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Abstract  

	  

Intrusion detection systems (IDSs) such as Snort apply deep packet 

inspection to detect intrusions. Usually, these are rule-based systems, where each 

incoming packet is matched with a set of rules. Each rule consists of two parts: the 

rule header and the rule options. The rule header is compared with the packet header. 

The rule options usually contain a signature string that is matched with packet 

content using an efficient string matching algorithm. The traditional approach to IDS 

packet inspection checks a packet against the detection rules by scanning from the 

first rule in the set and continuing to scan all the rules until a match is found. This 

approach becomes inefficient if the number of rules is too large and if the majority 

of the packets match with rules located at the end of the rule set. In this thesis, we 

propose an intelligent predictive technique for packet inspection based on data 

mining. We consider each rule in a rule set as a ‘class’. A classifier is first trained 

with labeled training data. Each such labeled data point contains packet header 

information, packet content summary information, and the corresponding class label 

(i.e. the rule number with which the packet matches). Then the classifier is used to 

classify new incoming packets. The predicted class, i.e. rule, is checked against the 

packet to see if this packet really matches the predicted rule. If it does, the 

corresponding action (i.e. alert) of the rule is taken. Otherwise, if the prediction of 

the classifier is wrong, we go back to the traditional way of matching rules. The 

advantage of this intelligent predictive packet matching is that it offers much faster 

rule matching. We have proved, both analytically and empirically, that even with 

millions of real network traffic packets and hundreds of rules, the classifier can 

achieve very high accuracy, thereby making the IDS several times faster in making 
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Title and Abstract (in Arabic) 

  

 لتصنیيفتنبؤ نوعع االاتصالل االشبكي عبر ااتحسیين أأددااء نظامم االتحقق وواالفحص االشبكي بوااسطة 

 االذكي

 االملخص

االدوورر االذيي تلعبھه أأنظمة االدفاعع االرقمي عبر االشبكاتت االھهدفف ھھھهذهه اااالأططرووحة ھھھهو ددررااسة 

االخبیيثة ووكشفھها ططرقق االتحقق من ھھھهویية االاتصالل االشبكي ووكیيفیية تحدیيد االحزمم  ٬،االإلكتروونیية

 ووفحص سرعة االاستجابة ووتطویيرھھھها من خلالل تحسیين االیية االبحث االمستخدمة حالیيا.

بیياناتت االمرسلة تعد من أأھھھهم ططرقق تتبع االھهجماتت اانن أأھھھهمیية أأنظمة االتحقق ووفحص اال

تزاایيد حجم االبیياناتت االمرسلة قد لا یيتمكن االنظامم من فحص  االالكتروونیية وواالتصديي لھها وولكن مع

االى ااحتمالیية عبورر بعض االھهجماتت االإلكتروونیية االى ووجھهتھها. جمیيع االبیياناتت االمرسلة مما یيؤدديي 

تصنیيف أأددااء االفحص لنظامم االتحقق من االحزمم االشبكیية بوااسطة  قدررةة تطویيرتتناوولل االدررااسة 

 االشبكي. كیية وواالتنبؤ بنوعع االاتصاللاالاتصالاتت االشب

تحتويي ھھھهذهه االرسالة على بعض خوااررززمیياتت االتنبؤ وواالتي تم ااستخداامھها لتصنیيف 

االاتصالاتت االشبكیية ووتحدیيد االاتصالل االشبكي االخبیيث مع تحدیيد ررددةة االفعل االمتوقعة من نظامم 

 االفحص.

 

 –االجداارر االنارريي  –فحص االشبكة  –اامن االمعلوماتت  –اامن االشبكاتت  :مفاھھھهیيم االبحث االرئیيسیية

 االجداارر االناررييااددااء 
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Chapter 1: Introduction 

1.1 Overview  

Security systems that monitor network packets, such as firewalls and IDSs, 

should be able to hold, analyze and log a network packet, as well as apply the 

required rules rapidly. Advanced attacks take advantage of a firewall’s or IDS’s 

performance issues; therefore, security researchers focus on both high performance 

and efficiency.  

Data mining is used to enhance the performance of several applications, and 

predicts the correct decision based on a training data set. Therefore, data mining 

improves both security and performance by predicting the right rule, instead of 

checking every possible rule. 

1.2 Problem Statement  

The large number of attack signatures makes IDS match and compares a lot 

of rules with incoming and outgoing packets. This mechanism of rule–packet 

comparison is accurate, but it may not work properly with a large number of packets 

and a large number of rules, as each rule is checked one by one. For example, if we 

received a malicious packet and this packet matched the last rule, then the IDS would 

take a long time to produce this matched rule.  

This would negatively affect an IDS’s performance, and may result in errors, 

allowing some packets to pass into the network without analysis and detection. 

Therefore, an IDS should find the right rule as fast as possible, without any 

performance issues. 
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1.3 Motivation and Contribution 

IDS rules have increased, and many other devices instead of just a laptop or 

PC can now be used to send malicious packets or attack others. The integration of 

physical and network penetration activities extends the scope of attacks, rules and 

network traffic. 

The options of now running attack tools with smartphones or installing an 

operating system such as Kali (which provides built-in common penetration test 

tools) are available for everyone. IDSs and other defense systems should provide 

high performance to secure networks and the Internet of things and smart cities’ 

systems. We use data mining to enhance the IDS’s performance by classifying 

malicious packets with corresponding rules, and sending those rule to IDS for 

verification against the received rule.  

1.4 Relevant Literature 

IDSs apply a packet matching technique that is similar to the packet filtering 

technique used by firewalls. In addition, IDSs apply signature matching to connect 

signatures with packet content. We will first discuss some relevant work in packet 

filtering enhancement, before moving on to discuss deep packet inspection by IDSs. 

Most of the existing research on the performance of firewalls focuses on the 

improvement of packet searching times by using various mechanisms, including 

hardware-based solutions (Baboescu, 2001), specialized data structures (Goyal, 

2015) (Woo, 2000), and heuristics (Gupta, 2001). Research works in (Hamed, 2006) 

(Kencl, 2006) focus on statistical filtering schemes to improve the average packet 

processing time. The structure of searching by taking into account packet flow 



3	  
	  

	  
	  
	  

dynamics has been introduced by (Kencl, 2006), (Acharya, 2007). The segment-

based tree search (STS) scheme (El-Atawy, 2007) uses bounded depth Huffman trees 

to enhance the search based on statistics collected from segments. The idea of 

firewall optimization through early packet rejection was introduced by (Mothersole, 

2011), (Trabelsi, 2011) – (El-Atawy, 2009). In (Trabelsi, 2011), early packet 

rejection is done through rule-fields ordering. In (Trabelsi, 2012), early packet 

rejection is done through a multilevel filtering process that includes field and 

intersection filtering modules. In (Mothersole, 2011), an approach named FVSC is 

proposed to optimize the rejection path. This technique uses a set cover 

approximation algorithm to construct early rejection rules from original security 

policy common field values. The PBER technique introduced by (El-Atawy, 2009) is 

considered a generalization of FVSC (Mothersole, 2011), in the sense that FVSC 

only focuses on a rejection path while PBER finds shortcuts for both accepted and 

rejected packets. There has been some work on rule-filtering optimization using data 

mining. For example, (Cohen, 2005) applies a decision tree classifier for packet 

classification. In this case, the class label is either ‘accept’ or ‘deny’. However, our 

approach in this study addresses the problem differently: here, each class label is a 

rule rather than an ‘accept’ or ‘deny’. In our previous work (Mustafa, 2013), we 

applied a data mining technique to enhance packet filtering. However, this current 

work is more challenging, as the previous study only dealt with the packet header, 

which consists of a small number of features. On the other hand, this current, 

proposed work deals not only with the packet header, but also with packet content. 

Therefore, the number of features is very large (e.g. consider each byte of content as 

a feature) and the learning is more complex. However, we have applied a heuristic to 

reduce the feature set and improve learning performance and accuracy.  
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Chapter 2: Background – IDS and Data Mining 

2.1 Information Security  

Information security provides a set of policies and systems that protect 

information from unauthorized people. 

Protection means that unauthorized people are unable to access or modify 

data, even by accident. Protection mechanisms, systems and algorithms are created to 

preserve information confidentiality, integrity and availability. 

Confidentiality refers to the protection of data from unauthorized access, and 

the provision of access to authenticated users only. An example of a protection 

mechanism is access control implantation, which is one of the security mechanisms 

used to achieve confidentiality. 

 Examples of confidentiality attacks: 

-‐   Session hijacking and the theft of user credentials. 

Integrity refers to the protection of data from unauthorized modification. 

Integrity is different from confidentiality. For example, providing access to students 

so they may see their grades does not mean that they can change their marks. 

Cryptography techniques such as hashing algorithms and digital signatures are 

examples of mechanisms used to achieve the integrity goal. 

Examples of Integrity attacks: 

-‐   Data modifications through a man-in-the-middle (MITM) 

attack. 

-‐   Data modification through SQL injection and cross-site 

scripting. 
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-‐   Data modification using the exploitation phase (e.g. leveraging 

the application server privileges with its default credentials).  

In terms of availability, the required system, application, software, database, 

hardware and other assets should be available when requested; however, it does not 

mean that the user can request these assets 24/7. User–service interaction should be 

regulated by policy rules.  

Availability is a very critical issue, as it does not make sense to preserve both 

confidentiality and integrity for data that is not available to anyone! One single 

interruption may cost the organization a lot of money. Load balancers, backup 

systems, the offline mode, and the installation of a UPS battery in the data server 

room are examples of availability systems. 

Examples of availability attacks:  

-‐   Physical destruction that makes the servers shut down, or 

causes the disconnection of the database or any other network component. 

-‐   Distributed denial of service (DDOS).  

2.2 Detection and Prevention Systems  

Network attacks have become the weapons used by criminal organizations 

and malicious groups. People participate in social networks, transfer their credit card 

data, pictures and videos, and share their personal locations and other sensitive 

documents with each other online; this motives a lot of criminals and malicious 

groups to hack into the Internet. 

Security breaches may cause a lot of damage to victims. Intruders are 

everywhere, threatening and penetrating organizations; network administrators set 

several defense processes and systems to prevent intrusion attempts. However, 
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prevention is only a single line of defense in the face of these malicious attempts. 

Detection is also required to improve an organization’s security. 

Detection catches what prevention misses. For example, it is possible to 

detect firewall bypass attempts, access control bypasses (privilege escalation), or 

simply trace someone’s activities. Various network security mechanisms can counter 

attacks, and these mechanisms include firewalls, IDSs, IPSs and honeypots. Each of 

these mechanisms provides a different service to counter a threat and mitigate the 

risks. For example, the role of a firewall is the prevention of malicious traffic, 

whether that be software, hardware or both. It contains predefined rules for malicious 

attempts and allows users to create their own security rules, grouping them together 

into a security policy that it then applies. Firewalls can be personal (for a single user) 

or can be an enterprise’s firewall (for an organization’s network). Palo Alto 

Networks, Juniper Networks and the Cisco ASA firewall are examples of 

commercial firewalls. 

IPS is a combination of both IDS and firewall functionalities. IPSs have most 

of the detection and log techniques offered by IDSs. Moreover, an IPS can prevent 

what it detects. An example of an IPS is the Cisco IPS 4200 series.  

Honeypots are vulnerable systems. These offer a lot of vulnerability to the 

attackers in order to trap them and trace their activities, such as security control 

bypasses, privilege escalations, and so on. The data generated is then used to 

improve the current security system.  

An IDS is a detection technique used to monitor, alert and log suspicious 

traffic. Host-based IDSs (HIDSs) and network-based IDSs (NIDSs) are different 

types of IDSs. 
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A signature-based method and an anomaly-based method are the different 

methods for detection. Both detection methods allow the system administrator to 

create his own rules and execute them with specific users, throughout the subnet or 

throughout the whole organization’s network.  

2.2.1 HIDS 

 An HIDS is used to monitor the user’s PC for misconfigurations, 

policy enforcement, rootkit detection, integrity, event correlation and log analysis. It 

is useful to monitor those audit trails that determine an insider or a policy violation, 

as well as to trace the improper activities of a specific user ID. Due to its position, it 

can identify malicious activities over encrypted networks or switched network 

topology. Some useful HIDS services are: 

File integrity checking (berkeley, n.d.): Generate periodically cryptographic 

checksum value to maintain the integrity of files. 

File attributes checking: Check file permission and ownership modifications. 

File access attempts: Monitor file access for both users and applications, and 

the type of requested access (e.g. read, write or execute). 

Code analysis: Monitor and check the attempt of execute code, such as buffer 

overflow attacks. This is useful to thwart privilege escalation, malware and 

unauthorized access (google, n.d.). 

Network configuration monitoring: Monitor the integrity of the network 

configuration of a host.  

The drawbacks of HIDSs are: 

Draw on the resources of a user’s host. 

Cannot detect a packet over the network (sans, 2005). 
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Tripwire is an example of an HIDS created by Dr. Eugene Spafford and Gene 

Kim in 1992 at Purdue University. 

 

2.2.2 NIDS 

An NIDS is used to monitor an organization’s network to prevent malicious 

traffic. It can use one of the common detection methods (signature-based detection or 

anomaly-based detection). 

Both detection methods have advantages and disadvantages. For example, 

signature-based detection cannot detect zero-day attacks, while an anomaly-based 

detection system can. However, an anomaly-based method generates more false 

positive alarms than a signature-based method.  

 

2.2.3 IDS Detection Approaches  

Signature-based detection:  

This approach first sniffs incoming or outgoing network traffic, and then 

compares these sniffed packets with a set of rules in order to identify a malicious 

packet. Additional configurations include spans or a mirror port in a network switch 

required to see all types of network traffic. An NIDS network’s position is very 

important – for example, placing an IDS as a first line of defense in order to monitor 

a firewall’s performance is a good idea. 
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Anomaly-based detection:  

Anomaly-based detection requires security administrators to identify 

unexpected behavior. Examples of unexpected behavior include an ICMP packet 

with a large payload size, or sending a large number of packets with an SYN flag to 

well-known ports to specific PCs.   

 

Signature-based detection: 

These systems detect malicious traffic based on a unique pattern – for 

example, a path traversal or directory traversal attack should contains dots and 

slashes (../../../../); therefore, the signature of the directory traversal attack is 

(../../../../). Another example is if an attacker sends an http login request with ‘admin’ 

as the username and the wrong password more than a specific number of times, then 

these admin login attempts will be logged and the IDS will send an alert. The 

‘admin’ keyword along with the wrong password is an example signature (admin 

login attempt). Signatures are stored in an IDS database and are compared with each 

network packet. 

2.3 Snort 

2.3.1 Introduction 

Snort is an open-source packet sniffer and IDS created by Martin Roesch in 

1998. It was created to sniff network packets such as tcpdump. Later, it was 

improved to detect malicious packets and identify attacks, which it can now do both 

over the network and offline (by reading the pcap files). 
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Snort is a signature-based analysis. Each Snort rule has content that 

represents a unique pattern present in a malicious packet. Some packets can match 

with more than one attack signature – for example, the first alert may be generated if 

an attacker requests the website’s admin page, and the second alert could be 

generated due to a failed admin login attempt.  

2.3.2 Configuration 

Various rules, such as web-attacks, SQL injection, scan attempts, virus, bad-

traffic, ftp attacks and other rules, are written by the Snort community. Snort’s 

configuration file activates and maps these rules with certain important variables, 

such as the following. 

HOME_NET: This is a network you need to protect from outside attacks. It 

accepts IP network addresses or can also accept ‘any’ as a string to detect all 

malicious packets.  

External_NET: This is a network that is outside the scope of the home 

network (e.g. the Internet, a third-party network). It also accepts ‘any’ as an input to 

detect everything. The (#) hash symbol to comment the rule. The configuration file 

allows users to modify and enter all the details of their internal and external servers, 

as well as configure major detection components, such as a decoder, a preprocessor 

and an output plugin. 
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2.3.3 Snort Architecture  

Packet decoder:	  

A series of decoders is used to decode or reconstruct a network packet to 

prepare it for the rest of the IDS’s components. Each decoder responds to a specific 

network layer. For example, when a decoder receives a packet, it checks what 

physical interface the packet contains and sends the packet to a specific decoder that 

responds to that interface, after which it checks what transport protocol packet is 

used and then sends it to the right decoder. Various decoders are used for different 

interfaces (Caswell, 2007). 

 

Layer protocols and decoders:  

Interfaces such as the Ethernet have their own decoders. An 802.11 has its 

own decoder, and network layer protocols (such as IP, ARP and IPX) have their own 

decoders. An ICMP decoder, TCP decoder and UDP decoder are responsible for 

decoding a packet’s transport layer. Figure 1 illustrates the relationship between a 

decoder and the network layers.

 

Figure 1: Layers and decoders 
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Decoders have their own rules during the packet decoding process. A decoder 

rule is generated when an error occurs; for example, if there is invalid IP header 

length with a received packet, then the decoder will log that error and create an alert. 

	  

Figure 2: Snort rule  

	  

The decoder decodes a packet by reconstructing its original structure into a 

specific structure. It set pointers for the most crucial aspects in terms of detection, 

and allows components such as the preprocessor and the detection engine to gain a 

clear picture of their targets inside the packet (Caswell, 2007). In short, it prepares 

the scene of investigation for the preprocessor and detection engine.  

 

Preprocessor:	  	  

This	  normalizes the network packets for the detection engine. For example, if 

the preprocessor receives a fragmented packet, it will wait until it receives the full 

packet before sending it on to the detection engine. Preprocessors are very important 

for successfully completing the detection process, as they prepare a packet payload 

for the detection engine. Certain special preprocessors are used to analyze an 

incoming packet to help identify those attacks that have no signature. For instance, 

there is no content that describes a port sweep attempt; however, new preprocessors 

use a technique called target-based detection that reassembles the packet and 

segments as a target. Preprocessors also prevent issues in terms of fragmented 

packets. If an attacker has sent a malicious packet to a Windows operating system, 

Windows will arrange those packets in a specific order that is different from a Linux 
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operating system. This means that an IDS should order the fragmented packets 

according to a Windows operating system and not a Linux operating system. 

 

Rules:  

In a detection process, each rule is split into two sections: the first section is 

called a rule tree node (RTN) or rule header, and the second is called an option tree 

node (OTN) or rule option.  

RTN data contains a required action, which is an action that is generated if a 

packet matches that rule. Examples of action values are activate, dynamic, alert, pass 

and log, and examples of protocol values are TCP, UDP, IP or ICMP. The home 

network IP address, port number, and the direction symbol are used to first identify 

the source and destination (<>), and then the external network and its port number.  

OTN data contains a message that will be displayed in the Snort log (MSG), a Snort 

rule identifier (SID), an attack signature (Content), rule classification (Class type) 

and so on (snort, n.d.).  

 

Detection Engine: 	  	  

This compares network packets with each possible rule. The comparison 

process has initial requirements. For example, Snort should divide each rule to two 

tree nodes (rule header and rule option), after which it will split the incoming packet 

into another two sections (packet header and packet payload). The packet header will 

be compared with the rule header until a match found, and then the packet payload 

will be compared with all possible rule options for the selected rule header. Snort 

will generate the required action mentioned in the rule header only once a packet 
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header has been matched with a rule header and a packet payload matched with a 

rule option.  

The detection engine is the core of the comparison process. It receives 

packets from the preprocessor and checks if there is any malicious content in a 

packet payload by comparing it with attack signatures (content). The detection 

engine receives packets, checks the protocols contained – these can be TCP, UDP, IP 

or ICMP – and then selects the root node based on those four protocols. So if the 

received packet contains an IP protocol and an TCP protocol, then Snort will check 

both protocols and the packet will check both RTNs. 

 

Figure 3: Snort constructs detection rules  
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Figure 4: Snort RTNs and OTNs  

 

Output Models:	  

 Several output plugins and formats are used to present Snort results. CSV, 

XML and PCAP are examples of output formats.  
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Figure 5: Snort architecture 
Snort Content: 

Snort is a signature-based IDS that relies on a large set of signatures. SID is a 

unique snort ID for IDS signatures, and each rule can have fragmented pieces of 

single signature. Not all rules have content. Some rules can generate an alert if there 

is a specific IP address in the packet header. Alternately, if the packet header has 

encryption data and a specific port (such as an SSH) is used, there is nothing in the 

payload to analyze and no content in the payload will match the rule options.  

However, the rule option may have one or more pieces of content, such as the 

following example.  
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Moreover, content values may be in the ASCII format, HEX format or both 

ASCII and HEX formats. 

Table 1: ASCII content 

CONTENT Rule SID 

MIT-MAGIC-COOKIE-1 1225 

/sensepost.exe 989 

/fp4areg.dll 1247 

GET   /../../../../../../../../../../../ 1049 

fp30reg.dll 1246 
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Table 2: : Hex content 

CONTENT Rule SID 

B4 B4 163 

28 00 01 00 04 00 00 00 00 00 00 00 2124 

C2 C5 CD C4 FD F9 FF 86 E4 9A F8 FF 

E5 9B 98 E5 FC E1 FD A9 FC 
6024 

	  

	  

Table 3: Content with both ASCII and HEX formats 

CONTENT Rule SID 

Insane Network vs 4.0 by Suid 

Flow|0A 0D|www.blackcode.com|0A 

0D|[r00t]|23| 

3015 

Content-Type|3A| application/x-

icq 
1832 

Proxy-Authorization|3A| NTLM 12362 
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A Snort rule can identify the position of content in the payload using depth 

keywords. For example: 

 

Figure 6: Example of depth keyword 

 

Snort Pattern Matcher: 

The Snort pattern matcher groups OTNs with a single RTN. A single RTN 

usually has many OTNs, and a single packet header can send more than one 

malicious payload. The pattern matcher is used to reduce the number of rules that 

must be handled, as the number of rules always increases when processing a large 

number of packets. Snort users can develop their own rule and save it in a local.rules 

file with a higher SID number to avoid any collision with other SIDs (Snort cannot 

run with two rules that contain the same SID, as the rule parser gets the rule file from 

snort.conf and checks the validation of all rules at Snort initialization). 

The Parser.c file has many functions that are used for Snort initialization. For 

example, function ParseRulesFile() is used to prepare all rules from the config file to 

function ParseRule (). ParseRule () verifies the rules and checks if there are 

additional instructions that relate to the preprocessor and output plugins; if there are, 

it provides the required function for each of them (Andrés Felipe Arboleda, 2005). 

Rule categories are based on protocol type, for example a ListHead structure is used 

to organize the rules with their action (ferryas.lecturer.pens.ac.id, n.d.). 
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Figure 7: Both sides show the list of protocol types, output types and action 
types 

 

Two different structures are used for both RTNs and OTNs, and 

ProcessHeadNode() is used to call and prepare OTNs for each RTN. An RTN 

structures header details, while an OTN stores rule options.   

 

Fast Pattern Matching Algorithm: 

Snort uses many string matching algorithms to ensure that the packet 

contains content (such as the Boyer–Moore (Fisk, 2002) and the Aho–Corasick (Fisk, 

2002) algorithms). The Aho–Corasick algorithm is based on a finite state machine: 

the algorithm should have a set of keywords that can be compared with a given text, 

and it can search multiple patterns simultaneously. The Boyer–Moore algorithm, 

however, uses two methods to match or find the pattern in a text. The first method is 

to construct a bad match table to match a given pattern with the text.  

2.4 Data Mining 

Data mining and predictive analysis has improved the performance of many 

systems. Applications use data mining techniques to improve their performance, as 
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security systems (whether a prevention system, such as a firewall, or a detection 

system, such as an IDS) require high performance to monitor network packets. Both 

prevention and detection systems should not allow network packets to bypass the 

required detection due to performance issues. Banking systems use data mining for 

consumer credit cards to improve their offers (i.e. they predict consumer purchase 

patterns based on specific purchases) and to predict future financial risk. 

WebWatcher is a data mining application used to create adaptive websites that 

automatically improve their presentation based on the user’s access pattern. 

Data mining comprises different techniques. However, due to the study’s 

scope, this thesis scope will focus on the predictive model of a decision tree and on 

classification techniques. 

	  

Figure 8: Data mining tree 

	  	  

Classifiers are used to classify the input and give it an appropriate class. 

Training data should be made available to classifiers for them to learn from it. For 

example, the training data may include malicious packets and their corresponding 

rules, which allows the classifier to learn how to act with such future inputs. 
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2.4.1 Naïve Bayes Classifier  

A naïve Bayes classifier is based on Bayes’ theorem, which is easy to 

understand. Bayes’ theorem uses prior probabilities and the likelihood of 

classification based on adjacent patterns. There are two prior probabilities in Bayes’ 

theorem: the first prior probability is for class, while the second is for object (dell, 

n.d.). 

	  

Figure 9: A naïve Bayes classifier. The left side describes class prior 
probability and right side is the likelihood of a new object based on its position  

	  

Figure 9 shows two classes, green and red. The green class is more than 

double the red class; thus, we assume that the probability of a new object belonging 

to the green class is greater than the probability of it belonging to the red class. This 

assumption is called prior probability. Prior probability is an assumption based on 

prior observation and is a part of Bayes’ theorem. The second part of Bayes’ theorem 

is the likelihood of an object belonging to a class. For example, in Figure 9, the red 

objects appear in the left side of the shape’s space, while the green objects occupy 

the right side. Therefore, we can assume that a new object on the left side is more 

likely to classify as red than to classify as green, and vice versa. 
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Figure 10: Posterior probability 

2.4.2 Decision Tree 

A decision tree is a learning method used in machine learning, and decides 

the output by constructing a tree of given inputs. Various algorithms are available to 

build decision trees, such as Iterative Dichotomiser 3 (ID3) and C4.5. A decision tree 

builds tree nodes of the given inputs, and arranges instances from root nodes to leaf 

nodes. 

	  

Figure 11: Decision tree 

	  

In a decision tree, the ‘leaves’ are always decisions. Figure 11 discusses the 

possibility of playing golf with different weather situations. There are many 

situations with two decisions (classes) yes or no. For example, the player can play 
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golf if the outlook is sunny and the humidity is normal, or if we use if-then rules with 

an overcast outlook, the result will be:  

If ‘outlook = overcast’ then ‘play’. 

ID3: 

ID3 is a learning method that uses both entropy and information gain within a 

data set to split the original set and generate a node tree. ID3 selects the root of the 

given data set based on information gain score, with the highest score acting as the 

root of the decision tree. The method keeps splitting the tree nodes until a leaf node 

is found.  

 

C4.5:  

C4.5 has more features than ID3, and both classification algorithms construct 

the tree nodes differently. ID3’s limitation is its overfitting problem; C4.5 solves this 

overfitting problem through the pruning technique. 

 

2.4.3 N-gram analysis 

N-gram is an important part of language modeling. N-gram uses the 

probability of the prior values to predict the new value; for example, it can predict 

the availability of a word in a sentence based on the prior probability of that 

sentence.  

Unigram: 

A unigram is an estimated likelihood of a word (or character) occurring in a 

given text (or word) based on the frequency of occurrence. 

UNIGRAM = U, N, I, G, R, A, M 



25	  
	  

	  
	  
	  

Bigram:  

A bigram is an estimated likelihood of two contiguous words occurring in a 

given text based on the frequency of occurrence. 

BIGRAM ≈ BI, IG, GR, RA, AM 

Trigram:  

A trigram is the estimated likelihood of three contiguous words occurring in a 

given text based on the frequency of occurrence. 

TRIGRAM ≈ TRI, RIG, IGR, GRA, RAM 
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Chapter 3: Proposed Technique 

 

The proposed Snort (based on data mining) will be referred to as the 

‘Intelligent Predictive Packet-Inspect Snort’ (IP2S). The high-level overview of the 

IP2S is illustrated in Figure 12. There are two main components of the Snort, namely 

the offline and the online components. The offline component collects network 

packets and uses them to train a classifier. The online component does the actual 

packet filtering online. Here, the classifier trained with the offline component is used 

to classify each incoming packet. The predicted class corresponds to a rule, which 

belongs to a set of filtering rules. If the classifier predicts the correct rule, i.e. the 

predicted rule matches the packet, then the corresponding rule action is taken. 

Otherwise, the prediction is wrong and, in that case, the traditional Snort is used to 

find the matching rule for the packet and the corresponding rule action is taken. By 

‘rule action’, we mean the action (e.g. alert) corresponding to the rule.  

	  

Figure 12: Proposed technique for the IP2S 
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Before going into the details, we will introduce several terms that will be 

frequently used in this chapter. 

Definition 1 – Packet (Ej): A network packet Ej is a data structure 

consisting of two parts: the header and the payload, denoted by H(Ej) and L(Ej) 

respectively.  

The header contains attributes such as protocol, source IP, destination IP, 

source port, destination port, and so on. The payload contains binary data (i.e. the 

content of the packet).  

Definition 2 – Feature set (F): The feature set is a set of attributes or 

features that is used for training and classification. The feature set consists of two 

subsets: the header feature set (H(F)) and the payload feature set (L(F)). The former 

is extracted from packet headers and the latter is extracted from packet payloads. 

Definition 3 – Feature vector (V(Ej)): The feature vector V(Ej) is a vector 

of feature values for the packet Ej, corresponding to the feature set F.  

Definition 4 – Rule (Ri): A rule Ri consists of three parts. The first two parts 

consist of the rule header and rule options, denoted by H(Ri) and O(Ri) respectively. 

The rule option section may contain zero or more options. The third part of rule Ri is 

the rule action, denoted by A(Ri). If a packet header matches the H(Ri) and the 

content (i.e. payload) matches the O(Ri), then the action A(Ri) is taken. Therefore, 

formally, a rule can be represented as H(Ri) V O(Ri)) A(Ri). The rule header of a 

rule consists of a number of field tests (e.g. Source IP = 10.*.*. * AND Protocol = 

TCP AND Destination Port = 80 AND ...). The rule option usually contains a 

signature (string or pattern) that must be present in packets, and the rule action in 

Snort is usually an alert.  
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Definition 5 – Rule match (M(Ej, Ri)): A packet Ej matches a rule Ri if the 

field values of the packet header H(Ej) satisfy all the field tests in the rule header 

H(Ri), and if the packet payload L(Ej) matches all the rule options O(Ri). We will 

denote this case (i.e. when Ej matches with Ri) with the symbol M(Ej, Ri). Likewise, 

¬M(Ej, Ri) will be used to denote cases where Ej does not match with Ri.  

Definition 6 – Rule set (R): The rule set R = {R1, R2, ….., RN} is the set of 

N rules in the Snort, where each Ri is a rule in the set.  

Definition 7 – Standard Snort (SSn): The SSn is an IDS that, for each 

incoming packet Ej, sequentially searches through the rule set R, starting from the 

first rule R1. If Ej does not match Ri (i.e. ¬M (Ej, Ri)), then the search continues 

with the next rule Ri+1. Otherwise, if M (Ej, Ri), the action A(Ri) is taken. 

3.1 Feature Extraction and Selection 

 We extract two types of features from packets: features from the packet 

header and features from the packet content (i.e. payload). 

1) Packet payload features: Packet payloads contain binary data. We use 

the N-gram feature extraction technique to extract features from the payload. An N-

gram is a sequence of N consecutive bytes in the payload. For example, if you 

assume that 0304051B1D1EF2F3F4FEFF is the payload (hex values), then the one-

gram (one-byte) sequences will be 03, 04, 05, and so on. The two-gram (two-byte) 

sequences will be 0304, 0405, 051B, and so on. Likewise, the three-gram (3-byte) 

sequences will be 030405, 04051B, 051B1D and so on. Note that there are 256 (= 

28) unique one-grams possible, and there are 65,536 (= 216) possible values of two-

grams and so on. Therefore, there are 28N possible different N-grams, which is a 

very large number for large values of N.  
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a)  Generating a one-gram feature vector: For one-gram, the total 

number of features is 256 (00, 01, 02, FF), which is a manageable number. We 

can generate a feature vector for one-gram as follows. For each packet, the 

feature vector consists of 256 binary values (i.e. 0 or 1). The i-th value in the 

vector has value = 1 if the packet contains the corresponding feature. For 

example, given the payload F2 04 F4 05 FE 1B 05 1E 03 FF F3, the feature 

vector would look like 0 0 1 1 1 0 0 .... 1 (256 values). The first value is 0 

because the corresponding one-gram (i.e. 00) is not present in the payload. The 

second value is also 0 for the same reason. Then we have 1 1 1 because the next 

three one-gram features (03, 04 and 05 respectively) are present in the payload. 

The last value (i.e. the 256th value) is 1 because the corresponding one-gram, 

FF, is also present in the payload. 
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Figure 13: Packet identification that exists in both payload and the corresponding Snort 

alert 

	  

	  

	  

Figure 14: One-gram feature vectors. The first value refers to packet ID and the last 

value is a class 

	  

b) Generating N-gram feature vectors (N >= 2): As mentioned before, the 

total number of two-grams is 65,536 and it grows exponentially with the value of N. 

Feature vectors with such a large number of features will not only take up large 

amounts of memory but will also have high processing time during training. 

However, the feature vectors will be very sparse. Therefore, we have devised a 
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heuristic approach for generating the two-grams or higher features, as explained 

below. 

Note that packet payload is inspected by Snort only if the corresponding rule 

contains an option with content, i.e. signature. Therefore, instead of considering all 

possible N-grams as features, we collect the signatures from all rules and generate N-

grams from those signatures only. This drastically reduces the total number of N-

grams generated. For example, if there are 100 rules and each rule contains a 10-byte 

signature on average, the maximum number of N-grams would be (at most) 1,000, 

whatever the value of N. However, we go one step ahead by further reducing the 

number of N-grams generated by selecting the best K based on information gain. 

 

	  

Figure 15: An example of two-gram feature vectors 

	  

3) Putting it together: In summary, the feature extraction and selection 

process works as follows. 

Construct a feature set for the packet headers (denoted as (H(F))), which 
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includes features such as IPSRC, IPDEST, PORTSRC, etc. 

Construct a feature set for N-gram features, N >= 1. Apply feature selection 

to reduce the number of these features. The selected set of features would be denoted 

as L(F).  

The final feature set would look like this: IPSRC, IPDSET, PORTSRC, ......, 

1-gram1, 1 gram2, ... ,2-gram1, 2-gram2, 

The feature vector V(Ej) (for the above feature set) corresponding to a packet 

Ej would look like this: 10.100.10.11, 10.11.100.101, 25, ..., 1, 0, ..., 0, 1, ... denoting 

that the packet’s source IP is 10.100.10.11, destination IP is 10.11.100.101, source 

port is 25, ...., 1-gram1 is present, 1-gram2 is absent and so on. 

3.2 Training the IP2S 

The training data D = {d1……., dM} consists of a set of M training instances 

dk, k∈ {1,…….,M}, where dk is the tuple (V(Ej), i), such that M(Ej, Ri). In other 

words, each training instance consists of the feature vector V(Ej) for the packet Ej 

and the class label i of the packet. The class label i of a packet is the index of the first 

rule (Ri) in the rule set that matches the packet. For example, let us assume the 

packet Ej matches the 10th rule (i.e. R10) in the rule set. In this case, the class label 

of Ej is 10. The class label of a packet can be found by running the SSn for the 

packet. Once we have training data, we can use this data to train a classifier C of our 

choice. This study has tried many different classifiers, but the best ones in terms of 

classification time and accuracy of prediction are the ‘decision tree’ and the ‘ripper’ 

classifiers. Note that the whole process of collecting the training data and training the 

classifier is done offline. 
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3.3 Filtering with the IP2S  

A packet Ej is provided to the classifier C as input. Note that we only provide 

the packet, not the class label. The class label of a packet is the index of the rule that 

matches the packet. The task of the classifier is to predict the class label of Ej. Let 

P(Ej) be the prediction (output or predicted class label) of the classifier for the packet 

Ej. Let P(Ej) = i, i.e. the classifier predicts i as the class label. Since the classifier 

prediction can be wrong, we must check the validity of this prediction. Therefore, we 

now have to test if M(Ej, Ri). If yes, then the prediction P(Ej) is correct and the 

corresponding action A(Ri) is taken. Otherwise, if the prediction P(Ej) is wrong (i.e. 

if ¬ M(Ej, Ri)), then the packet must go through the SSn to fetch the matching rule 

and, accordingly, the corresponding action. 

3.4 Performance Improvement 

In this chapter, we analytically proved how the performance of the IP2S is 

much improved from the SSn using the predictive filtering technique. The 

improvement mainly depends on the quality of the prediction, which can be 

improved by providing enough training data for the classifier to learn. 

Let TS(Ej) be the time needed to filter the packet Ej with the SSn, and TD(Ej) 

be the time needed to filter Ej with the IP2S. In addition, let IL(Ej) be the indicator 

function such that: 
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Let TC(Ej) be the time needed by the classifier to predict the class label of Ej 

(i.e. the classification time). Therefore, we can write: 

 

 

In other words, equation 2 states that the time taken to filter a packet by the 

IP2S is equal to the classification time if the prediction is correct, and the 

classification time plus SSn filtering time if the prediction is wrong. Therefore, the 

time needed to filter a batch of B packets 𝜉 = {E1…., EB} is given by: 

 

 

 

Here, p is the percentage of packets correctly classified (i.e. predicted 

correct) by the classifier. In other words, p would be the accuracy of prediction for 

the set of packets E.  
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Using equations 3 and 4, we can infer that there would be a gain in filtering 

time if: 

 

 

 

Therefore, there would be a gain in running time if the prediction accuracy of 

the classifier is greater than the ratio of the total classification time (TC) to the total 

SSn matching time. For many classification techniques, TC would be much less than 

TS. For example, for the decision tree classifier, the classification time is less than 

half the filtering time of SSn (which is empirically justified by our experiments). 

Therefore, in this case, there would be a gain even if the prediction accuracy is 50% 

(i.e. half of the packets are incorrectly classified). In real-world scenarios, the 

accuracy of a classifier is much higher than 50%, provided that it is trained with 

enough training data. We also derive an interesting relationship between 

classification accuracy and the running time of the IP2S from equation 5. It can be 

seen that the filtering time of the IP2S decreases with the classifier’s increasing 

accuracy. This has been confirmed with the empirical evaluations undertaken with 

the IP2S (in chapter 5). 
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Chapter 4: Experiments and Results 

 

In this chapter, we describe the data sets and experimental environment, and 

discuss and analyze the results.  

4.1 Data Sets and Experimental Setup 

We have used real network traffic from the CAIDA anonymized Internet 

traces 2013 data set (caida dataset, n.d.) Furthermore, we generated synthetic ‘attack’ 

data using the Metasploit framework. 

 

Figure 16: Process of collecting malicious payloads using the Metasploit framework 

	  

Competing approaches: In the IP2S, the classifier used is a decision tree. The 

SSn is used as a baseline. 

Parameter settings: We filter exactly the same set of packets for both the IP2S 

and SSn; this set consists of 10 million packets. For training the classifier, we use 

10,000 packets but these training packets are not used in the test set (i.e. for 

filtering). Moreover, exactly the same set of Snort rules (consisting of 500 rules) is 

used to test both IDSs. These rules have been generated by hand, and follow standard 
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security policies observed in our institution.  

Hardware and software: The experiments were done on a standalone 

workstation that had an Intel Core i5 2.4GHz processor with 8GB RAM and a 

750GB hard drive. The operating system was Windows 7. For the SSn, we used 

Snort version 2.9.8.0, and a major part of the IP2S was developed in Java (NetBeans 

IDE). We have heavily relied on the Weka machine learning API (waikato 

University, n.d.) for feature extraction and selection and classification. 

4.2 Results and Discussion 

We evaluate the system based on the total processing time. Figure 17 shows 

the processing time comparison between the SSn and the IP2S. The x-axis of this 

graph corresponds to the number of packets processed (in millions) and the y-axis 

corresponds to the total processing time in milliseconds. For example, at x=10 

million, the y values of SSn and SSF are 822001 and 113181 respectively, meaning 

that the SSn takes 822,001 milliseconds to filter 10 million packets, whereas IP2S 

takes only 113,181 milliseconds. Thus, IP2S takes about one seventh of the time 

taken by the SSn. In other words, the throughput of IP2S is more than seven times 

that of the SSn. 
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Figure 17: Number of packets vs. cumulative processing time 

Figure 17 also shows the classification time (cumulative) taken by the 

classifier of the IP2S; this is shown with the IP2S (clasfn) curve. It is evident from the 

chart that the the total filtering time required by the IP2S is only a little more than the 

classification time, which means that most of the class predictions have been correct. 

In fact, in this case, the class prediction accuracy was 90% or more. However, based 

on equation 5 in chapter 4, we can infer that even if the prediction accuracy were as 

low as 50%, the total running time of the IP2S would be less than that of the SSn. 

This is because, here, the IP2S’s classification time is about one third of the filtering 

time of the SSn (822 seconds for the filtering time of the SSn and 113 seconds for the 

classification by the IP2S). 

Figure 18 shows how the processing time varies with the number of rules in 

the IDS. We have run both the IDSs with 50, 100, 200 and 500 rules. As expected, 

with the increasing number of filtering rules, processing times also increase. But the 

rate of this increment is higher for the SSn than it is for the IP2S. This is because, 

with the increase in the number of rules, the time to find a matching rule also 

increases in the SSn (it has to browse through a longer list). However, for the IP2S, 

the searching time does not increase as much due to the (mostly) correct predictions 
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made by the classifier. The slight increase that the IP2S observes is due to the extra 

time needed to classify an instance (as the tree is now more complex) and the extra 

time needed when the classifier makes a wrong prediction.  

 

	  

Figure 18: Number of rules vs cumulative processing time 

Effect of the number of training data on the processing time and accuracy of 

the IP2S: The size of the training data has a direct impact on the accuracy of the 

classifier. Generally, the prediction accuracy of a good classifier should increase with 

an increasing size of training data. This is observed in our experiments, as shown in 

Figure 19(a). Here, the x-axis represents the number of training data (in hundreds) 

and the y-axis represents the prediction accuracy of the classifier on the test data. 

There are two curves: one representing 100 rules and the other 500 rules. The curve 

for 100 rules shows the accuracy of the classifier when we have 100 rules in the IDS, 

and the classifier is trained and tested accordingly. The same description goes for the 

curve representing 500 rules. Both of these curves observe the expected behavior, i.e. 

an increase in prediction accuracy with an increase in training data. Recall that, from 

our theoretical analysis on the impact of classifier accuracy on filtering time (chapter 

4), we concluded that the filtering time of the IP2S decreases with increasing 

accuracy.  
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Figure 19(a) size of training data vs classifier accuracy and (b) accuracy vs processing 

time for the IP2S 

 

The empirical observations confirm this theory, as reported in Figure 19(b). 

Figure 19(b) shows how the processing time varies with the prediction accuracy of 

the classifier. In both these figures, we report the performance of the IP2S for 100 

rules and for 500 rules. In general, the processing time reduces as the prediction 

accuracy increases. This is because with higher prediction accuracy, the correct rule 

is predicted more often, requiring less browsing through the rule list to find the 

matching rule. We get another interesting observation from these figures.  

We observe that, for a larger number of rules, the processing time of the IP2S 

is higher. For example, when accuracy is 92%, the processing times of the IP2S with 

100 rules and 500 rules are 414 milliseconds and 101 milliseconds respectively. 

Therefore, the larger the number of rules, the higher the running time even for the 

same rate of accuracy. This happens because, for example, when the accuracy is 

92%, only 8% of packets are incorrectly classified, meaning that the IP2S has to 

browse through the list of rules to find a match for these 8% of packets. However, 

this browsing takes longer and incurs more hits when the list is larger (i.e. 100 vs 500 

rules). 
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We tested four different classifiers with our two-gram feature data, and found 

that each classifier has different results. In addition, we tested one-gram feature data 

with these different classifiers, and the results of the classifiers were less accurate 

than for two-gram feature data.  

 

Figure 20: Results of the J48 classifier, naïve Bayes classifier, random forests and 

SMO function with two-grams  
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Figure 21: Two gram’s classifier accuracy with different volumes of packets  

	  

Figure 22: One gram’s classifier accuracy with different volumes of packets  
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Chapter 5: Conclusion 

	  

We have introduced a novel and intelligent approach for faster packet 

matching by IDSs. In this approach, a classifier is first trained to predict the 

matching rule for any given packet and is then employed in the real network. This 

results in faster speed in terms of packet matching compared to a standard IDS 

(which browses through the set of rules to find the matching rule for a packet). We 

have proved the effectiveness of our approach both theoretically and empirically with 

real network traffic. We have also analyzed the different parameters of the system, 

such as the number of rules and the size of training data. 

In the future, we would like to enhance intelligent predictive matching by 

introducing more efficient and sophisticated classifiers to address the issue of lower 

accuracy in the presence of a large number of rules. Besides this, we hope to apply 

different classifiers, big network data, and different attack scenarios to evaluate the 

robustness of our approach. 
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One-gram feature vectors 

 

	  



48	  
	  

	  
	  
	  

	  



49	  
	  

	  
	  
	  

 

Two-gram features vectors  
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Two-gram source code  
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One-gram source code  
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