
This document is published in: 

Petriu, D. et al. (eds.) (2010). Model Driven Engineering Languages and Systems: 

13th International Conference, MODELS 2010, Oslo, Norway, October 3-8, 2010, 

Proceedings, Part I (Lecture Notes in Computer Science, 6394), Springer, pp. 106-120. 

DOI: 10.1007/978-3-642-16145-2_8

© 2010 Springer-Verlag Berlin Heidelberg 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29405855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-642-16145-2_8


transML: A Family of Languages to Model

Model Transformations

Esther Guerra1, Juan de Lara2, Dimitrios S. Kolovos3,
Richard F. Paige3, and Osmar Marchi dos Santos3

1 Universidad Carlos III de Madrid, Spain
eguerra@inf.uc3m.es

2 Universidad Autónoma de Madrid, Spain
Juan.deLara@uam.es

3 University of York, UK
{dkolovos,paige,osantos}@cs.york.ac.uk

Abstract. Model transformation is one of the pillars of Model-Driven Engineering 
(MDE). The increasing complexity of systems and modelling languages has 
dramatically raised the complexity and size of model trans-formations. Even though 
many transformation languages and tools have been proposed in the last few years, 
most of them are directed to the implementation phase of transformation 
development. However, there is a lack of cohesive support for the other phases of 
the transformation development, like requirements, analysis, design and testing.

In this paper, we propose a unified family of languages to cover the life-cycle of 
transformation development. Moreover, following an MDE approach, we provide tools 
to partially automate the progressive refine-ment of models between the different 
phases and the generation of code for specific transformation implementation languages.

1 Introduction

Model-Driven Engineering (MDE) relies on models to conduct the software de-
velopment process. In this way, high-level models are refined using automated
transformations until the code of the final application is obtained. A key aspect
in MDE is automation of operations applied to models (i.e. model management).
In particular, there is a recurring need to transform models between different
languages and levels of abstraction, e.g. to migrate between language versions,
to translate models into semantic domains for analysis, to generate platform-
dependent from platform-independent models, or to refine and abstract models.
This kind of transformation is called Model-to-Model (M2M) transformation.

In MDE, transformations are seldom specified with general-purpose program-
ming languages (e.g. Java) but with M2M transformation languages specially
tailored for the task of transforming models [3]. Prominent examples of such
languages are QVT [12], ATL [1], Triple Graph Grammars [15] and ETL [10].

M2M transformations are deployed as software and, like any other software,
they need to be analysed, designed, implemented and tested. Therefore, their
development requires systematic engineering processes, notations, methods and

1



tools. This need is more acute in industrial projects, where the complexity of
models and modelling languages makes necessary large and complex transforma-
tions. Surprisingly, most transformation languages proposed by the MDE com-
munity are either directed towards the implementation phase of transformations
or are not integrated in a unified engineering process. As a consequence, there
is a lack of cohesive support for transformations – involving notations, methods
and tools – across all development phases. This makes more difficult the design of
large-scale transformations, hinders the standardization and codification of best
practices (e.g. patterns analogous to design patterns in UML), and complicates
the maintenance and understandability of the transformation code.

In this paper we present a family of modelling languages, called transML,
which covers the whole life-cycle of transformation development: requirements,
analysis, design and testing. It can be used together with any transformation
implementation language. Moreover, following an MDE approach to the con-
struction of transformations, we provide partial automation for the refinement
of transML models and the generation of code for specific transformation imple-
mentation languages. We also provide support for reengineering transformation
code by its parsing into transML models, and facilitating platform migration.

Paper organization. §2 discusses previous attempts to model M2M transfor-
mations, pointing out limitations. Next, §3 proposes a set of languages that cover
the identified needs to build transformations in the large. §4 presents tool sup-
port for forward and reverse transformation engineering, followed by §5, which
evaluates the approach with an industrial case study. Finally, §6 concludes.

2 Related Work

Most recent research in M2M transformation has focused on the implementation
phase, either to develop new implementation languages, or to test final imple-
mentations. This is likely due to the infancy of M2M transformation research,
and is analogous to early research on software engineering languages where the
focus was directed to implementation languages. There, analysis and design no-
tations came later, when issues of system scale became a concern.

Only a few proposals for design notations for transformations can be found in
the literature. For example, [13] presents a language to design transformations,
but focusing only on their implementation. Another example is [4], which covers
the low-level design of transformations, being able to represent the structure of
rules using diagrams similar to UML class diagrams.

Closer to our engineering view of building transformations are the works that
consider several phases of development. For example, [16] identifies a transforma-
tion development life-cycle and proposes describing transformations incremen-
tally, starting from transformational patterns and partial specifications of trans-
formations, which are gradually refined. However, no concrete notation or tool
is proposed. The position paper [11] envisages a mapping and a transformation
view for transformations. Its aim is providing a precise semantics for mappings
in terms of Petri nets so that the transformation view can be generated from the

2



mappings view. Still, the framework is ad-hoc for their particular transformation
approach and cannot be applied to other implementation languages.

Finally, there is limited work on languages to express composition of transfor-
mations; this can be viewed as a kind of architectural design [14,18] through the
definition of new architectural languages. Whereas [14] is a specific language for
composing ATL transformations, in [18] the approach is more platform indepen-
dent. In both cases, other phases of transformation development are neglected.

In summary, we observe a lack of modelling notations and tools to cover the
complete life-cycle of transformation development in a cohesive way. Transfor-
mation developers should be able to use such notations with their favourite
transformation implementation languages, in the same way as the UML can
be used with any object-oriented programming language. Having available such
transformation modelling notations would make possible to apply systematic en-
gineering principles to transformation development, to trace the models in the
different stages of the development (in a non ad-hoc way), as well as to apply
MDE techniques to obtain transformation code from high-level models. Such no-
tations are urgently needed in order to be able to benefit from proven software
engineering principles, like design patterns [2,8] for model transformations.

3 A Family of Languages to Model Transformations

How are transformations developed? The answer is too frequently “in an ad-hoc
manner”. Jumping directly to an implementation language may be sufficient for
simple transformations, but this approach is challenging in the large. If transfor-
mation technology is to be used in industry, transformations must be constructed
using engineering principles. Hence, the process of transformation development
should include other phases, in addition to coding and testing, namely: require-
ments, analysis, architectural design, high-level design and detailed design.

The notations to be used in these phases have to consider the specificities
of model transformation development. Fig. 1 gives an overview of transML, the
family of languages we propose, and shows how they are interrelated. In the
upper part, the figure shows the family of proposed languages, made of a re-
quirements diagram, formal specification diagrams and simple scenarios to cover
the transformation analysis, architecture diagram, high-level design view of the
transformation specified as a mapping diagram, and rule diagrams for the low-
level design. The figure also shows relations to trace elements across diagrams
(e.g. to discover the requirements each rule is addressing). The objective of these
diagrams is guiding the construction of the software artifacts shown on the bot-
tom of the figure: the transformation code (in any implementation language
such as QVT or ETL), the generation of test cases, the run-time verification of
transformation code and the orchestration of transformations.

We do not prescribe a particular process in which these phases should occur,
but in our experience, transformations are often built in an iterative, incremental
way. We also do not suggest that all diagrams have to be used when building any
transformation (just like when building object-oriented systems it is not manda-
tory to use all UML diagram types). Depending on the project characteristics,

3



Traceability links

Rule
diagrams

Transformation code
(e.g. ETL, ATL, QVT…)

generation reengineering

Behavioural
diagrams

Mapping
diagram

Scenario
s

Aggregated
Scenarios

Requirements

Formal
specification

Test
Cases

generationin
je

ct
 a

ss
er

tio
ns

Simple
scenarios

Test
cases

High-level
design

Low-level design

Orchestration
code

generation

Analysis

Architecture
diagram

Derived traceability links

Fig. 1. Model transformation framework

we may emphasize the use of the formal specification language (e.g. for complex
transformations that should preserve behaviour), or just use the high-level de-
sign diagrams but not the low-level ones for small, one-to-one transformations.
However, the full power of transML comes by using its diagrams in combination.

Next we present transML in detail. We will use as an example the classical
class-to-relational transformation to ease understanding, and provide evaluation
of its use with a complex transformation in an industrial project in §5.

3.1 Requirements Elicitation

Just like any other software, transformation developers need to record the trans-
formation rationale, identifying functional and non-functional requirements.
Therefore, notations helping the hierarchical decomposition of requirements and
permitting traceability to further models are especially useful. Here we could
use any technique and notation from the Requirements Engineering commu-
nity. However, in order to trace requirements into subsequent phases, transML
includes a representation of requirements in the form of diagrams, similar
to SySML requirements diagrams1. The meta-model for this representation is
shown to the left of Fig. 2, and enables hierarchical decomposition, classifica-
tion, refinement and traceability of requirements. Requirements are classified in
a dual way: attending to whether they are functional or not, and to whether
their source is an input model, an output model or the transformation itself.

As an example, the right of Fig. 2 shows the requirements diagram for the
class-to-relational transformation. Requirements for the input model are anno-
tated with a right arrow in the upper right corner, whereas requirements of
the transformation are annotated with dented wheels. Thus, requirement 0.1
restricts input models to have no redefined attributes. On the other hand, re-
quirement 0.3.1 derives from requirements 0.3.2 and 0.3.3.
1 http://www.omg.org/spec/SysML/1.1/

4



requirements

ReqDiagram

-name:String

-description:String

derives+ *

Requirement

-name:String

-text:String

-source:ReqSource

-type:ReqType

children+ *

<< enumeration >>

ReqType

+functional:int=1

+nonFunctional:int=2

<< enumeration >>

ReqSource

+sourceModel:int=1

+targetModel:int=2

+transformation:int=3

*

refines+*

«requirement»

OO2DB Transformation

The objective is, given a class diagram to create a DB schema 

able to store the information of instances of the class diagram

«requirement»
Features

Features are transformed

to columns

«requirement»
Classes

Classes are transformed 

into tables

«requirement»
Single-Val-Attributes

Single valued attributes 

are transformed into 
columns

«requirement»
Multi-Val-Attributes

Multi-valued attributes are 

transformed into a table, 

with a foreign key and a 

column for their values

«requirement»
References

References are 

transformed into 

foreign keys

«requirement»
Inherited Attributes

Inherited attributes are 

copied to the table

«requirement»
Redefined Attributes

Redefined attributes in the class 
diagrams are not allowed

0

0.1 0.2 0.3

0.3.1 0.3.2 0.3.3 0.3.4

<<derives>>

<<derives>>

Fig. 2. Requirements meta-model (left). Requirements for the transformation (right).

3.2 Analysis

Software engineers use a variety of mechanisms to analyse, understand and rea-
son about requirements. We have identified techniques based on scenarios and
on formal specification languages, which we have adapted for transML.

First, once some requirements are fixed, engineers can write scenarios, which
are examples of the transformation (similar to the role of uses cases in UML).
We call these examples transformation cases, which describe how concrete source
models are transformed into target ones. The examples may contain either full-
fledged models or model fragments. As an example, the left of Fig. 3 shows a
transformation case that explains the transformation of a multi-valued attribute
into a table and a foreign key from the table associated to its owner class.

a:Attribute

name = “author”
isMany = true

c:Class

name = “Book”

t2:Table

name = “author”

co3:Column

name = “value”

co2:Column

name = ”authorId”

child

parent

Class with Multi-Valued Attribute

co1:Column

OO DB

fk:ForeignKey

co4:Column

name = ” id”

t1:Table

name = ”Book”

name = ”BookId”

p:Class

N(NoRefinedAttrs)

a:Attribute
name=X

c:Class ar:Attribute
name=X

c.general.includes(p)

c1: Class

P(InheritedAttrs)

p: Class a: Attribute
name=X

c1.general.includes(p) and c2.general.includes(p)

c2: Class
name=C1 name=C2

t1:Table
name=C1

t2:Table
name=C2

d:Column
name=X

e:Column
name=X

OO DB OO DB

Fig. 3. Transformation case (left). Restriction on the input model (center). Verification
property (right).

The purpose of transformation cases is twofold. First, they are used to under-
stand and reason about what the transformation has to do. Second, they can be
used as input to model transformation-by-example techniques [19] which derive
a rough sketch of the transformation, and can also be used as test cases for the
transformation implementation.

5



The second notation we use in this phase is a visual, formal specification lan-
guage [7]. Similar to the role of Z [17] or Alloy for general software engineering,
this language is used to: (i) describe in an abstract manner what the transfor-
mation has to do without stating how to do it, (ii) specify correctness properties
that the implementation should satisfy, and (iii) specify restrictions on the input
or output models. These specifications can be used later for formal reasoning of
transformation requirements, and for specification-driven testing of transforma-
tions through the generation of an oracle function to test the transformation.

Our specification language abstracts from concrete examples, and is based
on declarative patterns that express allowed or forbidden relations between two
models [7]. Patterns have a graphical part, and can include constraints (we use
EOL [9] for this). Patterns expressing allowed relations are called positive, while
those expressing forbidden relations are called negative. Thus, the language sup-
ports constructive and non-constructive specification styles (in contrast to sce-
narios, which are always constructive). Moreover, patterns are bi-directional, so
that they can be interpreted both source-to-target and target-to-source. This
allows the specification of uni-directional and bi-directional transformations.

Since transML has been designed to be independent of the language used
to implement the transformation, our specification language supports the two
usual styles for M2M transformation: trace-based and traceless, depending on
whether explicit traces are given between source and target elements or not.
In the latter case, patterns are similar to QVT relations [12] and can include
positive and negative graph pre- and post-conditions (when and where clauses
respectively). Trace-based and traceless patterns have a formal semantics which
allows answering correctness questions about specifications (e.g. whether there
are conflicts between patterns). The details of the semantics of this language
and its compilation into OCL for testing are available in [7].

As an example, the center of Fig. 3 shows a negative pattern (indicated by the
N(...)) used to express a restriction on the input models. It refines requirement
0.1 in Fig. 2. The pattern checks the existence of two classes c and p such that
p is an ancestor of c, having both an attribute with same name (represented by
variable X). As the pattern is negative, models in which such pattern occurs are
invalid. As we will see latter, code will be injected in the transformation to test
whether a given input model qualifies for the transformation.

The right of the figure shows a pattern expressing a property of the transfor-
mation itself. The pattern is positive (indicated by the P(...)) and expresses
that if a class p has two children classes c1 and c2, then each attribute in the
ancestor class p has to be replicated as a column in the tables associated to c1
and c2. The tables in which the classes are transformed are located by equality
of names (variables C1 and C2), but any formula relating their names would also
be allowed. This kind of patterns will be used for the run-time verification of the
transformation code, in order to check whether the implementation generates
target models satisfying these properties.

6



3.3 Architecture

Large software is seldom monolithic, but is decomposed into interacting blocks.
Hence engineers have to design its architecture. We have included a modelling
language for architectural design which permits the modular decomposition of
functional units. This is very useful in large-scale transformations, which need
to be split in different units and orchestrated. Moreover, it is often the case
that the transformation has to be integrated with further software components
providing extra functionality, such as code generators. For the design of this
language we have taken some ideas from works dealing with orchestration of
transformations [14,18], as well as from architectural description languages [6].

Our architectural language is made of components and connectors. Compo-
nents interact through directional interfaces with a type given by meta-models,
event types, actors or other components (to allow higher-order transformations).
They can have a set of constraints, can be arranged hierarchically, and may repre-
sent transformations (model-to-model, model-to-text, text-to-model or in-place),
software (a black-box) or actors (to model human intervention).

The left of Fig. 4 shows a simple architectural diagram for our example.
The model depicts a chain of transformations: the first takes an OO model and
transforms it into a DB model, the second optimises this DB model, and the
third generates textual code for a particular platform. The diagram shows the
transformations as components with typed, directional interfaces. The type of
the interfaces is given by one or more meta-models, together with extra (OCL)
constraints to rule out models which conform to the meta-model but are not
handled by the transformation. Models conforming to those interfaces can be the
input/output of the transformations. The type also allows checking compatibility
when connecting two transformation components. The right of the figure shows
a type-centric view of the same model. This view is similar to a mega-model [5],
where transformation components are visualized as arrows connecting interface
types. This architectural view can bridge modelware and grammarware technical
spaces by including model-to-text and text-to-model transformations.

OO2DB

in out

Normalize

in out

UML DB

GenSchSQL

in out

SQL Grammar
ISO/IEC 9075:2008

«M2M» «inPlace» «M2text»

UML DB
OO2DB

Normalize

SQL Grammar

ISO/IEC 9075:2008

GenSchSQL

Fig. 4. Architectural diagram: transformation-centric and type-centric views

3.4 High-Level Design: Mappings

The design of a transformation benefits from proceeding from a high to a lower
level of abstraction, and therefore we provide different notations for them. The
high-level design of a transformation is given by a mapping diagram that de-
fines the mappings between the elements of the arbitrary number of languages

7



involved in the transformation. This diagram provides an intuition of which
is transformed into what, without giving details on the how, thus enabling the
transition between analysis and design. This is similar to Triple Graph Grammar
schemas [15], however our mappings are not intended to be used as an auxiliary
tracing mechanism to guide the actual execution of the transformation code.

Fig. 5 shows to the left an extract of the mappings meta-model. A mapping
model is established between several languages, each one defined by a meta-
model. Mapping models can define the directionality of the transformation us-
ing the navigable attribute in ModelEnds. Models are structured in packages,
each one containing mappings, which can also be organized hierarchically. Map-
pings connect elements in the meta-models of the involved languages through
MappingEnds. Mappings are provided with constraints, given either in uninter-
preted text or in some language like OCL, expressing when mappings between
elements should hold. The mapping meta-model refers to the meta-models of the
languages involved in the transformation. We use an abstract class ModellingEle-
ment, which can be replaced by any concrete meta-modelling infrastructure.

mappings

MappingModel ModelEnd

−name:String

−navigable:Boolean

1..*

Language

MetaModel

ModellingElement

*

MappingEnd

−name:String

−min:int

−max:int

−navigable:BooleanMapping

children+
*

Constraint

−text:String

*
when+

0..1

OpaqueConstraintInterpretedConstraint

−language:String

Package

*

1..*

*

Table

Column

pkey

Class
Classes are transformed to 

tables

3

Reference
References are transformed 

into foreign keys

S ingle-Valued-Att
Single-valued attr ibutes are 
transformed into a column

fkey

DBClass2Relational

Multi-Val-Att-Top
Multi-valued attr ibutes are 
transformed into a table, 
with a pkey, a fkey, and a 

column for their values

Multi-Val-Att-Child
In children classes the table 
is not created, but only the 

foreign key

fk
ey

Class

Attribute

Reference

OO

Fig. 5. Excerpt of mapping meta-model (left). Mapping diagram example (right).

The right of Fig. 5 shows a mapping diagram. It has one block for each
language, containing the relevant elements of their meta-model. Another block
includes mappings connecting some of these elements to indicate a causal relation
between them. The links from the mappings to the language elements have a role
name (e.g. fkey, pkey), a multiplicity (1 is assumed if it is empty) and a direction
(to denote either access or creation of elements). As our transformation is uni-
directional, mapping ends are depicted with arrows on the side of the DB.

Mapping diagrams can be used with different levels of detail. One can start
with a rough sketch of the mappings and add details as the transformation is
better understood. For example, in Fig. 5 we have omitted element ForeignKey
of the DB meta-model. The mapping diagram is a high-level design notation,
independent of the transformation implementation language. Moreover, it is not
necessarily the case that a mapping has to be implemented by a unique rule and

8



vice-versa. As we show next, we can use rule diagrams as a way to design the
implementation of mappings if more details are needed before coding.

3.5 Low-Level Design: Rule Structure and Rule Behaviour

Low-level detailed design diagrams indicate how the transformation has to be
implemented. Here we separate the description of the rule structure from its be-
haviour. Hence, one or several rule structure diagrams may describe the structure
of the rules in the transformation, and several rule behaviour diagrams attached
to the rules can be used to specify what these rules should do. These notations
will help in describing good practices and transformation patterns, in the same
way as UML helps to record object-oriented patterns. Rule diagrams are also
useful to generate code for different platforms, and reengineering of existing code.

Fig. 6 shows part of the meta-model of the rule structure diagrams. This kind
of diagram depicts the structure (input/output parameters) of each rule, their
execution flow, and data dependencies (e.g. parameter passing) between them.
Rule diagrams refine mapping diagrams by giving the low-level design of how
the specified mappings are to be realized. In this way, a rule can contribute to
implement several mappings, and a mapping can be realized by several rules.
Regarding rule structure, we can declare uni-directional or bi-directional rules,
their involved domains and their parameters. Concerning the execution flow,
we support both explicit flows (subclasses of Flow) as well as non-deterministic
constructs found e.g. in graph transformation, as one can place a collection of
rules inside a non-deterministic Block.

rules−structure

Transformation

−isBidirectional:Boolean

<< from mappings >>

MappingModel

implements+

Flow

*

Component

−isALAP:Boolean

rules+1..*
src+

*

{ordered}

tar+

*

{ordered}

After

Choice

Call DataDependency

−expressionParam:String

*

<< from mappings >>

Constraint

guard+

Parameter

src+ * tar+
Rule

−isAbstract:Boolean

−isTop:Boolean

−isLazy:Boolean

−priority:int

Block

−isConcurrent:Boolean

−isNondeterministic:Boolean

−isInitial:Boolean

DirectionalRule BidirectionalRule

*

guard+

0..1

children+
*0..1

Domain
* *

<< from mappings >>

ModellingElement

type+

<< from mappings >>

Mapping

implements+*
<< from mappings >>

Language

Fig. 6. Excerpt of the meta-model of the rule structure diagram

Fig. 7 shows to the left a rule structure diagram with four rules. The diagram
is semi-collapsed, as it only shows the parameters of the OO domain. The diagram

9



shows the rule execution flow by means of rounded rectangles (Block objects),
in a notation similar to activity diagrams. Hence, the starting point is the block
containing rule Class2Table, which implements the Class mapping. After execut-
ing this rule, the control passes to another block with three rules, to be executed
in arbitrary order. In particular, rule MultiValuedAtt2Table has been designed
to implement two mappings: Multi-Val-Att-Child and Multi-Val-Att-Top. In all
cases, rules are applied at all matches of the input parameters.

Directional Transformation

from OO to DB (ETL)

c:Class

OO DB

calls 

{c.parent}

SingleValuedAtt

2Column
{Single-Valued-Att}

MultiValuedAtt

2Table
{Multi-Val-Att-Child, 
Multi-Val-Att-Top}

after

a:Attribute

Reference2Column
{Reference}

r:Reference

a:Attribute
DBOO

DBOO

DBOO

Class2Table
{Class}

c:Class

OO

«new»

t:Table

DB

Class2Table

name:=c.name

«new»

pk:Column

name:=t.pkName()

type:=‘NUMBER’

columns primaryKeys
«new» «new»

transform c: OO!Class

to t:DB!Table, pk: DB!Column

t.name:=c.name;

pk.name:=t.pkName();

pk.type:=‘NUMBER’;

t.columns.add(pk);

t.primaryKeys.add(pk);

Fig. 7. Rule structure diagram for ETL (left). A behavioural rule diagram in visual
(center) and textual (right) notation.

Our rule language captures the main features of transformation languages.
However, a particular rule diagram has to consider the specific implementation
platform. For example, rules can have an arbitrary number of input parameters if
we use ATL as the implementation language, whereas rules have only one input
parameter if we use ETL, and we have patterns if using QVT-R. Also, platforms
differ in the execution control of their rules. While in graph transformation the
execution scheme is “as long as possible” (ALAP) and we can have rule priorities
or layers, in ETL rules are executed once at each instance of the input parameter
type. Hence, even though the language covers the most widely used styles of
transformation, for its use with particular platforms we define platform models
for different transformation languages. These models contain the features allowed
in each languages, and can be used to check whether a rule model is compliant
with an execution platform when code is generated, as well as by editors to guide
the user in building compliant models with the platform. Nonetheless, we believe
that a general design language will enable platform interoperability.

From the point of view of the rule structure diagrams, rules are black-boxes:
their behaviour is still missing, in particular, attribute computations and object
and link creations are not specified. We use rule behaviour diagrams to specify
the actions each rule performs. We have identified three ways of expressing be-
haviour: (i) action languages, (ii) declarative, graphical pre- and post-conditions,
and (iii) object diagrams annotated with operations like new, delete or forbidden.

In the case of an action language, one can use the concrete syntax of existing
transformation implementation languages such as ATL or ETL. The case of pre-

10



and post-conditions follows the style of graph transformation [15]. The third
option is present in Fujaba (http://fujaba.de). The center of Fig. 7 shows a
behavioural diagram using this third type of syntax where created elements are
annotated with the new keyword. The right of the figure shows the same rule
using an action language with ETL syntax.

3.6 Implementation and Testing

transML does not include any implementation language, but we use existing
target languages to implement the transformations (e.g. QVT, ATL or ETL).
Using the MDE philosophy, code for different platforms can be generated from
the diagrams, specifically from the rule (structure and behaviour) diagrams.

With respect to testing, test cases can be generated from the transformation
cases, and assertions can be injected in the transformation code from the formal
specification built in the analysis phase. This injected code is an oracle function,
independent of the transformation implementation code. As an example, the fol-
lowing listing shows part of the EOL code automatically generated from pattern
N(NoRefinedAttrs) in Fig. 3, which can be injected into the pre section of the
transformation code to discard non supported input models:

operation sat NoRefinedAttrs () : Boolean {
return not OO!Class.allInstances().exists(p |

OO!Class.allInstances().exists(c | c <> p and

OO!Attribute.allInstances().exists(a |

p.features.includes(a) and

OO!Attribute.allInstances().exists(ar |

ar <> a and c.features.includes(ar) and

checkatt NoRefinedAttrs(p, c, a, ar)))));

}
operation checkatt NoRefinedAttrs

(p:OO!Class,c:OO!Class,a:OO!Attribute, ar:OO!Attribute) : Boolean {
var X:=a.name; var Xar:=ar.name;

return c.general.includes(p) and X=Xar;

}

3.7 Traceability

Even though the different transML diagrams can be used in isolation, their power
comes from their combined use. This is so, as one can trace requirements into the
code and build the final transformation by the progressive refinement of models.
In this way, we have defined traceability relations between the different diagrams
as shown to the left of Fig. 8. These relations correspond to the dotted arrows in
Fig. 1. Thus, it is possible to trace which requirements are considered by a given
scenario, specification property, architectural component or mapping. We can
also trace the mappings and components a rule implements, and the behavioural
diagram that refines a rule. Therefore, we can trace which requirements each rule
addresses and vice-versa.

11



4 Tool Support

We have developed Ecore meta-models for the presented languages, together
with several model transformations and code generators that allow automating
the conversion between diagrams, as shown to the right of Fig. 8. The purpose
of these transformations is to provide partial automation for model refinement
from requirements to code generation. For example, given a mapping diagram
we can generate a skeleton of a rule diagram, which has to be completed with
the behaviour model by the transformation developer. All model transformations
have been implemented with ETL, and all code generators with EGL.

<< from requirements >>

Requirement

<< from architecture >>

ArchComponent

<< from architecture >>

Interface

satisfies+ * satisfies+ *

<< from mappings >>

Mapping
satisfies+

*

<< from rules−structure>>

Rule

implements+ *

<< from rules−behaviour>>

BehaviouralDiagram

refines+

<< from analysis >>

Pattern
refines+

*

<< from rules−structure>>

Transformation

implements+ *

<< from mappings >>

MappingModel

implements+
Rule Diagram ETL Transformation 

Code 

Mapping
Diagram

Architecture
Diagram

EGL program Orchestration
code (ANT files)

ETL transf.

EGL program

parser
ETL 

transf.
ETL

transf.

Aggregated
Scenarios

Formal
Specification

1
2

3 7

4
6

5 assertions

Execution
Platform

Model
8OCL

invariants

check

Fig. 8. Traceability links (left). Tool support (right).

The code generator with label “1” takes as input the architecture diagram, and
generates ANT files that orchestrate the execution of the transformation chain
specified in the architecture (i.e. it will ask the user the models to transform and
pass them to the appropriate transformations). This generator also produces one
additional ANT file for each transformation in the architecture, which defines
tasks to automate the other labelled activities in the figure.

Transformation “2” generates one mapping diagram for each transformation
in the architecture. These mapping diagrams are added a mapping for each
concrete class defined by the input ports types. Transformation “3” generates
a simple rule diagram from a mapping diagram that contains one rule for each
mapping. Each rule stores a trace pointing to the mapping it implements. The
opposite transformation is also possible for reengineering (label “7”).

As stated before, one may use features of rule diagrams that are not available
in the specific platform. In order to check whether a certain set of rule diagrams
fits a particular execution platform, we have created an OCL code generator (la-
bel “8”) that, given a platform model (ETL in our case), synthesizes OCL con-
straints. These constraints are checked on the rule diagrams, discovering whether
they conform to the features of the platform.

In “4”, ETL code is generated from the structural rule diagram, taking into
account the flow directives. A parser for reverse engineering (label “6”) gener-
ates the diagram from ETL code. Finally, the generator in “5” produces OCL
code from the properties defined with the specification language. There are two

12



ways to inject this code into ETL transformations. Firstly, code generated from
patterns specifying restrictions on the input model is included in the pre section
of the transformation, and checked on the input model before the transformation
starts. If the model violates these constraints, a pop-up window informs the user
of the unsatisfied properties. Secondly, code generated from patterns specifying
properties of the transformation or of the expected output models is injected
in the post section of the transformation, and checked when the transformation
ends. This is used to perform run-time verification of the transformation. The
user is informed of any violated property and of the rules that are responsible
for the error. An example screenshot is shown in Fig. 10.

5 Case Study

In the INESS European project (http://www.iness.eu), experts have been
modelling railway signalling systems using xUML (Executable UML). Our task
in this project includes the formal verification of these models. Amongst other
verification efforts, we used transML to define a transformation from xUML to
PROMELA, the language of the SPIN model-checker (http://spinroot.com).

Due to the research nature of the project, we were not given initial require-
ments about the transformation, but they emerged as the transformation was
better understood. Examples of requirements for the input models include: (i)
classes always have an associated state machine; (ii) multiple-inheritance is not
allowed; (iii) a special class is used to instantiate a scenario (representing a rail-
way track layout) for the execution (analysis) of the model; (iv) objects can only
be created in the state-machine of the “application” class. Fig. 9 shows to the left
a specification pattern expressing the restriction (ii) of no multiple inheritance.

:Class :Class

:Class

general general

N(MultipleInheritance)

UML
2tbUMLin

out

tbUML2
Promela

in out

UML tbUML

GenProm
Code

out in

Promela

Grammar

«M2M» «M2M»

«M2text»

Promela

Spin
«SW» inout

xUML

act

c1:Class

c2.generalization.exists(g | 
g.target.includes(c1))

p:Property

name=X

owned
Attribute

t:Type

name=T

type

c2:Class

name=N

c3:Class

name=N

a:Attribute

name=X
type=T

attribute

UML tbUML

P(flatSuperAttrs)

Fig. 9. A restriction on the input model (left). Architecture of the project (center). A
verification property for transformation UML2tbUML (right).

This transformation poses many challenges, mostly concerned with handling
the action language in its full generality. For this purpose, we split the transfor-
mation in several steps that could be handled more efficiently. The architecture
of the final system is shown in the center of Fig. 9. It makes use of an interme-
diate meta-model, called (transition-based) tbUML, which is a simplified UML

13



meta-model that only considers the structure of class diagrams and the possible
set of transitions of the state-machines. Thus, the first transformation performs
a flattening of the classes and states machines. This transformation makes use
of the xUML meta-model for handling the action language. Then, the tbUML
model is transformed into a PROMELA model, from which code conforming to
the PROMELA grammar is generated as input to SPIN.

Fig. 10. Testing the implementation

Splitting the transformation facili-
tates the elicitation of requirements.
For instance, requirements related to
the flattening of classes in the first
transformation include copying at-
tributes, associations and states for
each class and its generalizations (a
pattern specifying the requirement on
attributes is to the right of Fig. 9).
Requirements related to the flattening
of state machines include aggregating
and creating transitions depending on
concurrent events of orthogonal states
and of state machines associated to
super-classes, as well as on exit ac-
tions in composite states.

We used the mapping diagrams of transML to understand and reason about
corresponding elements in the two M2M transformations, and to generate skele-
ton rule structure diagrams from them. We also generated assertion code for
the run-time verification of the transformations. Fig. 10 shows a moment in the
execution of the first transformation (more than 1600 LOC), where a violation
of the verification property flatSuperAttrs occurs. By having traceability from
the models into the code, we were able to identify the erroneous rule.

6 Conclusions and Lines of Future Work

Transformations should be engineered, not hacked. For this purpose we have
presented transML, a family of languages to help building transformations us-
ing well-founded engineering principles. The languages cover the life-cycle of
the transformation development including requirements, analysis, architecture,
design and testing. We have provided partial tool support and automation for
the MDE of transformations, and evaluated the approach using an industrial
project, which showed the benefits of modelling transformations.

We are currently working in improving the tool support for our approach, in
particular the usability of the visual editors and the integration of the different
languages. We are also planning the use of transML in further case studies, and
investigating processes for transformation development.

14



Acknowledgements. Work funded by the Spanish Ministry of Science (project
TIN2008-02081and grants JC2009-00015,PR2009-0019), the R&D programme of
the Madrid Region (project S2009/TIC-1650), and the European Commission’s
7th Framework programme (grants #218575 (INESS), #248864 (MADES)).

References

1. ATL, http://www.sciences.univ-nantes.fr/lina/atl/
2. Bézivin, J., Jouault, F., Paliès, J.: Towards model transformation design patterns.

In: EWMT 2005 (2005)
3. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-

proaches. IBM Systems Journal 45(3), 621–646 (2006)
4. Etien, A., Dumoulin, C., Renaux, E.: Towards a unified notation to represent model

transformation. Technical Report RR-6187, INRIA (2007)
5. Favre, J.-M., Nguyen, T.: Towards a megamodel to model software evolution

through transformations. Electr. Notes Theor. Comput. Sci. 127(3), 59–74 (2005)
6. Garlan, D., Monroe, R.T., Wile, D.: Acme: Architectural description of component-

based systems. In: Foundations of Component-Based Systems, pp. 47–68. Cam-
bridge University Press, Cambridge (2000)

7. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F.: A visual specification language for
model-to-model transformations. In: VLHCC 2010. IEEE CS, Los Alamitos (2010)

8. Iacob, M., Steen, M., Heerink, L.: Reusable model transformation patterns. In:
3M4EC 2008, pp. 1–10 (2008)

9. Kolovos, D.S., Paige, R.F., Polack, F.: The Epsilon Object Language (EOL). In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006)

10. Kolovos, D.S., Paige, R.F., Polack, F.: The Epsilon Transformation Language. In:
Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
46–60. Springer, Heidelberg (2008)

11. Kusel, A.: TROPIC - a framework for building reusable transformation compo-
nents. In: Doctoral Symposium at MODELS (2009)

12. QVT, http://www.omg.org/docs/ptc/05-11-01.pdf
13. Rahim, L.A., Mansoor, S.B.R.S.: Proposed design notation for model transforma-

tion. In: ASWEC 2008, pp. 589–598. IEEE CS, Los Alamitos (2008)
14. Rivera, J.E., Ruiz-Gonzalez, D., Lopez-Romero, F., Bautista, J., Vallecillo, A.:

Orchestrating ATL model transformations. In: MtATL 2009, pp. 34–46 (2009)
15. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,

E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1994)

16. Siikarla, M., Laitkorpi, M., Selonen, P., Systä, T.: Transformations have to be
developed ReST assured. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT
2008. LNCS, vol. 5063, pp. 1–15. Springer, Heidelberg (2008)

17. Spivey, J.M.: An introduction to Z and formal specifications. Softw. Eng. J. 4(1),
40–50 (1989)

18. Vanhooff, B., Ayed, D., Baelen, S.V., Joosen, W., Berbers, Y.: Uniti: A unified
transformation infrastructure. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F.
(eds.) MODELS 2007. LNCS, vol. 4735, pp. 31–45. Springer, Heidelberg (2007)

19. Varró, D.: Model transformation by example. In: Nierstrasz, O., Whittle, J., Harel,
D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 410–424. Springer,
Heidelberg (2006)

15




