2,329,029 research outputs found

    Estimation of generalised frequency response functions

    Get PDF
    Volterra series theory has a wide application in the representation, analysis, design and control of nonlinear systems. A new method of estimating the Volterra kernels in the frequency domain is introduced based on a non-parametric algorithm. Unlike the traditional non-parametric methods using the DFT transformed input-output data, this new approach uses the time domain measurements directly to estimate the frequency domain response functions

    An efficient numerical algorithm for the transient analysis of high-frequency non-linear circuits

    Get PDF
    The paper proposes a new approach for the discrete-time integration of non-linear differential equations that describe the behaviour of high-frequency circuits, in particular those containing complex equivalent-circuit models of microwave transistor devices. The proposed approach reformulates a conventional predictor-corrector method in terms of Pad�© approximates about each function sample. The method is especially suited to the kind of non-linear stiff differential equations that arise frequently in high-frequency analysis

    A new statistical test based on the wavelet cross-spectrum to detect time–frequency dependence between non-stationary signals: Application to the analysis of cortico-muscular interactions

    Get PDF
    The study of the correlations that may exist between neurophysiological signals is at the heart of modern techniques for data analysis in neuroscience. Wavelet coherence is a popular method to construct a time-frequency map that can be used to analyze the time-frequency correlations be- tween two time series. Coherence is a normalized measure of dependence, for which it is possible to construct confidence intervals, and that is commonly considered as being more interpretable than the wavelet cross-spectrum (WCS). In this paper, we provide empirical and theoretical arguments to show that a significant level of wavelet coherence does not necessarily correspond to a significant level of dependence between random signals, especially when the number of trials is small. In such cases, we demonstrate that the WCS is a much better measure of statistical dependence, and a new statistical test to detect significant values of the cross-spectrum is proposed. This test clearly outperforms the limitations of coherence analysis while still allowing a consistent estimation of the time-frequency correlations between two non-stationary stochastic processes. Simulated data are used to investigate the advantages of this new approach over coherence analysis. The method is also applied to experimental data sets to analyze the time-frequency correlations that may exist between electroencephalogram (EEG) and surface electromyogram (EMG)

    Time-domain parametric sensitivity analysis of multiconductor transmission lines

    Get PDF
    We present a new parametric macromodeling technique for lossy and dispersive multiconductor transmission lines (MTLs). This technique can handle design parameters, such as substrate or geometrical layout features, and provide time-domain sensitivity information for voltage and currents at the ports of the lines. It is based on a recently introduced spectral approach for the analysis of lossy and dispersive MTLs [1], [2] and it is suited to generate state-space models and synthesize equivalent circuits, which can be easily embedded into conventional SPICE-like solvers. Parametric macromodels which provide sensitivity information are well suited for design space exploration, design optimization and crosstalk analysis. A numerical example validates the proposed approach in both frequency and time domain

    Multimode network representation of two dimensional steps in rectangular waveguides

    Get PDF
    In this paper a new Multimode Network representation for arbitrary rectangular waveguide junctions is presented. The energy coupling between the higher order modes excited in the junction is rigorously described via a multimode impedance matrix representation that can be used to build very efficient and accurate software tools for the analysis of complex structures. The elements of the impedance matrix are obtained from the solution of an integral equation. The main feature of the approach is that the kernel of the integral equation derived is essentially independent from frequency and therefore, the most time consuming task, namely the solution of the integral equation, need to be performed only once per each geometry. The formulation of the method is discussed and the form of the integral equation is given, showing explicitly the dependence with the frequency. A frequency extraction procedure that can lead to a considerable time saving for the analysis of complex structures is also discussed. Finally the design of a commercial communication satellite filter structure is presented, including comparisons between our analysis and measurements of the manufactured hardware
    corecore