Big Data for Context Aware Monitoring (BDCaM) 

Motivated by CoCaMAAL, a novel context aware middleware architecture, named Big Data  

for Context-aware Monitoring (BDCaM) [102], is proposed. As an extension of CoCaMAAL, BDCaM 

addresses additional concern: personalized knowledge discovery. The underlying approach of discovering 

personalized knowledge is to derive/learn patient-specific anomalies from amounts of data. The 

adoption of a novel learning process in BDCaM is an important step forward. A 2-step learning 

methodology is newly proposed in [102] to derive more useful information for context aware decision 
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making. The specific procedure of this learning approach is as follows: firstly, correlations between 

context attributes and threshold values are identified. Possible association rules which are patient-tailored 

will be generated by applying the MapReduce Apriori algorithm [103]. Finally, supervised learning is 

performed over context data based on those rules generated in the first step. Like CoCaMAAL, 

BDCaM is split into several distributed and cloud-based components which are Ambient Assisted Living 

(AAL) Systems, Personal Cloud Servers (PCS), Data Collector and Forwarder (DCF), Context 

Aggregator (CA), Context Providers (CP), Context Management System (CMS), Service Providers 

(SP), and Remote Monitoring Systems (RMS). A use case related to health monitoring is implemented 

on this middleware and implementation results have proven the applicability of this middleware and 

the efficiency of detecting patient's anomalies. However, security and privacy for personal data is still 

lacking in this middleware. Besides, exploring the possibility of generalizing this middleware to suit 

more domains (not limited to AAL) could be a further improvement. 

3.2.11. FlexRFID 

A recently published proposal called FlexRFID [104] aims to provide a policy-based middleware 

solution for facilitating the development of context aware applications and integrating heterogeneous 

devices. Ponder is adopted as the policy specification language in this middleware. The FlexRFID 

middleware is a multi-layered middleware consisting of Device Abstraction Layer (DAL), which 

abstracts the interactive operations among the physical network devices), Business Event and Data 

Processing Layer (BEDPL), it provides context data management like aggregation, transformation and 

dissemination), Business Rule Layer (BRL, it manages policy-related operations), and Application 

Abstraction Layer (AAL, it enables communications among applications and the FlexRFID). FlexRFID 

is claimed to provide all data processing capabilities like filtering, grouping, dissemination and 

duplicate removal. In addition, it is an enabling solution to support simultaneous communication 

among different applications which are built in this middleware. Notably, FlexRFID differs from other 

context aware middleware in the capability of policy enforcement. A plethora of benefits can be 

achieved by defining different types of policies such as ensuring privacy, constraining access control, 

and offering customized services. Two abstract types of policies are stated in FlexRFID: System Policies 

(manage the operations done by the middleware) and Application Policies (define the way users want the 

FlexRFID services to be delivered). 

The authors in [104] focus mostly on implementation details and performance evaluations of 

FlexRFID. Experimental results obtained from two real scenarios (healthcare and book management) 

show that the response time will become longer as the volume of policies increases. Also for this 

reason, some specifications for the concrete techniques used in the middleware are missing in this 

paper. For example, a data formalization method is not included. The current version of the FlexRFID 

middleware only offers basic security mechanisms by means of specifying access control policies. 

More advanced security measures should be taken, e.g., application authentication and security at the 

level of tags and sensor nodes. Further improvement could be integrating FlexRFID in the cloud so as 

to enable applications to flexibly use cloud-based services and adapt those services with regard to 

specific application policies and context considerations. 
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3.3. Comparisons 

After presenting the chosen set of context aware middleware, it is valuable to analyze and evaluate each 

of them. Tables 4 and 5 present the comparative results of the previously investigated architectures with 

regard to many parameters as publishing year, architectural style, context abstraction, context reasoning, 

scalability, cloud-based big data analytics, fault tolerance, interoperability, service discovery, storage, 

security and privacy and context awareness level. The list of context aware middleware is ordered based on 

the chronological sequence ranging from 2009 through 2015. 

Table 4. Comparison of context aware middleware architectures (Part I). 

Middleware Year 
Architectural 

Style 

Context 

Abstraction 

Context 

Reasoning 
Scalability 

Cloud-Based Big 

Data Analytics 

CAMPH 2009 
Layered & 

Distributed 
Key-value Rule × × 

ACoMS+ 2010 Distributed Graphical Rule √ √ 

Octopus 2011 Layered Not specified Not specified × × 

FIWARE 2011 Distributed Ontology Ontology √ √ 

CA4IoT 2012 
Layered & 

Distributed 
Ontology 

Ontology and 

statistical 
√ √ 

CAMPUS 2013 Layered Ontology Ontology × × 

CASF 2013 Layered Ontology Ontology × × 

SeCoMan 2014 Layered Ontology Ontology and rule × × 

CoCaMAAL 2014 Distributed Ontology Ontology √ √ 

BDCaM 2015 Distributed Ontology Ontology √ √ 

FlexRFID 2015 
Layered & 

Distributed 
Markup Rule × × 

Table 5. Comparison of context aware middleware architectures (Part II). 

Middleware 
Fault 

Tolerance 
Interoperability 

Service  

Discovery 
Storage 

Security & 

Privacy 

Context Awareness 

Level 

CAMPH × × √ √ × Medium level 

ACoMS+ √ × √ √ × Medium level 

Octopus √ × × √ × Medium level 

FIWARE √ √ √ √ √ Semantic 

CA4IoT √ √ √ √ × Semantic 

CAMPUS × √ √ √ × Semantic 

CASF × √ √ √ × Semantic 

SeCoMan × √ × √ √ Location aware 

CoCaMAAL √ √ √ √ × Semantic 

BDCaM √ √ √ √ × Semantic 

FlexRFID √ × √ √ √ Medium level 

As revealed from Table 4, layered, distributed or layered snd distributed have been popular architectural 

fashions for recent middleware proposals. The trend to organize middleware compositions tends to be 

more flexible and reliable while in the early stage the majority of middleware architectures such as  
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Cobra [74] and MoCA [105] adopted a centralized approach. Structured in a layered or distributed 

manner, middleware architectures could outperform centralized middleware in terms of extensibility.  

It is more feasible for layered or distributed middleware to allow the build-up of additional features  

or capabilities with minimum effort (e.g., without major redesign, with minimum impact on existing 

components) in order to fulfil a very specialized purpose. In a layered middleware architecture, each 

layer uses the previous layer to implement new functionalities that will be exported to the layer above. 

In this way, distributed middleware architectures outperform layered ones in terms of reliability due to 

the fact that layered middleware architectures are prone to errors because of lower layers’ failures. The 

layered & distributed combined manner allows developers to easily manage the software construction 

with intuitive conceptual understanding and functionality distribution in a hierarchical (layer by layer) 

and distributed (inside every layer) way. 

Undoubtedly, ontology has dominated the landscape of modelling context data in all investigated 

proposals except CAMPH, ACoMS+, Octopus and FlexRFID. Extra features are enforced by the 

adoption of ontology such as high-level context abstraction, powerful reasoning, semantic interoperability, 

and (probably) advanced context awareness. In ontology-based context aware middleware 

architectures (e.g., FIWARE, CA4IoT, CAMPUS, CASF, SeCoMan, CoCaMAAL and BDCaM), 

different ontologies are proposed and used to unambiguously formalize the knowledge base so that all 

entities within/upon the middleware could share the same understanding. However, it could raise a 

concern when different instances of different middleware want to cooperate and exchange information. 

For this reason, ontology mapping/alignment among various ontologies employed in different middleware 

should be discreetly addressed. 

Reasoning is a crucial factor for inspecting the middleware performance due to its considerable 

contributions to improve the awareness and smartness of middleware. Although ontology is the 

primary choice to infer useful information, it can be predicted that hybrid reasoning models will be 

preferred over ontology in the foreseeable future. For example, SeCoMan proposed a hybrid model which 

combines ontology and rule. This hybrid model enables user-defined rules via Semantic Web Rule 

Language (SWRL) as well as description logics. 

As the judging factor for scalability is intensively focused on the capability of handling context 

data, the scalability attribute of middleware architectures in this survey is considerably subject to the 

fact whether cloud-oriented techniques are employed. In this light, cloud-oriented techniques are an 

elegant solution to solve the scalability issue from different aspects. More specifically, in ACoMS+, a 

mining algorithm derived from cloud-based big data analytics is exploited to reconfigure existing 

resources to operate efficiently in small-scale and large-scale environments. Other middleware 

proposals including FIWARE, CA4IoT, CoCaMAAL, and BDCaM achieve multiple benefits from 

cloud. They extend data storage by means of cloud repository, enhance processing capability by means 

of cloud computing, and mine data by means of big data analytics. In addition to this, FIWARE 

expands its exploration on cloud-oriented techniques to a greater extent, such as visualization of data 

and invoking cloud-services from different providers. 

Currently, in most proposed solutions, the functionalities of middleware are achieved by 

distributing the tasks in a layered/distributed architecture. There is a trend to leverage cloud resources 

to design an efficient and solid middleware. However, to “shift” middleware to the cloud will exert 

more stress on the security and privacy issue. In fact, as seen in Table 5, only three middleware 
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architectures take security and privacy into account by applying different strategies. e.g., FIWARE 

developed a set of key enablers aiming at guaranteeing security privacy and trust from two levels: 

generic and optional. In SeCoMan, users’ privacy is enforced by adding anonymity and hashing 

policies to hide and disguise the identity of a user. FlexRFID offers basic support for security through 

the use of access control policies. 

Service discovery is missing in Octopus and SeCoMan. Mechanisms to discover services in other 

middleware are various. e.g., CAMPUS contains a component called Service Directory acting as a 

reference to all available services. More specifically, Service Directory is in charge of registering and 

locating all services provided by the middleware so that context consumers could find the services 

needed. In CASF, it is possible to search for and combine services which are suitable for the user’s 

purpose by utilizing Semantic Web Services. Forkan et al. [101] declare that CoCaMAAL allows service 

discovery to build compound services. However, the statement is still blurry and cannot be proven 

without specifying detailed methodology. 

As demonstrated from Table 5, all middleware architectures provide technical suggestions for 

storing historical context. Having a deep look at storage means, it can be found that cloud-based 

middleware architectures (ACoMS+, FIWARE, CA4IoT, CoCaMAAL and BDCaM) utilize 

distributed cloud repositories for storing context while other proposals keep context in a local 

knowledge base. 

As far as context awareness is concerned, different levels are reached by different middleware. 

Since SeCoMan is dedicated to provide services according to location changes, it is limited to location 

aware. The highest context awareness level is achieved by FIWARE, CA4IoT, CAMPUS, CASF, 

CoCaMAAL and BDCaM. 

4. Open Issues 

Several technical challenges have been detected in the presented middleware architectures. The 

most relevant and crucial open issues are presented as follows: 

• Security & Privacy are a must in any middleware architecture. Amounts of sensitive context 

are employed to characterize the situation so as to provide relevant services. Hence, the 

demand for enforcing security & privacy is increasing. Besides, as it is agreed that it will be a 

fashion to drive middleware architectures to be cloud-oriented, leveraging cloud resources 

will impose many challenges on security & privacy. e.g., it could be possible for any entity 

with internet connection to easily collect, access, visualize, archive, share, and search data or 

services from the cloud. It will not be an easy task to guarantee security & privacy, political or 

legal restrictions of data in cloud. Potential solutions could be restricting unauthorized 

manipulation, protecting privacy of information storage, ensuring the information security 

during processing or probably creating private clouds dedicated to public sectors. 

• Increase the degree/level of context awareness. There has been a plethora of so-called context 

aware middleware proposals in recent years. However, they differ in real capabilities, which 

refer to context awareness level. The desired awareness means that middleware could 

adequately understand any change of current environment based on all available context 
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information. The majority of current context aware middleware proposals only reach a very 

limited level of cognition and awareness for their involved circumstances. 

More efforts should be put to drive the current middleware proposals towards better ones with 

higher level of context awareness. 

•  Standardization. It seems that it will not be feasible to formulate a single standard for  

a generalized context aware middleware due to the variety of domains and applications 

involved. However, considerable efforts have been put to build a generic domain-focused 

middleware solution [106]. For example, [107] put forward a standardized middleware for the 

semantic web domain. Different middleware solutions adopt different standards compliant 

with needs from different domains. All these standards should be collected to form a complete 

standardization platform in which the selection of standard could be enabled to fit in a  

certain domain. 

• Increase autonomy. Although context aware middleware architectures reduce the need  

of human intervention when they serve personalized applications, human intervention is still 

necessary and playing an important role in realizing context awareness. For instance, to infer 

more useful and higher-level context information, users have to define rules again and again 

when the involved surrounding changes. Real autonomy can be developed if the inference 

rules can evolve and change automatically according to the changing environment. Potential 

solutions can make use of big data related techniques like mining and learning algorithms. 

• Lack of testing. It can be noted that most of middleware architectures included in this survey 

are still at the conceptual stage. Prototypes based on some of these middleware solutions have 

been built, but complete implementations (let alone actual usage) are missing. Besides, 

commercial or practical operation which goes beyond simple pilot projects is even a more 

difficult target. More attempts should be made to drive the move of these middleware solutions 

from theoretical research to tests and further to full-fledged deployment to actual environments. 

5. Conclusions 

This paper has presented a review on the latest prominent solutions for context aware middleware 

during the period from 2009 through 2015. Two major contributions have made as follows:  

Firstly, a preliminary background about the general approach of realizing context awareness has 

been presented to provide a starting point for readers to understand context aware middleware. Herein, 

the principal terminologies of context, context awareness and their roles in context aware middleware 

architectures have been introduced. Then, four different classifications of context awareness levels 

have been reviewed. After a thorough analysis, the categorization which divides context awareness 

into three levels: location aware, medium and semantic has been chosen as the most reasonable and 

appropriate criterion to evaluate context aware middleware architectures. An extensive and 

comprehensive study on existing context modelling and reasoning techniques has been carried out with 

basic explanations and comparison. The aforementioned study is able to give an insight into the 

strength and weakness of each modelling and reasoning technique which could help users select the 

most suitable one for their own use. 
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Secondly, a state-of-the-art overview on eleven representative context aware middleware architectures 

from 2009 to 2015 has been conducted. Several technical considerations for designing context aware 

middleware architectures have been discussed. The eleven selected context aware middleware architectures 

have been introduced and analyzed in depth. Furthermore, a taxonomy of these studied middlewares 

has been worked out with regard to different evaluation factors. Comparative results have revealed that 

there is no context aware middleware architecture that is suitable for “all settings”. Hence, the 

comparison of the existing middleware architectures is significant to make users aware of the 

advantages and disadvantages of each middleware, thus to choose the most suitable solution for a 

specific need. Based on the proposed taxonomy, five challenges observing from the studied 

middleware proposals have been pointed out. Therefore, future work could be focused on solving 

limitations in the current middleware and probably proposing a new context aware middleware solution. 
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