45,468 research outputs found

    Integrating an agent-based wireless sensor network within an existing multi-agent condition monitoring system

    Get PDF
    The use of wireless sensor networks for condition monitoring is gaining ground across all sectors of industry, and while their use for power engineering applications has yet been limited, they represent a viable platform for next-generation substation condition monitoring systems. For engineers to fully benefit from this new approach to condition monitoring, new sensor data must be incorporated into a single integrated system. This paper proposes the integration of an agent-based wireless sensor network with an existing agent-based condition monitoring system. It demonstrates that multi-agent systems can be extended down to the sensor level while considering the reduced energy availability of low-power embedded devices. A novel agent-based approach to data translation is presented, which is demonstrated through two case studies: a lab-based temperature and vibration monitoring system, and a proposal to integrate a wireless sensor network to an existing technology demonstrator deployed in a substation in the UK

    Intelligent Agents for Disaster Management

    No full text
    ALADDIN [1] is a multi-disciplinary project that is developing novel techniques, architectures, and mechanisms for multi-agent systems in uncertain and dynamic environments. The application focus of the project is disaster management. Research within a number of themes is being pursued and this is considering different aspects of the interaction between autonomous agents and the decentralised system architectures that support those interactions. The aim of the research is to contribute to building more robust multi-agent systems for future applications in disaster management and other similar domains

    Federated Embedded Systems – a review of the literature in related fields

    Get PDF
    This report is concerned with the vision of smart interconnected objects, a vision that has attracted much attention lately. In this paper, embedded, interconnected, open, and heterogeneous control systems are in focus, formally referred to as Federated Embedded Systems. To place FES into a context, a review of some related research directions is presented. This review includes such concepts as systems of systems, cyber-physical systems, ubiquitous computing, internet of things, and multi-agent systems. Interestingly, the reviewed fields seem to overlap with each other in an increasing number of ways

    Information Agents for Pervasive Sensor Networks

    No full text
    In this paper, we describe an information agent, that resides on a mobile computer or personal digital assistant (PDA), that can autonomously acquire sensor readings from pervasive sensor networks (deciding when and which sensor to acquire readings from at any time). Moreover, it can perform a range of information processing tasks including modelling the accuracy of the sensor readings, predicting the value of missing sensor readings, and predicting how the monitored environmental parameters will evolve into the future. Our motivating scenario is the need to provide situational awareness support to first responders at the scene of a large scale incident, and we describe how we use an iterative formulation of a multi-output Gaussian process to build a probabilistic model of the environmental parameters being measured by local sensors, and the correlations and delays that exist between them. We validate our approach using data collected from a network of weather sensors located on the south coast of England

    A short curriculum of the robotics and technology of computer lab

    Get PDF
    Our research Lab is directed by Prof. Anton Civit. It is an interdisciplinary group of 23 researchers that carry out their teaching and researching labor at the Escuela PolitĂ©cnica Superior (Higher Polytechnic School) and the Escuela de IngenierĂ­a InformĂĄtica (Computer Engineering School). The main research fields are: a) Industrial and mobile Robotics, b) Neuro-inspired processing using electronic spikes, c) Embedded and real-time systems, d) Parallel and massive processing computer architecture, d) Information Technologies for rehabilitation, handicapped and elder people, e) Web accessibility and usability In this paper, the Lab history is presented and its main publications and research projects over the last few years are summarized.Nuestro grupo de investigaciĂłn estĂĄ liderado por el profesor Civit. Somos un grupo multidisciplinar de 23 investigadores que realizan su labor docente e investigadora en la Escuela PolitĂ©cnica Superior y en Escuela de IngenierĂ­a InformĂĄtica. Las principales lĂ­neas de investigaciones son: a) RobĂłtica industrial y mĂłvil. b) Procesamiento neuro-inspirado basado en pulsos electrĂłnicos. c) Sistemas empotrados y de tiempo real. d) Arquitecturas paralelas y de procesamiento masivo. e) TecnologĂ­a de la informaciĂłn aplicada a la discapacidad, rehabilitaciĂłn y a las personas mayores. f) Usabilidad y accesibilidad Web. En este artĂ­culo se reseña la historia del grupo y se resumen las principales publicaciones y proyectos que ha conseguido en los Ășltimos años

    Data mining and fusion

    No full text

    From SMART to agent systems development

    Get PDF
    In order for agent-oriented software engineering to prove effective it must use principled notions of agents and enabling specification and reasoning, while still considering routes to practical implementation. This paper deals with the issue of individual agent specification and construction, departing from the conceptual basis provided by the SMART agent framework. SMART offers a descriptive specification of an agent architecture but omits consideration of issues relating to construction and control. In response, we introduce two new views to complement SMART: a behavioural specification and a structural specification which, together, determine the components that make up an agent, and how they operate. In this way, we move from abstract agent system specification to practical implementation. These three aspects are combined to create an agent construction model, actSMART, which is then used to define the AgentSpeak(L) architecture in order to illustrate the application of actSMART

    Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor

    Get PDF
    The increasing demand of customized production results in huge challenges to the traditional manufacturing systems. In order to allocate resources timely according to the production requirements and to reduce disturbances, a framework for the future intelligent shopfloor is proposed in this paper. The framework consists of three primary models, namely the model of smart machine agent, the self-organizing model, and the self-adaptive model. A cyber-physical system for manufacturing shopfloor based on the multiagent technology is developed to realize the above-mentioned function models. Gray relational analysis and the hierarchy conflict resolution methods were applied to achieve the self-organizing and self-adaptive capabilities, thereby improving the reconfigurability and responsiveness of the shopfloor. A prototype system is developed, which has the adequate flexibility and robustness to configure resources and to deal with disturbances effectively. This research provides a feasible method for designing an autonomous factory with exception-handling capabilities
    • 

    corecore