335,910 research outputs found

    Feasibility of EPC to BPEL Model Transformations Based on Ontology and Patterns

    Get PDF
    Model-Driven Engineering holds the promise of transforming\ud business models into code automatically. This requires the concept of\ud model transformation. In this paper, we assess the feasibility of model\ud transformations from Event-driven Process Chain models to Business\ud Process Execution Language specifications. To this purpose, we use a\ud framework based on ontological analysis and workflow patterns in order\ud to predict the possibilities/limitations of such a model transformation.\ud The framework is validated by evaluating the transformation of several\ud models, including a real-life case.\ud The framework indicates several limitations for transformation. Eleven\ud guidelines and an approach to apply them provide methodological support\ud to improve the feasibility of model transformation from EPC to\ud BPEL

    Testing M2T/T2M Transformations

    Get PDF
    Presentado en: 16th International Conference on Model Driven Engineering Languages and Systems (MODELS 2013). Del 29 de septiembre al 4 de octubre. Miami, EEUU.Testing model-to-model (M2M) transformations is becoming a prominent topic in the current Model-driven Engineering landscape. Current approaches for transformation testing, however, assume having explicit model representations for the input domain and for the output domain of the transformation. This excludes other important transformation kinds, such as model-to-text (M2T) and text-to-model (T2M) transformations, from being properly tested since adequate model representations are missing either for the input domain or for the output domain. The contribution of this paper to overcome this gap is extending Tracts, a M2M transformation testing approach, for M2T/T2M transformation testing. The main mechanism we employ for reusing Tracts is to represent text within a generic metamodel. By this, we transform the M2T/T2M transformation specification problems into equivalent M2M transformation specification problems. We demonstrate the applicability of the approach by two examples and present how the approach is implemented for the Eclipse Modeling Framework (EMF). Finally, we apply the approach to evaluate code generation capabilities of several existing UML tools.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Proyecto TIN2011-2379

    Semantic model-driven development of web service architectures.

    Get PDF
    Building service-based architectures has become a major area of interest since the advent of Web services. Modelling these architectures is a central activity. Model-driven development is a recent approach to developing software systems based on the idea of making models the central artefacts for design representation, analysis, and code generation. We propose an ontology-based engineering methodology for semantic model-driven composition and transformation of Web service architectures. Ontology technology as a logic-based knowledge representation and reasoning framework can provide answers to the needs of sharable and reusable semantic models and descriptions needed for service engineering. Based on modelling, composition and code generation techniques for service architectures, our approach provides a methodological framework for ontology-based semantic service architecture

    Feature Engineering for Predictive Modeling using Reinforcement Learning

    Full text link
    Feature engineering is a crucial step in the process of predictive modeling. It involves the transformation of given feature space, typically using mathematical functions, with the objective of reducing the modeling error for a given target. However, there is no well-defined basis for performing effective feature engineering. It involves domain knowledge, intuition, and most of all, a lengthy process of trial and error. The human attention involved in overseeing this process significantly influences the cost of model generation. We present a new framework to automate feature engineering. It is based on performance driven exploration of a transformation graph, which systematically and compactly enumerates the space of given options. A highly efficient exploration strategy is derived through reinforcement learning on past examples

    A Collaborative testbed Web Tool for Learning Model Transformation in Software Engineering Education

    Get PDF
    Software Engineering provides mechanisms to design, develop, manage and maintain social and collaborative software systems. At present, the Software Engineering Curricula includes teaching Model-Driven Engineering (MDE) as a new paradigm that enables higher productivity, attempting to maximize compatibility between systems. Modern learning methods MDE require the use of practical approaches to analyze new model-transformation techniques. Model transformations are carried out by using very high-level languages, like the ATL language. This model transformation language is built as a plugin for the Eclipse framework, and users who want to collaborate and develop software with it, have some difficulties executing ATL transformations outside this platform. To handle models at runtime, it is interesting to perform the transformations in a standalone way. In this context, we have developed a testbed web tool which aims to be useful for learning model transformation techniques. The tool offers a Graphical User Interface to test and verify the involved model transformations.The proposal is useful as a collaborative scenario for learning MDE and model transformation issues and techniques in Software Engineering education

    transML: A Family of Languages to Model Model Transformations

    Get PDF
    Proceedings of: 13th International Conference on Model Driven Engineering Languages and Systems, MODELS 2010, Oslo, Norway, October 3-8, 2010Model transformation is one of the pillars of Model-Driven Engineering (MDE). The increasing complexity of systems and modelling languages has dramatically raised the complexity and size of model transformations. Even though many transformation languages and tools have been proposed in the last few years, most of them are directed to the implementation phase of transformation development. However, there is a lack of cohesive support for the other phases of the transformation development, like requirements, analysis, design and testing. In this paper, we propose a unified family of languages to cover the life-cycle of transformation development. Moreover, following an MDE approach, we provide tools to partially automate the progressive refinement of models between the different phases and the generation of code for specific transformation implementation languages.Work funded by the Spanish Ministry of Science (project TIN2008-02081 and grants JC2009-00015,PR2009-0019), the R&Dprogramme of the Madrid Region (project S2009/TIC-1650), and the European Commission’s 7th Framework programme (grants #218575 (INESS), #248864 (MADES))

    Model-Driven Engineering Approach for OntoUML

    Get PDF
    V této práci je představeno OntoUML a možnosti jeho využití v Model-Driven Engineering přístupu. Je popsán sled transformací, které vedou od konceptuálního OntoUML modelu ke zdrojovému kódu objektově orientovaného jazyka a je pro něj vytvořena aplikační infrastruktura. Její vhodnost je následně demonstrována implementací transformace OntoUML modelu ze zvolené vstupní formy do zdrojových kódů v jazyce C#.In this thesis, OntoUML and posibilities of its usage in Model-Driven Engineering are introduced. A set of transformations from OntoUML conceptual model into object-oriented source code is described and an application framework is created for it. The viability of it is then illustrated by implementing the transformation from OntoUML in a concrete input form into C# source code

    Incremental Model Transformations with Triple Graph Grammars for Multi-version Models

    Full text link
    Like conventional software projects, projects in model-driven software engineering require adequate management of multiple versions of development artifacts, importantly allowing living with temporary inconsistencies. In previous work, multi-version models for model-driven software engineering have been introduced, which allow checking well-formedness and finding merge conflicts for multiple versions of a model at once. However, also for multi-version models, situations where different artifacts, that is, different models, are linked via automatic model transformations have to be handled. In this paper, we propose a technique for jointly handling the transformation of multiple versions of a source model into corresponding versions of a target model, which enables the use of a more compact representation that may afford improved execution time of both the transformation and further analysis operations. Our approach is based on the well-known formalism of triple graph grammars and the aforementioned encoding of model version histories called multi-version models. In addition to batch transformation of an entire model version history, the technique also covers incremental synchronization of changes in the framework of multi-version models. We show the correctness of our approach with respect to the standard semantics of triple graph grammars and conduct an empirical evaluation to investigate the performance of our technique regarding execution time and memory consumption. Our results indicate that the proposed technique affords lower memory consumption and may improve execution time for batch transformation of large version histories, but can also come with computational overhead in unfavorable cases.Comment: arXiv admin note: substantial text overlap with arXiv:2301.0062

    Enforcement of Patterns by Constraint-Aware Model Transformations

    Get PDF
    Patterns are descriptions and solutions for recurring problems in software design and implementation. In this paper, some ideas towards a formal approach to the specification of patterns in model-driven engineering (MDE) is presented. The approach is based on the Diagram Predicate Framework which provides a formal approach to (meta)modelling, model transformation and model management in MDE. In particular, patterns are defined as diagrammatic specifications and constraint-aware model transformations are adapted to enforce patterns. Moreover, running examples are used to illustrate the facade design pattern in structural models

    ModGraph - Generating Executable EMF Models

    Get PDF
    Model driven software engineering aims at creating high level executablemodels which may be interpreted or compiled. For efficient execution ofoperations on model instances code generators play an important role. A wellestablished tool for structural modeling and code generation is the Eclipse Modeling Framework (EMF). We extended EMF by behavior modeling within ModGraph, a tool to model behavior by graph transformation rules. Each rule corresponds to an operation modeled in the Ecore class diagram. This paper focuses on ModGraph’s code generator. Therefore I describe the matching of graph transformation rules as well as the exact translation of a rule and its seamless injection into the existing EMF Java code. A running example of a simple calendar application complements the explanation
    corecore