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In this paper an existing rule-based intrusion detection system (IDS) named Snort is made more 
intelligent through the application of machine learning. We chose Snort as it is an open source software and 
though it was performing well, there was the issue of false positives. To find the best performing 
algorithm to use on Snort to improve its detection we tested some machine learning algorithms on three 
available datasets. Support Vector Machine (SVM) was chosen along with Fuzzy Logic and Decision 
Tree based on their accuracy. Combined versions of algorithms through ensemble SVM along with 
other variants were tried on the generated traffic of normal and malicious packets at 10 Gbps. Optimized 
versions of the SVM along with Firefly and ACO were also tried, and the accuracy improved remarkably. 
Thus, the application of combined and optimized machine learning algorithms to Snort at 10 Gbps worked 
quite well. 

Keywords: Snort Intrusion Detection, Machine Learning, Support Vector Machine, Fuzzy Logic, ACO, 
Firefly

1. Introduction

The Snort Intrusion Detection System (IDS) which is a de-facto standard currently started 
its development in 1998 by Sourcefire. Snort has a single threaded architecture and uses 
the TCP/IP stack to capture and inspect network packet payload. Snort has added a multi-
instance feature to its 2.9 release to address the limitation of single-thread and the version 
3.0 will be multithreaded by default (Snort, 2017). The Snort IDS is dependent on the rule 
set to detect malicious traffic that gives an accurate description of the known malicious 
traffic. To reduce the false positive rate (FPR), many researchers have used machine-
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learning algorithms to classify normal and malicious traffic. Some of the machine learning 
algorithms that have been extensively used are Support Vector Machine, Neural Network, 
Decision Trees, Random Forest, Fuzzy Logic, BayesNet, NaiveBayes etc. The best-
performing algorithm has to be selected to improve the detection accuracy by reducing the 
false positive alarms. 

Before using machine-learning techniques in Snort, it is important to know about high 
performing machine learning algorithms. Three publicly available datasets were used to 
conduct performance experiments on Machine Learning Algorithms (MLAs). The Weka 
experimental setup and data preprocessing using data mining software is used (Weka, 
2017). False positive, false negative and true positive alarm rates were the metrics used for 
the comparison of detection accuracy of the selected MLAs.  

This paper is organized as follows. Section 2 is the related works to investigate what others 
have done in the topic being researched, followed by section 3 on the architecture of Snort. 
Section 4 is modeling the attack through Kali Linux, section 5 on the analysis of machine 
learning algorithms on datasets, followed by section 6 on a discussion of SVM and 
ensemble SVM. Section 7 is on intelligent plug-in development that discussed on single, 
combined and optimized algorithms, followed by section 8 which is the conclusion. 

2. Related Works

Yin et al. (2017) proposed a deep learning approach for intrusion detection using recurrent 
neural networks (RNN-IDS). The experimental results show that RNN-IDS is very suitable 
for modeling a classification model with high accuracy and that its performance is superior 
to that of traditional machine learning classification methods in both binary and multiclass 
classification. Zhang and Zhu (2018) proposed a privacy-preserving machine-learning-
based collaborative IDS (PML-CIDS) for Vehicular ad hoc network (VANETs). The 
proposed algorithm employs the alternating direction method of multipliers to a class of 
empirical risk minimization problems and trains a classifier to detect the intrusions in the 
VANETs. The authors use the differential privacy to capture the privacy notation of the 
PML-CIDS and propose a method of dual-variable perturbation to provide dynamic 
differential privacy. They used NSL-KDD dataset to corroborate the results on the 
detection accuracy. Massato Kakihata et al. (2017) did an analysis on network flows 
previously collected and correctly detected three different types of attacks. The flows were 
organized to be processed by machine learning methods, getting promising results. Al-
Jarrah et al. (2016) proposed a state-of-the-art Traffic-based IDS (T-IDS) built on a novel 
randomized data partitioned learning model (RDPLM), relying on a compact network 
feature set and feature selection techniques, simplified subspacing and a multiple 
randomized meta-learning technique. The proposed model has achieved 99.984% accuracy 
on a well-known benchmark botnet dataset. 
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Wang et al. (2016) proposed a new hybrid learning method based on features such as 
density, cluster centers, and nearest neighbors (DCNN). Data is represented by the local 
density of each sample point and the sum of distances from each sample point to cluster 
centers and to its nearest neighbor. k-NN classifier is adopted to classify the new feature 
vectors which is effective in intrusion detection. Kolias et al. (2016) categorized and 
thoroughly evaluates the most popular attacks on 802.11 and analyzed their signatures. 
They analysed a publicly available dataset containing a rich blend of normal and attack 
traffic against 802.11 networks. An extensive first-hand evaluation of this dataset using 
several machine learning algorithms and data features is also provided. Hu et al. (2008) 
proposed an intrusion detection algorithm based on the AdaBoost algorithm where decision 
stumps are used as weak classifiers. The decision rules are provided for both categorical 
and continuous features. Adaptable initial weights and a simple strategy for avoiding 
overfitting are adopted to improve the performance of the algorithm. Experimental results 
show that our algorithm has low computational complexity and error rates. 

3. The Architecture of Snort

There are four basic components to the architecture of Snort. They are the packet sniffer, 
the preprocessor, the detection engine and the output. Snort will receive packets and 
process them through preprocessor and compare these packets against the set of rules. The 
output will log or trigger alerts based on what action the rules will take. 

Fig 1. The Snort Architecture 

The default rule set was used in Snort. Using Kali Linux Metasploit framework the seven 
types of malicious traffic were generated as shown in Table 1, along with the legitimate 
traffic. They were all injected to Snort to simulate the attacks.  The IDS will inspect the 
legitimate and malicious traffic and will trigger alarms when the input traffic matches the 
rule set. The number of common rule set used is shown in Table 1.  

The table 2 shows the detection accuracy of Snort when it was tested. There was a high 
percentage of FPR as 56.2% and 6.0% as FNR. 
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Table 1. Number of common rule set 

No Rules and Malicious 
Traffic Type 

Number of Rules 

1 SSH 13 
2 DoS/DDoS 69 
3 FTP 75 
4 HTTP 110 
5 ICMP 125 
6 ARP 21 
7 SCAN 30 

Table 2. Malicious traffic accuracy (%) measurements at 10 Gbps for 10 hours 

Malicious 
Traffic 

Snort  
FPR 

Snort 
FNR 

SSH 9.3 0.0 
DoS/DDoS 3.3 0.8 
FTP 9.6 0.0 
HTTP 6.3 1.1 
ICMP 16.9 1.0 
ARP 7.9 0.9 
Scan 2.9 2.2 
Total 56.2 6.0 

4. Modeling the Attack through Kali Linux

This experiment required a target server running HTTP, FTP and SSH services as shown 
in Figure 2 and the software configured in them are shown in table 3. 

Figure 2. The Experiment Network 
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Table 3. Experiment network specifications 

Machine/Software 
Type 

Specification Tools Used 

CentOS 6.5 Virtual Machine, 2.5 
GHz 4 cores CPU, 4 
GB Memory, 10 
Gbps Ethernet 

Snort 2.9.6.1 IDS; 
Collectl, top, dstat 
Snort logs, 
tcpdump, IPTRAF 

Malicious Network 
Traffic Generator 

Virtual Machine, 2 
cores CPU, 2 GB 
Memory, 10 Gbps 
Ethernet 

Kali Linux 
Metasploit 
Framework 

User PC Virtual Machine, 2.5 
GHz 4 cores CPU, 4 
GB Memory, 10 
Gbps Ethernet 

Ubuntu client 

Legitimate Network 
Traffic Generator 

Virtual Machine, 2 
cores CPU, 2 GB 
Memory, 10 Gbps 
Ethernet 

Ostinato, NMAP, 
NPING 

Network Switch Virtual Switch 

The normal network traffic for the experiments was produced through three open source 
network traffic generators, namely Ostinato, NMAP, and NPING (Heikur, 2015). These 
tools can generate network traffic up to 20 Gbps. The Kali Linux Metasploit framework 
generated seven types of malicious traffic as in Table 1, along with the legitimate traffic 
(Agarwal and Singh, 2013). The IDS will inspect the traffic and will trigger alarms when 
the input traffic matches the rule set. The number of instances of alarms like false positive, 
false negative and true positive will show the accuracy of Snort’s detection capability. The 
Metasploit framework generates malicious traffic with different exploits and payloads and 
provides different exploits and payloads for different operating systems. For example, to 
successfully execute the payload, the victim computer should be found to have an exploit 
with open ports through a scan. The basic steps for exploiting a system are as follows: 

1. Select and configure an exploit which will create an advantage through the security
weaknesses and bugs in an operating system.

2. Select and set up a payload that will be the executable program that will run on the
target machine.

3. Select an encoding technique that prevent detection by the IDS.
4. Run the exploit.
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During an attack, to run an exploit the information on the attack target system is needed 
like the type of operating system, port information etc. Scanning and fingerprinting tools 
such as Nmap, can collect this data. Since the Metasploit framework is flexible and 
modular, different payloads and exploits can be tried to achieve the best outcome. The 
example of Snort IDS rule is as follows.  

• alert icmp any any  any any (msg:"ICMP Packet"; sid:1000967; rev:1;). This rule
does alerting when there is an ICMP packet (ping traffic). The sid (signature id)
keyword is used to uniquely identify Snort rules. The rev keyword is used to uniquely
identify revisions of Snort rules.

• alert tcp any any  any any (msg: “Sample alert”;). This rule does alerting when there
is an TCP traffic.

The architecture of Metasploit uses libraries, especially the Ruby Extension (Rex) library. 
These libraries consist of a collection of tasks, functions and operations used by the 
framework. Rex has no dependencies and has the exploitation utility class along with 
others. The MSF core library extends Rex and allows to communicate with exploit 
modules. The core library extends the base library which is connected to a different user 
interface that helps to use command console and the web interface. The later version of the 
Metasploit framework has around 1412 exploits, 802 auxiliaries, 361 payloads, 327 
encoders and 8 nops. An exploit is the entry point that the attacker takes advantage of in a 
system, service or application. A payload is the program that can be executed on the system 
that is exploited. The auxiliary module gives additional options for fuzzing, scanning, 
recon, DoS attack etc. The encoders are used to obfuscate modules to masquerade and 
avoid detection by security systems like antivirus or firewall. Nop is No Operation that 
prevents the payload from crashing while executing jump statements in the shell code 
(Agarwal and Singh, 2013). 

Some examples of attack patterns are as follows. Through a network scan or by wireless 
packet capture, the attacker can get enough information to execute an exploit remotely. He 
can allow an attractive software with a hidden program to be downloaded free of charge, 
where the spy program could run in the background creating a backdoor entry. He can use 
some stolen information through social engineering to do a server-side or client-side attack. 

The access privileges of the attacker can thus be escalated and that could lead to accessing 
and stealing of data or exploration of the system. Then there is also the process of pivoting 
that allows the attacker to move to other services through exploiting the initial 
vulnerability. The administrator can be alerted by an intrusion detection system when the 
attacker goes into the next stage after the network scan. The common performance 
measurement parameters of the IDS detection accuracy are as follows. 
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True Positive (TP): True is identified as true 
True Negative (TN): False is identified as false 
False Positive (FP): True is identified as false 
False Negative (FN): False is identified as true 

P = TP + FN (number of correct identification) 
N = FP + TN (number of wrong identification) 

True Positive Rate (TPR) = TP / P = TP / (TP + FN)      (1) 
False Positive Rate (FPR) = FP / N = FP / (FP + TN)     (2) 
False Negative Rate (FNR) = FN / P = FN / (FN + TP)  (3) 

5. Analysis of Machine Learning Algorithms on Datasets

We had used open source machine learning software Weka that is capable of data pre-
processing and classification on three public datasets, namely NSA Snort IDS Alert Logs, 
DARPA IDS Dataset and NSL-KDD IDS Dataset were selected and used for the 
experiments (Deraman et al, 2011). The details of these datasets are listed in Table 4. 

Table 4. Details of the Four Datasets 

Dataset Name Attack Types 

NSA Snort IDS Alert 
Logs (SIDL, 2018) 

• MAC Spoofing 
• DNS Poisoning 
• IP Spoofing 

DARPA IDS Dataset 
(DARPA IDS, 2018) 

• SSH Attacks 
• FTP Attacks 
• Scanning Attacks 

NSL-KDD IDS Dataset 
(NSS-KDD, 2018) 

• Denial of Service Attack
(DoS)

• User to Root Attack (U2R) 
• Remote to Local Attack 

(R2L)
• Probing Attack 

We used the following five algorithms for testing detection accuracy on different IDS 
datasets, as they performed the best with Weka. 

A Support Vector Machine (SVM) is a discriminative classifier which supports both 
regression and classification tasks that is based on decision planes that define decision 
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boundaries in a multidimensional space that separates cases of different class labels. A set 
of objects having different class memberships is separated by a decision plane. For 
example, if we think of two labeled classes, the SVM finds out a line or hyperplane to 
separate the classes. It can handle multiple continuous and categorical variables (Cortes 
and Vapnik, 1995). 

Decision tree is a predictive model that uses observations about an item that is denoted in 
the branches to predictions about the target value of the item that is denoted in the leaves. 
It is a model that uses several input variables to predict the value of a target variable. It is 
drawn upside down with its root at the top. The tree has nodes that are the features or 
attributes, and each link denotes a decision or rule and each leaf denotes an outcome that 
are categorical or continuous values (Liao et al., 2010). 

Fuzzy Logic is more of a many-valued logic in which the truth-values of variables may 
assume a value between 0 and 1, thus representing partial truth, which falls between truth 
and falsehood. Traditional logic classifies information into binary patterns, for example 
like yes or no and true or false. Between these black and white scenarios like completely 
true or completely false, there are possibilities and fuzzy logic focuses on using that space 
in between. Fuzzy systems with fuzzy if or if-then rules are being used in different 
scenarios (Lowen and Roubens, 1993). 

Bayesian network is a model that represents the possible states of a scenario or world and 
it has probability relationships between some of the states. It is a probabilistic graphical 
model that denotes a set of variables and their conditional dependencies through a directed 
acyclic graph (DAG). There are three main inference tasks for Bayesian networks, which 
are inferring unobserved variables through observing the evidence variables, parameter 
learning and structure learning (Hussain et al., 2007). 

Naive Bayes classifiers are simple probabilistic classifiers that works using Bayes' theorem 
with the features having strong and independence assumptions between them. It is very 
good when the dimensionality of the inputs is high and can often outperform other 
sophisticated classifiers (Zhang and Su, 2008). 

The five algorithms mentioned were tested on four datasets. The k-fold cross validation 
was done with 90% of data used for training the classifier and 10% of data used for testing 
it. This was repeated 10 times as a circular cycle. The activity was done again with 80% of 
data and 20% of data for training and testing respectively. The average values are shown 
in the table 5. 
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The metrics used were false positive rate (FPR), false negative rate (FNR) and true positive 
rate (TPR) of each classifier and they were obtained from Weka. The detection accuracy 
(DR) was calculated based on equation 4. 

     DR = TPR / (TPR + FNR)  (4) 

The FPR was also noted along with DR and as per table 5, Support Vector Machine 
classifier showed the highest accuracy followed by Fuzzy Logic, Decision Trees, BayesNet 
and NaiveBayes.  

Table 5. The accuracy of algorithms on the datasets 

NSA Snort IDS Alert Logs  

Machine Learning Algorithms DR FPR 

Support Vector Machine 96.4% 0.7% 

Decision Trees 78.6% 3.3% 

Fuzzy Logic 93.8% 0.7% 

BayesNet 64.7% 4.3% 

NaiveBayes 61.3% 4.1% 
DARPA IDS Dataset  

Machine Learning Algorithms DR FPR 

Support Vector Machine 96.2% 0.9% 

Decision Tree 80.7% 2.5% 

Fuzzy Logic 91.2% 2.3% 

BayesNet 62.1% 5.7% 

NaiveBayes 64.4% 6.5% 
NSL-KDD IDS Dataset 

Machine Learning Algorithms DR FPR 

Support Vector Machine 97.0% 3.5% 

Decision Tree 76.5% 11.2% 

Fuzzy Logic 94.3% 4.3% 

BayesNet 67.9% 8.5% 

NaiveBayes 68.5% 7.9% 

Snort in conjunction with machine learning algorithms can accurately classify the 
legitimate and malicious traffic. It also improves Snort detection accuracy and reduces the 
false positive rate. This is explored in the next few sections. 
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6. SVM and SVM Ensemble

Based on the results in Table 5, the SVM was selected. SVM is used in a supervised 
environment that can train with a large number of patterns and it is used to solve a two-
outcome classification or binary classification problem. SVM segregates instances from 
different classes through the use of hyperplane and ensures that all the instances are outside 
the margin. This gives rise to a hard margin that can be shown below: 

𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏)  ≥ 1 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛, 𝑤 ∈ 𝑅𝑑 , 𝑤 ∈ 𝑅   (5) 

where 𝑥𝑖 denotes instances, 𝑦𝑖  ∈ {−1, 1} are labels of instances, an intercept term is 𝑏, 𝑤
is normal vector to the hyperplane, 𝑑 is the dimension of input vector and 𝑛 is the number 
of input data. 

The hyperplane is not easily found in a real-world scenario, as data usually have a few 
outliers, where within the same class the instances vary significantly from other instances. 
The soft margin was suggested to deal with this issue is shown below. 

𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏)  ≥ 1 − 𝜖𝑖 , 𝜖𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛   (6) 

where 𝜖𝑖 denotes slack variables, which allow instances to fall off the margin. To find the
optimal soft margin, the following should be noted. 

min
1

2
∥ 𝑤 ∥2+ 𝐶 ∑ 𝜖𝑖

𝑛
𝑖=1   (7) 

where 𝐶 is the soft margin cost function, which controls the classification accuracy. 

Since we are not dealing with linearly separable data, the kernel function is used to replace 
the dot product. The Radial basis function (RBF) which satisfies Mercer's condition is the 
most commonly chosen and it is defined as follows. 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp(−𝛾 ∥ 𝑥𝑖 − 𝑥𝑗 ∥2)   (8) 

The parameter 𝛾 shows the influence of single training example reaches with low values 
showing far reach and high values showing close reach.   

There are various methods for constructing an ensemble of classifiers. The key aspect of 
SVM ensemble is that individual SVM should be different from the other as much as 
possible and this is achieved by using different training sets for each SVMs. To select the 
training samples, some methods used are bagging, boosting, randomization, stacking and 
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dagging (Kim et al., 2003). In bagging, various SVMs are independently trained through a 
bootstrap method and later combined through an appropriate combination technique. 
Similar to the bagging method, in boosting through the use of AdaBoost algorithm (Freund 
and Schapire, 1997), each SVM is trained using a different training set but the selection 
scheme of training samples in the AdaBoost algorithm used as in figure 2 is quite different. 
After training, several independent SVMs are combined through linear or non-linear 
methods. Of the linear methods namely, majority voting and LSE-based weighting, the 
latter is used as per the results in the paper along with boosting (Kim et al., 2003). The 
LSE-based weighting considers several SVMs in the SVM ensemble with different weights 
which is dependent on the accuracies of classifications (Kim and Kim, 1997). 

Input: 
A set TR of l labeled examples: S = {(xi; yi), i=1, 2, … , l}, 

 Labels yi ∈ Y = {1, 2, … , C}. 
p0 (xi) := 1/l. 
for k = 1 to K 

Build 𝑇𝑅𝑏𝑜𝑜𝑠𝑡𝑘
= {(xi; yi), i=1, 2, … , l} based on the pk-1(xi).

Train the kth SVM hk using𝑇𝑅𝑏𝑜𝑜𝑠𝑡𝑘
.

∈𝑘  ≔  ∑ 𝑝𝑙(𝑖)|{𝑖|ℎ𝑘(𝑥𝑖) ≠ 𝑦𝑖}|𝑙
𝑖=1

𝛼𝑘 ≔
1

2
𝑙𝑛 (

∈𝑘

1− ∈𝑘
) .

for i = 1 to l 

𝑝𝑘+1(𝑥𝑖) =  
𝑝𝑘(𝑥𝑖)

𝑍𝑘
 × {

exp(−𝛼𝑘) 𝑖𝑓 ℎ𝑘(𝑥𝑖) =  𝑦𝑖,

exp(𝛼𝑘)    𝑖𝑓 ℎ𝑘(𝑥𝑖) ≠  𝑦𝑖.

where 𝑍𝑘 is a normalization factor to make ∑ 𝑝𝑘+1(𝑥𝑖) = 1𝑙
𝑖=1

end 
end 

Fig 2. The AdaBoost Algorithm (Kim et al., 2003) 

7. The Intelligent Plugin Development

Snort has successfully detected malicious traffic as in table 2, but it triggered high false 
positive alarms (56.2% average). The proposed new architecture of Snort IDS shown in 
Figure 3 is to reduce the false positive alarms though the use of intelligent algorithms 
discussed before. 

The intelligent plug-in will work in parallel with the Snort’s rule set which detects the 
known malicious traffic. The plugin itself could detect new attacks patterns or malicious 
traffic which could reduce the false positive alarms. The existing Snort architecture shown 
in figure 1 is modified with an additional intelligent plug-in to produce a new architecture 
as shown in figure 3. The pre-processor will receive the network traffic and would feed 
that for intrusion detection. The proposed new architecture had the following processes: 
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(1) Packet Decoding: This process decodes the packet information to find the source and
destination IP addresses, source and destination ports, source and destination Ethernet
addresses, the network frame size and packet size. (2) Packet Classification: This
segregates the good and bad traffic. (3) Machine Learning Algorithm: The intelligent plug-
in uses different algorithms like SVM, Fuzzy Logic, Decision Tree, hybrid of SVM and
Fuzzy Logic, Ensemble SVM, optimized SVM with firefly and ACO algorithm to process
the legitimate and malicious traffic. The alarms are logged and analyzed at the end.

Network 
Infrastructure

Capture 
packets 
through 
Sniffing

Preprocessor

Snort 
Detection 

Engine and 
Rule set

Snort Plugin 
and Packet 
decoding

Log file 
analysis

Alarms 
logging

Snort Plugin 
and 

Classification 
of Packets 

through ML

Fig 3. Proposed Snort IDS Architecture with Snort Intelligent Plug-in 

The Snort intelligent plug-in for Snort v2.9 intrusion detection system was implemented in 
C programming language on the Linux operating system. The incoming network traffic 
flow is properly classified which would reduce the false positive alarms and the true 
positive alarms are sent to the log files of Snort’s log. As per table 4, SVM and Fuzzy Logic 
algorithms showed good performances when tested through the Weka engine with three 
different datasets and Decision Tree was quite moderate in its performance. However, in 
order to select the superior MLA, SVM, Fuzzy Logic and Decision Tree algorithms were 
used along with a live background with malicious traffic to evaluate the false positive and 
false negative alarms rates.  

7.1 Individual and Ensemble Algorithms 

The experiments were initially done for 10 hours in one session on the three individual 
basic algorithms using seven types of malicious traffic as shown in Table 1. It was repeated 
for SVM ensemble as well as per Stork et al., (2015). In SVM the cost function was tested 
with different values and the value of 1.0 was selected. The gamma values were also tested 
with different values to tackle under-fitting and over-fitting and a value of 0.1 was used. 
the Snort with SVM intelligent plug-in were injected with seven types of malicious traffic 
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and later the same traffic was injected into Snort with Fuzzy Logic and Decision Tree plug-
in respectively. Table 6 records the FPR and FNR for four cases when they were used with 
Snort. 

Table 6. Performance of SVM, Ensemble SVM, Fuzzy Logic, and Decision Tree plugins 

Malicious 
Traffic 

Snort with SVM 
Plug-in 

(%) 

Snort with 
Ensemble SVM 

Plug-in 
(%) 

Snort with 
Fuzzy Logic 

Plug-in 
(%) 

Snort with 
Decision Tree 

Plug-in 
(%) 

FPR FNR FPR FNR FPR FNR FPR FNR 

SSH 3.1 0.1 2.8 0.0 4.5 2.1 9.2 1.9 

DoS/DDoS 1.1 0.9 0.8 0.8 6.9 0.4 7.8 1.1 

FTP 4.3 0.7 3.4 0.7 2.6 0.0 5.0 0.9 

HTTP 1.8 1.1 1.6 1.5 8.0 1.8 11.8 0.8 

ICMP 4.2 1.0 3.5 0.7 12.9 0.0 12.4 0.9 

ARP 2.3 0.1 1.8 0.0 1.8 0.0 3.4 0.8 

Scan 1.1 0.8 0.6 0.6 1.0 0.1 2.1 0.9 

Total 17.9 4.7 14.5 4.3 37.7 4.4 51.7 7.3 

In the initial experiment (refer to Table 2) Snort was tested without the intelligent plug-in. 
When seven types of malicious traffic were injected into Snort, it triggered an average 
value of 56.2% FPR and 6.0% FNR. When Snort was tested with ensemble SVM intelligent 
plug-in as in Table 6, it only triggered 14.5% FPR and 4.3% FNR, compared to SVM, 
Fuzzy logic and DT. This shows that the detection accuracy has really improved with SVM 
and ensemble versions.  

7.2 Combined Algorithms 

The experiment was tried with a combined version of SVM with Fuzzy Logic (Karthik et 
al, 2016) and SVM with Decision Tree. Table 7 shows the FPR and FNR for the combined 
algorithms when they were used with Snort.  

With the ensemble SVM and Fuzzy Logic, for each given input the basic SVM takes a set 
of input data and predicts two possible classes of output. That makes it a binary linear 
classifier that is non-probabilistic in nature. From the output of SVM, the decision-making 
rule of fuzzy logic is used and the results generated. The basic approach of using ensemble 
SVM and Decision Trees (Kumar and Gopal, 2010) is to use decision trees to approximate 
the decision boundary of SVM. The resulting tree is a hybrid or combined tree that has 
both univariate and multivariate (SVM) nodes. The tree takes SVM’s help only in 
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classifying crucial datapoints lying near decision boundary, while the remaining less 
crucial datapoints are classified by fast univariate nodes. This approach focuses on 
reducing the number of test datapoints that need SVM’s help in getting classified. With the 
combined version of SVM and Fuzzy logic implemented, the FNR was 12.4% and FNR 
was 3.1%. This is a better result than the individual ones in Table 6, though the combined 
version of SVM and Decision Tree did not improve the detection compared to combined 
Fuzzy logic approach.  

Table 7. Performance of Combined Ensemble SVM and Fuzzy logic and Combined Ensemble SVM and DT 
plugins 

Malicious 
Traffic 

Snort with Ensemble 
SVM and Fuzzy Logic 

Combined Plug-in 
(%) 

Snort with Ensemble 
SVM and Decision Tree 

Combined Plug-in 
(%) 

FPR FNR FPR FNR 

SSH 2.1 0.0 5.2 2.0 

DoS/DDoS 0.9 0.4 7.6 0.5 

FTP 3.0 0.4 2.5 0.5 

HTTP 1.8 1.1 7.5 0.3 

ICMP 1.6 0.6 12.5 0.4 

ARP 2.1 0.0 2.5 0.8 

Scan 0.9 0.6 2.0 0.6 

Total 12.4 3.1 39.8 5.1 

7.3 Optimized Algorithms 

The ensemble SVM classifier was optimized with firefly algorithm (Sharma et al., 2013 
and Tuba et al., 2016) and it produced the best result compared to the others. SVM 
parameters (average value) determined by firefly algorithm are as follows: C = 1.57 and γ 
= 0.58. The firefly algorithm is inspired by the flashing behaviour of fireflies and is a 
metaheuristic algorithm initially proposed by Xin-She Yang. Since all the fireflies are 
considered unisex they are not attracted based on the sex but through their brightness. The 
less bright firefly will move towards the brighter one, with the brightness reversely 
proportional to the distance. 

The brightness of a firefly at a given location 𝑥 is given as follows. 
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𝐼(𝑥) =  {

1

𝑓(𝑥)
 𝑖𝑓 𝑓(𝑥) > 0

1 + |𝑓(𝑥)|   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (9) 

The attractiveness of a firefly (𝛽) depends on the distance between the firefly and the one 
who looks at it, which is proportional to the light intensity of the firefly. It is shown as 
follows. 

𝛽(𝑟) =  
𝛽0

1+𝛾𝑟2   (10) 

The position of a firefly 𝑖 attracted to another brighter firefly 𝑗 is as follows. 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 +  𝛽𝑒𝛾𝑟2
𝑖𝑗 (𝑥𝑗

𝑡 − 𝑥𝑗
𝑡) +  𝛼𝑡𝜖𝑖

𝑡   (11) 

where α is randomization parameter, 𝜖𝑖
𝑡is a vector of random numbers drawn from a

Gaussian distribution or uniform distribution at time 𝑡, and 𝑟𝑖𝑗  is distance between
fireflies 𝑖 and 𝑗. The distance between fireflies 𝑖 and 𝑗 is calculated using Cartesian 
distance. The firefly is used to optimize the values of 𝐶 and 𝛾 for SVM. Thus, the optimized 
parameters of SVM are calculated through firefly algorithm and is given as input to the 
SVM classifier. Each firefly is compared against the other and the best location is selected 
based on the firefly's brightness. The FPR was 9.0% and FNR was 1.7%, which is the best 
result we have achieved as in table 8. 

The ensemble SVM was also optimized with Ant Colony Optimization (Jinyu and Xin, 
2009 and Acevedo et al., 2006)) to select the parameters of SVM automatically and that proved 
to be effective. Ant Colony Optimization (ACO) is a metaheuristic algorithm that uses the 
idea exhibited in an ant colony to find the shorted path from a food source to the nest 
through pheromone information without employing any visual cues. When ant colony are 
seeking for food, they secrete a chemical substance called pheromone which act like 
hormones outside the body of the secreting ant. The more ants walk through that path, the 
more pheromone is left on the ground like trail. Then the following ant will choose one 
path where the probability is proportional to the amount of pheromone in that path. Finally, 
a shortest path from their nest to the food source is done through this positive feedback 
activity. To apply the colony ant behavior to ACO algorithm, the following rules were 
designed to make the algorithm work. 

The translate rule is the transition probability among the intervals of each variable is 
defined as follows: 

𝑝𝑖𝑗 = {
𝜏𝑗

𝛼(𝜂𝑖𝑗)𝛽 , 𝜂𝑖𝑗 > 0

0, 𝜂𝑖𝑗 ≤ 0 
 𝑖, 𝑗 ∈ {1,2, … , 𝑛}                                                               (12)

where 𝜏𝑗 denotes the pheromone intensity of the jth solution; 𝜂𝑖𝑗 shows the heuristic
information defined as 𝜂𝑖𝑗 =  𝑓𝑗 − 𝑓𝑖; 𝛼, 𝛽 > 0, denotes the heuristic factors.

The transition rule is given as follows: 
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𝑗 =  {
arg max{𝑝𝑖𝑗}, 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑗,

𝑒𝑙𝑠𝑒,  𝑁𝑜𝑡 
  (13) 

The pheromone updating rule of the solution j is expressed as follows: 
𝜏𝑗(𝑡 + 1) =  𝜌𝜏𝑗(𝑡) + ∑ Δ𝜏𝑗

𝑘𝑚
𝑘=1 , 𝑗 = 1, 2, … , 𝑛  (14) 

Δ𝜏𝑗
𝑘 =  {

𝑄𝐿𝑗
𝑘 , 𝐿𝑗

𝑘 > 0

0,    𝐿𝑗
𝑘 < 0

 𝑗 = 1, 2, … , 𝑛       (15) 

where, Δ𝜏𝑗
𝑘corresponds to the increase of pheromone of the solution j; 𝐿𝑗

𝑘shows the
changing value of the objective function; 𝜌 ∈ (0,1) denotes the pheromone maintenance; 
Q denotes the intensity of pheromone that is the left by the ant. SVM parameters (average 
value) determined by the ACO are comparable to the previous effort, even though firefly 
optimization performed better. The FPR was 10.6% and FNR was 4.5%, which is the second 
best result we have achieved as in table 8. The results of both the optimized approach can be 
seen in table 8. 

Table 8. Performance of Optimized Ensemble SVM with Firefly and Optimized Ensemble SVM with ACO 
plugins 

Malicious 
Traffic 

Snort with Optimized 
Ensemble SVM with 

Firefly Plug-in 
(%) 

Snort with Optimized 
Ensemble SVM with 

ACO Plug-in 
(%) 

FPR FNR FPR FNR 

SSH 1.8 0.0 2.5 0.2 

DoS/DDoS 1.1 0.1 1.5 0.3 

FTP 1.9 0.0 2.2 0.5 

HTTP 1.7 0.7 1.5 1.3 

ICMP 1.2 0.6 1.2 0.9 

ARP 0.9 0.1 1.5 0.5 

Scan 0.4 0.2 0.2 0.8 

Total 9.0 1.7 10.6 4.5 

8. Conclusion

This paper conducted a study on the possible machine learning algorithms that can be used 
with Snort by first conducting an analysis through Weka on three different IDS datasets. 
SVM was found to perform the best, followed by Fuzzy logic and Decision Tree. The single 
and ensemble versions of SVM was then applied to Snort to make the detection better, 
followed by combined versions of SVM and fuzzy logic and SVM and Decision Tree. The 
results were better than the singular versions. Finally, the optimized versions of ensemble 
SVM with firefly and ACO is implemented and results were noted. The false positive rate 
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and false negative rate reduced significantly in optimized versions, especially with firefly 
optimization with a FPR of 9.0% and FNR of 1.7%. The results will give an insight into 
possible ways that one can make a rule-based IDS more intelligent. 
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