
Electronic Communications of the EASST
Volume 31 (2010)

Proceedings of the
Second International Workshop on

Visual Formalisms for Patterns
(VFfP 2010)

Enforcement of Patterns by Constraint-Aware Model Transformations

Yngve Lamo, Adrian Rutle and Florian Mantz

12 pages

Guest Editors: Paolo Bottoni, Esther Guerra, Juan de Lara
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Enforcement of Patterns by Constraint-Aware Model
Transformations

Yngve Lamo1, Adrian Rutle 1 and Florian Mantz1

1 yla,aru,fma@hib.no, http://www.hib.no∗

Department of Computer Engineering
Bergen University College, Norway

Abstract: Patterns are descriptions and solutions for recurring problems in software
design and implementation. In this paper, some ideas towards a formal approach to
the specification of patterns in model-driven engineering (MDE) is presented. The
approach is based on the Diagram Predicate Framework which provides a formal ap-
proach to (meta)modelling, model transformation and modelmanagement in MDE.
In particular, patterns are defined as diagrammatic specifications and constraint-
aware model transformations are adapted to enforce patterns. Moreover, running
examples are used to illustrate the facade design pattern instructural models.

Keywords: Pattern, constraint-awareness, model transformation, model refactoring,
Diagram Predicate Framework

1 Introduction and motivation

Since the beginning of computer science, developing high-quality software at low cost has been a
continuous vision. This has boosted several shifts of programming paradigms, e.g. machine code
to compilers and imperative to object-oriented programming. In every shift of paradigm, raising
the abstraction level of programming languages and technologies has proved to be beneficial to
increase productivity. One of the latest steps in this direction has lead to the usage of models and
modelling languages in software development processes.

Initially, models were adopted in software development processes for sketching the architec-
tural design or documenting an existing implementation. Inthe latest trend in software engineer-
ing, however, models are regarded as first-class entities ofthe development process. These mod-
els are used to automatically generate (parts of) software systems by means of model-to-model
and model-to-code transformations. In the literature, this trend is referred to as model-driven
engineering (MDE).

Software development projects have traditionally been built following the waterfall approach,
a sequential process consisting of requirements specification, design, implementation, testing,
deployment and maintenance phases. Often a new project was started from scratch by designing
the domain model, architecture model, code etc. without anyclear methodology or systematic
use of earlier experiences. In this context, natural questions which arise are: What is software
quality? What is best practice in software engineering? What is a good design? What is an
appropriate architecture for a certain kind of software systems? What is a good piece of software?

∗ The research is partially sponsored by the Norwegian Research Council project FORMGRID.

1 / 12 Volume 31 (2010)

mailto:yla,aru,fma@hib.no
http://www.hib.no

Enforcement of Patterns by Constraint-Aware Model Transformations

To address the problem with software quality, in the late eighties Kent Beck and Ward Cun-
ningham began experimenting with the idea of applying patterns to software engineering [BC87].
Moreover, the seminal book [GHJV94] on design patterns published in 1994 by the so-called
“Gang of Four” had a great influence on software development practise. Design patterns are
usually used as a solution strategy for a common problem, e.g. facade, decorator, singleton, etc,
and often describe a solution for a part of a bigger system. Although design patterns have been
applied in software development for a long time, formalisation of the concept of patterns is still
an open research topic [BGL09]. Moreover, patterns are usually explained in a semi formalor
informal language.

In MDE the process of developing software is performed by useof (semi-)automatic develop-
ment steps in form of model transformations. Hence, to fullybenefit from patterns in MDE the
patterns should be expressed formally, facilitating modeltransformations and automatic software
development steps. In MDE, patterns are used in different phases and for different means during
the software development process:

• means for communication, e.g. among developers and domain experts

• guideline for design; i.e. as a specification for software design and software behaviour

• tool for conformance check; i.e. to check whether a model follows a given pattern or not

• guideline for design change; i.e. if the design does not follow the desired pattern, the
pattern may be forced by use of model transformations and refactoring.

To be practically useful, patterns in MDE should meet some criteria, e.g they should be formal,
abstract, conceptually clear, intuitive, adaptable and reusable. To enhance usability of patterns,
it is natural to employ a diagrammatic approach, but still demanding a precise (formal) meaning
of the diagrammatic models. The proposed approach of this paper is based on the Diagram Pre-
dicate Framework (DPF) [Rut10, RRLW10, RRLW09], which is a generalisation and adaptation
of the categorical sketch formalism [BW95], where user-defined diagrammatic predicate signa-
tures represent the constructs of modelling languages in a more direct way. In particular, DPF
is an extension of the Generalised Sketches [Mak97] formalism [Dis03]. DPF aims to combine
mathematical rigour – which is necessary to enable automatic reasoning – with diagrammatic
modelling.

In this paper, we use DPF to formalise concepts related to patterns in MDE. We will define
these concepts in general in the sense that they may be applied for design patterns or other kinds
of patterns such as input and output patterns of model transformation rules.

Usually patterns describe the structure of an architectureor a problem solution for a (sub)system.
In MDE a pattern could be represented by a structural model. To ensure the desired behavior of
the system the pattern should also have the possibility to describe some of the constraints that the
system needs to fulfil. Hence a proper formalisation of patterns should also have the possibility
to express actual constraints.

The remainder of the paper is structured as follows. Section2 outlines DPF as the formal
underpinning of our approach. Section3 introduces the formal approach to patterns and pattern
enforcement. In Section4, some related research in patterns within MDE is presented.Finally,
in Section5, some concluding remarks and ideas for future work are presented.

Proc. VFfP 2010 2 / 12

ECEASST

2 Diagram Predicate Framework

DPF is a generic graph-based specification framework that tends to adapt first-order logic and
categorical logic to software engineering needs. DPF is generic in the sense that it supports any
kind of graph structures (see [DW08] for the general case). However, the variant of DPF which
we employ in this paper is based on directed multi-graphs.

Before introducing the formal foundation of DPF, the terminology adopted in this paper is
clarified in the following. The word “model” has different meanings in different contexts. In
software engineering, model denotes “an abstraction of a (real or language-based) system allow-
ing predictions or inferences to be made” [Küh06]. Models in software engineering are typically
diagrammatic. The word “diagram” has also different meanings in different contexts. In software
engineering, diagram denotes a structure which is based on graphs; i.e. a collection of nodes to-
gether with a collection of arrows between nodes. Since graph-based structures can be visualised
in a natural way, “visual” and “diagrammatic” modelling areoften treated as synonyms. In this
paper, visualisation and diagrammatic syntax are clearly distinguished. That is, the proposed
approach focuses on precise syntax and semantics of diagrammatic models independent of their
visualisation.

In DPF, models are represented by(diagrammatic) specifications. A specificationS = (S,CS:
Σ) consists of an underlying graphS together with a set ofatomic constraintsCS [RRLW09,
Rut10]. The graph represents the structure of the model while atomic constraints add restrictions
to this structure. Atomic constraints are formulated by predicates from(diagrammatic predic-
ate) signatures. A signatureΣ = (P Σ ,αΣ) consists of a collection of predicates, each having
a name, a shape graph, a visualisation and a semantic interpretation [RRLW09, Rut10]. The
formal definitions are as follows:

Definition 1 (Signature) A signatureΣ = (P Σ ,αΣ) consists of a collection of predicate sym-
bols P Σ with a mappingαΣ that assigns a graph to each predicate symbolp ∈ P Σ . αΣ(p) is
called thearity of the predicate symbolp.

Definition 2 (Atomic Constraint) Given a signatureΣ = (P Σ ,αΣ), an atomic constraint(p,δ)
on a graphS is given by a predicate symbolp and a graph homomorphismδ : αΣ(p) → S 1.

Definition 3 (Specification) Given a signatureΣ = (P Σ ,αΣ), a specificationS = (S,CS :Σ)
is given by a graphS and a setCS of constraints(p,δ) on S with p ∈ P Σ .

Definition 4 (Specification Morphism) Given two specificationsS = (S,CS : Σ) andS′ =
(S′ ,CS′

:Σ), a specification morphismφ : S → S′ is a graph homomorphismφ : S → S′ such
that(p,δ) ∈ CS implies(p,δ;φ) ∈ CS′

, illustrated by the following diagram:

αΣ(p)
δ

δ;φ

=

S
φ

S′

Nodes and arrows of a specification have to be interpreted in away which is appropriate for

1 The definition of atomic constraint corresponds to diagramsin category theory.

3 / 12 Volume 31 (2010)

Enforcement of Patterns by Constraint-Aware Model Transformations

Table 1: A sample signatureΣ = (P Σ ,αΣ)

p αΣ(p) Proposed vis. Semantic interpretation

[mult(m,n)] 1
a

2 X
f

[m..n]
Y ∀x ∈ X : m ≤ |f(x)| ≤ n,

with 0 ≤ m ≤ n andn ≥ 1

[injective] 1
a

2 X
f

[inj]
Y ∀x,x′ ∈ X : f(x) = f(x′) im-

pliesx = x′

[surjective] 1
a

2 X
f

[surj]
Y ∀x ∈ X :

⋃
{f(x)} = Y

[inverse] 1

a

2

b

X

f

Y

g

[inv] ∀x ∈ X , ∀y ∈ Y : y ∈ f(x) iff
x ∈ g(y)

[composition] 1
f

h

2

g

3

X
f

[comp(f,g)]

Y

g

Z

∀x ∈ X : h(x) =
⋃

{g(y) | y ∈
f(x)}

the corresponding modelling environment [RRLW09]. In object-oriented structural modelling,
each object may be related to a set of other objects. Hence, itis appropriate to interpret nodes as

sets and arrowsX
f
−→ Y as multi-valued functionsf : X → ℘(Y). The powerset℘(Y) of Y is the

set of all subsets ofY ; i.e. ℘(Y) = {A | A ⊆ Y }. Moreover, the composition of two multi-valued
functionsf : X → ℘(Y), g : Y → ℘(Z) is defined by(f ;g)(x) :=

⋃
{g(y) | y ∈ f(x)}.

Example1 (Sample signature and specification)Table1 shows a small sample signatureΣ =
(P Σ ,αΣ). Fig.1a shows a sample diagrammatic specification(S,CS :Σ) and Fig.1b shows the
underlying graphS of S; i.e. the graph ofS without any constraints. InS, the nodesX andY
are interpreted as setsX andY , and the arrowsf andg are interpreted as multi-valued functions
f : X → ℘(Y) andg : Y → ℘(X), respectively. Moreover, the functiong is surjective; this is
forced by the constraint([surjective],δ1) on the arrowg. Similarly, the functionf is total;
this is forced by the constraint([mult(1,∞)],δ3) on the arrowf. Finally, the functionsf and
g areinverseof each other; i.e.∀x ∈ X and∀y ∈ Y : x ∈ g(y) iff y ∈ f(x). This is forced by the
constraint([inverse],δ2) on f andg. The graph homomorphismsδ1, δ2 andδ3 are defined as
follows:

δ1(1) = Y , δ1(2) = X, δ1(a) = g

δ2(1) = X, δ2(2) = Y , δ2(a) = f , δ2(b) = g

δ3(1) = X, δ3(2) = Y , δ3(a) = f

In DPF, we use specifications to represent models at any levelof a metamodelling hierarchy.
Moreover, we distinguish between two types of relations between models and metamodel:typed
by and conforms to. A specificationSn at level n is typed by a specificationSn+1 at level
n + 1 if there exists a typing morphismιSn : Sn → Sn+1 between the underlying graphs of the

Proc. VFfP 2010 4 / 12

ECEASST

S(c)

f

g

X Y

(a)S

[inv]

f

g

X

[1..∞]

[surj]

Y

Figure 1: A sample specification (a)S = (S,CS :Σ) and (b) its underlying graphS

specifications. This corresponds to the relation between a model and its metamodel in the graph-
based formalisation of the metamodelling hierarchy. In contrast, a specificationSn at level
n is said to conform to a specificationSn+1 at leveln + 1 if there exists a typing morphism
ιSn : Sn → Sn+1 such that(Sn, ιSn) is an instance ofSn+1 [Rut10]. That is, in addition to the
existence of the typing morphismιSn , the constraintsCSn+1 are satisfied by(Sn, ιSn).

So far we have discussed two concepts for constraining specifications: typing and satisfac-
tion of atomic constraints. These concepts are used to definethe relation between models and
metamodel. In addition to the conformance requirement, there are other constraints concerning
the overall structure of specifications. An example is if onewants to formulate that in EMF mod-
els “every model must have a root class” and “every class in a model must have the root class
as its container, directly or transitively”. In DPF such constraints are expressed byuniversal
constraints[Rut10]. A universal constraint is defined as a specification morphism u : L → R,
whereL andR are the premise and the conclusion of the constraint, respectively. A universal
constraint is satisfied by a specification if for any occurrence of the premise an occurrence of the
conclusion should also be found.

The formal definitions of instance, typed specification and typed specification morphism, con-
formant specification as well as universal constraints are given in [Rut10].

3 Patterns in DPF

Is this section patterns and pattern matching are formally defined. First a declarative definition
of patterns by means of metamodels is given. We also illustrate how patterns (and anti patterns)
may be used for model refactoring. Pattern enforcement is performed operationally by means of
model transformation from a precondition (anti-pattern) in a specification to the desired pattern.

3.1 Patterns

In MDE metamodelling is used for the definition of modelling languages. Following this line,
we define patterns by metamodels in DPF. That is, a pattern maybe seen as an instance of a
diagrammatic specification representing the pattern’s metamodel. Pattern matching is used to
show which parts of a model conform to the metamodel of a givenpattern. A match of a pattern
in a specification is formalised by a specification morphism.Matches may be used to check if a
given design follows the desired pattern or not, i.e. pattern finding.

Definition 5 (Pattern) A patternP is a diagrammatic specification typed over a metamodelM.

5 / 12 Volume 31 (2010)

Enforcement of Patterns by Constraint-Aware Model Transformations

(a)

Scheduler

Work WorkWork1 2 3

Computer Computer
1 2

(b)

Conforms to

Server

Client

Facade

s

c

d

r

:s:s:s

:c:c

Figure 2: Metamodel for (a) the facade design pattern and (b)and example of a model following
the pattern/metamodel

Definition 6 (Match of Pattern) Given a patternP typed overM and a specificationS, a match
m : P → S of the patternP in S is a specification morphismm : P → S. The specificationS
followsa patternP if there exists a matchm : P → S such thatm(P) conforms toM.

Example2 (Facade Design Pattern)The facade element in the facade design pattern serves as
an interface for subsystems. That is, if a system consists ofseveral subsystems which are inter-
acting with each other, the facade design pattern should be followed. In Fig.2a the metamodel
for the facade pattern is given. A model following this pattern can be seen in Fig.2b. The
model is a snapshot of a scenario illustrating how certain works are deployed on some com-
puters. There are threeClient elementsWork1, Work2, Work3 communicating with twoServer
elementsComputer1, Computer2 via theFacade elementScheduler.

3.2 Pattern Enforcement

If a patternP is not followed by a specificationS, then the pattern may be enforced by applying
a model transformation toS. The precondition for the enforcement of a pattern will thenbe the
source of a model transformation. This is also known asanti-pattern, i.e. a design which is not
desired and need to be refactored. An anti-pattern is also defined as a pattern (see Fig.3 for an
anti-pattern for the pattern in Fig.2).

A model transformationis the automatic generation of target models from source models,
according to a transformation definition. Atransformation definitionis a set of transformation
rules that together describe how a source model can be transformed into a target model.

Definition 7 (Model Transformation Rule) A model transformation ruler is given by a spe-

Proc. VFfP 2010 6 / 12

ECEASST

(a)

Conforms to

Work WorkWork1 2 3

Computer Computer
1 2

(b)

Server

Client

n

d

r

:n:n:n

Figure 3: Metamodel for (a) anti patterns and (b) an example of anti pattern

cification morphismr : L → R. An application of a model transformation ruler is given by a
pushout construction, see e.g. [BW95] for a definition of pushout.

L

m

r
R

m∗

S
〈r,m〉

S∗

P.O.

where for each matchm : L → S, a matchm∗ : R → S∗ is created.

Definition 8 (Pattern enforcement) Given a patternP and a specificationS, P may be en-
forced inS by performing a model transformationT such thatT (S) follows the patternP.

The following example shows the enforcement of a pattern by applying model transformation.

Example3 (Pattern Enforcement)Building upon Example2. The example illustrates how to
refactor a client-server architecture such that it followsthe facade design pattern. Given the
specification in Fig.4b, a model transformation enforces the facade design pattern and creates
the design in Fig.4c. The model transformation consists of four rules:

1. There should be exactly oneScheduler

2. Every connection between aWork and aComputer is rerouted via theScheduler

3. There should not be more than one connection between aComputer and theScheduler

4. There should not be more than one connection between aWork and theScheduler

7 / 12 Volume 31 (2010)

Enforcement of Patterns by Constraint-Aware Model Transformations

Transformation application
Scheduler

Work1 Work2 Work3

Computer
1

Computer2

(c)

Work1 Work2 Work3

Computer
1

Computer2

(b)

SchedulerScheduler

NAC LHS RHS RHS

Scheduler

Work

Computer

LHS

Scheduler

Work

Computer

RHSLHS

Scheduler

Work

Scheduler

Work

RHSLHS

(a)

:s

:s :s :s

:s:s:s

:c

Scheduler

Computer

:c :c

Scheduler

Computer

:c

:c:c

:n

:n:n:n

Figure 4: Using transformation rules (a) to enforce the pattern in Fig.2, a model (b) with an anti
pattern in it is refactored to a model (c) following the required pattern

3.3 Constraint-Aware Pattern Enforcement

The next step is to take constraints into account while defining, matching and enforcement of
patterns. When a constraint-aware pattern is enforced, theconstraints of the original specification
should be transformed into corresponding constraints in the refactored specification. One way
to achieve this is to use constraint-aware model transformations as described in [RRLW10]. In
this approach, constraints of the source models are used to control which structures and which
constraints should be defined in the target model. Adding constraints to patterns can also be
used to specify the intended behavior of the design. This section outlines how constraint-aware
patterns are formalised and enforced in view of DPF.

Example4 (Constraint-Aware Patterns)Building on example3, in Fig. 5 we add a constraint
to the pattern metamodel in Fig.3. The constraint expresses a requirement that if a clientc1

is dependent on a clientc2, the host server(s) ofc1 should reach the host server(s) ofc2. This
requirement is expressed by the constraintcomp(d,s) ⊆ comp(s,r). That is, the result of the
composition ofd with s should be included in the results of the composition ofs with r.

Constraints at a modelling level may be expressed as universal constraint on the level below.

Example5 (Universal Constraints) The constraint in example4 is expressed as a universal
constraint in Fig.6A. The specification in Fig.7a satisfies this constraint since for any occurrance
of the premise (Fig.6a) an occurrance of the conclusion (Fig.6b) is also found. That is, ifWork1

is dependent onWork2 then Computer1 hostingWork1 should be able to reach the computer
hostingWork1.

Proc. VFfP 2010 8 / 12

ECEASST

Figure 5: Metamodel of the anti-pattern from Fig.3a extended with constraints

Figure 6: Transformation of (A) source universal constraints to (B) target universal constraints

Pattern application
Scheduler

Work1 Work2 Work3

Computer1

(c)

Work1 Work2 Work3

Computer2Computer1 Computer2

(b)

:d

:r

:d

:r

:n :n :n

:s :s :s

:c:c

Figure 7: A model (a) following an anti pattern is refactoredto a model (b) following the required
pattern

9 / 12 Volume 31 (2010)

Enforcement of Patterns by Constraint-Aware Model Transformations

Example6 (Transformation of Universal Constraint)Building on Example3. Fig. 7a shows
a specification with a match of the anti-pattern in Fig.5. The rules from Fig.4a are used to
transform this specification to the specification shown in Fig. 7b. The universal constraint in
Fig. 6A is transformed to the universal constraint in Fig.6B. This constraint ensures that if
Work1 is dependent onWork2 and theScheduler runsWork1 on Computer1 then theScheduler
should runWork2 on aComputer2 which is reachable fromComputer1.

4 Related Work

In [BGL09] a formal definition of patterns is given as a set of graphs andgraph morphisms,
defining a fixed part and some variable regions. Variable regions are used to specify multiple
occurrences of sub-patterns. Moreover, triple graphs are used for coordinating models with the
pattern. The approach also uses synchronisation graphs to relate structural models and behavioral
models. In the DPF-based approach patterns are defined by metamodels. Moreover, a variable
region may be represented in the metamodel with multiplicity [0 . . .∗]. Coordination of patterns
with models are done by conformance and match of patterns.

Pattern-based model-to-model transformation is an algebraic, bidirectional and relational ap-
proach to model transformation [LG08] based on Triple Graph Grammar (TGG) [Sch94]. This
approach is based on triple patterns which express allowed and forbidden relations between two
models, where the models are triple graphs. Triple patternscan be seen as graph constraints for
triple graphs, which specify both negative and positive constraints. Pattern-based specifications
are compiled to operational TGG rules, which perform forward and backward model transform-
ations by graph rewriting. Matches of these patterns are formalised as triple graph morphisms.
Furthermore, in [Löw10], graph rewriting is generalised by using span-categories. In the DPF-
based approach, universal constraints are used to express requirements which are expressed by
triple patterns in pattern-based model-to-model transformations. These constraints are also used
to ensure that pattern enforcement is performed in a way thatsource constraints are transformed
adequately to the target models.

In [Grø10] a concrete syntax for definition of input and output patterns of model transforma-
tion rules is employed. That is, instead of using the abstract syntax of the modelling languages
involved in the model transformation, as done usually, one can define transformation rules em-
ploying the syntax used for definition of the models themselves. In addition, this approach offers
a collection operator which is used for matching and transformation of collections of similar sub-
graphs. This operator is used for the definition of patterns with variable regions. The DPF-based
approach employs also a concrete syntax for definition of patterns. Moreover, since patterns are
defined by metamodels, variable regions are represented by metamodel elements with variable
multiplicity.

5 Conclusion and Future Work

In this paper patterns are described by metamodels which arerepresented as diagrammatic spe-
cifications. Pattern enforcement is performed by executingmodel transformations that transform
anti-patterns to models following the desired pattern. Constraints are used to express require-

Proc. VFfP 2010 10 / 12

ECEASST

ments that should be fulfilled by models. We require that pattern enforcement adequately trans-
forms these constraints.

Since patterns are described by metamodels, the relation between anti-pattern and required
pattern may be seen as metamodel evolution. In this context,pattern enforcement may be seen
as model migration, i.e. transformation of models conforming to the anti-pattern metamodel to
models conforming to the required pattern’s metamodel. An interesting line of research in this
direction is to find the conditions under which it is possibleto automatically generate model
migration rules. Some preliminary results about model migration is done in [MRR+10].

An other interesting aspect with patterns is the relation between patterns. Patterns are diagram-
matic specifications and it is natural to relate them to each other by specifications morphisms.
A further study of different patterns and their relations should be done to obtain a taxonomy of
patterns.

References

[BC87] K. Beck, W. Cunningham. Using Pattern Languages for Object-Oriented Programs.
Technical report CR-87-43, Tektronix, Inc, September 1987.

[BGL09] P. Bottoni, E. Guerra, J. de Lara. Formal Foundationfor Pattern-Based Modelling.
In Chechik and Wirsing (eds.),FASE 2009: 12th International Conference on Fun-
damental Approaches to Software Engineering. LNCS 5503, pp. 278–293. Springer,
2009.
doi:/10.1007/978-3-642-00593-0_19

[BW95] M. Barr, C. Wells.Category Theory for Computing Science (2nd Edition). Prentice
Hall International Ltd., Hertfordshire, UK, 1995.

[Dis03] Z. Diskin.Practical foundations of business system specifications. Chapter Mathem-
atics of UML: Making the Odysseys of UML less dramatic, pp. 145–178. Kluwer
Academic Publishers, 2003.

[DW08] Z. Diskin, U. Wolter. A Diagrammatic Logic for Object-Oriented Visual Modeling.
In ACCAT 2007: 2nd Workshop on Applied and Computational Category Theory.
ENTCS 203/6, pp. 19–41. Elsevier Science Publishers B. V., Amsterdam, The Neth-
erlands, 2008.
doi:10.1016/j.entcs.2008.10.041

[GHJV94] E. Gamma, R. Helm, R. Johnson, J. M. Vlissides.Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, 1994.

[Grø10] R. Grønmo.Using Concrete Syntax in Graph-based Model Transformations. PhD
thesis, Department of Informatics, University of Oslo, Norway, February 2010.

[Küh06] T. Kühne. Matters of (Meta-)Modeling.Software and System Modeling5(4):369–
385, 2006.
doi:10.1007/s10270-006-0017-9

11 / 12 Volume 31 (2010)

http://dx.doi.org//10.1007/978-3-642-00593-0_19
http://dx.doi.org/10.1016/j.entcs.2008.10.041
http://dx.doi.org/10.1007/s10270-006-0017-9

Enforcement of Patterns by Constraint-Aware Model Transformations

[LG08] J. de Lara, E. Guerra. Pattern-Based Model-to-ModelTransformation. InICGT
2008: 4th International Conference on Graph Transformations. LNCS 5214,
pp. 426–441. Springer, 2008.
doi:10.1007/978-3-540-87405-8_29

[Löw10] M. Löwe. Graph Rewriting in Span-Categories. In Ehrig et al. (eds.),ICGT 2010:
5th International Conference on Graph Transformations. LNCS 6372, pp. 218–233.
Springer, 2010.
doi:/10.1007/978-3-642-15928-2_15

[Mak97] M. Makkai. Generalized Sketches as a Framework for Completeness Theorems.
Journal of Pure and Applied Algebra115:49–79, 179–212, 214–274, 1997.
doi:10.1016/S0022-4049(96)00007-2

[MRR+10] F. Mantz, A. Rossini, A. Rutle, Y. Lamo, U. Wolter. Towards a Formal Approach
to Metamodel Evolution. InNWPT 2010: 22nd Nordic Workshop on Programming
Theory. Pp. 52–54. November 2010.

[RRLW09] A. Rutle, A. Rossini, Y. Lamo, U. Wolter. A Diagrammatic Formalisation of MOF-
Based Modelling Languages. In Oriol and Meyer (eds.),TOOLS 2009: 47th In-
ternational Conference on Objects, Components, Models andPatterns. LNBIP 33,
pp. 37–56. Springer, 2009.
doi:10.1007/978-3-642-02571-6_4

[RRLW10] A. Rutle, A. Rossini, Y. Lamo, U. Wolter. A Formalisation of Constraint-Aware
Model Transformations. In Rosenblum and Taentzer (eds.),FASE 2010: 13th

International Conference on Fundamental Approaches to Software Engineering.
LNCS 6013, pp. 13–28. Springer, 2010.
doi:10.1007/978-3-642-12029-9_2

[Rut10] A. Rutle.Diagram Predicate Framework: A Formal Approach to MDE. PhD thesis,
Department of Informatics, University of Bergen, Norway, 2010.

[Sch94] A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In Mayr
et al. (eds.),WG :20th International Workshop on Graph-Theoretic Concepts in
Computer Science. Lecture Notes in Computer Science 903, pp. 151–163. Springer,
1994.
doi:/10.1007/3-540-59071-4_45

Proc. VFfP 2010 12 / 12

http://dx.doi.org/10.1007/978-3-540-87405-8_29
http://dx.doi.org//10.1007/978-3-642-15928-2_15
http://dx.doi.org/10.1016/S0022-4049(96)00007-2
http://dx.doi.org/10.1007/978-3-642-02571-6_4
http://dx.doi.org/10.1007/978-3-642-12029-9_2
http://dx.doi.org//10.1007/3-540-59071-4_45

	Introduction and motivation
	Diagram Predicate Framework
	Patterns in DPF
	Patterns
	Pattern Enforcement
	Constraint-Aware Pattern Enforcement

	Related Work
	Conclusion and Future Work

