468 research outputs found

    Waterfall Traffic Classification: A Quick Approach to Optimizing Cascade Classifiers

    Get PDF
    Heterogeneous wireless communication networks, like 4G LTE, transport diverse kinds of IP traffic: voice, video, Internet data, and more. In order to effectively manage such networks, administrators need adequate tools, of which traffic classification is the basis for visualizing, shaping, and filtering the broad streams of IP packets observed nowadays. In this paper, we describe a modular, cascading traffic classification system—the Waterfall architecture—and we extensively describe a novel technique for its optimization—in terms of CPU time, number of errors, and percentage of unrecognized flows. We show how to significantly accelerate the process of exhaustive search for the best performing cascade. We employ five datasets of real Internet transmissions and seven traffic analysis methods to demonstrate that our proposal yields valid results and outperforms a greedy optimizer

    A Smart Products Lifecycle Management (sPLM) Framework - Modeling for Conceptualization, Interoperability, and Modularity

    Get PDF
    Autonomy and intelligence have been built into many of today’s mechatronic products, taking advantage of low-cost sensors and advanced data analytics technologies. Design of product intelligence (enabled by analytics capabilities) is no longer a trivial or additional option for the product development. The objective of this research is aimed at addressing the challenges raised by the new data-driven design paradigm for smart products development, in which the product itself and the smartness require to be carefully co-constructed. A smart product can be seen as specific compositions and configurations of its physical components to form the body, its analytics models to implement the intelligence, evolving along its lifecycle stages. Based on this view, the contribution of this research is to expand the “Product Lifecycle Management (PLM)” concept traditionally for physical products to data-based products. As a result, a Smart Products Lifecycle Management (sPLM) framework is conceptualized based on a high-dimensional Smart Product Hypercube (sPH) representation and decomposition. First, the sPLM addresses the interoperability issues by developing a Smart Component data model to uniformly represent and compose physical component models created by engineers and analytics models created by data scientists. Second, the sPLM implements an NPD3 process model that incorporates formal data analytics process into the new product development (NPD) process model, in order to support the transdisciplinary information flows and team interactions between engineers and data scientists. Third, the sPLM addresses the issues related to product definition, modular design, product configuration, and lifecycle management of analytics models, by adapting the theoretical frameworks and methods for traditional product design and development. An sPLM proof-of-concept platform had been implemented for validation of the concepts and methodologies developed throughout the research work. The sPLM platform provides a shared data repository to manage the product-, process-, and configuration-related knowledge for smart products development. It also provides a collaborative environment to facilitate transdisciplinary collaboration between product engineers and data scientists

    Intelligent Intrusion Detection System Through Combined and Optimized Machine Learning

    Get PDF
    In this paper, an existing rule-based intrusion detection system (IDS) is made more intelligent through the application of machine learning. Snort was chosen as it is an open source software and though it was performing well, it showed false positives (FPs). To find the best performing machine learning algorithms (MLAs) to use with Snort so as to improve its detection, we tested some algorithms on three available datasets. Support vector machine (SVM) was chosen along with fuzzy logic and decision tree based on their accuracy. Combined versions of algorithms through ensemble SVM along with other variants were tried on the generated traffic of normal and malicious packets at 10Gbps. Optimized versions of the SVM along with firefly and ant colony optimization (ACO) were also tried, and the accuracy improved remarkably. Thus, the application of combined and optimized MLAs to Snort at 10Gbps worked quite well

    Oblivion: an open-source system for large-scale analysis of macro-based office malware

    Get PDF
    Macro-based Office files have been extensively used as infection vectors to embed malware. In particular, VBA macros allow leveraging kernel functions and system routines to execute or remotely drop malicious payloads, and they are typically heavily obfuscated to make static analysis unfeasible. Current state-of-the-art approaches focus on discriminating between malicious and benign Office files by performing static and dynamic analysis directly on obfuscated macros, focusing mainly on detection rather than reversing. Namely, the proposed methods lack an in-depth analysis of the embedded macros, thus losing valuable information about the attack families, the embedded scripts, and the contacted external resources. In this paper, we propose Oblivion, an open-source framework for large-scale analysis of Office macros, to fill in this gap. Oblivion performs instrumentation of macros and executes them in a virtualized environment to de-obfuscate and reconstruct their behavior. Moreover, it can automatically and quickly interact with macros by extracting the embedded PowerShell and non-PowerShell attacks and reconstructing the whole macro behavior. This is the main scope of our analysis: we are more interested in retrieving specific behavioural patterns than detecting maliciousness per se. We performed a large-scale analysis of more than 30,000 files that constitute a representative corpus of attacks. Results show that Oblivion could efficiently de-obfuscate malicious macros by revealing a large corpus of PowerShell and non-PowerShell attacks. We measured that this efficiency can be quantified in an analysis time of less than 1 min per sample, on average. Moreover, we characterize such attacks by pointing out frequent attack patterns and employed obfuscation strategies. We finally release the information obtained from our dataset with our tool

    Analysis and Concealment of Malware in an Adversarial Environment

    Get PDF
    Nowadays, users and devices are rapidly growing, and there is a massive migration of data and infrastructure from physical systems to virtual ones. Moreover, people are always connected and deeply dependent on information and communications. Thanks to the massive growth of Internet of Things applications, this phenomenon also affects everyday objects such as home appliances and vehicles. This extensive interconnection implies a significant rate of potential security threats for systems, devices, and virtual identities. For this reason, malware detection and analysis is one of the most critical security topics. The used detection strategies are well suited to analyze and respond to potential threats, but they are vulnerable and can be bypassed under specific conditions. In light of this scenario, this thesis highlights the existent detection strategies and how it is possible to deceive them using malicious contents concealment strategies, such as code obfuscation and adversarial attacks. Moreover, the ultimate goal is to explore new viable ways to detect and analyze embedded malware and study the feasibility of generating adversarial attacks. In line with these two goals, in this thesis, I present two research contributions. The first one proposes a new viable way to detect and analyze the malicious contents inside Microsoft Office documents (even when concealed). The second one proposes a study about the feasibility of generating Android malicious applications capable of bypassing a real-world detection system. Firstly, I present Oblivion, a static and dynamic system for large-scale analysis of Office documents with embedded (and most of the time concealed) malicious contents. Oblivion performs instrumentation of the code and executes the Office documents in a virtualized environment to de-obfuscate and reconstruct their behavior. In particular, Oblivion can systematically extract embedded PowerShell and non-PowerShell attacks and reconstruct the employed obfuscation strategies. This research work aims to provide a scalable system that allows analysts to go beyond simple malware detection by performing a real, in-depth inspection of macros. To evaluate the system, a large-scale analysis of more than 40,000 Office documents has been performed. The attained results show that Oblivion can efficiently de-obfuscate malicious macro-files by revealing a large corpus of PowerShell and non-PowerShell attacks in a short amount of time. Then, the focus is on presenting an Android adversarial attack framework. This research work aims to understand the feasibility of generating adversarial samples specifically through the injection of Android system API calls only. In particular, the constraints necessary to generate actual adversarial samples are discussed. To evaluate the system, I employ an interpretability technique to assess the impact of specific API calls on the evasion. It is also assessed the vulnerability of the used detection system against mimicry and random noise attacks. Finally, it is proposed a basic implementation to generate concrete and working adversarial samples. The attained results suggest that injecting system API calls could be a viable strategy for attackers to generate concrete adversarial samples. This thesis aims to improve the security landscape in both the research and industrial world by exploring a hot security topic and proposing two novel research works about embedded malware. The main conclusion of this research experience is that systems and devices can be secured with the most robust security processes. At the same time, it is fundamental to improve user awareness and education in detecting and preventing possible attempts of malicious infections

    Enhancing snort IDs performance using data mining

    Get PDF
    Intrusion detection systems (IDSs) such as Snort apply deep packet inspection to detect intrusions. Usually, these are rule-based systems, where each incoming packet is matched with a set of rules. Each rule consists of two parts: the rule header and the rule options. The rule header is compared with the packet header. The rule options usually contain a signature string that is matched with packet content using an efficient string matching algorithm. The traditional approach to IDS packet inspection checks a packet against the detection rules by scanning from the first rule in the set and continuing to scan all the rules until a match is found. This approach becomes inefficient if the number of rules is too large and if the majority of the packets match with rules located at the end of the rule set. In this thesis, we propose an intelligent predictive technique for packet inspection based on data mining. We consider each rule in a rule set as a ‘class’. A classifier is first trained with labeled training data. Each such labeled data point contains packet header information, packet content summary information, and the corresponding class label (i.e. the rule number with which the packet matches). Then the classifier is used to classify new incoming packets. The predicted class, i.e. rule, is checked against the packet to see if this packet really matches the predicted rule. If it does, the corresponding action (i.e. alert) of the rule is taken. Otherwise, if the prediction of the classifier is wrong, we go back to the traditional way of matching rules. The advantage of this intelligent predictive packet matching is that it offers much faster rule matching. We have proved, both analytically and empirically, that even with millions of real network traffic packets and hundreds of rules, the classifier can achieve very high accuracy, thereby making the IDS several times faster in making matching decisions
    corecore