United Arab Emirates University

Scholarworks @ UAEU

Theses Electronic Theses and Dissertations

5-2016

Enhancing snort IDs performance using data
mining

Mohammed Ali Almaleki

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/all theses

Part of the Digital Communications and Networking Commons

Recommended Citation

Ali Almaleki, Mohammed, "Enhancing snort IDs performance using data mining" (2016). Theses. 321.
https://scholarworks.uaeu.ac.ae/all_theses/321

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarworks@UAEU. It has been accepted for

inclusion in Theses by an authorized administrator of Scholarworks@UAEU. For more information, please contact fadl. musa@uaeu.ac.ae.

https://scholarworks.uaeu.ac.ae?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_theses?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/etds?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_theses?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_theses/321?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fadl.musa@uaeu.ac.ae

daaiall A=l Cljloll deoln
United Arab Emirates University

UAEU

United Arab Emirates University
College of Information Technology

Information Security Track

ENHANCING SNORT IDS PERFORMANCE USING DATA

MINING

Mohammed Ali Almaleki

This thesis is submitted in partial fulfillment of the requirements for the degree of

Master of Science in Information Security

Under the Supervision of Dr. Mohammad Mehedy Masud

May 2016

Declaration of Original Work

I, Mohammed Ali Almaleki, the undersigned, a graduate student at the United Arab
Emirates University (UAEU), and the author of this thesis entitled “Enhancing Snort
Ids Performance Using Data Mining” hereby, solemnly declare that this thesis is my
own original research work that has been done and prepared by me under the
supervision of Dr. Mohammad Mehedy Masud in the College of Information
Technology at UAEU. This work has not previously been presented or published, or
formed the basis for the award of any academic degree, diploma or a similar title at
this or any other university. Any materials borrowed from other sources (whether
published or unpublished) and relied upon or included in my thesis have been
properly cited and acknowledged in accordance with appropriate academic
conventions. I further declare that there is no potential conflict of interest with
respect to the research, data collection, authorship, presentation and/or publication of

this thesis.

Student’s Signature: Date:

Copyright © 2016 Mohammed Ali Almalkei
All Rights Reserved

Approval of the Master Thesis

This Master Thesis is approved by the following Examining Committee Members:
1) Advisor (Committee Chair): Dr. Mohammad Mehedy Masud
Title: Assistant Professor
Information Security Track

College of Information Technology

Signature: 4%;‘ Date: 7/0 5/920/é

2) Member: Dr. Zouheir Trabelsi
Title: Associate Professor
Information Security Track

College of Information Technology
Signature: % Date: 0’}/04,/ Z?/ 5

3) Member (External Examiner): Dr. Amjad Gawanmeh

Title: Assistant Professor
Department of Computer and Software Engineering

Institution: Khalifa University

Signature: Date: / % f{/ ZD/’é
De. Zov hei~ Jrabe/s, /

for Dr. ﬁmjw/ Gawanme?

This Master Thesis is accepted by:

Dean of the College of Information Technology: Prof. Omar El-Gayar

Signature / -~ V Date "> wn £ 2s1¢

Dean of the College of the Graduate Studies: Professor Nagi T. Wakim

Signature ' Date \ 4\ (G \ 20l 6

x

Copy 6 of

Vi

Abstract

Intrusion detection systems (IDSs) such as Snort apply deep packet
inspection to detect intrusions. Usually, these are rule-based systems, where each
incoming packet is matched with a set of rules. Each rule consists of two parts: the
rule header and the rule options. The rule header is compared with the packet header.
The rule options usually contain a signature string that is matched with packet
content using an efficient string matching algorithm. The traditional approach to IDS
packet inspection checks a packet against the detection rules by scanning from the
first rule in the set and continuing to scan all the rules until a match is found. This
approach becomes inefficient if the number of rules is too large and if the majority
of the packets match with rules located at the end of the rule set. In this thesis, we
propose an intelligent predictive technique for packet inspection based on data
mining. We consider each rule in a rule set as a ‘class’. A classifier is first trained
with labeled training data. Each such labeled data point contains packet header
information, packet content summary information, and the corresponding class label
(i.e. the rule number with which the packet matches). Then the classifier is used to
classify new incoming packets. The predicted class, i.e. rule, is checked against the
packet to see if this packet really matches the predicted rule. If it does, the
corresponding action (i.e. alert) of the rule is taken. Otherwise, if the prediction of
the classifier is wrong, we go back to the traditional way of matching rules. The
advantage of this intelligent predictive packet matching is that it offers much faster
rule matching. We have proved, both analytically and empirically, that even with
millions of real network traffic packets and hundreds of rules, the classifier can

achieve very high accuracy, thereby making the IDS several times faster in making

vii

matching decisions.

Keywords: Snort, Data Mining, Classification, Security.

viii

Title and Abstract (in Arabic)

cialall) e Sl Jualy) £ o 5ali Aol gy Sadd) andll g 38 AU £)] Canal
S
cailall
Al jue el g l8al) dakail 4pali (21) sall Al o g da sl o2a Cangdl
LSy Al ajall paat 4SSl JuaiV) 8 e @33l 3kl Ty
Ll deadtall Gl A Cpat A (o Wy gl g At Ao jus s
Clangll ot 5k aal (e 2 dlu jall Gl Gandy aaill dalal daal ()
oand e allaill S8 Y a8 Al el GUL aaa) 35 ae (ST Led gzl g A g SV
Leien s I A5 A Slaagll (any) e dllaial) (535 Laa Al jall UL anes
o’ Aaul g 48030 o jall (e Gaall AUl asdll elol 3,08y glat A all J sl
Sadll Juaiy) o gy il § A5 Y Lary)
Caiatl Lgalhitinl o3 iy 5l Gl d G Jle Al)l oda (g sias
Al (e dad il Jadll 33 0a3 ae Gl S0l Jlaty) aaady AN @Y Lanyl

oaadll

— U o) — Al and — e sheall (el — CUSLED (el A 1) Eiad) asalia

Lﬁju\ J\J;J\ ;\J\

Acknowledgements

Firstly, I would never have been able to finish my thesis without help from
Allah, as when we don’t know what we need to improve ourselves, Allah pushes us
to interact with good people in order to select the best way to achieve our goals.

I would like to thank my advisor, Dr. Mohammed Mehedy Masud, for his
continuous support of my master thesis. I would like to express my gratitude for his
patience, knowledge and motivation, which improved my research skills. Dr. Masud
taught me a lot of new things; he helped me accomplish and complete several
difficult tasks, and supported me when I faced pressure from research results and
deadlines.

I would also like to thank Dr. Zouhair Trabelsi, as he helped me register my
thesis with Dr. Masud. His advanced network security class helped me to clearly

understand and complete the security part of my thesis.

Dedication

To Omer Almaleki, my Mom, my Sister & my beloved wife

xi

Table of Contents

THELE .ttt ettt ettt et be e 1
Declaration of Original Workc.coooiiieiiiiiiiiicieeeeeeeeeee e 1
L0707 5 1= 1 | A0SR 111
Approval of the Master ThesIS......ccuieriiiiriieeiiie ettt v
ADSETACT ...ttt et et b e e aeas vi
Title and ADbStract (IN ATADIC)ceeviieriieeiiieeiieertee e ere e e eeeeeaeeesreeeeneeeenns viil
ACKNOWICAZEIMENESeviiiiiiieciieeciee e et etre e ebee e snee e es 1X
DIEAICATION ...ttt ettt sttt X
Table Of CONENESeiiiiiiiiieiieeie ettt et Xi
33T A) 0 21 o (PSPPSR Xix1
LISt Of FIZUIES ...vieeiiiieciieece ettt ettt et eaae e seneeeenseeesnns xiil
| BT A0) AN o] o) (kA 1 1013 RSP S X1v
Chapter 1: INtrodUCTIONcocoiieiiieeieeee et e e e e e e seree e s 1
LT OVEIVIEW ittt sttt st ettt et st e b e 1

1.2 Problem Statementcoccuieeeiieeiiieeiieeeiie et eeieeesaee e e reeeaeeeeaeeesnnee s 1

1.3 Motivation and ContribUtiONccueeerieeeiieeriiieeeire e e e eieeeeeee e 2

1.4 Relevant LIteraturec.ceeevieiiiieeiiie ettt e esaee e s 2
Chapter 2: Background — IDS and Data Mining............ccccveevveeerieeenveeniieeeieesee e 4
2.1 INfOrmMation SECUTILY.....cccvvieriireeeiieeeiieerieeerree et e et e eireeeareeenreesnaeeeenseeennns 4

2.2 Detection and Prevention SYStEMScceeervieeriieerieeeiieeeieeeireeeneeeevee e 5
221 HIDS ettt ettt st 7

2.2.2 NIDS ettt ettt et sa e e 8

2.2.3 IDS Detection ApProaches..........coecvveeeieeerieeeniieeiee e eee e 8

2.3 STI0TT .ttt ettt h e ettt e ab e bt e teesaeeens 9
2.3.1 INtrOAUCHION ...eeeieiieeiiieeiie ettt e e e e enree s 9

2.3.2 CONTIGUIATIONeveeeiiieeeiieeciee ettt e e sre e et eeere e e e e esreeseneeeenns 10

2.3.3 SNOrt ATChItECtUIEeeeeiviieciiieeiie et 11

2.4 Data MINING.....ccciuiieeiieeeiieeeiieeeeieeesieeesteeeseaeeeseaeeessseeesaseeesseesseesssseeessseeenns 20
2.4.1 Naive Bayes ClasSifiercccveevuiieriiieniieeiie et 22

2.4.2 DECISION TTEEvveeeeiieeiiieeiieeeiee et et e 23

2.4.3 N-gram analysisccccecvveeriiieniiieeniieenieeerieeerreeereeereeeeeeesree e 24

Chapter 3: Proposed TeChNIQUEccccueeeiiiiiiiiieeiieecite et 26
3.2 Training the IP2S... ..o 32

3.3 Filtering with the IP2S ..o 33

3.4 Performance ImMprovementccecuvieeiieeeiiieniie et 33
Chapter 4: Experiments and ReSultscccocvieriiiieniiiiniiecieeceeee e 36
4.1 Data Sets and Experimental SEtupccceeeviieriiieriiieeriee e 36

4.2 Results and DiSCUSSIONcccveiiiiieeiiieeiieeeiee e eeiee e e eseveeeeaeeeareesaeeees 37
Chapter 5: CONCIUSION.iiiiiieeiiieeiee et eeee e e e e e e e areeeaeeeeseeeenseeens 43
L3 10) B0 ea 21 0] 1) 2SRRI 44

xii

List of Tables

TaADLE 1: ASCIL CONTENT ...ttt e e e e e e e e et eeaeeeeeeeeeaenaaaeeeeas 17
TaADLE 2: 1 HEX CONEENL ettt e e e e e e e e e e e e e e e eeeeeaenaaaeeeeas 18
Table 3: Content with both ASCII and HEX fOrmats........ccoeveviveeemeeeeeeeeeeeeeeeeeeenee. 18

xiii

List of Figures
Figure 1: Layers and deCOderscoceeriiiiiiiiiiiiiiiiiciceeeeeeee e 11
Figure 2: Snort TULEoc.eiiiiiiiie e 12
Figure 3: Snort constructs detection rules..........coceevieeiiiniiiiiiniciieneeeceeee, 14
Figure 4: Snort RTNS and OTNScoouiiiiiiiiiiiieieeeeeee e 15
Figure 5: Snort archit@Cturecocueoiiiiiiiiiiiiieee e 16
Figure 6: Example of depth Keyword............ccoooiiiiiiiiiiceeee, 19
Figure 7: Both sides show the list of protocol types, output types and action types .20
Figure 8: Data MINING tre€cccueiiiiiiiiiiiiiiieiie ettt e 21
Figure 9: A naive Bayes classifier. The left side describes class prior probability and
right side is the likelihood of a new object based on its position.............. 22
Figure 10: Posterior probabilitycccceeriieiiiiieiiieeieeecieeee e 23
Figure 11: DECISION tIEC.....cevuiiiiiiiiiiiiieiiie ettt e 23
Figure 12: Proposed technique for the TPSc.oovoveiveeeeeeeeeeeeeeeeeeseee e 26
Figure 13: Packet identification that exists in both payload and the corresponding
SNOTE ALETT ... 30
Figure 14: One-gram feature vectors. The first value refers to packet ID and the last
VAIUE 1S @ ClASS...eiiiiiiiiiiieee e 30
Figure 15: An example of two-gram feature vectors..........cceveerieiiiiniciniecniceeeee, 31
Figure 16: Process of collecting malicious payloads using the Metasploit framework
.. 36
Figure 17: Number of packets vs. cumulative processing time............cccceevveenueenee. 38
Figure 18: Number of rules vs cumulative processing timecccccceeeeeveeerveeennnen. 39
Figure 19(a) size of training data vs classifier accuracy and (b) accuracy vs
processing time for the TPZS..........v.veveveeeeeeeeeeeeeeeeeeeeseeeeeeeeeeee e 40
Figure 20: Results of the J48 classifier, naive Bayes classifier, random forests and
SMO function With tWO-gramscceeveeerieeriuieeniieeniee e e 41
Figure 21: Two gram’s classifier accuracy with different volumes of packets......... 42

Figure 22: One gram’s classifier accuracy with different volumes of packets.......... 42

IDS

HIDS

NIDS

IP

DoS

DDoS

SID

RTN

OTN

List of Abbreviations

Intrusion Detection System

Host-Based Intrusion Detection System
Network-Based Intrusion Detection System
Internet Protocol

Denial of Service

Distributed Denial of Service

Snort ID

Rule Tree Node

Option Tree Node

Xiv

Chapter 1: Introduction

1.1 Overview

Security systems that monitor network packets, such as firewalls and IDSs,
should be able to hold, analyze and log a network packet, as well as apply the
required rules rapidly. Advanced attacks take advantage of a firewall’s or IDS’s
performance issues; therefore, security researchers focus on both high performance
and efficiency.

Data mining is used to enhance the performance of several applications, and
predicts the correct decision based on a training data set. Therefore, data mining
improves both security and performance by predicting the right rule, instead of

checking every possible rule.

1.2 Problem Statement

The large number of attack signatures makes IDS match and compares a lot
of rules with incoming and outgoing packets. This mechanism of rule—packet
comparison is accurate, but it may not work properly with a large number of packets
and a large number of rules, as each rule is checked one by one. For example, if we
received a malicious packet and this packet matched the last rule, then the IDS would
take a long time to produce this matched rule.

This would negatively affect an IDS’s performance, and may result in errors,
allowing some packets to pass into the network without analysis and detection.
Therefore, an IDS should find the right rule as fast as possible, without any

performance issues.

1.3 Motivation and Contribution

IDS rules have increased, and many other devices instead of just a laptop or
PC can now be used to send malicious packets or attack others. The integration of
physical and network penetration activities extends the scope of attacks, rules and
network traffic.

The options of now running attack tools with smartphones or installing an
operating system such as Kali (which provides built-in common penetration test
tools) are available for everyone. IDSs and other defense systems should provide
high performance to secure networks and the Internet of things and smart cities’
systems. We use data mining to enhance the IDS’s performance by classifying
malicious packets with corresponding rules, and sending those rule to IDS for

verification against the received rule.

1.4 Relevant Literature

IDSs apply a packet matching technique that is similar to the packet filtering
technique used by firewalls. In addition, IDSs apply signature matching to connect
signatures with packet content. We will first discuss some relevant work in packet
filtering enhancement, before moving on to discuss deep packet inspection by IDSs.
Most of the existing research on the performance of firewalls focuses on the
improvement of packet searching times by using various mechanisms, including
hardware-based solutions (Baboescu, 2001), specialized data structures (Goyal,
2015) (Woo, 2000), and heuristics (Gupta, 2001). Research works in (Hamed, 2006)
(Kencl, 2006) focus on statistical filtering schemes to improve the average packet

processing time. The structure of searching by taking into account packet flow

3
dynamics has been introduced by (Kencl, 2006), (Acharya, 2007). The segment-
based tree search (STS) scheme (El-Atawy, 2007) uses bounded depth Huffman trees
to enhance the search based on statistics collected from segments. The idea of
firewall optimization through early packet rejection was introduced by (Mothersole,
2011), (Trabelsi, 2011) — (El-Atawy, 2009). In (Trabelsi, 2011), early packet
rejection is done through rule-fields ordering. In (Trabelsi, 2012), early packet
rejection is done through a multilevel filtering process that includes field and
intersection filtering modules. In (Mothersole, 2011), an approach named FVSC is
proposed to optimize the rejection path. This technique uses a set cover
approximation algorithm to construct early rejection rules from original security
policy common field values. The PBER technique introduced by (El-Atawy, 2009) is
considered a generalization of FVSC (Mothersole, 2011), in the sense that FVSC
only focuses on a rejection path while PBER finds shortcuts for both accepted and
rejected packets. There has been some work on rule-filtering optimization using data
mining. For example, (Cohen, 2005) applies a decision tree classifier for packet
classification. In this case, the class label is either ‘accept’ or ‘deny’. However, our
approach in this study addresses the problem differently: here, each class label is a
rule rather than an ‘accept’ or ‘deny’. In our previous work (Mustafa, 2013), we
applied a data mining technique to enhance packet filtering. However, this current
work is more challenging, as the previous study only dealt with the packet header,
which consists of a small number of features. On the other hand, this current,
proposed work deals not only with the packet header, but also with packet content.
Therefore, the number of features is very large (e.g. consider each byte of content as
a feature) and the learning is more complex. However, we have applied a heuristic to

reduce the feature set and improve learning performance and accuracy.

Chapter 2: Background — IDS and Data Mining

2.1 Information Security

Information security provides a set of policies and systems that protect
information from unauthorized people.

Protection means that unauthorized people are unable to access or modify
data, even by accident. Protection mechanisms, systems and algorithms are created to
preserve information confidentiality, integrity and availability.

Confidentiality refers to the protection of data from unauthorized access, and
the provision of access to authenticated users only. An example of a protection
mechanism is access control implantation, which is one of the security mechanisms
used to achieve confidentiality.

Examples of confidentiality attacks:
- Session hijacking and the theft of user credentials.

Integrity refers to the protection of data from unauthorized modification.
Integrity is different from confidentiality. For example, providing access to students
so they may see their grades does not mean that they can change their marks.
Cryptography techniques such as hashing algorithms and digital signatures are
examples of mechanisms used to achieve the integrity goal.

Examples of Integrity attacks:

- Data modifications through a man-in-the-middle (MITM)
attack.
- Data modification through SQL injection and cross-site

scripting.

- Data modification using the exploitation phase (e.g. leveraging
the application server privileges with its default credentials).

In terms of availability, the required system, application, software, database,
hardware and other assets should be available when requested; however, it does not
mean that the user can request these assets 24/7. User—service interaction should be
regulated by policy rules.

Availability is a very critical issue, as it does not make sense to preserve both
confidentiality and integrity for data that is not available to anyone! One single
interruption may cost the organization a lot of money. Load balancers, backup
systems, the offline mode, and the installation of a UPS battery in the data server
room are examples of availability systems.

Examples of availability attacks:

- Physical destruction that makes the servers shut down, or
causes the disconnection of the database or any other network component.

- Distributed denial of service (DDOS).

2.2 Detection and Prevention Systems

Network attacks have become the weapons used by criminal organizations
and malicious groups. People participate in social networks, transfer their credit card
data, pictures and videos, and share their personal locations and other sensitive
documents with each other online; this motives a lot of criminals and malicious
groups to hack into the Internet.

Security breaches may cause a lot of damage to victims. Intruders are
everywhere, threatening and penetrating organizations; network administrators set

several defense processes and systems to prevent intrusion attempts. However,

prevention is only a single line of defense in the face of these malicious attempts.
Detection is also required to improve an organization’s security.

Detection catches what prevention misses. For example, it is possible to
detect firewall bypass attempts, access control bypasses (privilege escalation), or
simply trace someone’s activities. Various network security mechanisms can counter
attacks, and these mechanisms include firewalls, IDSs, IPSs and honeypots. Each of
these mechanisms provides a different service to counter a threat and mitigate the
risks. For example, the role of a firewall is the prevention of malicious traffic,
whether that be software, hardware or both. It contains predefined rules for malicious
attempts and allows users to create their own security rules, grouping them together
into a security policy that it then applies. Firewalls can be personal (for a single user)
or can be an enterprise’s firewall (for an organization’s network). Palo Alto
Networks, Juniper Networks and the Cisco ASA firewall are examples of
commercial firewalls.

IPS is a combination of both IDS and firewall functionalities. IPSs have most
of the detection and log techniques offered by IDSs. Moreover, an IPS can prevent
what it detects. An example of an IPS is the Cisco IPS 4200 series.

Honeypots are vulnerable systems. These offer a lot of vulnerability to the
attackers in order to trap them and trace their activities, such as security control
bypasses, privilege escalations, and so on. The data generated is then used to
improve the current security system.

An IDS is a detection technique used to monitor, alert and log suspicious
traffic. Host-based IDSs (HIDSs) and network-based IDSs (NIDSs) are different

types of IDSs.

A signature-based method and an anomaly-based method are the different
methods for detection. Both detection methods allow the system administrator to
create his own rules and execute them with specific users, throughout the subnet or

throughout the whole organization’s network.

2.2.1 HIDS

An HIDS is used to monitor the user’s PC for misconfigurations,
policy enforcement, rootkit detection, integrity, event correlation and log analysis. It
is useful to monitor those audit trails that determine an insider or a policy violation,
as well as to trace the improper activities of a specific user ID. Due to its position, it
can identify malicious activities over encrypted networks or switched network
topology. Some useful HIDS services are:

File integrity checking (berkeley, n.d.): Generate periodically cryptographic
checksum value to maintain the integrity of files.

File attributes checking: Check file permission and ownership modifications.

File access attempts: Monitor file access for both users and applications, and
the type of requested access (e.g. read, write or execute).

Code analysis: Monitor and check the attempt of execute code, such as buffer
overflow attacks. This is useful to thwart privilege escalation, malware and
unauthorized access (google, n.d.).

Network configuration monitoring: Monitor the integrity of the network
configuration of a host.

The drawbacks of HIDSs are:

Draw on the resources of a user’s host.

Cannot detect a packet over the network (sans, 2005).

Tripwire is an example of an HIDS created by Dr. Eugene Spafford and Gene

Kim in 1992 at Purdue University.

2.2.2 NIDS

An NIDS is used to monitor an organization’s network to prevent malicious
traffic. It can use one of the common detection methods (signature-based detection or
anomaly-based detection).

Both detection methods have advantages and disadvantages. For example,
signature-based detection cannot detect zero-day attacks, while an anomaly-based
detection system can. However, an anomaly-based method generates more false

positive alarms than a signature-based method.

2.2.3 IDS Detection Approaches

Signature-based detection:

This approach first sniffs incoming or outgoing network traffic, and then
compares these sniffed packets with a set of rules in order to identify a malicious
packet. Additional configurations include spans or a mirror port in a network switch
required to see all types of network traffic. An NIDS network’s position is very
important — for example, placing an IDS as a first line of defense in order to monitor

a firewall’s performance is a good idea.

Anomaly-based detection:

Anomaly-based detection requires security administrators to identify
unexpected behavior. Examples of unexpected behavior include an ICMP packet
with a large payload size, or sending a large number of packets with an SYN flag to

well-known ports to specific PCs.

Signature-based detection:

These systems detect malicious traffic based on a unique pattern — for
example, a path traversal or directory traversal attack should contains dots and
slashes (../../../../); therefore, the signature of the directory traversal attack is
(../..]..1../). Another example is if an attacker sends an http login request with ‘admin’
as the username and the wrong password more than a specific number of times, then
these admin login attempts will be logged and the IDS will send an alert. The
‘admin’ keyword along with the wrong password is an example signature (admin
login attempt). Signatures are stored in an IDS database and are compared with each

network packet.

2.3 Snort

2.3.1 Introduction

Snort is an open-source packet sniffer and IDS created by Martin Roesch in
1998. It was created to sniff network packets such as tcpdump. Later, it was
improved to detect malicious packets and identify attacks, which it can now do both

over the network and offline (by reading the pcap files).

10

Snort is a signature-based analysis. Each Snort rule has content that
represents a unique pattern present in a malicious packet. Some packets can match
with more than one attack signature — for example, the first alert may be generated if
an attacker requests the website’s admin page, and the second alert could be

generated due to a failed admin login attempt.

2.3.2 Configuration

Various rules, such as web-attacks, SQL injection, scan attempts, virus, bad-
traffic, ftp attacks and other rules, are written by the Snort community. Snort’s
configuration file activates and maps these rules with certain important variables,
such as the following.

HOME NET: This is a network you need to protect from outside attacks. It
accepts IP network addresses or can also accept ‘any’ as a string to detect all
malicious packets.

External NET: This is a network that is outside the scope of the home
network (e.g. the Internet, a third-party network). It also accepts ‘any’ as an input to
detect everything. The (#) hash symbol to comment the rule. The configuration file
allows users to modify and enter all the details of their internal and external servers,
as well as configure major detection components, such as a decoder, a preprocessor

and an output plugin.

11

2.3.3 Snort Architecture

Packet decoder:

A series of decoders is used to decode or reconstruct a network packet to
prepare it for the rest of the IDS’s components. Each decoder responds to a specific
network layer. For example, when a decoder receives a packet, it checks what
physical interface the packet contains and sends the packet to a specific decoder that
responds to that interface, after which it checks what transport protocol packet is
used and then sends it to the right decoder. Various decoders are used for different

interfaces (Caswell, 2007).

Layer protocols and decoders:

Interfaces such as the Ethernet have their own decoders. An 802.11 has its
own decoder, and network layer protocols (such as IP, ARP and IPX) have their own
decoders. An ICMP decoder, TCP decoder and UDP decoder are responsible for

decoding a packet’s transport layer. Figure 1 illustrates the relationship between a

decoder and the network layers.
4 3\ 4 N\
Transport Layer > DecodeTCP
g J (. J
e 3 4 Y
Network Layer > DecodelP
. J (. J
N\ 4 I
Physical Layer > DecodeEthPktEthernet
. J (. S/

Figure 1: Layers and decoders

12
Decoders have their own rules during the packet decoding process. A decoder
rule is generated when an error occurs; for example, if there is invalid IP header

length with a received packet, then the decoder will log that error and create an alert.

alert (msg:"DECODE_IPV4_INVALID_HEADER_LEN"; sid:2; gid:116; rev:1; metadata:rule-type decode;
classtype:protocol-command-decode;)

Figure 2: Snort rule

The decoder decodes a packet by reconstructing its original structure into a
specific structure. It set pointers for the most crucial aspects in terms of detection,
and allows components such as the preprocessor and the detection engine to gain a
clear picture of their targets inside the packet (Caswell, 2007). In short, it prepares

the scene of investigation for the preprocessor and detection engine.

Preprocessor:

This normalizes the network packets for the detection engine. For example, if
the preprocessor receives a fragmented packet, it will wait until it receives the full
packet before sending it on to the detection engine. Preprocessors are very important
for successfully completing the detection process, as they prepare a packet payload
for the detection engine. Certain special preprocessors are used to analyze an
incoming packet to help identify those attacks that have no signature. For instance,
there is no content that describes a port sweep attempt; however, new preprocessors
use a technique called target-based detection that reassembles the packet and
segments as a target. Preprocessors also prevent issues in terms of fragmented
packets. If an attacker has sent a malicious packet to a Windows operating system,

Windows will arrange those packets in a specific order that is different from a Linux

13
operating system. This means that an IDS should order the fragmented packets

according to a Windows operating system and not a Linux operating system.

Rules:

In a detection process, each rule is split into two sections: the first section is
called a rule tree node (RTN) or rule header, and the second is called an option tree
node (OTN) or rule option.

RTN data contains a required action, which is an action that is generated if a
packet matches that rule. Examples of action values are activate, dynamic, alert, pass
and log, and examples of protocol values are TCP, UDP, IP or ICMP. The home
network IP address, port number, and the direction symbol are used to first identify
the source and destination (<>), and then the external network and its port number.
OTN data contains a message that will be displayed in the Snort log (MSG), a Snort
rule identifier (SID), an attack signature (Content), rule classification (Class type)

and so on (snort, n.d.).

Detection Engine:

This compares network packets with each possible rule. The comparison
process has initial requirements. For example, Snort should divide each rule to two
tree nodes (rule header and rule option), after which it will split the incoming packet
into another two sections (packet header and packet payload). The packet header will
be compared with the rule header until a match found, and then the packet payload
will be compared with all possible rule options for the selected rule header. Snort

will generate the required action mentioned in the rule header only once a packet

14
header has been matched with a rule header and a packet payload matched with a
rule option.

The detection engine is the core of the comparison process. It receives
packets from the preprocessor and checks if there is any malicious content in a
packet payload by comparing it with attack signatures (content). The detection
engine receives packets, checks the protocols contained — these can be TCP, UDP, 1P
or ICMP — and then selects the root node based on those four protocols. So if the
received packet contains an IP protocol and an TCP protocol, then Snort will check

both protocols and the packet will check both RTNs.

IP
(e
l |

OTN

Activation

UDP

3
=

TCP

Hl

T

P RTN G—“ RTN ﬁ ’

ICMP ‘ O'I:N U] OT'N g
Alert
UDP RTN
OTN
TCP RTN RTN RTN
oT

| o g | o U ’ o g
fomfl fomf fom]
[om [}

Figure 3: Snort constructs detection rules

ListHead
e |
RTN RTN RTN
Rule
Tree SRC IP: SEXTERNAL_NET SRC IP: SEXTERNAL_NET SRC IP: SHOME_NET
SRC Port: SHTTP_ PORTS SRC Port: any SRC Port: any
Node DST IP: SHOME_NET DST IP: S$SHOME_NET DST IP: SEXTERNAL_NET

15

Drop ‘,—»' Dynamic H Log

DST Port: any

DST Port: 143

DST Port: 25

l

l

]

OTN OTN OTN
msg: “SHELLCODE..." msg: “IMAP Qualcomm msg: “SPYWARE-PUT...”"
flow: to_client, WorldMail. ..~ flow: to_server,
established; flow: to_server, established;
content: "shellcode"; established; content:”X-Mailer”;
nocase; dsize:>668;- fast_pattern:only;
OTN OTN OTN
Opt
Tree msg: “SHELLCODE. ..~ msg: “IMAP Mail...” “SPYWARE-PUT. . .~
flow: to_client, flow: to_server, to_server,
Node established; established; established;
content: "heapspray"; content:”login|207B| " ; content: ”"Attached”;
nocase; depth:7; offset:3; fast_pattern:only
OTN
msg: “SHELLCODE..."

flow: to_client,
established;
content: "this.mem =
new Array|28 29|";

Output Models:

Figure 4:

Snort RTNs and OTNs

Several output plugins and formats are used to present Snort results. CSV,

XML and PCAP are examples of output formats.

16

Decoder Preprocessor Detection Engine Output models

— Network Packet —_—

Two purposes of
output, firstly used to
generate different
types of alerts such as

It has detection Detection Engine is
capabilities such as
port scan detection, a

lot of preprocessor

the last detection
Decode packet and

modify its structure to
be more flexible with

process, it detects

packet with a set of
rules, rule is divide
into header and

full alert or fast alert

and secondly used to

format the result file
such as XML

available to compare

detection components !
and normalize packets

to detection engine option

Figure 5: Snort architecture
Snort Content:

Snort is a signature-based IDS that relies on a large set of signatures. SID is a
unique snort ID for IDS signatures, and each rule can have fragmented pieces of
single signature. Not all rules have content. Some rules can generate an alert if there
is a specific IP address in the packet header. Alternately, if the packet header has
encryption data and a specific port (such as an SSH) is used, there is nothing in the
payload to analyze and no content in the payload will match the rule options.

However, the rule option may have one or more pieces of content, such as the

following example.

17

alert tcp SEXTERNAL NET any -> SHOME NET 139 (msg:"NETBIOS SMB
wkssvc unicode little endian andx bind attempt", flow:established,to_server,
content:"|00|", depth:1, content:"|FF|SMB", within:4, distance:3,
pere:"/A(\x75)\x2d|\x2f]\x73|\xa2|\x 2¢e|\x24\x74)/sR", byte_test:1,&,128,6,relative,
content:"%", depth:1, offset:39, byte_jump:2,0,little,relative, content:" &|00|",
within:2, distance:29, byte jump:2,-6,relative,from_beginning,little,
pcre:"/~.{4}/sR", content:"|05|", within: 1, byte test:1,&,16,3,relative,
content:"|0B|", within: 1, distance:1, content:"|98 DO FF|k|12 A1 10|6/98|3F|C3
F8|~4Z", distance:29, flowbits:set,dce.bind.wkssvc, flowbits:noalert,
metadata:policy balanced-ips drop, policy connectivity-ips drop, policy security-ips
drop, service netbios-ssn, classtype:protocol-command-decode, sid:8900, rev:S5.

Moreover, content values may be in the ASCII format, HEX format or both

ASCII and HEX formats.
Table 1: ASCII content

CONTENT Rule SID

MIT-MAGIC-COOKIE-1 1225

/sensepost.exe 989

/fp4areg.dll 1247

GET /./.0. . d.]] 1049

fp30reg.dll 1246

Table 2: : Hex content

CONTENT Rule SID
B4 B4 163
28 00 01 00 04 00 00 00 00 00 00 00 2124

C2 C5CD C4 FD F9 FF 86 E4 9A F8 FF
6024
E59B 98 E5S FCEI FD A9 FC

Table 3: Content with both ASCII and HEX formats

CONTENT Rule SID

Insane Network vs 4.0 by Suid
Flow|0A O0D|www.blackcode.com|0A 3015

0D|[r00t] 23|

Content-Type|3A| application/x-
1832

icq

Proxy-Authorization|3A| NTLM 12362

19
A Snort rule can identify the position of content in the payload using depth
keywords. For example:
|a|ert ip SEXTERNAL_NET any -> SHOME_NET any (msg:"EXPLOIT Cisco NHRP incorrect
packet size", ip_proto:47, content:" |01|", depth:2, offset:2, content:"|FF FF|", depth:2,

offset:14, reference:bugtraq,25238, reference:cve,2007-4286, classtype:attempted-user,

sid:12299, rev:2,)

Figure 6: Example of depth keyword

Snort Pattern Matcher:

The Snort pattern matcher groups OTNs with a single RTN. A single RTN
usually has many OTNs, and a single packet header can send more than one
malicious payload. The pattern matcher is used to reduce the number of rules that
must be handled, as the number of rules always increases when processing a large
number of packets. Snort users can develop their own rule and save it in a local.rules
file with a higher SID number to avoid any collision with other SIDs (Snort cannot
run with two rules that contain the same SID, as the rule parser gets the rule file from
snort.conf and checks the validation of all rules at Snort initialization).

The Parser.c file has many functions that are used for Snort initialization. For
example, function ParseRulesFile() is used to prepare all rules from the config file to
function ParseRule (). ParseRule () verifies the rules and checks if there are
additional instructions that relate to the preprocessor and output plugins; if there are,
it provides the required function for each of them (Andrés Felipe Arboleda, 2005).
Rule categories are based on protocol type, for example a ListHead structure is used

to organize the rules with their action (ferryas.lecturer.pens.ac.id, n.d.).

typedef struct _ListHead
{ ListHead Alert;
RuleTreeNode *IpList; ListHead Log;
RuleTreeNode *TcpList;
RuleTreeNode *UdpList;s
RuleTreeNode *IcmpList;
struct OutputFuncNode *LogList;

ListHead Pass;
ListHead Activation;
ListHead Dynamic;

struct OutputFuncNode *AlertList; ListHead Drop;
struct RuleListNode *ruleListNode; ListHead SDrop;
} ListHead; ListHead Reject;

/*
/*
/*
/*
/*

20

Alert Block Header */

Log Block Header */

Pass Block Header */
Activation Block Header */
Dynamic Block Header */

Figure 7: Both sides show the list of protocol types, output types and action

types

Two different structures are used for both RTNs and OTNs, and

ProcessHeadNode() is used to call and prepare OTNs for each RTN. An RTN

structures header details, while an OTN stores rule options.

Fast Pattern Matching Algorithm:

Snort uses many string matching algorithms to ensure that the packet

contains content (such as the Boyer—Moore (Fisk, 2002) and the Aho—Corasick (Fisk,

2002) algorithms). The Aho—Corasick algorithm is based on a finite state machine:

the algorithm should have a set of keywords that can be compared with a given text,

and it can search multiple patterns simultaneously. The Boyer—Moore algorithm,

however, uses two methods to match or find the pattern in a text. The first method is

to construct a bad match table to match a given pattern with the text.

2.4 Data Mining

Data mining and predictive analysis has improved the performance of many

systems. Applications use data mining techniques to improve their performance, as

21
security systems (whether a prevention system, such as a firewall, or a detection
system, such as an IDS) require high performance to monitor network packets. Both
prevention and detection systems should not allow network packets to bypass the
required detection due to performance issues. Banking systems use data mining for
consumer credit cards to improve their offers (i.e. they predict consumer purchase
patterns based on specific purchases) and to predict future financial risk.
WebWatcher is a data mining application used to create adaptive websites that
automatically improve their presentation based on the user’s access pattern.

Data mining comprises different techniques. However, due to the study’s
scope, this thesis scope will focus on the predictive model of a decision tree and on

classification techniques.

Data Mining

Predictive Descriptive

N AN

Classification Regression Time Series Prediction Clustering Summarization Association Sequence
Analysis Rules Discovery

Figure 8: Data mining tree

Classifiers are used to classify the input and give it an appropriate class.
Training data should be made available to classifiers for them to learn from it. For
example, the training data may include malicious packets and their corresponding

rules, which allows the classifier to learn how to act with such future inputs.

22

2.4.1 Naive Bayes Classifier

A naive Bayes classifier is based on Bayes’ theorem, which is easy to
understand. Bayes’ theorem uses prior probabilities and the likelihood of
classification based on adjacent patterns. There are two prior probabilities in Bayes’

theorem: the first prior probability is for class, while the second is for object (dell,

n.d.).
* o °* o
° o
® °_ 0 o
° ® o Y% 0 ° o ® ..°‘o.o. o
o © N o © o ® 0 0
00 000 % 0,0 @ °0 000 % 0,0 ©
.... o o * O o 0o O
¢ o O ® o ¢
00% 0, o0, 00% 0, /o0,
¢ 00, A ¢ 00, A
o0 o 00 o

Figure 9: A naive Bayes classifier. The left side describes class prior
probability and right side is the likelihood of a new object based on its position

Figure 9 shows two classes, green and red. The green class is more than
double the red class; thus, we assume that the probability of a new object belonging
to the green class is greater than the probability of it belonging to the red class. This
assumption is called prior probability. Prior probability is an assumption based on
prior observation and is a part of Bayes’ theorem. The second part of Bayes’ theorem
is the likelihood of an object belonging to a class. For example, in Figure 9, the red
objects appear in the left side of the shape’s space, while the green objects occupy
the right side. Therefore, we can assume that a new object on the left side is more

likely to classify as red than to classify as green, and vice versa.

23

Likelihood C'a‘SS Prior Probability
P(x|ec)P(c)
| P(x)
Posterior Probability Pret;ictor Prior Probability

Pl |X) =P(x,|le)<xP(x,|e)y=x---xP(x,, |c)=x< P(c)

Figure 10: Posterior probability
2.4.2 Decision Tree

A decision tree is a learning method used in machine learning, and decides
the output by constructing a tree of given inputs. Various algorithms are available to
build decision trees, such as Iterative Dichotomiser 3 (ID3) and C4.5. A decision tree
builds tree nodes of the given inputs, and arranges instances from root nodes to leaf

nodes.

Sunny Overcast Rain

Humidity Y!e.s*

High Normal Strong Weak
No Yes No Yes

Figure 11: Decision tree

In a decision tree, the ‘leaves’ are always decisions. Figure 11 discusses the
possibility of playing golf with different weather situations. There are many

situations with two decisions (classes) yes or no. For example, the player can play

24
golf if the outlook is sunny and the humidity is normal, or if we use if-then rules with
an overcast outlook, the result will be:

If ‘outlook = overcast’ then ‘play’.

ID3:

ID3 is a learning method that uses both entropy and information gain within a
data set to split the original set and generate a node tree. ID3 selects the root of the
given data set based on information gain score, with the highest score acting as the
root of the decision tree. The method keeps splitting the tree nodes until a leaf node

1s found.

C4.5:
C4.5 has more features than ID3, and both classification algorithms construct
the tree nodes differently. ID3’s limitation is its overfitting problem; C4.5 solves this

overfitting problem through the pruning technique.

2.4.3 N-gram analysis

N-gram is an important part of language modeling. N-gram uses the
probability of the prior values to predict the new value; for example, it can predict
the availability of a word in a sentence based on the prior probability of that
sentence.

Unigram:

A unigram is an estimated likelithood of a word (or character) occurring in a
given text (or word) based on the frequency of occurrence.

UNIGRAM=U,N,,G,R, A, M

25

Bigram:

A bigram is an estimated likelihood of two contiguous words occurring in a
given text based on the frequency of occurrence.

BIGRAM = BI, IG, GR, RA, AM

Trigram:

A trigram is the estimated likelihood of three contiguous words occurring in a
given text based on the frequency of occurrence.

TRIGRAM = TRI, RIG, IGR, GRA, RAM

The proposed Snort (based on data mining) will be referred to as the

‘Intelligent Predictive Packet-Inspect Snort’ (IP?S). The high-level overview of the

Chapter 3: Proposed Technique

26

IP?S is illustrated in Figure 12. There are two main components of the Snort, namely

the offline and the online components. The offline component collects network

packets and uses them to train a classifier. The online component does the actual

packet filtering online. Here, the classifier trained with the offline component is used

to classify each incoming packet. The predicted class corresponds to a rule, which
belongs to a set of filtering rules. If the classifier predicts the correct rule, i.e. the
predicted rule matches the packet, then the corresponding rule action is taken.
Otherwise, the prediction is wrong and, in that case, the traditional Snort is used to

find the matching rule for the packet and the corresponding rule action is taken. By

‘rule action’, we mean the action (e.g. alert) corresponding to the rule.

Packet

E;

Feature

Extraction

Training -

Selected
Features

N-Grams

And other
features

Offline

Prediction

Feature

Extraction by Classifier

YES
Prediction

Rule ID = k

Feature
Vector

Predicted l is correct Online

N-Grams

And other
features

Does E:i Match Traditional
with Rule k ? HO
: Prediction Snort
is incorrect

Figure 12: Proposed technique for the IP*S

27

Before going into the details, we will introduce several terms that will be
frequently used in this chapter.

Definition 1 — Packet (Ej): A network packet Ej is a data structure
consisting of two parts: the header and the payload, denoted by H(E;j) and L(E;j)
respectively.

The header contains attributes such as protocol, source IP, destination IP,
source port, destination port, and so on. The payload contains binary data (i.e. the
content of the packet).

Definition 2 — Feature set (F): The feature set is a set of attributes or
features that is used for training and classification. The feature set consists of two
subsets: the header feature set (H(F)) and the payload feature set (L(F)). The former
is extracted from packet headers and the latter is extracted from packet payloads.

Definition 3 — Feature vector (V(Ej)): The feature vector V(Ej) is a vector
of feature values for the packet Ej, corresponding to the feature set F.

Definition 4 — Rule (Ri): A rule Ri consists of three parts. The first two parts
consist of the rule header and rule options, denoted by H(R1) and O(R1) respectively.
The rule option section may contain zero or more options. The third part of rule Ri is
the rule action, denoted by A(R1i). If a packet header matches the H(R1) and the
content (i.e. payload) matches the O(R1), then the action A(R1i) is taken. Therefore,
formally, a rule can be represented as H(Ri) V O(R1)) A(Ri). The rule header of a
rule consists of a number of field tests (e.g. Source [P = 10.*.*. * AND Protocol =
TCP AND Destination Port = 80 AND ...). The rule option usually contains a
signature (string or pattern) that must be present in packets, and the rule action in

Snort is usually an alert.

28

Definition 5 — Rule match (M(Ej, Ri)): A packet Ej matches a rule Ri if the
field values of the packet header H(E;) satisfy all the field tests in the rule header
H(R1i), and if the packet payload L(Ej) matches all the rule options O(R1). We will
denote this case (i.e. when Ej matches with Ri) with the symbol M(E;j, Ri1). Likewise,
—M(Ej, Ri1) will be used to denote cases where Ej does not match with Ri.

Definition 6 — Rule set (R): The rule set R = {R1, R2,, RN} is the set of
N rules in the Snort, where each Ri is a rule in the set.

Definition 7 — Standard Snort (SSn): The SSn is an IDS that, for each
incoming packet Ej, sequentially searches through the rule set R, starting from the
first rule R1. If Ej does not match Ri (i.e. ™M (Ej, R1)), then the search continues

with the next rule Ri+1. Otherwise, if M (Ej, R1), the action A(Ri) is taken.

3.1 Feature Extraction and Selection

We extract two types of features from packets: features from the packet
header and features from the packet content (i.e. payload).

1) Packet payload features: Packet payloads contain binary data. We use
the N-gram feature extraction technique to extract features from the payload. An N-
gram is a sequence of N consecutive bytes in the payload. For example, if you
assume that 0304051B1D1EF2F3F4FEFF is the payload (hex values), then the one-
gram (one-byte) sequences will be 03, 04, 05, and so on. The two-gram (two-byte)
sequences will be 0304, 0405, 051B, and so on. Likewise, the three-gram (3-byte)
sequences will be 030405, 04051B, 051B1D and so on. Note that there are 256 (=
28) unique one-grams possible, and there are 65,536 (= 216) possible values of two-
grams and so on. Therefore, there are 28N possible different N-grams, which is a

very large number for large values of N.

29

a) Generating a one-gram feature vector: For one-gram, the total
number of features is 256 (00, 01, 02, FF), which is a manageable number. We
can generate a feature vector for one-gram as follows. For each packet, the
feature vector consists of 256 binary values (i.e. 0 or 1). The i-th value in the
vector has value = 1 if the packet contains the corresponding feature. For
example, given the payload F2 04 F4 05 FE 1B 05 1E 03 FF F3, the feature
vector would look like 00 1 1100 1 (256 values). The first value is 0
because the corresponding one-gram (i.e. 00) is not present in the payload. The
second value is also 0 for the same reason. Then we have 1 1 1 because the next
three one-gram features (03, 04 and 05 respectively) are present in the payload.
The last value (i.e. the 256th value) is 1 because the corresponding one-gram,

FF, is also present in the payload.

30

000 snort.log. 1450630650

dnie@ RO Qe ZFIEEQQQE

[l Apply a display fiter .. <3/>) v Epesson.. +

No. A Time Source Destination Protocol Lengtt Info
10. 41.207.187.76 146,177,153.81 IMP 46 Echo (ping) request 1id=0x0300, seq=18318/36423, ttl.
2 0. 41,207.187.76 146,177,153.81 ICMP 46 Echo (ping) request id=0x0300, seq=18318/36423, ttl.
3 0. 41.207.187.76 146,177,153,61 ICMP 46 Echo (ping) request id=0x0300, seq=19598/36428, ttl.
4 0. 41,207.187.76 146,177,153,61 ICWP 46 Echo (ping) request id=0x0300, seq=19598/36428, ttl..
5 0. 32.1.86.8 40,201,20,239 ICMP 46 Echo (ping) request id=0x0200, seq=05347/17407, ttl.
6 0. 32.1.86.8 40,201,20.239 ICMP 46 Echo (ping) request id=0x0200, seq=65347/17407, ttl.
7 0. 34.74.243.241 61.4.36.239 ICMP 46 Echo (ping) request id=0x0300, seq=26562/49767, ttl.
8 0. 34.74.243.241 61.4,36.239 ICWP 46 Echo (ping) request id=0x0300, seq=26562/49767, ttl.

44E_00.20.0C

» Frame 1: 46 bytes on wire (368 bits), 28 bytes captured (224 bits)
Raw packet data
v Internet Protocol Version 4, Src: 41,207.187.76, Dst: 146.177.153.81
0100 ..., = Version: 4
vovv 0101 = Header Length: 20 bytes
» Differentiated Services Field: 0x80 (DSCP: (S0, ECN: Not-ECT)
Total Length: 28
» Flags: 0x00
Fragnent offset: 0
Tine to live: 123
Protocol: ICNP (1)

» Header checksun: 0xbe2 [validation disabled]
aurcas A1 907 187 74

<
0000 4500 00 1c 7d €0 00 00 7b 01 b0 €2 29 cf bb 4c Evvvkers {uns)uid
0010 92 6199 51 08 00 ad 71 03 00 47 8e wiling o6

ALL. AN AEA LA

ToMD. AL Cabha loinn) sasussk idoNuBOAY ass CAOCAIAONNE. il

[*xx] [1:469:4] ICMP PING NMAP [xx]
[Classification: Attempted Information Leak] [Priority: 2]
01/19-17:22:00.012517 41.207.187.76 -> 146.177.153.81

Figure 13: Packet identification that exists in both payload and the corresponding Snort

alert

36195,1,1,1,1,1,1,1,1,1,9,1,9,9,90,0,0,1,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1
0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1
0,1,0,0,0,0,0
1,90,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1

,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,
,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
,0,0,0,1,0,0,1421

Figure 14: One-gram feature vectors. The first value refers to packet ID and the last

value is a class

b) Generating N-gram feature vectors (N >= 2): As mentioned before, the

total number of two-grams is 65,536 and it grows exponentially with the value of N.

Feature vectors with such a large number of features will not only take up large

amounts of memory but will also have high processing time during training.

However, the feature vectors will be very sparse. Therefore, we have devised a

31
heuristic approach for generating the two-grams or higher features, as explained
below.

Note that packet payload is inspected by Snort only if the corresponding rule
contains an option with content, i.e. signature. Therefore, instead of considering all
possible N-grams as features, we collect the signatures from all rules and generate N-
grams from those signatures only. This drastically reduces the total number of N-
grams generated. For example, if there are 100 rules and each rule contains a 10-byte
signature on average, the maximum number of N-grams would be (at most) 1,000,
whatever the value of N. However, we go one step ahead by further reducing the

number of N-grams generated by selecting the best K based on information gain.

1- Content in Snort Rule: MIT-MAGIC-COOKIE-1

2- Converted to HEX: 4d49542d4d414749432d4341414b49452d31

3- 2-gram Result: 4d49, 4954, 542d, 2d4d, 4d41, 4147, 4749, 4943, 432d, 2d43,
434f, 4faf, 4f4b, 4b49, 4945, 452d, 2d31

alert tcp $HTTP_SERVERS $HTTP_PORTS -> $EXTERNAL_NET any (msg:"ATTACK-RESPONSES
command completed”; flow:established; content:"Command completed"; nocase; metadata:policy balanced-ips
drop, policy security-ips drop, service http; reference:bugtraq, 1806; classtype:bad-unknown; sid:494; rev: 1 3;)

Command completed

l

436f6d6d6 | 6e6420636f6d706c65746564

43676d6d616€642063676d706c65746564 l
436f, 6féd, 6d6d, 6d61, 616e, 6eb4, 6420, 2063, 636f, 66d, 6d70, 706¢,
6c65, 6574, 7465, 6564,

I TwoGram HH#

Figure 15: An example of two-gram feature vectors

3) Putting it together: In summary, the feature extraction and selection
process works as follows.

Construct a feature set for the packet headers (denoted as (H(F))), which

32
includes features such as IPSRC, IPDEST, PORTSRC, etc.

Construct a feature set for N-gram features, N >= 1. Apply feature selection
to reduce the number of these features. The selected set of features would be denoted
as L(F).

The final feature set would look like this: IPSRC, IPDSET, PORTSRGC, ,
I-graml, 1 gram2, ... ,2-graml, 2-gram?2,

The feature vector V(E;j) (for the above feature set) corresponding to a packet
Ej would look like this: 10.100.10.11, 10.11.100.101, 25, ..., 1, 0, ..., 0, 1, ... denoting
that the packet’s source IP is 10.100.10.11, destination IP is 10.11.100.101, source

port is 25,, 1-gram1 is present, 1-gram?2 is absent and so on.

3.2 Training the IP’S

The training data D = {d;....... , dm} consists of a set of M training instances
dg, k€ {1,....... ,M}, where dy is the tuple (V(Ej), 1), such that M(E;j, Ri). In other

words, each training instance consists of the feature vector V(Ej) for the packet Ej
and the class label 1 of the packet. The class label 1 of a packet is the index of the first
rule (R1i) in the rule set that matches the packet. For example, let us assume the
packet Ej matches the 10th rule (i.e. R10) in the rule set. In this case, the class label
of Ej is 10. The class label of a packet can be found by running the SSn for the
packet. Once we have training data, we can use this data to train a classifier C of our
choice. This study has tried many different classifiers, but the best ones in terms of
classification time and accuracy of prediction are the ‘decision tree’ and the ‘ripper’
classifiers. Note that the whole process of collecting the training data and training the

classifier is done offline.

33

3.3 Filtering with the IP*S

A packet Ejis provided to the classifier C as input. Note that we only provide
the packet, not the class label. The class label of a packet is the index of the rule that
matches the packet. The task of the classifier is to predict the class label of Ej. Let
P(Ej) be the prediction (output or predicted class label) of the classifier for the packet
Ej. Let P(Ej) =1, 1.e. the classifier predicts 1 as the class label. Since the classifier
prediction can be wrong, we must check the validity of this prediction. Therefore, we
now have to test if M(Ej, Ri). If yes, then the prediction P(Ej) is correct and the
corresponding action A(R1i)is taken. Otherwise, if the prediction P(Ej) is wrong (i.e.
if = M(E;j, R1)), then the packet must go through the SSn to fetch the matching rule

and, accordingly, the corresponding action.

3.4 Performance Improvement

In this chapter, we analytically proved how the performance of the IP*S is
much improved from the SSn using the predictive filtering technique. The
improvement mainly depends on the quality of the prediction, which can be
improved by providing enough training data for the classifier to learn.

Let Ts(Ej) be the time needed to filter the packet Ej with the SSn, and Tp(E;j)
be the time needed to filter Ej with the IP>S. In addition, let I (Ej) be the indicator

function such that:

0, if prediction P(E};) is correct 0

1. otherwise

I, (E;) :{

34

Let Tc(Ej) be the time needed by the classifier to predict the class label of Ej

(i.e. the classification time). Therefore, we can write:

Tp(E;) = Te(E;) + IL(E;). Ts(E;) (2)

In other words, equation 2 states that the time taken to filter a packet by the
IP*S is equal to the classification time if the prediction is correct, and the
classification time plus SSn filtering time if the prediction is wrong. Therefore, the

time needed to filter a batch of B packets & = {E,...., Eg} is given by:

B
=_ZTS<E]-) 3)
B
ZTC (Ej))+(1—p Z (4)
ji=1 j=1

Here, p is the percentage of packets correctly classified (i.e. predicted
correct) by the classifier. In other words, p would be the accuracy of prediction for

the set of packets E.

35
Using equations 3 and 4, we can infer that there would be a gain in filtering

time if:

Tp(&E) <Ts(E)

B B B
=Y To(E) +(1—p) Y Ts(E;) <D Ts(E;) (5
j=1 j=1 j=1

B B
=Y To(E;) <p> Ts(E;)
j=1 =1

Tc(€)
Ts(E)

= T(v(g) < pTé(S) =p>

Therefore, there would be a gain in running time if the prediction accuracy of
the classifier is greater than the ratio of the total classification time (T¢) to the total
SSn matching time. For many classification techniques, Tc would be much less than
Ts. For example, for the decision tree classifier, the classification time is less than
half the filtering time of SSn (which is empirically justified by our experiments).
Therefore, in this case, there would be a gain even if the prediction accuracy is 50%
(i.e. half of the packets are incorrectly classified). In real-world scenarios, the
accuracy of a classifier is much higher than 50%, provided that it is trained with
enough training data. We also derive an interesting relationship between
classification accuracy and the running time of the IP*S from equation 5. It can be
seen that the filtering time of the IP°S decreases with the classifier’s increasing
accuracy. This has been confirmed with the empirical evaluations undertaken with

the IP”S (in chapter 5).

36

Chapter 4: Experiments and Results

In this chapter, we describe the data sets and experimental environment, and

discuss and analyze the results.

4.1 Data Sets and Experimental Setup

We have used real network traffic from the CAIDA anonymized Internet

traces 2013 data set (caida dataset, n.d.) Furthermore, we generated synthetic ‘attack’

data using the Metasploit framework.

Figure 16: Process of collecting malicious payloads using the Metasploit framework

Competing approaches: In the IP”S, the classifier used is a decision tree. The
SSn is used as a baseline.

Parameter settings: We filter exactly the same set of packets for both the IP*S
and SSn; this set consists of 10 million packets. For training the classifier, we use
10,000 packets but these training packets are not used in the test set (i.e. for
filtering). Moreover, exactly the same set of Snort rules (consisting of 500 rules) is

used to test both IDSs. These rules have been generated by hand, and follow standard

37
security policies observed in our institution.

Hardware and software: The experiments were done on a standalone
workstation that had an Intel Core 15 2.4GHz processor with 8GB RAM and a
750GB hard drive. The operating system was Windows 7. For the SSn, we used
Snort version 2.9.8.0, and a major part of the IP>S was developed in Java (NetBeans
IDE). We have heavily relied on the Weka machine learning API (waikato

University, n.d.) for feature extraction and selection and classification.

4.2 Results and Discussion

We evaluate the system based on the total processing time. Figure 17 shows
the processing time comparison between the SSn and the IP’S. The x-axis of this
graph corresponds to the number of packets processed (in millions) and the y-axis
corresponds to the total processing time in milliseconds. For example, at x=10
million, the y values of SSn and SSF are 822001 and 113181 respectively, meaning
that the SSn takes 822,001 milliseconds to filter 10 million packets, whereas IP*S
takes only 113,181 milliseconds. Thus, IP*S takes about one seventh of the time
taken by the SSn. In other words, the throughput of IP*S is more than seven times

that of the SSn.

38

800000 ssn —— A

Z R e

= IP°S (clasfn) —=

o 600000 - /

;)l

20 400000 - e

8) z’

S 200000 A o

A o i S 83
0 ll-——. L hd T

0 2 4 6 8 10
Number of pkts (millions)
Figure 17: Number of packets vs. cumulative processing time

Figure 17 also shows the classification time (cumulative) taken by the
classifier of the IP”S; this is shown with the IP*S (clasfn) curve. It is evident from the
chart that the the total filtering time required by the IP*S is only a little more than the
classification time, which means that most of the class predictions have been correct.
In fact, in this case, the class prediction accuracy was 90% or more. However, based
on equation 5 in chapter 4, we can infer that even if the prediction accuracy were as
low as 50%, the total running time of the IP*S would be less than that of the SSn.
This is because, here, the IP>S’s classification time is about one third of the filtering
time of the SSn (822 seconds for the filtering time of the SSn and 113 seconds for the
classification by the IP*S).

Figure 18 shows how the processing time varies with the number of rules in
the IDS. We have run both the IDSs with 50, 100, 200 and 500 rules. As expected,
with the increasing number of filtering rules, processing times also increase. But the
rate of this increment is higher for the SSn than it is for the IP*S. This is because,
with the increase in the number of rules, the time to find a matching rule also
increases in the SSn (it has to browse through a longer list). However, for the IPS,

the searching time does not increase as much due to the (mostly) correct predictions

39
made by the classifier. The slight increase that the IP”S observes is due to the extra
time needed to classify an instance (as the tree is now more complex) and the extra

time needed when the classifier makes a wrong prediction.

3500

) S§n x
o 2500 - "
E /
= 2000 -
LN ,
£ 1500 { I
§ 1000 |/ ,'E"‘
£ 500 4o
0

160 260 360 460 500
Number of rules
Figure 18: Number of rules vs cumulative processing time

Effect of the number of training data on the processing time and accuracy of
the IP”S: The size of the training data has a direct impact on the accuracy of the
classifier. Generally, the prediction accuracy of a good classifier should increase with
an increasing size of training data. This is observed in our experiments, as shown in
Figure 19(a). Here, the x-axis represents the number of training data (in hundreds)
and the y-axis represents the prediction accuracy of the classifier on the test data.
There are two curves: one representing 100 rules and the other 500 rules. The curve
for 100 rules shows the accuracy of the classifier when we have 100 rules in the IDS,
and the classifier is trained and tested accordingly. The same description goes for the
curve representing 500 rules. Both of these curves observe the expected behavior, i.e.
an increase in prediction accuracy with an increase in training data. Recall that, from
our theoretical analysis on the impact of classifier accuracy on filtering time (chapter
4), we concluded that the filtering time of the IP’S decreases with increasing

accuracy.

40

~ 100 e 1]

S = — 90 P25 (500 rules) —=

= 80 {g" £ 3000 {IP7S (100 rules)

g o / 2 2500 -

= B 2 .=

3 , IPJS (500 rules) —=— =, 2000 =

< 4 | TIPS (100 rules) £ 1500 -]

.2 %) =

7 20 - g 1(_)00 %

i 7l £ 500

“ 0 c : : 0 : :
0 20 40 60 80 100 20 40 60 80 100
Number of training data (x100) Classifier Accuracy (%)

(a) (b)

Figure 19(a) size of training data vs classifier accuracy and (b) accuracy vs processing

time for the IP*S

The empirical observations confirm this theory, as reported in Figure 19(b).
Figure 19(b) shows how the processing time varies with the prediction accuracy of
the classifier. In both these figures, we report the performance of the IP*S for 100
rules and for 500 rules. In general, the processing time reduces as the prediction
accuracy increases. This 1s because with higher prediction accuracy, the correct rule
is predicted more often, requiring less browsing through the rule list to find the
matching rule. We get another interesting observation from these figures.

We observe that, for a larger number of rules, the processing time of the IP*S
is higher. For example, when accuracy is 92%, the processing times of the IP*S with
100 rules and 500 rules are 414 milliseconds and 101 milliseconds respectively.
Therefore, the larger the number of rules, the higher the running time even for the
same rate of accuracy. This happens because, for example, when the accuracy is
92%, only 8% of packets are incorrectly classified, meaning that the IP*S has to
browse through the list of rules to find a match for these 8% of packets. However,
this browsing takes longer and incurs more hits when the list is larger (i.e. 100 vs 500

rules).

41

We tested four different classifiers with our two-gram feature data, and found

that each classifier has different results. In addition, we tested one-gram feature data

with these different classifiers, and the results of the classifiers were less accurate

than for two-gram feature data.

Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic

J Hean absolute error
Root mean squared error
Relative absolute error
Root relative squared error
Total Nunber of Instances

Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic
Mean absolute error

RF Root mean squared error
Relative absolute error
Root relative squared error
Total Nunber of Instances

Correctly Classified Instances

8337 94,9977 % Incorrectly Classified Instances
39 5,003 % Kappa statistic
0,919 Mean absolute error
0.0027 NB Root mean squared error
0.0382 Relative absolute error
12,2686 % Root relative squared error
36,5636 % Total Nunber of Instances
8776
=== Sumnary ==
130 B Correctly Classified Instances
134 1634 % Incorrectly Classified Instances
g;‘g‘z‘ Kappa statistic
' Hean absolute error
0.0648 SMO Root mean squared error
.68 % Relative absolute error
61,9992 % Root relative squared error
816 Total Nunber of Instances

nn 81,7457 %
1602 18,2543 %
0.6912
0.0257
0.1128
1169734 %
108,019 %
8776

1176 §1.7685 %
1600 18315 %
0,6915
0.0064
0.0m
29,310 %
T4.4105 %
§176

Figure 20: Results of the J48 classifier, naive Bayes classifier, random forests and

SMO function with two-grams

100.00%

A
c
c
u
r
a
c

y

Training data vs classifier accuracy
Two grams

Random Forest === SMO function

o= JR48 =====Naive bayes

95.00%

90.00%

85.00%
82.’6/

=

e

/AO%

83:66%
81 o S i +33%
80.00% 79-66% 80:35%
75.00%
800 2000 4000 7000
Number of Training data
Figure 21: Two gram’s classifier accuracy with different volumes of packets
Training data vs classifier accuracy
One gram
e R4 === Naive bayes Random Forest e=====SMO function
64.00%
63 P v
62.00% o
A 30/
.« 60.00% 60: 569%
¢ 58.00% 5823%
u
" 56.00% 55:86%
a 55:03%
¢ 54.00%
y
52.00%
50.00%
800 2000 4000 7000

Figure 22: One gram’s classifier accuracy with different volumes of packets

Number of Training data

42

43

Chapter 5: Conclusion

We have introduced a novel and intelligent approach for faster packet
matching by IDSs. In this approach, a classifier is first trained to predict the
matching rule for any given packet and is then employed in the real network. This
results in faster speed in terms of packet matching compared to a standard IDS
(which browses through the set of rules to find the matching rule for a packet). We
have proved the effectiveness of our approach both theoretically and empirically with
real network traffic. We have also analyzed the different parameters of the system,
such as the number of rules and the size of training data.

In the future, we would like to enhance intelligent predictive matching by
introducing more efficient and sophisticated classifiers to address the issue of lower
accuracy in the presence of a large number of rules. Besides this, we hope to apply
different classifiers, big network data, and different attack scenarios to evaluate the

robustness of our approach.

44

Bibliography

Acharya,S.a. M. B.N.a. A.M.a.Z. T.a. W.J. a. G. Z. a. G. A. G., 2007.
OPTWALL: A Hierarchical Traffic-Aware Firewall.. In: NDSS. s.l.:s.n.

Andrés Felipe Arboleda, C. E. B., 2005. ~cbedon/snort/snortdevdiagrams.pdf.
[Online]

Available at: http://artemisa.unicauca.edu.co/~cbedon/snort/snortdevdiagrams.pdf
[Accessed 15 06 2016].

Baboescu, F. a. V. G., 2001. Scalable packet classification. ACM SIGCOMM
Computer Communication Review, Volume 21, pp. 199--210.

berkeley, n.d. intrusion-detection-guideline. [Online]
Available at: https://security.berkeley.edu/intrusion-detection-guideline

bibing.us.es, n.d. memoria%252Fpor _capitulos%252F04.snort.pdf. [Online]
Available at:
http://bibing.us.es/proyectos/abreproy/12077/fichero/memoria%252Fpor capitulos%
252F04.snort.pdf

[Accessed 03 05 2016].

caida dataset, n.d. passive 2012 dataset.xml. [Online]

Available at: http://www.caida.org/data/passive/passive 2012 dataset.xml
[Accessed 15 03 2016].

Caswell, B. a. B. J. a. B. A., 2007. Snort Intrusion Detection and Prevention Toolkit.
s.l.:Syngress.

Cohen, E. a. L. C., 2005. Packet classification in large ISPs: Design and evaluation
of decision tree classifiers. In: ACM SIGMETRICS Performance Evaluation Review.
s.l.:ACM, pp. 73--84.

dell, n.d. Naive-Bayes-Classifier. [Online]
Available at: http://documents.software.dell.com/Statistics/Textbook/Naive-Bayes-

Classifier
[Accessed 06 11 2015].

El-Atawy, A. a. A.-S. E. a. T. T. a. B. R., 2009. Adaptive early packet filtering for
defending firewalls against DoS attacks. In: Infocom 2009, Ileee. s.1.:.1EEE, pp. 2437--
2445.

El-Atawy, A.a. S. T. a. A.-S. E. a. L. H., 2007. Using online traffic statistical
matching for optimizing packet filtering performance. In: s.l.:IEEE, pp. 866--874.

45

ferryas.lecturer.pens.ac.id, n.d. Snortlneer Working.pdf. [Online]
Available at: http://ferryas.lecturer.pens.ac.id/NetSa Papers/SnortlneerWorking.pdf
[Accessed 15 03 2016].

Fisk, M. a. V. G., 2002. Applying fast string matching to intrusion detection, s..:
DTIC Document.

google, n.d. HIDS - Events Detected. [Online]
Available at: https://sites.google.com/site/idpsinfo498/home/host-based-intrusion-
detection-systems---hids/hids---events-detected

Goyal, R. a. B. K. a. B. S., 2015. Packet classification. GOOGLE.

Gupta, P. a. M. N., 2001. Algorithms for packet classification. I[EEE, Volume 15, pp.
24--32.

Hamed, H. a. E.-A. A. a. A.-S. E., 2006. On dynamic optimization of packet
matching in high-speed firewalls. Selected Areas in Communications, IEEE Journal
on, Volume 24, pp. 1817--1830.

Kencl, L. a. S. C., 2006. Traffic-adaptive packet filtering of denial of service attacks.
In: Proceedings of the 2006 International Symposium on on World of Wireless,
Mobile and Multimedia Networks. s.1..IEEE Computer Society, pp. 485--489.

marc.info, 20. snort-users. [Online]
Available at: http://marc.info/?]=snort-users&m=130588413913432

Martin Roesch, C. G. S. C., 2014. snort_manual.pdf. [Online]
Available at: https://s3.amazonaws.com/snort-org/www/assets/166/snort manual.pdf
[Accessed 6 11 2015].

mok, 2014. state-transition-table-for-aho-corasick-algorithm. [Online]

Available at: http://stackoverflow.com/questions/22398190/state-transition-table-for-
aho-corasick-algorithm

[Accessed 25 03 2016].

Mothersole, I. a. R. M. J., 2011. Optimising rule order for a packet filtering firewall.
In: Network and Information Systems Security (SAR-SSI), 2011 Conference on.
s.l.:IEEE, pp. 1--6.

Murphy, C. a. S. D., 2012. An Analysis of the Snort Data Acquisition Modules.
SANS Institute InfoSec Reading Room, Volume 34027.

Mustafa, U.a. M. M. M. a. T. Z. a. W. T. a. A. H. Z., 2013. Firewall performance
optimization using data mining techniques. Wireless Communications and Mobile
Computing Conference (IWCMC), 2013 9th International, pp. 934--940.

46

openmaniak.com, 2007. inline_final. [Online]

Available at: http://openmaniak.com/inline final
[Accessed 6 11 2015].

sans, 2005. host vs network based intrusion detection systems. [Online]

Available at: https://cyber-defense.sans.org/resources/papers/esec/host-vs-network-
based-intrusion-detection-systems-102574

[Accessed 2015 11 06].

snort, n.d. node3 1.html. [Online]

Available at:

http://manual.snort.org/node3 1. htmI#SECTION00441000000000000000
[Accessed 06 11 2015].

Trabelsi, Z. a. Z. L. a. Z. S., 2011. Packet flow histograms to improve firewall
efficiency. In: Information, Communications and Signal Processing (ICICS) 2011
8th International Conference on. s.1.:.1EEE, pp. 1--5.

Trabelsi, Z. a. Z. S., 2012. Multilevel early packet filtering technique based on traffic
statistics and splay trees for firewall performance improvement. In: Communications
(ICC), 2012 IEEFE International Conference on. s.1.:1IEEE, pp. 1074--1078.

waikato University, n.d. weka. [Online]
Available at: http://www.cs.waikato.ac.nz/ml/weka/)
[Accessed 15 03 2016].

Woo, T. Y., 2000. A modular approach to packet classification: Algorithms and
results. In: INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE. s.1.:1EEE, pp. 1213--
1222.

47

Appendix

One-gram feature vectors

WbTu W€l

ullu

WITa u0Tu 40, *

£(D)40X9pUT "TIST) = EXIPUT

}((D)SUTRIUOD "TASTY) 4T

A : D butaas) Joy
{

w = [2]31nsay

}(++Z f1-yabuey r1 nsou=> z = Z JUuT) Jo}
10= €XapUT JuT

f,)amds aury = A

{(31Ns2Y)ASTISe sARlly = gasT] <buTJIS>1sT]
{(pade)rsTisersheddy = 13ST] <buTIIS>15TT

£(()y3busy-zauty ‘@)butaisgnstzauty = gaury bButais 1/

¢ ,QI3J0uS,,)90e1dau * ()auUT]IXau ueds = zaur) butays //

f(un ‘w w)d2B1d0J " ()3UTTIXRU"URDS = BuT) bButiis //
£()SuT7IXau"ueds = autT) bHutiis

}(()SUTTIXaNsey ueds) 21Tum

{g=gxapur 1uT

H{} = A [] butias

w30u 400, 00, fu80. (Y0 ‘460 ‘480 ‘ul0n ‘u90. ‘uSO. ‘WPO. ‘uEQw ‘uZ0n ‘uT0. ‘400.}= PJJe [] Buruis
£()3UTTIX3U ZUBDS = ppaUT| BUTIIS
}(()3UTTIXaNSRY ZUedS) 21 TUM

(()SUTTIX3NSEY *ZuedS) 21TUM

£(Z91T4) JBUUEDS MU = ZUBDS J3UUEDS

£ (,,3X1* 91 T42b1e WeI93u0/d033S3Q/TH3) BW) BPIWRYOW/SI3SN/,,) 1T4 MU = ga1T4 2114
£(31T4) JBUUEDS MBU = UBDS JBUUEDS

£ (43X3 9174961 weI93u0/d03)SBQ/ TH31 W BPIWRYOW/SIBSN/,,) d1T4 MOU = T4 31T4
0’ 10 w0u 100 100 100 w00 100 100 00 100 100 00 10110} = 3LNSAY [] BuTUIS
f 110U = ggauty butuis
qn1s poyiaw pajesausab-oiny oaol //

} uot1doox3 smouyy (sbue []BuTuiS)uTew proa dTiEls dTIgnd

} weugaugJJe sse1d or1gnd

auueds*1Tin eAel jJodut
f1sT7*1TIn"eael juodwt
fsAeauy*1Tan eael jsodut
{WweaJ1S51uTId 0T "*eAe[1uodwt
fuoT3daox301 0T *eAe[JuoduT
fweau3s3ndinga T4 ot "eAe[jJodut
{9114 01 eAe[jJodut

{13dwalyeswesgom) abeyoed

eARl"WeIDAUQLIE

TNOROVASAINMNMITIVON VIO ANMITINONVNOAIANMITDONOD
A A A AT AN ANNNANANNNNNOOOOONONONITIIIIIIIT S

HNMYTNONOOS HdNM
e e

48

Bl |

//

£(,U\,,)3uTad In0"Wa1SAS
£ ([T-yabua) "A]A)uUTId INO WDISAS

{

L +N)3UTAd 3n0 " walsAs
}(31nsay : n bButuls) Joy
f(0 "+ 0] (4 f0)3T1ds "auT)) JuTad 3n0 w1 sAS

w = [EXSpUT]I1nsay
£(D)$0X9PUT "TIST] = E£XIPUT
}((D)suTeluod"T1sT) JT
F(A : 0 BuTaig) JoJ
= [z]21nsay t
@ = Z Jutr) JoJ

0= EXSPUT IUT
‘,)3T1ds Ut = A

}(++z f1-yzbua) -t nssy=> z

f(11nsay)asTse shesdy = gasT] <buTJIS>1ST
{(pdde)1sTISe sheddy = TIST] <BUTUIS>1ST

f(()yabuay-zauty ‘@)butuisgnstzauty = gaur) Buruis //

w 'w@I3J0US,,)90e1dau " ()SUTTIXAU URDS = ZauT) BuTJiS //
PR

N LA e T At R ota e r

oL
8L
LL
9L
SL
VL
€L
L
L
oL
69
89
L9
99
S9
9
€9
29
19
09
6S
8S
LS
9S
SS
VS
€S
Zs
s
0S
6V
8y
Ly
or
14
144
134
[44
144
ov
6€
8€
LE
9€
SE
Ve
€€

49

Two-gram features vectors

E JNSoY

M+ 4-pbusy s> 2 g = 2 20t Jo)
0= EXPUT 0T

' Jamds gaur) = o

¥(11n3y)asTIse shesly = qasT) <DUTiIIsT
*(pJR)ISTISR Sy = 3ST) <DUTIISIST]

{(()nbua) zaim) ‘g)furisins zam = gaur) 111

! ;atgm__éss_ (JaUTTIXRU"UBDS = ZauT) BTG
o ' o 2080000 (oUTTIAU UeDS = aum) BTl
H()aurTavansey ueds))1y
HTAOT 01
=) fuug

TSy \SORLGRL pRUT) = pake [] Burig /)
H{JUTTIXaU"2ueds = ppaum UTsis
}{(|QUTTavaNSey 20eds) 2|

({)ouTTIeaNsey ‘zueds) &

{TB\T) JRUURS MRl = UBDs Jauleds

4, X BT apeXaleJomy,/d0ySaq o) e pRURYOU/SJ380 /) 174 MU = Za1T) 3114
{(91T4) JaUueas Kol = Ueds Jaueds

B 406 YO0 P390 B 6 0 00 D00, 0600 D00, 00000, 0000, 0010, 1000, OOBL, .} = pide] Bursig
4, XU apeXaleJomy,/doyysaq o] e paURYOU/SJ3S0) 8174 MU = 8\ 3\

_____s_____s_____s ! s__u__s__ s_____s_____s_____s___ s_ ___s____s_____s_____.___ s ! s __ _____s__v s z.smoz : m:..ﬁ.:.m
100 = ggaumy Bursig

___s_____s_____ ____s___ _s

w__— s __s_____s_____s_____s__ _s :

50

(U,) 3urad n0 w3 shs
$([1-Y36ua *AJA) Jutad n0 35S

£,) 3uTad 3n0 U915
HAnsay 0 butaig) Joj
"t [01 (') ¥ s guT) JuTad no- =15

Ll = [EepUT] NSy
1(0) $0X3PUT ' TIST) = EXIPUT

H(0)suTedod TasTY) I

HA ¢ D Buriig) Jog

nl = [Z]310seY
HH+2 4T-yabusy 1nsay=> 2 1g = 2 ut) Jo)
10= EXapUT JuUT
f(u")3Tds gauTy = A

§(11n59Y)3STISR SARLY = g3STY <BUTUIS>IST]
! (pde)3sTIsR sfely = TISTY <BUTIISHIST

*(()ypbuay ‘zaur) ‘g)Buriasans zauny = gaumy Durig

L

9L
6L
/A
€L
u
1L
oL
69
89
19
9
9
19
€9
4]
19
09
69
89
I
99
g9
bs
€9
4
19
09
]
8y
Ly
9
19
4]
13
14
1
op
6€
8€

51

Two-gram source code

yealq

Ll

yeaudq

H()ubuay w3y =< g+) I
7k = K

o+ (p+A 'R)BuTdasgns ua)) JuTdd 10 we1sAS

H()ybua "uay=>A) &1Tum

f([1]31ds+,u\,,) u13utad 3no washs//
'z
1=K Jut

(X £()y3bud) "ua=>x fg= x 1uT) JoJ

1()BuTd3503* [1]3T1ds = 359} Butys//
Ha')IM1s U = s []6uraas//
{()aUTTIXoU BUTY = Ud) DuTu1S

}(()3UTTIXONSBY "BUTY) A1 TUM
! (Z3U9UO)XIHOU)I3UURIS AU = JUTY JBUUEIS
§(WIX3"1/5TS3Y 1 /d034S3(/TY3) Bl BPRLIRYOW/SIASN/,)3 T4 MAU = ZIUSIUOIX3HOU 31T+
gn3s poyysu pajetauab-oiny ogoL //
1 (£3n0)3n032s ' WRISAS//
f((anu3 *,3x3"weubz/do3xsaq/T4e) el BPALRYOL/SISN/,,) UBSIISINAIN0IT T4 MAU)WRAUISIUTd MOU = €3N0 WRAIISIUTId //

} UoT3da0X3puno4oNe1T4 SMoy3 (sbJe []6UTJIS)UTEW PTOA DTIRYS IT\gnd

8y
Ly
9
Sy
144

[44
44
oy
6€
8E
LE
9€
SE
123
13
143
1€
0€
6¢
8¢
T4
9
14
174
%4
144

14
61
8l
A%
91
1
1
€l
4%
11
01
6

52

One-gram source code

.1, = [€X9pUT]11NS3Y
£(D)JOX3PUT *TIST] = EXIPUT

}(()SuTRIU0D *TASTY) 4T

(A ¢ D bButuig) JoJ

, = [Z]31nsay

}(++z fT-y3buan *11nsey=> z g = z JuT) JoJ
10= €X9pUT uT

,)3mds gauTy = A

£(11n52Y)3ISTISe sABIIY = Z3ST) <BUTIIS>1STT
{(pdde)3STISR SARIIY = TIST] <BUTIIG>1STT

(()y3buayrzauty ‘p)burdisgns zauTy = €aUTY BuTIIS

(4 *,01340US,,)90e)d3J " ()3UT]IXU URDS = ZAUT) HuTJ1S
f(an 'y n)90B1d3U " ()BUTTIX3UURDS = BuT) DuTJIS
}(()SUTTIXaNSBY *URIS) 2)TUM
19=7XaputT UT
H{} = A [] butiis

C)ITUAS " (G “n\a)R0R1dRU pPRUTY = pade [] BuTUIS
()9uT]IXau - zueds = ppautT) buTals
}(()SUTTIXaNSeY "ZURIS) 2]TUM

(()3UTTIX3aNSRY " ZUBDS)) TUM

{(Z31T4) JBUURDS MBU = ZuRdS JaUUEdS

f(,,3X3 ") _WTI3pexaywel Hom) /do1ySaQ/THa) Bw) epawRyow/SJasn/,) 1T4 MU = galT4 9114
{(91T4) JBUUBDS MAU = UBDS JBUURDS //

,1X3 "1 _UTO3peXaywe. fomy /do1ysag/Tye) ew] epaweyow/SsJasn/,) T4 MU = T4 T4 //

Q:~=Q=~=Q=~=Q=~=Q=~=Q=~=Q=-_Q-_-_s-_~=s=~=s=~=s=-_s-_-_@-_-_@-_~=@=~=@=~=@=-_@-_~=@=~=®=~=®=~=®=~=®=~:@:—:@:—:@:-:@:-:@:-:@:—:@:—:@:W = Hﬂ:mmx HH m—‘—..H.L“m
£ 10U = ggauT Butiis

gn1s poylaw pajesauab-oiny 0aoL //
} uorydaox3 smoJyy (sbue []BuTuis)utew pToA dTIels oTgnd

€9
411
18
0S
6V
8y
Ly
14
4
147
134
[44
144
oy
6€
8€
LE
9€
GE
123
€€
[4
1€
0€
62
8¢
LT
9z
T4
124
€2
[44
1Z
(14
61
81
LT
91
ST
12"
€1

7T

53

//

Y(,,u\,)3uTad N0 wa3sAs
{([1-Y3bud) *A]A)JUTId " IN0 W21 5AS

$(,, " HN)JUTId N0 " W15 AS
}(3nsay & n butdis) Joy
Y0 w01 (4)3T1ds €8UTY) JuTud N0 UR) S AS

, = [EXapUT] 1) nsay

f/hY1nvaniIT*TAICTY — CVANIT

a8
18
08
6L
8L
LL
9L
74
YL
€L
i
1L
oL
69
89
L9
99
q9
9
€9
a9
19
09
65
89
LS
9
qg
4
13
[4

T

	United Arab Emirates University
	Scholarworks@UAEU
	5-2016

	Enhancing snort IDs performance using data mining
	Mohammed Ali Almaleki
	Recommended Citation

	Microsoft Word - ThesisForPrinting.docx

