
International Journal of Computational Intelligence and Applications
 World Scientific Publishing Company

 ACCEPTED MANUSCRIPT

1

INTELLIGENT INTRUSION DETECTION SYSTEM THROUGH COMBINED
AND OPTIMIZED MACHINE LEARNING

SYED ALI RAZA SHAH and BIJU ISSAC*

School of Computing, Media and the Arts, Teesside University
Middlesbrough, England, UK

ali.aliraza@gmail.com and bissac@ieee.org

SEIBU MARY JACOB

School of Engineering, Science and Design, Teesside University
Middlesbrough, England, UK

s.jacob@tees.ac.uk

Received 27 June 2017
Revised 17 March 2018

In this paper an existing rule-based intrusion detection system (IDS) named Snort is made more
intelligent through the application of machine learning. We chose Snort as it is an open source software and
though it was performing well, there was the issue of false positives. To find the best performing
algorithm to use on Snort to improve its detection we tested some machine learning algorithms on three
available datasets. Support Vector Machine (SVM) was chosen along with Fuzzy Logic and Decision
Tree based on their accuracy. Combined versions of algorithms through ensemble SVM along with
other variants were tried on the generated traffic of normal and malicious packets at 10 Gbps. Optimized
versions of the SVM along with Firefly and ACO were also tried, and the accuracy improved remarkably.
Thus, the application of combined and optimized machine learning algorithms to Snort at 10 Gbps worked
quite well.

Keywords: Snort Intrusion Detection, Machine Learning, Support Vector Machine, Fuzzy Logic, ACO,
Firefly

1. Introduction

The Snort Intrusion Detection System (IDS) which is a de-facto standard currently started
its development in 1998 by Sourcefire. Snort has a single threaded architecture and uses
the TCP/IP stack to capture and inspect network packet payload. Snort has added a multi-
instance feature to its 2.9 release to address the limitation of single-thread and the version
3.0 will be multithreaded by default (Snort, 2017). The Snort IDS is dependent on the rule
set to detect malicious traffic that gives an accurate description of the known malicious
traffic. To reduce the false positive rate (FPR), many researchers have used machine-

* Corresponding author

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322321181?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Syed Ali Raza Shah, Biju Issac and Seibu Mary Jacob

learning algorithms to classify normal and malicious traffic. Some of the machine learning
algorithms that have been extensively used are Support Vector Machine, Neural Network,
Decision Trees, Random Forest, Fuzzy Logic, BayesNet, NaiveBayes etc. The best-
performing algorithm has to be selected to improve the detection accuracy by reducing the
false positive alarms.

Before using machine-learning techniques in Snort, it is important to know about high
performing machine learning algorithms. Three publicly available datasets were used to
conduct performance experiments on Machine Learning Algorithms (MLAs). The Weka
experimental setup and data preprocessing using data mining software is used (Weka,
2017). False positive, false negative and true positive alarm rates were the metrics used for
the comparison of detection accuracy of the selected MLAs.

This paper is organized as follows. Section 2 is the related works to investigate what others
have done in the topic being researched, followed by section 3 on the architecture of Snort.
Section 4 is modeling the attack through Kali Linux, section 5 on the analysis of machine
learning algorithms on datasets, followed by section 6 on a discussion of SVM and
ensemble SVM. Section 7 is on intelligent plug-in development that discussed on single,
combined and optimized algorithms, followed by section 8 which is the conclusion.

2. Related Works

Yin et al. (2017) proposed a deep learning approach for intrusion detection using recurrent
neural networks (RNN-IDS). The experimental results show that RNN-IDS is very suitable
for modeling a classification model with high accuracy and that its performance is superior
to that of traditional machine learning classification methods in both binary and multiclass
classification. Zhang and Zhu (2018) proposed a privacy-preserving machine-learning-
based collaborative IDS (PML-CIDS) for Vehicular ad hoc network (VANETs). The
proposed algorithm employs the alternating direction method of multipliers to a class of
empirical risk minimization problems and trains a classifier to detect the intrusions in the
VANETs. The authors use the differential privacy to capture the privacy notation of the
PML-CIDS and propose a method of dual-variable perturbation to provide dynamic
differential privacy. They used NSL-KDD dataset to corroborate the results on the
detection accuracy. Massato Kakihata et al. (2017) did an analysis on network flows
previously collected and correctly detected three different types of attacks. The flows were
organized to be processed by machine learning methods, getting promising results. Al-
Jarrah et al. (2016) proposed a state-of-the-art Traffic-based IDS (T-IDS) built on a novel
randomized data partitioned learning model (RDPLM), relying on a compact network
feature set and feature selection techniques, simplified subspacing and a multiple
randomized meta-learning technique. The proposed model has achieved 99.984% accuracy
on a well-known benchmark botnet dataset.

Intelligent Intrusion Detection System through Combined and Optimized Machine Learning 3

Wang et al. (2016) proposed a new hybrid learning method based on features such as
density, cluster centers, and nearest neighbors (DCNN). Data is represented by the local
density of each sample point and the sum of distances from each sample point to cluster
centers and to its nearest neighbor. k-NN classifier is adopted to classify the new feature
vectors which is effective in intrusion detection. Kolias et al. (2016) categorized and
thoroughly evaluates the most popular attacks on 802.11 and analyzed their signatures.
They analysed a publicly available dataset containing a rich blend of normal and attack
traffic against 802.11 networks. An extensive first-hand evaluation of this dataset using
several machine learning algorithms and data features is also provided. Hu et al. (2008)
proposed an intrusion detection algorithm based on the AdaBoost algorithm where decision
stumps are used as weak classifiers. The decision rules are provided for both categorical
and continuous features. Adaptable initial weights and a simple strategy for avoiding
overfitting are adopted to improve the performance of the algorithm. Experimental results
show that our algorithm has low computational complexity and error rates.

3. The Architecture of Snort

There are four basic components to the architecture of Snort. They are the packet sniffer,
the preprocessor, the detection engine and the output. Snort will receive packets and
process them through preprocessor and compare these packets against the set of rules. The
output will log or trigger alerts based on what action the rules will take.

Fig 1. The Snort Architecture

The default rule set was used in Snort. Using Kali Linux Metasploit framework the seven
types of malicious traffic were generated as shown in Table 1, along with the legitimate
traffic. They were all injected to Snort to simulate the attacks. The IDS will inspect the
legitimate and malicious traffic and will trigger alarms when the input traffic matches the
rule set. The number of common rule set used is shown in Table 1.

The table 2 shows the detection accuracy of Snort when it was tested. There was a high
percentage of FPR as 56.2% and 6.0% as FNR.

4 Syed Ali Raza Shah, Biju Issac and Seibu Mary Jacob

Table 1. Number of common rule set

No Rules and Malicious
Traffic Type

Number of Rules

1 SSH 13
2 DoS/DDoS 69
3 FTP 75
4 HTTP 110
5 ICMP 125
6 ARP 21
7 SCAN 30

Table 2. Malicious traffic accuracy (%) measurements at 10 Gbps for 10 hours

Malicious
Traffic

Snort
FPR

Snort
FNR

SSH 9.3 0.0
DoS/DDoS 3.3 0.8
FTP 9.6 0.0
HTTP 6.3 1.1
ICMP 16.9 1.0
ARP 7.9 0.9
Scan 2.9 2.2
Total 56.2 6.0

4. Modeling the Attack through Kali Linux

This experiment required a target server running HTTP, FTP and SSH services as shown
in Figure 2 and the software configured in them are shown in table 3.

Figure 2. The Experiment Network

Intelligent Intrusion Detection System through Combined and Optimized Machine Learning 5

Table 3. Experiment network specifications

Machine/Software
Type

Specification Tools Used

CentOS 6.5 Virtual Machine, 2.5
GHz 4 cores CPU, 4
GB Memory, 10
Gbps Ethernet

Snort 2.9.6.1 IDS;
Collectl, top, dstat
Snort logs,
tcpdump, IPTRAF

Malicious Network
Traffic Generator

Virtual Machine, 2
cores CPU, 2 GB
Memory, 10 Gbps
Ethernet

Kali Linux
Metasploit
Framework

User PC Virtual Machine, 2.5
GHz 4 cores CPU, 4
GB Memory, 10
Gbps Ethernet

Ubuntu client

Legitimate Network
Traffic Generator

Virtual Machine, 2
cores CPU, 2 GB
Memory, 10 Gbps
Ethernet

Ostinato, NMAP,
NPING

Network Switch Virtual Switch

The normal network traffic for the experiments was produced through three open source
network traffic generators, namely Ostinato, NMAP, and NPING (Heikur, 2015). These
tools can generate network traffic up to 20 Gbps. The Kali Linux Metasploit framework
generated seven types of malicious traffic as in Table 1, along with the legitimate traffic
(Agarwal and Singh, 2013). The IDS will inspect the traffic and will trigger alarms when
the input traffic matches the rule set. The number of instances of alarms like false positive,
false negative and true positive will show the accuracy of Snort’s detection capability. The
Metasploit framework generates malicious traffic with different exploits and payloads and
provides different exploits and payloads for different operating systems. For example, to
successfully execute the payload, the victim computer should be found to have an exploit
with open ports through a scan. The basic steps for exploiting a system are as follows:

1. Select and configure an exploit which will create an advantage through the security
weaknesses and bugs in an operating system.

2. Select and set up a payload that will be the executable program that will run on the
target machine.

3. Select an encoding technique that prevent detection by the IDS.
4. Run the exploit.

6 Syed Ali Raza Shah, Biju Issac and Seibu Mary Jacob

During an attack, to run an exploit the information on the attack target system is needed
like the type of operating system, port information etc. Scanning and fingerprinting tools
such as Nmap, can collect this data. Since the Metasploit framework is flexible and
modular, different payloads and exploits can be tried to achieve the best outcome. The
example of Snort IDS rule is as follows.

• alert icmp any any any any (msg:"ICMP Packet"; sid:1000967; rev:1;). This rule
does alerting when there is an ICMP packet (ping traffic). The sid (signature id)
keyword is used to uniquely identify Snort rules. The rev keyword is used to uniquely
identify revisions of Snort rules.

• alert tcp any any any any (msg: “Sample alert”;). This rule does alerting when there
is an TCP traffic.

The architecture of Metasploit uses libraries, especially the Ruby Extension (Rex) library.
These libraries consist of a collection of tasks, functions and operations used by the
framework. Rex has no dependencies and has the exploitation utility class along with
others. The MSF core library extends Rex and allows to communicate with exploit
modules. The core library extends the base library which is connected to a different user
interface that helps to use command console and the web interface. The later version of the
Metasploit framework has around 1412 exploits, 802 auxiliaries, 361 payloads, 327
encoders and 8 nops. An exploit is the entry point that the attacker takes advantage of in a
system, service or application. A payload is the program that can be executed on the system
that is exploited. The auxiliary module gives additional options for fuzzing, scanning,
recon, DoS attack etc. The encoders are used to obfuscate modules to masquerade and
avoid detection by security systems like antivirus or firewall. Nop is No Operation that
prevents the payload from crashing while executing jump statements in the shell code
(Agarwal and Singh, 2013).

Some examples of attack patterns are as follows. Through a network scan or by wireless
packet capture, the attacker can get enough information to execute an exploit remotely. He
can allow an attractive software with a hidden program to be downloaded free of charge,
where the spy program could run in the background creating a backdoor entry. He can use
some stolen information through social engineering to do a server-side or client-side attack.

The access privileges of the attacker can thus be escalated and that could lead to accessing
and stealing of data or exploration of the system. Then there is also the process of pivoting
that allows the attacker to move to other services through exploiting the initial
vulnerability. The administrator can be alerted by an intrusion detection system when the
attacker goes into the next stage after the network scan. The common performance
measurement parameters of the IDS detection accuracy are as follows.

Intelligent Intrusion Detection System through Combined and Optimized Machine Learning 7

True Positive (TP): True is identified as true
True Negative (TN): False is identified as false
False Positive (FP): True is identified as false
False Negative (FN): False is identified as true

P = TP + FN (number of correct identification)
N = FP + TN (number of wrong identification)

True Positive Rate (TPR) = TP / P = TP / (TP + FN) (1)
False Positive Rate (FPR) = FP / N = FP / (FP + TN) (2)
False Negative Rate (FNR) = FN / P = FN / (FN + TP) (3)

5. Analysis of Machine Learning Algorithms on Datasets

We had used open source machine learning software Weka that is capable of data pre-
processing and classification on three public datasets, namely NSA Snort IDS Alert Logs,
DARPA IDS Dataset and NSL-KDD IDS Dataset were selected and used for the
experiments (Deraman et al, 2011). The details of these datasets are listed in Table 4.

Table 4. Details of the Four Datasets

Dataset Name Attack Types

NSA Snort IDS Alert
Logs (SIDL, 2018)

• MAC Spoofing
• DNS Poisoning
• IP Spoofing

DARPA IDS Dataset
(DARPA IDS, 2018)

• SSH Attacks
• FTP Attacks
• Scanning Attacks

NSL-KDD IDS Dataset
(NSS-KDD, 2018)

• Denial of Service Attack
(DoS)

• User to Root Attack (U2R)
• Remote to Local Attack

(R2L)
• Probing Attack

We used the following five algorithms for testing detection accuracy on different IDS
datasets, as they performed the best with Weka.

A Support Vector Machine (SVM) is a discriminative classifier which supports both
regression and classification tasks that is based on decision planes that define decision

8 Syed Ali Raza Shah, Biju Issac and Seibu Mary Jacob

boundaries in a multidimensional space that separates cases of different class labels. A set
of objects having different class memberships is separated by a decision plane. For
example, if we think of two labeled classes, the SVM finds out a line or hyperplane to
separate the classes. It can handle multiple continuous and categorical variables (Cortes
and Vapnik, 1995).

Decision tree is a predictive model that uses observations about an item that is denoted in
the branches to predictions about the target value of the item that is denoted in the leaves.
It is a model that uses several input variables to predict the value of a target variable. It is
drawn upside down with its root at the top. The tree has nodes that are the features or
attributes, and each link denotes a decision or rule and each leaf denotes an outcome that
are categorical or continuous values (Liao et al., 2010).

Fuzzy Logic is more of a many-valued logic in which the truth-values of variables may
assume a value between 0 and 1, thus representing partial truth, which falls between truth
and falsehood. Traditional logic classifies information into binary patterns, for example
like yes or no and true or false. Between these black and white scenarios like completely
true or completely false, there are possibilities and fuzzy logic focuses on using that space
in between. Fuzzy systems with fuzzy if or if-then rules are being used in different
scenarios (Lowen and Roubens, 1993).

Bayesian network is a model that represents the possible states of a scenario or world and
it has probability relationships between some of the states. It is a probabilistic graphical
model that denotes a set of variables and their conditional dependencies through a directed
acyclic graph (DAG). There are three main inference tasks for Bayesian networks, which
are inferring unobserved variables through observing the evidence variables, parameter
learning and structure learning (Hussain et al., 2007).

Naive Bayes classifiers are simple probabilistic classifiers that works using Bayes' theorem
with the features having strong and independence assumptions between them. It is very
good when the dimensionality of the inputs is high and can often outperform other
sophisticated classifiers (Zhang and Su, 2008).

The five algorithms mentioned were tested on four datasets. The k-fold cross validation
was done with 90% of data used for training the classifier and 10% of data used for testing
it. This was repeated 10 times as a circular cycle. The activity was done again with 80% of
data and 20% of data for training and testing respectively. The average values are shown
in the table 5.

Intelligent Intrusion Detection System through Combined and Optimized Machine Learning 9

The metrics used were false positive rate (FPR), false negative rate (FNR) and true positive
rate (TPR) of each classifier and they were obtained from Weka. The detection accuracy
(DR) was calculated based on equation 4.

 DR = TPR / (TPR + FNR) (4)

The FPR was also noted along with DR and as per table 5, Support Vector Machine
classifier showed the highest accuracy followed by Fuzzy Logic, Decision Trees, BayesNet
and NaiveBayes.

Table 5. The accuracy of algorithms on the datasets

NSA Snort IDS Alert Logs

Machine Learning Algorithms DR FPR

Support Vector Machine 96.4% 0.7%

Decision Trees 78.6% 3.3%

Fuzzy Logic 93.8% 0.7%

BayesNet 64.7% 4.3%

NaiveBayes 61.3% 4.1%
DARPA IDS Dataset

Machine Learning Algorithms DR FPR

Support Vector Machine 96.2% 0.9%

Decision Tree 80.7% 2.5%

Fuzzy Logic 91.2% 2.3%

BayesNet 62.1% 5.7%

NaiveBayes 64.4% 6.5%
NSL-KDD IDS Dataset

Machine Learning Algorithms DR FPR

Support Vector Machine 97.0% 3.5%

Decision Tree 76.5% 11.2%

Fuzzy Logic 94.3% 4.3%

BayesNet 67.9% 8.5%

NaiveBayes 68.5% 7.9%

Snort in conjunction with machine learning algorithms can accurately classify the
legitimate and malicious traffic. It also improves Snort detection accuracy and reduces the
false positive rate. This is explored in the next few sections.

10 Syed Ali Raza Shah, Biju Issac and Seibu Mary Jacob

6. SVM and SVM Ensemble

Based on the results in Table 5, the SVM was selected. SVM is used in a supervised
environment that can train with a large number of patterns and it is used to solve a two-
outcome classification or binary classification problem. SVM segregates instances from
different classes through the use of hyperplane and ensures that all the instances are outside
the margin. This gives rise to a hard margin that can be shown below:

𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛, 𝑤 ∈ 𝑅𝑑 , 𝑤 ∈ 𝑅 (5)

where 𝑥𝑖 denotes instances, 𝑦𝑖 ∈ {−1, 1} are labels of instances, an intercept term is 𝑏, 𝑤
is normal vector to the hyperplane, 𝑑 is the dimension of input vector and 𝑛 is the number
of input data.

The hyperplane is not easily found in a real-world scenario, as data usually have a few
outliers, where within the same class the instances vary significantly from other instances.
The soft margin was suggested to deal with this issue is shown below.

𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1 − 𝜖𝑖 , 𝜖𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛 (6)

where 𝜖𝑖 denotes slack variables, which allow instances to fall off the margin. To find the
optimal soft margin, the following should be noted.

min
1

2
∥ 𝑤 ∥2+ 𝐶 ∑ 𝜖𝑖

𝑛
𝑖=1 (7)

where 𝐶 is the soft margin cost function, which controls the classification accuracy.

Since we are not dealing with linearly separable data, the kernel function is used to replace
the dot product. The Radial basis function (RBF) which satisfies Mercer's condition is the
most commonly chosen and it is defined as follows.

𝐾(𝑥𝑖 , 𝑥𝑗) = exp(−𝛾 ∥ 𝑥𝑖 − 𝑥𝑗 ∥2) (8)

The parameter 𝛾 shows the influence of single training example reaches with low values
showing far reach and high values showing close reach.

There are various methods for constructing an ensemble of classifiers. The key aspect of
SVM ensemble is that individual SVM should be different from the other as much as
possible and this is achieved by using different training sets for each SVMs. To select the
training samples, some methods used are bagging, boosting, randomization, stacking and

Intelligent Intrusion Detection System through Combined and Optimized Machine Learning 11

dagging (Kim et al., 2003). In bagging, various SVMs are independently trained through a
bootstrap method and later combined through an appropriate combination technique.
Similar to the bagging method, in boosting through the use of AdaBoost algorithm (Freund
and Schapire, 1997), each SVM is trained using a different training set but the selection
scheme of training samples in the AdaBoost algorithm used as in figure 2 is quite different.
After training, several independent SVMs are combined through linear or non-linear
methods. Of the linear methods namely, majority voting and LSE-based weighting, the
latter is used as per the results in the paper along with boosting (Kim et al., 2003). The
LSE-based weighting considers several SVMs in the SVM ensemble with different weights
which is dependent on the accuracies of classifications (Kim and Kim, 1997).

Input:
A set TR of l labeled examples: S = {(xi; yi), i=1, 2, … , l},

 Labels yi ∈ Y = {1, 2, … , C}.
p0 (xi) := 1/l.
for k = 1 to K

Build 𝑇𝑅𝑏𝑜𝑜𝑠𝑡𝑘
= {(xi; yi), i=1, 2, … , l} based on the pk-1(xi).

Train the kth SVM hk using𝑇𝑅𝑏𝑜𝑜𝑠𝑡𝑘
.

∈𝑘 ≔ ∑ 𝑝𝑙(𝑖)|{𝑖|ℎ𝑘(𝑥𝑖) ≠ 𝑦𝑖}|𝑙
𝑖=1

𝛼𝑘 ≔
1

2
𝑙𝑛 (

∈𝑘

1− ∈𝑘
) .

for i = 1 to l

𝑝𝑘+1(𝑥𝑖) =
𝑝𝑘(𝑥𝑖)

𝑍𝑘
 × {

exp(−𝛼𝑘) 𝑖𝑓 ℎ𝑘(𝑥𝑖) = 𝑦𝑖,

exp(𝛼𝑘) 𝑖𝑓 ℎ𝑘(𝑥𝑖) ≠ 𝑦𝑖.

where 𝑍𝑘 is a normalization factor to make ∑ 𝑝𝑘+1(𝑥𝑖) = 1𝑙
𝑖=1

end
end

Fig 2. The AdaBoost Algorithm (Kim et al., 2003)

7. The Intelligent Plugin Development

Snort has successfully detected malicious traffic as in table 2, but it triggered high false
positive alarms (56.2% average). The proposed new architecture of Snort IDS shown in
Figure 3 is to reduce the false positive alarms though the use of intelligent algorithms
discussed before.

The intelligent plug-in will work in parallel with the Snort’s rule set which detects the
known malicious traffic. The plugin itself could detect new attacks patterns or malicious
traffic which could reduce the false positive alarms. The existing Snort architecture shown
in figure 1 is modified with an additional intelligent plug-in to produce a new architecture
as shown in figure 3. The pre-processor will receive the network traffic and would feed
that for intrusion detection. The proposed new architecture had the following processes:

12 Syed Ali Raza Shah, Biju Issac and Seibu Mary Jacob

(1) Packet Decoding: This process decodes the packet information to find the source and
destination IP addresses, source and destination ports, source and destination Ethernet
addresses, the network frame size and packet size. (2) Packet Classification: This
segregates the good and bad traffic. (3) Machine Learning Algorithm: The intelligent plug-
in uses different algorithms like SVM, Fuzzy Logic, Decision Tree, hybrid of SVM and
Fuzzy Logic, Ensemble SVM, optimized SVM with firefly and ACO algorithm to process
the legitimate and malicious traffic. The alarms are logged and analyzed at the end.

Network
Infrastructure

Capture
packets
through
Sniffing

Preprocessor

Snort
Detection

Engine and
Rule set

Snort Plugin
and Packet
decoding

Log file
analysis

Alarms
logging

Snort Plugin
and

Classification
of Packets

through ML

Fig 3. Proposed Snort IDS Architecture with Snort Intelligent Plug-in

The Snort intelligent plug-in for Snort v2.9 intrusion detection system was implemented in
C programming language on the Linux operating system. The incoming network traffic
flow is properly classified which would reduce the false positive alarms and the true
positive alarms are sent to the log files of Snort’s log. As per table 4, SVM and Fuzzy Logic
algorithms showed good performances when tested through the Weka engine with three
different datasets and Decision Tree was quite moderate in its performance. However, in
order to select the superior MLA, SVM, Fuzzy Logic and Decision Tree algorithms were
used along with a live background with malicious traffic to evaluate the false positive and
false negative alarms rates.

7.1 Individual and Ensemble Algorithms

The experiments were initially done for 10 hours in one session on the three individual
basic algorithms using seven types of malicious traffic as shown in Table 1. It was repeated
for SVM ensemble as well as per Stork et al., (2015). In SVM the cost function was tested
with different values and the value of 1.0 was selected. The gamma values were also tested
with different values to tackle under-fitting and over-fitting and a value of 0.1 was used.
the Snort with SVM intelligent plug-in were injected with seven types of malicious traffic

Intelligent Intrusion Detection System through Combined and Optimized Machine Learning 13

and later the same traffic was injected into Snort with Fuzzy Logic and Decision Tree plug-
in respectively. Table 6 records the FPR and FNR for four cases when they were used with
Snort.

Table 6. Performance of SVM, Ensemble SVM, Fuzzy Logic, and Decision Tree plugins

Malicious
Traffic

Snort with SVM
Plug-in

(%)

Snort with
Ensemble SVM

Plug-in
(%)

Snort with
Fuzzy Logic

Plug-in
(%)

Snort with
Decision Tree

Plug-in
(%)

FPR FNR FPR FNR FPR FNR FPR FNR

SSH 3.1 0.1 2.8 0.0 4.5 2.1 9.2 1.9

DoS/DDoS 1.1 0.9 0.8 0.8 6.9 0.4 7.8 1.1

FTP 4.3 0.7 3.4 0.7 2.6 0.0 5.0 0.9

HTTP 1.8 1.1 1.6 1.5 8.0 1.8 11.8 0.8

ICMP 4.2 1.0 3.5 0.7 12.9 0.0 12.4 0.9

ARP 2.3 0.1 1.8 0.0 1.8 0.0 3.4 0.8

Scan 1.1 0.8 0.6 0.6 1.0 0.1 2.1 0.9

Total 17.9 4.7 14.5 4.3 37.7 4.4 51.7 7.3

In the initial experiment (refer to Table 2) Snort was tested without the intelligent plug-in.
When seven types of malicious traffic were injected into Snort, it triggered an average
value of 56.2% FPR and 6.0% FNR. When Snort was tested with ensemble SVM intelligent
plug-in as in Table 6, it only triggered 14.5% FPR and 4.3% FNR, compared to SVM,
Fuzzy logic and DT. This shows that the detection accuracy has really improved with SVM
and ensemble versions.

7.2 Combined Algorithms

The experiment was tried with a combined version of SVM with Fuzzy Logic (Karthik et
al, 2016) and SVM with Decision Tree. Table 7 shows the FPR and FNR for the combined
algorithms when they were used with Snort.

With the ensemble SVM and Fuzzy Logic, for each given input the basic SVM takes a set
of input data and predicts two possible classes of output. That makes it a binary linear
classifier that is non-probabilistic in nature. From the output of SVM, the decision-making
rule of fuzzy logic is used and the results generated. The basic approach of using ensemble
SVM and Decision Trees (Kumar and Gopal, 2010) is to use decision trees to approximate
the decision boundary of SVM. The resulting tree is a hybrid or combined tree that has
both univariate and multivariate (SVM) nodes. The tree takes SVM’s help only in

14 Syed Ali Raza Shah, Biju Issac and Seibu Mary Jacob

classifying crucial datapoints lying near decision boundary, while the remaining less
crucial datapoints are classified by fast univariate nodes. This approach focuses on
reducing the number of test datapoints that need SVM’s help in getting classified. With the
combined version of SVM and Fuzzy logic implemented, the FNR was 12.4% and FNR
was 3.1%. This is a better result than the individual ones in Table 6, though the combined
version of SVM and Decision Tree did not improve the detection compared to combined
Fuzzy logic approach.

Table 7. Performance of Combined Ensemble SVM and Fuzzy logic and Combined Ensemble SVM and DT
plugins

Malicious
Traffic

Snort with Ensemble
SVM and Fuzzy Logic

Combined Plug-in
(%)

Snort with Ensemble
SVM and Decision Tree

Combined Plug-in
(%)

FPR FNR FPR FNR

SSH 2.1 0.0 5.2 2.0

DoS/DDoS 0.9 0.4 7.6 0.5

FTP 3.0 0.4 2.5 0.5

HTTP 1.8 1.1 7.5 0.3

ICMP 1.6 0.6 12.5 0.4

ARP 2.1 0.0 2.5 0.8

Scan 0.9 0.6 2.0 0.6

Total 12.4 3.1 39.8 5.1

7.3 Optimized Algorithms

The ensemble SVM classifier was optimized with firefly algorithm (Sharma et al., 2013
and Tuba et al., 2016) and it produced the best result compared to the others. SVM
parameters (average value) determined by firefly algorithm are as follows: C = 1.57 and γ
= 0.58. The firefly algorithm is inspired by the flashing behaviour of fireflies and is a
metaheuristic algorithm initially proposed by Xin-She Yang. Since all the fireflies are
considered unisex they are not attracted based on the sex but through their brightness. The
less bright firefly will move towards the brighter one, with the brightness reversely
proportional to the distance.

The brightness of a firefly at a given location 𝑥 is given as follows.

Intelligent Intrusion Detection System through Combined and Optimized Machine Learning 15

𝐼(𝑥) = {

1

𝑓(𝑥)
 𝑖𝑓 𝑓(𝑥) > 0

1 + |𝑓(𝑥)| 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (9)

The attractiveness of a firefly (𝛽) depends on the distance between the firefly and the one
who looks at it, which is proportional to the light intensity of the firefly. It is shown as
follows.

𝛽(𝑟) =
𝛽0

1+𝛾𝑟2 (10)

The position of a firefly 𝑖 attracted to another brighter firefly 𝑗 is as follows.

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛽𝑒𝛾𝑟2
𝑖𝑗 (𝑥𝑗

𝑡 − 𝑥𝑗
𝑡) + 𝛼𝑡𝜖𝑖

𝑡 (11)

where α is randomization parameter, 𝜖𝑖
𝑡is a vector of random numbers drawn from a

Gaussian distribution or uniform distribution at time 𝑡, and 𝑟𝑖𝑗 is distance between
fireflies 𝑖 and 𝑗. The distance between fireflies 𝑖 and 𝑗 is calculated using Cartesian
distance. The firefly is used to optimize the values of 𝐶 and 𝛾 for SVM. Thus, the optimized
parameters of SVM are calculated through firefly algorithm and is given as input to the
SVM classifier. Each firefly is compared against the other and the best location is selected
based on the firefly's brightness. The FPR was 9.0% and FNR was 1.7%, which is the best
result we have achieved as in table 8.

The ensemble SVM was also optimized with Ant Colony Optimization (Jinyu and Xin,
2009 and Acevedo et al., 2006)) to select the parameters of SVM automatically and that proved
to be effective. Ant Colony Optimization (ACO) is a metaheuristic algorithm that uses the
idea exhibited in an ant colony to find the shorted path from a food source to the nest
through pheromone information without employing any visual cues. When ant colony are
seeking for food, they secrete a chemical substance called pheromone which act like
hormones outside the body of the secreting ant. The more ants walk through that path, the
more pheromone is left on the ground like trail. Then the following ant will choose one
path where the probability is proportional to the amount of pheromone in that path. Finally,
a shortest path from their nest to the food source is done through this positive feedback
activity. To apply the colony ant behavior to ACO algorithm, the following rules were
designed to make the algorithm work.

The translate rule is the transition probability among the intervals of each variable is
defined as follows:

𝑝𝑖𝑗 = {
𝜏𝑗

𝛼(𝜂𝑖𝑗)𝛽 , 𝜂𝑖𝑗 > 0

0, 𝜂𝑖𝑗 ≤ 0
 𝑖, 𝑗 ∈ {1,2, … , 𝑛} (12)

where 𝜏𝑗 denotes the pheromone intensity of the jth solution; 𝜂𝑖𝑗 shows the heuristic
information defined as 𝜂𝑖𝑗 = 𝑓𝑗 − 𝑓𝑖; 𝛼, 𝛽 > 0, denotes the heuristic factors.

The transition rule is given as follows:

16 Syed Ali Raza Shah, Biju Issac and Seibu Mary Jacob

𝑗 = {
arg max{𝑝𝑖𝑗}, 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑗,

𝑒𝑙𝑠𝑒, 𝑁𝑜𝑡
 (13)

The pheromone updating rule of the solution j is expressed as follows:
𝜏𝑗(𝑡 + 1) = 𝜌𝜏𝑗(𝑡) + ∑ Δ𝜏𝑗

𝑘𝑚
𝑘=1 , 𝑗 = 1, 2, … , 𝑛 (14)

Δ𝜏𝑗
𝑘 = {

𝑄𝐿𝑗
𝑘 , 𝐿𝑗

𝑘 > 0

0, 𝐿𝑗
𝑘 < 0

 𝑗 = 1, 2, … , 𝑛 (15)

where, Δ𝜏𝑗
𝑘corresponds to the increase of pheromone of the solution j; 𝐿𝑗

𝑘shows the
changing value of the objective function; 𝜌 ∈ (0,1) denotes the pheromone maintenance;
Q denotes the intensity of pheromone that is the left by the ant. SVM parameters (average
value) determined by the ACO are comparable to the previous effort, even though firefly
optimization performed better. The FPR was 10.6% and FNR was 4.5%, which is the second
best result we have achieved as in table 8. The results of both the optimized approach can be
seen in table 8.

Table 8. Performance of Optimized Ensemble SVM with Firefly and Optimized Ensemble SVM with ACO
plugins

Malicious
Traffic

Snort with Optimized
Ensemble SVM with

Firefly Plug-in
(%)

Snort with Optimized
Ensemble SVM with

ACO Plug-in
(%)

FPR FNR FPR FNR

SSH 1.8 0.0 2.5 0.2

DoS/DDoS 1.1 0.1 1.5 0.3

FTP 1.9 0.0 2.2 0.5

HTTP 1.7 0.7 1.5 1.3

ICMP 1.2 0.6 1.2 0.9

ARP 0.9 0.1 1.5 0.5

Scan 0.4 0.2 0.2 0.8

Total 9.0 1.7 10.6 4.5

8. Conclusion

This paper conducted a study on the possible machine learning algorithms that can be used
with Snort by first conducting an analysis through Weka on three different IDS datasets.
SVM was found to perform the best, followed by Fuzzy logic and Decision Tree. The single
and ensemble versions of SVM was then applied to Snort to make the detection better,
followed by combined versions of SVM and fuzzy logic and SVM and Decision Tree. The
results were better than the singular versions. Finally, the optimized versions of ensemble
SVM with firefly and ACO is implemented and results were noted. The false positive rate

Intelligent Intrusion Detection System through Combined and Optimized Machine Learning 17

and false negative rate reduced significantly in optimized versions, especially with firefly
optimization with a FPR of 9.0% and FNR of 1.7%. The results will give an insight into
possible ways that one can make a rule-based IDS more intelligent.

References

1. A. Sharma, A. Zaidi, R. Singh, S. Jain, A. Sahoo, Optimization of SVM classifier using Firefly
algorithm, in: 2013 IEEE Second International Conference on Image Information Processing,
Shimla, 2013, pp. 198–202.

2. C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995) 273–297.
3. C. Kolias, G. Kambourakis, A. Stavrou and S. Gritzalis, "Intrusion Detection in 802.11

Networks: Empirical Evaluation of Threats and a Public Dataset," in IEEE Communications
Surveys & Tutorials, vol. 18, no. 1, pp. 184-208, Firstquarter 2016.

4. C. Yin, Y. Zhu, J. Fei and X. He, "A Deep Learning Approach for Intrusion Detection Using
Recurrent Neural Networks," in IEEE Access, vol. 5, pp. 21954-21961, 2017.

5. D. Kim, C. Kim, Forecasting time series with genetic fuzzy predictor ensemble, IEEE Trans.
Fuzzy Systems 5 (4) (1997) 523–535.

6. DARPA IDS, DARPA intrusion detection data sets. http://www.ll.mit.edu/ideval/data/
(Accessed: January 2018).

7. E. Massato Kakihata et al., "Intrusion Detection System Based on Flows Using Machine Learning
Algorithms," in IEEE Latin America Transactions, vol. 15, no. 10, pp. 1988-1993, Oct. 2017.

8. E. Tuba, L. Mrkela, M. Tuba, Support vector machine parameter tuning using firefly algorithm,
in: 2016 26th International Conference Radioelektronika, Kosice, 2016, pp. 413–418.

9. F. K. Hussain, E. Chang and O. K. Hussain, "State of the art review of the existing bayesian-
network based approaches to trust and reputation computation," Second International Conference
on Internet Monitoring and Protection (ICIMP 2007), San Jose, CA, 2007, pp. 26-26.

10. H. Kim, S. Pang, H. Je, D. Kim, S. Y. Bang, Constructing support vector machine ensemble,
Pattern Recognition, Volume 36, Issue 12, (2003) 2757-2767.

11. H. Liao, C. Alberti, M. Bacchiani, O. Siohan, Interspeech, ISCA 2010, 2958 – 2961, 2010.
12. H. Zhang & J. Su (2008) Naive Bayes for optimal ranking, Journal of Experimental & Theoretical

Artificial Intelligence, 20:2, 79-93
13. J. Acevedo, S. Maldonado, S. Lafuente, H. Gomez, P. Gil (2006) Model Selection for Support

Vector Machines Using Ant Colony Optimization in an Electronic Nose Application. In: Dorigo
M., Gambardella L.M., Birattari M., Martinoli A., Poli R., Stützle T. (eds) Ant Colony
Optimization and Swarm Intelligence. ANTS 2006. Lecture Notes in Computer Science, vol
4150. Springer, Berlin, Heidelberg.

14. J. Stork, R. Ramos, P. Koch, W. Konen (2015) SVM Ensembles Are Better When Different
Kernel Types Are Combined. In: Lausen B., Krolak-Schwerdt S., Böhmer M. (eds) Data Science,
Learning by Latent Structures, and Knowledge Discovery. Studies in Classification, Data
Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg.

15. M. A. Kumar and M. Gopal, A hybrid SVM based decision tree, Pattern Recognition, Volume
43, Issue 12, 2010, 3977-3987.

16. M. Agarwal, A. Singh, Metasploit Penetration Testing Cookbook, second ed. Packt Publishing,
Birmingham, UK, 2013, pp. 1–320.

17. M. Deraman, A. Desa, and Z.A. Othman, Public domain datasets for optimizing network
intrusion and machine learning approaches, in: 2011 3rd Conference on Data Mining and
Optimization (DMO), 2011, pp. 51–56.

18 Syed Ali Raza Shah, Biju Issac and Seibu Mary Jacob

18. N. Heikura, Analyzing offensive and defensive networking tools in a laboratory environment,
Tampere University of Technology, Finland, 2015 (Master of Science thesis).

19. NSL-KDD, The NSL-KDD Dataset, 2014. [Online] Available at: http://nsl.cs.unb.ca/NSL-KDD/
(Accessed: 4 February 2018).

20. O. Y. Al-Jarrah, O. Alhussein, P. D. Yoo, S. Muhaidat, K. Taha and K. Kim, "Data
Randomization and Cluster-Based Partitioning for Botnet Intrusion Detection," in IEEE
Transactions on Cybernetics, vol. 46, no. 8, pp. 1796-1806, Aug. 2016.

21. R. Karthik, S. Veni, B.L. Shivakumar, Fuzzy based support vector machine classifier with weiner
filter system (FSVM-WF) for intrusion detection, Int. J. Adv. Res. Comput. Sci. 7 (4) (2016) 11–
15

22. R. Lowen and M.R. Roubens, Fuzzy Logic: State of the Art (Springer Netherlands, 1993).
23. SIDL, Snort Intrusion Detection Log from 07-Nov-08 to 16-Nov-11 (Entire Exercise):

http://www.usma.edu/crc/sitepages/datasets.aspx; (Accessed: 17 January 2018)
24. Snort. Available at: https://www.snort.org/ (Accessed: 10 September 2017).
25. T. Jinyu and Z. Xin, "Project financing risk assessment based on ACO and SVM," 2009 ISECS

International Colloquium on Computing, Communication, Control, and Management, Sanya,
2009, pp. 300-302.

26. T. Zhang and Q. Zhu, "Distributed Privacy-Preserving Collaborative Intrusion Detection Systems
for VANETs," in IEEE Transactions on Signal and Information Processing over Networks, vol.
4, no. 1, pp. 148-161, March 2018.

27. W. Hu, W. Hu and S. Maybank, "AdaBoost-Based Algorithm for Network Intrusion Detection,"
in IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 38, no. 2, pp.
577-583, April 2008.

28. Weka, Weka 3: Data Mining Software in Java, 2017. [Online] Available at:
https://www.cs.waikato.ac.nz/ml/weka/ (Accessed: October 2017).

29. X. Wang, C. Zhang and K. Zheng, "Intrusion detection algorithm based on density, cluster
centers, and nearest neighbors," in China Communications, vol. 13, no. 7, pp. 24-31, July 2016.

30. Y. Freund, R. Schapire, A decision theoretic generalization of online learning and an application
to boosting, J. Comput. System Sci. 55 (1) (1997) 119–139.

