290 research outputs found

    Recent development in electronic nose data processing for beef quality assessment

    Get PDF
    Beef is kind of perishable food that easily to decay. Hence, a rapid system for beef quality assessment is needed to guarantee the quality of beef. In the last few years, electronic nose (e-nose) is developed for beef spoilage detection. In this paper, we discuss the challenges of e-nose application to beef quality assessment, especially in e-nose data processing. We also provide a summary of our previous studies that explains several methods to deal with gas sensor noise, sensor array optimization problem, beef quality classification, and prediction of the microbial population in beef sample. This paper might be useful for researchers and practitioners to understand the challenges and methods of e-nose data processing for beef quality assessment

    Classification of aromatic herbs using artificial intelligent technique

    Get PDF
    Herbs have unique characteristics such as colour, texture and odour. In general, herb identification is through organoleptic methods and is heavily dependent on botanists. It is becoming more difficult to identify different herb species in the same family based only on their aroma. It is because of their similar physical appearance and smell. Artificial technology, unlike humans, is thought to have the capacity to identify different species with precision. An instrument used to identify aroma is the electronic nose. It is used in many sector including agriculture. The electronic nose in this project was to identify the odour of 12 species such as lauraceae, myrtaceae and zingiberaceae families. The output captured by the electronic nose gas sensors were classified using two types of artificial intelligent techniques: Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS). From the result, ANFIS has 94.8% accuracy compared with ANN at 91.7%

    An investigation into spike-based neuromorphic approaches for artificial olfactory systems

    Get PDF
    The implementation of neuromorphic methods has delivered promising results for vision and auditory sensors. These methods focus on mimicking the neuro-biological architecture to generate and process spike-based information with minimal power consumption. With increasing interest in developing low-power and robust chemical sensors, the application of neuromorphic engineering concepts for electronic noses has provided an impetus for research focusing on improving these instruments. While conventional e-noses apply computationally expensive and power-consuming data-processing strategies, neuromorphic olfactory sensors implement the biological olfaction principles found in humans and insects to simplify the handling of multivariate sensory data by generating and processing spike-based information. Over the last decade, research on neuromorphic olfaction has established the capability of these sensors to tackle problems that plague the current e-nose implementations such as drift, response time, portability, power consumption and size. This article brings together the key contributions in neuromorphic olfaction and identifies future research directions to develop near-real-time olfactory sensors that can be implemented for a range of applications such as biosecurity and environmental monitoring. Furthermore, we aim to expose the computational parallels between neuromorphic olfaction and gustation for future research focusing on the correlation of these senses

    Neuro-Fuzzy Classifiers/Quantifiers for E-Nose Applications

    Get PDF

    Signal and data processing for machine olfaction and chemical sensing: A review

    Get PDF
    Signal and data processing are essential elements in electronic noses as well as in most chemical sensing instruments. The multivariate responses obtained by chemical sensor arrays require signal and data processing to carry out the fundamental tasks of odor identification (classification), concentration estimation (regression), and grouping of similar odors (clustering). In the last decade, important advances have shown that proper processing can improve the robustness of the instruments against diverse perturbations, namely, environmental variables, background changes, drift, etc. This article reviews the advances made in recent years in signal and data processing for machine olfaction and chemical sensing

    Artificial Odor Discrimination System using electronic nose and neural networks for the identification of urinary tract infection

    Get PDF
    Current clinical diagnostics are based on biochemical, immunological or microbiological methods. However, these methods are operator dependent, time consuming, expensive and require special skills, and are therefore not suitable for point-of-care testing. Recent developments in gas-sensing technology and pattern recognition methods make electronic nose technology an interesting alternative for medical point-of-care devices. An electronic nose has been used to detect Urinary Tract Infection from 45 suspected cases that were sent for analysis in a UK Public Health Registry. These samples were analysed by incubation in a volatile generation test tube system for 4-5h. Two issues are being addressed, including the implementation of an advanced neural network, based on a modified Expectation Maximisation scheme that incorporates a dynamic structure methodology and the concept of a fusion of multiple classifiers dedicated to specific feature parameters. This study has shown the potential for early detection of microbial ontaminants in urine samples using electronic nose technology

    A Fuzzy-Wavelet Neural Network Model for the Detection of Meat Spoilage using an Electronic Nose

    Get PDF
    Food product safety is one of the most promising areas for the application of electronic noses. The performance of a portable electronic nose has been evaluated in monitoring the spoilage of beef fillet stored aerobically at different storage temperatures (0, 4, 8, 12, 16 and 20°C). This paper proposes a fuzzy-wavelet neural network model which incorporates a clustering pre-processing stage for the definition of fuzzy rules. The dual purpose of the proposed modeling approach is not only to classify beef samples in the respective quality class (i.e. fresh, semi-fresh and spoiled), but also to predict their associated microbiological population directly from volatile compounds fingerprints. Comparison results indicated that the proposed modeling scheme could be considered as a valuable detection methodology in food microbiolog

    Intelligent classification of ammonia concentration based on odor profile

    Get PDF
    This thesis presents the intelligent classification of ammonia concentration based on the standard of oil and gas industries wastewater discharge. The intelligent classification using signal processing is a well-known technique in many applications and as well in the oil and gas industry. The intelligent classification technique for ammonia concentration classification is a demanding technique especially in the environmental sector. Ammonia solution properties and ammonia solution preparations were studied in this thesis which commonly used in industry. The objectives of this thesis are to develop an intelligence classification of ammonia concentration based on the oil and gas industry wastewater discharge schedule and to analyze performance of the intelligent classification of ammonia concentration based on the oil and gas industry wastewater discharge schedule. In this thesis the ammonia odor profile has been pre-identified by chemist using four sensor array. The ammonia concentration was validated using a commercialized gas sensor and spectrophotometer to cross-validated e-nose instrument. The odor profile from two different samples; high (20 ppm and 25 ppm) and low (5 ppm, 10 ppm and 1 5ppm) concentration that have been normalized and visualized in a 2D plot to extract the unique patterns. The variance of the low and high concentration of ammonia odor profile has been identified as different group samples. This group samples have been analyzed statistically using Boxplot, calibration curve and proximity matrix, The thesis describes the statistical techniques to visualize the pattern and using mean features to classify between the low and high concentration. Two intelligent classification techniques have been used which are Artificial Neural Network (ANN) using the back-propagation approaches and then, the result of ANN model was cross-validated.using CBR. Both ANN model and CBR classifier have been measured using several performance measures. From the results, it is observed that ANN model and CBR classifier are capable of classifying 100% of ammonia concentration odor profile from the water. The results can also significantly reduce the cost and time, and improve product reliability and customer confidence
    corecore