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 

Abstract—The increasing demand of customized production 

results in huge challenges to the traditional manufacturing systems. 

In order to allocate resources timely according to the production 

requirements, and to reduce disturbances, a framework for the 

future intelligent shopfloor is proposed in this paper. The 

framework consists of three primary models, namely the model of 

smart machine agent, the self-organizing model, and the self-

adaptive model. A cyber-physical system for manufacturing 

shopfloor based on the multiagent technology is developed to 

realize the above function models. Grey relational analysis and the 

hierarchy conflict resolution method were applied to achieve the 

self-organizing and self-adaptive capabilities, thereby improving 

the reconfigurability and responsiveness of the shopfloor. A 

prototype system is developed, which has the adequate flexibility 

and robustness to configure resources and to deal with 

disturbances effectively. This research provides a feasible method 

for designing an autonomous factory with exception-handling 

capabilities. 

 
Index Terms—Smart machine agent, cyber-physical system, 

self-organization, self-adaptation, intelligent shopfloor.  

 

I. INTRODUCTION 

owadays, the fierce market competition has imposed 

severe pressure on manufacturing enterprises. The ever 

fast changes of customers’ demands have forced manufacturers 

to move from mass production to small and medium batched 

ones. The wide variety of products with small volume for each 

kind leads to the frequent change of production organization, 

and increases the possibility of exceptions to occur during 

manufacturing execution. 

In order to solve the aforementioned problems, lots of 

research efforts have been conducted using the advanced 

technologies, such as Cyber-Physical System (CPS) [1], 

Internet of Things (IoT) [2], Cloud Computing (CC) [3], and 

Service-Oriented Technologies (SOT) [4]. These works have 

provided the technological basis for Intelligent Manufacturing 

System (IMS) and smart factories. The related works include 

intelligent manufacturing modes [5], IMS frameworks [6], 
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strategies for manufacturing service configuration [7], and real-

time monitoring of manufacturing execution systems [8]. 

Despite the significant achievements, existing manufacturing 

paradigms are insufficient to meet requirements imposed by 

typical challenges and problems in the manufacturing shopfloor. 

These problems are listed as follows.  

(1) How to tighten the cyber-physical conjoining of the 

bottom-level manufacturing resources to enhance the real-time 

sensing capacity of machines’ and manufacturing services’ 

status? 

(2) How to construct a quick-respond mechanism for 

proactive task allocation and self-organizing resource 

configuration to achieve the dynamic matching between 

manufacturing resources and tasks? 

(3) How to achieve the self-adaptive collaboration during the 

manufacturing execution process, and to eliminate the 

disturbances when exceptions occur? 

  In order to address these challenges, a framework for the 

future intelligent shopfloor is proposed with three primary 

models, including the model of smart machine agent, the self-

organizing model, and the self-adaptive model. A cyber-

physical system for manufacturing shopfloor based on the 

multiagent technology is developed to realize the above 

function models. Here, self-organization is responsible for 

initially and automatically matching the manufacturing 

resources with tasks according to the real-time machine status 

in an optimal way. Then, during the manufacturing execution 

stage, the self-adaptive model is responsible for actively 

monitoring manufacturing processes and autonomously dealing 

with disruptions. The aim of the research is to quickly organize 

the production, discover and deal with abnormities without 

human intervention, in order to meet the requirement of product 

customization while reducing the cost.  

The remainder of the paper is organized as follows. Section 

II reviews the research on agent technologies, IoT-based 

manufacturing systems, SOT, CPS, self-organizing and self-

adaptive systems. The overall architecture of the Self-

organizing and Self-adaptive Intelligent Shopfloor (SS-IS) is 

presented in Section III. Section IV discusses the modeling of 

Y.F. Zhang is with the Department of Industrial Engineering, School of 
Mechanical Engineering, Northwestern Polytechnical University, Xi’an, 

Shaanxi 710072, China. (e-mail: zhangyf@nwpu.edu.cn).  

C. Qian is with the Department of Industrial Engineering, School of 
Mechanical Engineering, Northwestern Polytechnical University, Xi’an, 

Shaanxi 710072, China. (e-mail: qch.mail@qq.com).  

Agent and cyber-physical system based self-

organizing and self-adaptive intelligent 

shopfloor 

Yingfeng Zhang*, Cheng Qian, Jingxiang Lv, and Ying Liu 

N 



 2 

Smart Machine Agent (SMA) based on CPS. The task-driven 

self-organizing model for manufacturing systems is analyzed in 

Section V, and the real-time information-driven self-adaptive 

manufacturing model is described in Section VI. Section VII 

illustrates the implementations of SS-IS based on a prototype 

system. Conclusions and future works are drawn in Section VIII. 

II. RELATED WORKS 

Related research on the intelligent shopfloor is divided into 

three categories: (1) Enabling technologies, including IoT, 

Multiagent Systems (MAS), and SOT; (2) Conceptual 

frameworks, which include CPS and Cyber-Physical 

Production System (CPPS); (3) Innovative modes of production, 

such as self-organizing and self-adaptive manufacturing. These 

streams of literature are reviewed respectively as follows.  

A. MAS, SOT, IoT, and Their Implementations in Industry 

Agent technology has been widely developed in 

manufacturing applications for its autonomy, flexibility, 

reconfigurability, and scalability [9]. Featured with the 

capability for decentralized control, MASs are ideal for 

deploying autonomous manufacturing systems [10]. Leitao et 

al. reviewed the development in the architecture of industrial 

MAS and discussed the standardization of MAS [11]. The 

software system, or the environment of MAS, was analyzed by 

Valckenaers et al. and the connections between the real-world 

entities and agent systems were given [12]. Related works on 

the implementation of MAS into industries were extensively 

conducted in different fields including process and quality 

control [13], object management [14], manufacturing control 

systems [15], etc. Furthermore, Valckenaers et al. extended the 

concept of intelligent agents to intelligent beings, which focus 

on not only the capabilities of decision-making but reflecting 

the physical reality [16]. Aiming at matching services between 

providers and consumers, SOT and the Service-Oriented 

Architecture (SOA) established the connections between men 

and systems or within different systems. Industrial applications 

based on agent and SOA were discussed by Vrba et al. [17] and 

Colombo et al. [18]. In order to apply web services in factory 

automation, the theoretical foundations of that, including the 

resource virtualization method [19], the semantic web [20], and 

the optimal service composition method [21], were also studied. 

 Recently, many emerging technologies are greatly promoting 

the development of IoT [22], including Radio Frequency 

Identification (RFID), Near-Field Communication (NFC), 

Bluetooth Low Energy, LTE-Advanced, etc. Many RFID-based 

industrial applications were also demonstrated by Huang et al. 

[23], Makris et al. [24], etc. By using the wireless 

communication technologies, the structure modeling method of 

an RFID-enabled reconfigurable architecture for flexible 

manufacturing systems was proposed by Ali et al. [25]. Except 

for RFID, technologies like IEC 61499 [26] and NFC [27] were 

also applied in industrial systems.  

B. CPS and CPPS 

The term CPS refers to the tight conjoining of and 

coordination between computational and physical resources 

with adaptability, autonomy, efficiency, functionality, 

reliability, safety, and usability, which was firstly proposed by 

US National Science Foundation in 2006 [28]. E.A. Lee defined 

CPS as integrations of computation and physical processes. 

Embedded computers and networks monitor and control the 

physical processes, usually with feedback loops where physical 

processes affect computations and vice versa [1]. CPS provides 

a theoretical framework for mapping the manufacturing-related 

things to the computing space, so that the modeling of 

manufacturing systems can be easily achieved. The recent 

advances and trends of CPS were concluded by J. Lee et al. 

[29], and Leitao et al. pointed out that more research is 

necessary on the standardization of CPS [30]. 

As to the implementation of CPS, Colombo et al. proposed 

the industrial cloud-based CPS with a special focus on complex 

industrial systems [31]. Monostori introduced the term of CPPS 

and discussed the major challenges to realizing CPPS, including 

context-adaptive and autonomous systems, cooperative 

production systems, identification and prediction of dynamical 

systems, etc. [32]. J. Lee et al. and Bagheri et al. proposed the 

CPS architecture for Industry 4.0 [33] and for self-aware 

machines in Industry 4.0 environment [34]. Leitao et al. also 

described four prototype implementations for industrial 

automation based on cyber-physical systems technologies [35].  

C. Self-adaptive and Self-organizing Mechanisms 

Facing the fast changing market, manufacturing enterprises 

are seeking help from autonomous and robust production 

systems, so as to respond rapidly to market changes. Actually, 

the traditional manufacturing systems with centralized and 

hierarchical control approaches “present good production 

optimization,” but are weak in response to changes [36]. 

Implied by the manner in which holonic systems emerge, adapt 

and survive, Valckenaers et al. revealed the fundamental 

principles of the design of self-organizing and self-adaptive 

systems [37]. Leitao et al. presented the adaptive holonic 

control architecture (ADACOR) for distributed manufacturing 

systems to improve the system performance in terms of the 

agile reaction to emergency [36]. Many further studies on self-

adaptive systems were based on this architecture. For example, 

Barbosa et al. further explained the biologically-inspired 

ADACOR architecture, analyzed the transitions between the 

stationary state and the transient state, and extensively 

discussed the evolution of it [38]. Except for dealing with 

changes, self-adaptation was also used in production 

coordination. For example, also inspired by biological 

characteristics, Belle et al. proposed the method for proactive 

coordination in logistic systems [39]. Monostori et al. analyzed 

the collaborative control in production systems and introduced 

predictive method into this field [40]. 

Basically, the self-adaptive and self-organizing mechanisms 

have similar goals, i.e. to increase the systems’ responsiveness, 

flexibility, reconfigurability, and autonomy. In this research, as 

mentioned before, self-adaptation monitors processes and deals 

with disturbances, while self-organization focuses on 

maximizing the system autonomy and matching tasks with 

resources. In this sense, research on self-adaptation include 
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dynamic task allocation [41], adaptive scheduling [42], and 

evaluating the capabilities of dynamic reconfiguration of an 

industrial system [43]. 

 The literature above provide lots of theoretical models and 

algorithms for self-adaptive and self-organizing systems. These 

are the fundamental works for intelligent shopfloor of the next 

generations. However, more attention should be paid on the 

modeling of bottom-level manufacturing resources, which can 

greatly help with the realization of embedded intelligence. The 

models of the self-adaptive and self-organizing mechanism can 

be easily applied only if the tight conjoining of computational 

and physical resources is achieved. 

III. OVERALL ARCHITECTURE 

This research applies the concept of CPS and develops an 

easy-to-deploy and simple-to-use framework to achieve self-

organization and self-adaptation for the future intelligent 

shopfloor. Fig. 1 shows an overall architecture of the proposed 

agent and CPS based intelligent shopfloor. It consists of three 

main components to enhance the self-organizing and self-

adaptive capability of the shopfloor, namely the smart machine 

agent, the self-organizing model, and the self-adaptive model.  

 
Fig. 1. Overall Architecture of the Intelligent Shopfloor 

With the help of IoT devices, the real-time manufacturing 

information is captured by SMAs. SMAs can communicate 

with each other and drive the executors according to the rules, 

as is described in Section IV. Manufacturing tasks are 

decomposed into process-level, and these tasks are obtained by 

the SMAs, as designed by the self-organizing model. The self-

adaptive mechanism monitors the manufacturing processes, 

trying to identify the exceptions and adapts to the exceptions 

autonomously. Compared to the current manufacturing 

paradigms, the proposed intelligent shopfloor has the following 

new features.  

Firstly, applying the designed cyber-physical system based 

on the multiagent technology, the tight conjoining of the top-

level intelligent models and the bottom-level manufacturing 

resources is achieved. Manufacturing machines can sense the 

real-time manufacturing environment, and have the capability 

of making decisions, thus the machines become smart. 

Secondly, based on the self-organizing model, machine 

resources can be configured through Grey Relational Analysis 

(GRA) [7] when the shopfloor receives manufacturing tasks. 

Thirdly, during manufacturing execution stage, production 

exceptions could be proactively identified, and the influence of 

them will be decreased or eliminated by applying the designed 

self-adaptive model. 

IV. SMART MACHINE AGENT BASED ON CPS 

Manufacturing machines are the basic execution units for 

production, thus the enhancement to the intelligence of the 

machines will provide strong support for the intelligent 

shopfloor.  The SMA aims to enable the machine of sensing 

information and making decisions autonomously by using CPS 

and agent technologies. Here, CPS supports the data 

infrastructure, while manufacturing systems are modeled as 

multiagent systems under CPS. As shown in Fig. 2, SMA is 

composed of two main modules, namely cyber-physical 

machine, and smart machine agent, from bottom to top.  

 
Fig. 2. Modeling of the Smart Machine Agents 

A. Cyber-Physical Machine 

The cyber-physical machine module is responsible for 

capturing multi-source and real-time manufacturing 

information around the machine by using auto-ID technologies 

[44]. The aim of this module is to enhance the sensing ability of 

traditional manufacturing machines. By applying the advanced 

IoT technologies (e.g., RFID, digital caliper, pressure sensor, 

etc.), traditional machines are enabled to capture the real-time 

manufacturing information proactively. Take RFID as an 

example, in order to monitor the real-time status of operators, 

assembly progress, and work-in-process (WIP) inventories, 

three areas are designated, namely the raw material site, the 

assembly site, and the finished product site. An antenna is then 

installed in each area to capture the manufacturing-related 

things (e.g., operator’s ID cards, RFID tag-embedded pallets 

with WIP products on them, etc.). Then, the real-time 

manufacturing data are collected through a RFID reader 

connected with these antennas, indicating the current location 

of manufacturing things. These data streams are provided to the 

SMA module and can be further interpreted as manufacturing 

progress or state indications. 
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B. Smart Machine Agent 

Smart machine agent provides the core services of the 

machine. Here, agent technologies and service-oriented 

architecture are used to make the machine capable of making 

decisions intelligently and autonomously. This module includes 

real-time manufacturing data perception, the pool of rules and 

knowledge, the reasoning mechanism, and the executor. The 

reasoning mechanism can match the rules from the pool with 

the production data. Rules are processing requirements or 

standards processed from raw manufacturing data, which can 

be interpreted by the manufacturing system. A simple example 

of the rule is the current process requires certain temperature. 

Thus, the executor (i.e., a heater) will act on the rules and adjust 

the environmental temperature. The executor is responsible for 

informing manufacturing systems the ongoing operations and 

acting on the instructions from the manufacturing system. 

Knowledge refers to the professional instructions or 

information that are beneficial to the effective production at the 

machine side. Moreover, services of the machine are wrapped 

by its agent, so that SMA becomes a plug-and-play component 

connected to the intelligent shopfloor, and can be visited by 

operators or interoperated by other machines through web 

services [19]. In other words, each SMA may provide some 

services so that they can be invoked using SOT. These services 

wrapped by different SMAs forms different web service nodes, 

which represent the corresponding machines. Major services 

provided by SMA are described as follows. 

(1) Machine Capability Publishing Service 

Manufacturing capability of machines is published to the 

industrial networks so that they can be discovered as potential 

resources to undertake the suitable manufacturing tasks. 

Machine capability information includes basic information 

(such as machine ID, machine name, etc.) and capability 

information (such as processing method, maximum processing 

size, manufacturing precision, processing roughness, etc.).  

(2) Real-time Status Accessing Service 

This service provides basic manufacturing information by 

applying advanced IoT and CPS technologies. By design, 

authorized third-party services can access to the real-time status 

of manufacturing things (such as WIP items, the materials of 

in-buffer, working area and out-buffer, parameters of machine 

etc.) through Internet.  

(3)  Real-time Operation Guidance Service 

The operation guidance service is designed to provide the 

operators with operation details and instructions during the 

manufacturing process, which could greatly reduce the chance 

of quality defects caused by improper operations or wrong 

installations of materials.  

(4)  Real-time Information Sharing Service 

This service is responsible for establishing the dynamic 

information connection between the upstream and downstream 

SMAs and manufacturing machines. These SMAs can get the 

collaborative information of other interrelated machines, which 

can assist the SMAs to timely identify the exceptions and to 

further come out with the proper solutions.  

(5) Real-time Queuing Service 

This service aims to reorder the queue of the tasks for each 

manufacturing machine and reconfigure related resources 

according to the real-time information from the upstream and 

downstream stations (e.g., the lack of raw materials, changed 

delivery time, new task with high priority, etc.).  

C. Proof-of-Concept SMA Prototype 

Following the architecture and core modules of the designed 

SMA, our research lab has developed a proof-of-concept SMA 

prototype by combining CPS, CC, and agent technologies. 

The developed prototype consists of two main parts, i.e., 

hardware and software. In terms of the hardware, as shown in 

Fig.3, it includes an integrated computer and some sensors, e.g., 

RFID antennas and digital calipers. The computer serves as the 

digital communication interface and is responsible for 

connecting different types of sensors through wired or wireless 

connections. Production data can be obtained through sensors 

which are plugged to the prototype. Control signals are sent to 

the executors of different machines through the data interfaces 

provided by the computer. As to the software, it consists of 

agents, drivers of all kinds of sensors, and web service software 

(e.g., Tomcat). After connecting to the integrated computer, 

sensors capture and transfer data to agents by using the drivers. 

All the services discussed above are installed and wrapped as 

cloud manufacturing services. The software (or the services) 

inside the SMAs regard machines as agents when applying self-

organizing and self-adaptive models. The SMAs are installed at 

the machine side, so that the real-time manufacturing 

information can be timely shared, and SMAs can reconfigure 

themselves according to the information. The hardware and the 

software system, as a whole, can be attached to manufacturing 

machines easily to form the SMAs. 

 

Fig. 3. Prototype of the SMA Hardware System 

V. TASK-DRIVEN SELF-ORGANIZING MODEL 

In order to improve the operational efficiency of SMA, the 

task-driven self-organizing manufacturing model is proposed to 

deal with the task allocation problem by invoking services 

provided by SMA. SOT (e.g., SOA, web service, ontology, etc.) 

can be applied for constructing the virtual manufacturing and 

service environment, which is one of the key enabling 
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technologies to realize accessing, invoking, deployment and on-

demand use of smart machines, and to realize a self-organizing 

factory [7]. Considering the complexity and diversity of 

manufacturing resources, SOTs are adopted to establish the 

scientific information-based model for task allocation. GRA is 

applied to search for the most suitable pairing between tasks 

and machines from a set of alternatives by analyzing relational 

grade among the discrete sets [7], so as to realize the optimal 

configuration of machine resources.  

A. The Logical Flow of the Self-organizing Model 

 
Fig. 4. Task-driven Self-organizing Model 

Fig. 4 illustrates the framework of the task-driven self-

organizing manufacturing model. The self-organizing process 

can be divided into three phases.  

Phase 1: Virtualization of machines and tasks. As can be seen 

in the left part of Fig.4, based on a resource servitization method 

[19], manufacturing resources are virtualized into smart 

machine agents, which highlight their functional attributes and 

capabilities. Similarly, the information of tasks is also analyzed 

to emphasize the requirements of each process, which is shown 

in the right part of Fig. 4. Complex tasks will be decomposed 

into process-level ones, so that each process can be handled by 

a single machine. 

Phase 2: Proactive discovery of tasks. As shown in the 

middle-upper part of Fig. 4, SMAs cyclically check if there are 

new processing tasks. When new tasks are detected, SMAs 

submit requests to undertake the processible tasks proactively 

according to their current status. At this stage, each 

manufacturing process has a candidate set of all available 

SMAs.  

Phase 3: Optimal configuration of machines. For each 

manufacturing process, this phrase is designed to pick out the 

optimal SMA from the large-scale solution space, where all 

demands of the manufacturing processes are met accordingly 

by SMAs in an optimal way. Manufacturing processes are 

matched with machines in this phrase and the manufacturing 

execution begins. 

B. SMA Proactive Discovery Modelling 

A number of attributes are required to uniquely identify the 

individual SMAs, and these attributes can generally be divided 

into four categories: the basic attributes, the function attributes, 

the evaluation attributes, and the real-time status attributes. The 

basic attributes describe the general situation of manufacturing 

machines, which usually consist of service ID, shopfloor ID, the 

purchasing date, manufacturer and the usable lifetime of the 

machine. Function attributes show the detailed capacities of 

SMA, which are the essential prerequisite of service proactive 

discovering. Function attributes usually include processing part 

type, processing method, achievable processing size, 

processing material, processing precision, processing 

roughness, and other processing characteristics. Evaluation 

attributes are used in the optimal configuration process, as they 

provide measurable criteria to evaluate the capacities of 

machines. The cost of service, qualification rate, on-time 

delivery rate, reliability, service frequency, maintainability, and 

customer satisfaction are usually the major factors of evaluation 

attributes. Real-time status attributes include service status, 

manufacturing task sequence, the load status of the machine and 

detailed processing information, which provide traceable 

information within the entire manufacturing environment.  

C. SMA Optimal Configuration 

The most significant part of the optimal configuration is to 

establish a systematic evaluation method, which can reflect 

machining cost, storage cost, the agreed delivery time, delay 

time (if the manufacturing process exceeds the deadline), the 

execution reliability of SMA, energy consumption index, 

qualified rate, and the credit of SMA. The evaluating process 

can be realized by adopting the GRA-based evaluating method.  

The evaluating method mainly focuses on the cost of service, 

qualification rate, on-time delivery rate, reliability, service 

times, and user satisfaction. The cost of service (C) usually 

contains the cost of production (
pC ) and cost of logistics (

lC ). 

It is assumed that the total cost of logistics is directly 

proportional to the cost of logistics for each product. Therefore, 

the cost is defined as ( )p lC C C LotSize   . Lotsize represents 

the batch of manufacturing tasks. Qualification Rate (
qR ) is an 

important criterion of manufacturing capability. 
qR  is 

determined by the formula 1q iw iR n n  , where 
in represents 

the total production number of this type by the machine, and 

iwn  represents the scraps made by the machine. These data are 

provided by historical production records from the knowledge 

pool in SMAs. The on-time delivery rate (
dR ) shows the 

machine’s ability to process the task on time, and it is 

determined by the formula 
d otR N N  where N represents the 

total production number of a machine and 
otN  means the 

production number when products are delivered on time.  

Unreliability (
fR ) is calculated by the formula 

f fR N N  

where 
fN  represents the accumulated failure times during 

production. User satisfaction (S) shows the machine’s ability to 

meet customers’ expectations and is decided by the formula 
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1

N

i

i

S S N


  where 
iS  indicates the points given by individual 

customers for their products.  

To apply the GRA-based evaluating method, three steps need 

to proceed. Firstly, the ideal indicator sequence is determined 

by both task requirement information and the types of 

evaluation indicators. The sequence is given as

 
T

* * * *

1 2, , , nA a a a . Secondly, due to different dimensions in the 

indicators, they need to be normalized so that the evaluation 

results can be more reliable and accurate. Let
* min

*

max min

j j

j

j j

a a
y

a a





,

min

max min

i

j ji

j

j j

a a
y

a a





 where min

ja  represents the minimum value of 

the jth indicator ( min min i

j ja a ), max

ja  represents the maximum 

value of the jth indicator ( max max i

j ja a ), 

1,2, , 1,2,i m j n  . Then *

jy  and i

jy  are the normalized 

value of *

ja   and i

ja . Thirdly, according to the gray theory, 

( )i j  represents the relational coefficient of the jth indicator of 

the ith service and the ideal indicator, and 
* *

* *

min min max max
( )

max max

i i

j j j j
i j i j

i i i

j j j j
i j

y y y y
j

y y y y






  


  
 where   is 

distinguishing coefficient, and [0,1] . Therefore, the 

obtained relational coefficient matrix is E = [ ( )i j ] m*n. The 

customized vector  1 2 3, , ...,
T

nW w w w w is used to represent the 

weight of each indicator, which can be determined by the 

widely used Analytic Hierarchy Process (AHP) [45]. Then, the 

comprehensive evaluation matrix is achieved as [ ]iR r EW . 

The greater 
ir  equals, the better machine and process matches.  

By applying the proposed task-driven model, manufacturing 

processes in the future factories are organized autonomously 

and efficiently.  

VI. REAL-TIME INFORMATION DRIVEN SELF-ADAPTIVE 

MODEL 

The task-driven self-organizing model can provide an initial 

production plan, but it is still difficult for the shopfloor to 

response to and to deal with exceptions occurred during 

manufacturing execution stage due to the lack of real-time 

feedback of the disturbances. Therefore, the self-adaptive 

model is brought to this work to make the shopfloor intelligent 

enough to actively discover, identify and eliminate or decrease 

the influences caused by the exceptions.  

To fulfill this purpose, two main components are discussed. 

They are the real-time exception identification model and the 

self-adaptive conflict resolution model. 

A. Real-time Exception Identification Model 

The event-driven real-time exception identification model is 

shown in Fig. 5. The real-time events of the sensors installed at 

distributed manufacturing machines will provide the basic data. 

A multi-level event structure is proposed to convert the 

distributed manufacturing data of the events to meaningful 

manufacturing information, and the Petri net model is 

constructed according to the relationships among different 

events. As a result, the multi-level events can be extracted easily 

by analyzing the Petri Nets, and then the exceptions can be 

identified by comparing the real-time events with the planned 

production status.  

The multi-level event structure is used to define the 

hierarchical structure of the manufacturing system, which has 

four types of events, namely Primitive Event (PE), Basic Event 

(BE), Complex Event (CE), and Critical Event (CrE). PEs are 

raw sensor events, BEs are resource-level events, CEs are cell-

level events, and CrEs are shopfloor/product-level events. The 

events are defined in a standard model: {id, name, context, 

attributes, t}, where, id is the unique id of the event, name 

stands for the event name, context specifies the context 

information needed to describe the event, attributes provide the 

related parameters, and t represents the time of the event. 

 
Fig. 5. The Event-driven Exception Identification Model 

In the event model, PEs are simple events, which can be 

directly obtained through SMA. The other three kinds of events 

are composite events, which are aggregated from the sub-events 

using logical operator (e.g. and, or, negation, etc.) or temporal 

operator (e.g. sequential, within), and the sub-events may be 

either simple events or complex events. Take the real-time 

production progress as an example, the actual processing time 

can be acquired by querying the basic events, so the production 

of the part, assembly or product can be obtained according to 

the hierarchy relationships of the manufacturing bill of 

materials (MBOM). Compared with the production plan, the 

RPP can be timely calculated according to its Critical Event 

CrE= (CrE_ID, Product.id, p, t). The parameter p is given in 

(1). 

i=1 1 1

i=1 1 1

r p q current
Pijkj k

r p q total
Pijkj k

T

T
p  

 


  

  
              (1) 

In (1), CrE_ID is the unique id of the critical event, p is the 

progress of the assembly, and pijk is the kth process of part j for 

Assembly i. r, p, q are the total number of assembly, parts, and 

processes, respectively. Tp is the process time.  

The hierarchical timed-colored Petri Net (HTCPN) models 

are used to construct and analysis the multi-level event. A 

HTCPN is an 8-tuple N=<P,T,C,I,O,G,D,M>, where, P denotes 

places, which are used to represent activities; T={Ti, Tt, Ts, Tm} 
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is a finite set of transactions with Ti, Tt, Ts, and Tm being 

immediate, timed, random, and macro transitions, respectively, 

and Tm are used to model sub-events; C denotes the color 

mapping from P T to W, an item of C(s) is called a color of s 

and C(s) is the color set of s, where s is the attributes of P or T; 

I(O) functions denote the forward (backward) incidence matrix 

of PT, which represent the relationship between transitions 

and places; G is a guard function and maps each transaction T 

to a Boolean expression (called guard expression). D gives the 

time delays of a timed transition in Tt or random transition in Ts, 

once a transition in Tt or Ts is enabled, it cannot fire until D time 

units are elapsed; M is a marking representing the number of 

tokens in P and is a vector with M0 being the initial marking. 

The colored tokens can carry time, quantity, and other attributes, 

and they are combined with IoT technologies so that the PN 

status can be updated according to real-time manufacturing 

actions. Based on the performance of Petri Net model, the 

multi-level events can be acquired [46]. 

The exceptions events are defined as the abnormal status of 

an object or a system. It occurs when the real-time events 

deviate from its plan status. Defined by the Exception analysis 

method, the exceptions at different levels can be detected easily, 

which provides the important inputs for the self-adaptive 

model.  

B. Self-adaptive Conflict Resolution Model 

The real-time exception identification model provides 

important inputs for self-adaptive conflict resolution. Since 

exceptions may occur at different levels, the self-adaptive 

conflict resolution model is designed accordingly to eliminate 

or decrease the influence caused by manufacturing exceptions 

in time. Based on the exception identification model and self-

adaptive optimization strategy, the analytical conflict resolution 

model is designed. Fig. 6 presents the overview of the self-

adaptive conflict resolution model.  

 
Fig. 6. Overview of the Self-adaptive Conflict Resolution Model 

The exceptions are divided into two types according to the 

scale of influences caused by them. As shown in Fig. 6, 

exceptions that are caused to PEs or BEs can generally be 

solved at the machine side, while the exceptions that are caused 

by CEs or CrEs can only be solved under the collaboration of 

multiple SMAs or the entire shopfloor. The self-adaptive 

optimization processes of the two types of exceptions are 

defined as Type A and Type B self-adaptive process. For 

example, if the spindle speed of a lather machine exceeds the 

desired upper limit (primary sensor-level event) or the raw 

material has not been sent to the machine (resource-level 

event), the machine adjusts its operational parameters or 

broadcasts messages to locate the required material (Type A 

self-adaptive process). If several machines broke down 

(complex event), reconfiguration among SMAs would then take 

place (Type B self-adaptive process). 

The following strategy is used to reorder the unfinished tasks 

of the relevant SMAs. In order to response to the exception 

rapidly and to obtain an optimal new job queue, the objective 

function is defined in (2). It aims to minimize the total weighted 

delay time of all the tasks in the reordered queue, and 
jw  is the 

weight (delay penalty). Here, the delay time i

jDT  of task iJ  is 

calculated by (3), which indicates the deviation between the 

finished time of task iJ  of the new job queue and the due time 
i

jd  of the task iJ . iJ  represents the process of job J  processed  

at station i , and i

jET represents the finished time of iJ . The due 

time of each task is continuously changed according to the 

exception information of the upstream and downstream 

machines and is calculated by (4), where i

jp represents the 

processing time of iJ , and i

jST represents the start time of iJ .  

1

min
m

i

j j

j

F w DT


 
                                (2) 

max( ,0)i i i

j j jDT ET d                             (3) 

1 1max( , )i i i i

j j j jd ET p ST                          (4) 

The result of such calculations can be obtained by applying 

genetic algorithms such as Tabu Search. After the bottleneck of 

manufacturing resources is identified and removed, the normal 

manufacturing processes proceed. 

VII. CASE STUDY 

To verify the effectiveness and efficiency of the proposed 

SS-IS, a case related to our business partner is discussed and 

studied. This company has a typical discrete manufacturing 

system for engine production in China. After investigating the 

assembly shopfloor for two weeks, we found that the 

manufacturing information reported to managers may not 

accurately and promptly reflect the real-life situations, and it 

may further intensify the production disturbances when 

exceptions occur. The managers have to constantly deal with 

the changed production orders and are busy at reconfiguring 

resources. Therefore, they are sorely in need of the self-

organizing and self-adaptive solutions. 

It is stated that the comprehensive implementations of the 

proposed SS-IS to a real-life company may be a difficult and 

complex task. To demonstrate the advantages of this research, 

based on the discussions above, a hypothetical case scenario is 

considered, and a proof of concept experiment and prototype is 

designed and developed. The shopfloor is equipped with RFID 

hardware systems to realize timely data-collecting. The 

Process (m) Process (m+1)Process (m-1)
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modularized SMA attachment which is shown in Fig. 3 can be 

set up for each machine easily. Based on data captured in real 

time, manufacturing processes are constantly monitored 

through SMAs. By analyzing the data, the production can be 

organized autonomously. The feedback information from 

SMAs enables the shopfloor to optimize production 

dynamically and to trace exceptions effectively.  

The operating procedures of the shopfloor are described as 

follows. To obtain the real-time multisource manufacturing 

data from the shopfloor, RFID tags, antennas, and many kinds 

of sensors are set up in the execution layer which is the physical 

environment of manufacturing shopfloor. With the hardware 

installed, machines are becoming SMAs according to the model 

described in Chapter IV.  

A new manufacturing task is received by SS-IS and is 

decomposed into manufacturing processes. SMAs captured the 

demanding manufacturing processes and send requests to 

undertake the task according to their current status. Therefore, 

a candidate set for each manufacturing process is established. 

The pairing mechanism selects some pairs of machines and 

processes which are exact matches, and a set of machines with 

suitable capabilities is formed, e.g., {M1, M2, M3, M4, M5, M6} 

is a set of available machines for the lathe work. The evaluating 

indicators for each machine are given in terms of the historical 

information in the knowledge pool of SMAs in Table 1.  
Table 1. SMAs Evaluating Indicators 

Indicator M1 M2 M3 M4 M5 M6 

Cost 1510 820 1585 1700 1610 1550 

Qualification Rate 83% 90% 81% 92% 95% 87% 

On-time Delivery 

Rate 
91% 85% 92% 98% 94% 97% 

Unreliability 7% 14% 6% 2% 4% 5% 

Service Times 820 1240 435 282 688 791 

Satisfaction 85% 81% 86% 92% 89% 91% 

After that, the GRA-based evaluating method is applied to 

pick up the most suitable machine for the process.  

(1) The ideal indicator sequence is given.  

 
T* 820,0.95,0.98,0.02,1240,0.92A   

(2) Normalizing the evaluating matrix.  

0.78 0 0.87 1 0.90 0.83

0.14 0.64 0 0.79 1 0.43

0.46 0 0.54 1 0.69 0.92

0.42 1 0.33 0 0.17 0.25

0.56 1 0.16 0 0.42 0.53

0.36 0 0.45 1 0.73 0.91

Y

 
 
 
 

  
 
 
 
  

 

(3) Calculating the relational coefficient matrix (Let 0.5 

).  

0.39 1 0.37 0.33 0.36 0.38

0.37 0.58 0.33 0.70 1 0.47

0.48 0.33 0.52 1 0.62 0.87

0.55 0.33 0.60 1 0.75 0.67

0.53 1 0.37 0.33 0.46 0.52

0.44 0.33 0.48 1 0.65 0.85

E

 
 
 
 

  
 
 
 
  

  

(4) The weight of each indicator is given by using AHP.  

 
T

0.324,0.143,0.157,0.112,0.109,0.155W   

(5) The comprehensive evaluation matrix is achieved.  

(0.46,0.51,0.60,0.62,0.54,0.58)TR EW   

The fourth element (0.62) in the R is the maximum value 

among other results, thus M4 is chosen to complete the required 

lathe work according to the task description in the task pool. 

Similarly, all process-level tasks will be assigned to different 

SMAs by repeating this calculation, and the matching between 

al tasks and SMAs is then achieved.  

 
Fig. 7. Smart Machine Agent of the Prototype System 

During the manufacturing execution stage, take M4 as an 

example, the visual interface of its SMA is shown in Fig. 7. All 

the tasks that are allocated to M4 are listed below. The guidance 

for the task will be displayed on the SMA of machine M4. The 

same system runs on each SMA, and it can provide information 

on materials that flow into them and the products that flow out 

of them according to the data captured from RFID readers and 

other sensors.  

 
Fig. 8. The Real-time Exception Identification Module 

Meanwhile, the exception identification model keeps 

listening for potential resource conflicts. When exceptions are 

identified, they will be thrown to the self-adaptive conflict 

resolution model, as is shown in Fig. 8. The manufacturing 

progress and the deviation are shown in graphic and the 

progress of each component can be displayed by selecting the 

corresponding item in the list leftwards, which is the hierarchy 

structure of critical events.  
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 There are 2 machines (i.e. M1 and M2) and 3 tasks involved 

in our demonstration. For each task, 2 processes need to be 

finished one after another. The pair of number (i, j) in Fig. 9, 

represents the jth process of the ith task. Processes (1,2), (2,1) 

and (3,1) can only be processed on machine M2. At least 1 unit 

of time is needed for shifting tasks. Before the exception occurs, 

the production plan follows the initial scheduling result, which 

is shown in the Gantt chart of Fig. 9(a). At time 0, the arrival of 

the raw material for process (2,1) is postponed for 6-time units, 

which is acquired by the SMA of M2. Then the schedule for the 

related machines is recalculated by the self-adaptive model, 

which is shown in Fig. 9(b). Following the new scheduling 

result, the whole production is 1 unit late due to the exception.  

By comparison, without the designed CPS and SMA, 

exceptions cannot be identified timely. As a result, the tradition 

solutions (e.g. manual reassignment of tasks) are not supported 

by comprehensive manufacturing information. Also, the 

workers have no idea when the delayed material will arrive, so 

they cannot make sure which process should be brought 

forward. They may come to different scheduling result as 

shown in Fig. 9(c) and Fig. 9(d). The machine utilization in Fig. 

9(c) is quite low. Since it took the workers 2 units longer to 

react, the scheduling result in Fig. 9(d) is also worse than that 

in Fig. 9(b). The intelligent shopfloor can respond more timely, 

and the solutions are based on calculations rather than workers’ 

experience. 

 
Fig. 9. The Scheduling Result before and after the Exception 

VIII. CONCLUSION AND FUTURE WORK 

 Manufacturing systems need to enhance their 

responsiveness and reconfigurability to meet the multi-type and 

fast-changing requirements from customers. In order to achieve 

the real-time, seamless and dual-way connectivity and 

interoperability between manufacturing machines and the 

shopfloor, an easy-to-deploy and simple-to-use framework for 

the future intelligent shopfloor is developed by applying the 

concept of CPS. In this research, manufacturing machines are 

modeled as smart agents which can collect production data and 

control the machines. With the help of the self-organizing 

model, machines can be reconfigured for different tasks to 

achieve the highest resource efficiency. Manufacturing 

processes are monitored and adjusted by the self-adaptive 

model when exceptions occur. 

There are three main contributions presented in this work. 

Firstly, the architecture and the function models of the 

intelligent shopfloor provides a reference for the future designs. 

Secondly, a cyber-physical system for manufacturing shopfloor 

based on the multiagent technology is developed. By 

implementing SMAs, the tight conjoining of the top-level 

intelligent models and the bottom-level manufacturing 

resources is achieved. Finally, the self-organizing and self-

adaptive mechanisms are introduced, which gives an example 

of how to construct a manufacturing system with high 

autonomy, adaptability, efficiency, and functionality. This 

work provided a feasible approach to implementing CPS so that 

the models and algorithms on self-organization and self-

adaptation can be easily applied. 

The insufficiency of the case analysis presents one of the 

main limitations of the study. Since a complete production 

process is complex and may include several manufacturing 

systems, only limited situations were tested by the case. The 

future work will mainly focus on the extension of self-

organizing and self-adaptive methods in the intelligent 

manufacturing field, so that the proposed framework and 

models will be more robust and reliable under complex 

situations. 
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