134 research outputs found

    Investigation into the common mode rejection ratio of the physiological signal conditioner circuit

    Get PDF
    The common mode rejection ratio (CMRR) of the single operational amplifier (op amp) differential amplifier and of the three operational amplifier differential amplifier was investigated. The three op amp differential amplifier circuit is used in the signal conditioner circuit which amplifies signals such as the electromyograph or electrocardiogram. The investigation confirmed via SPICE modeling what has been observed by others in the recent literature that the CMRR for the circuit can be maximized without precision resistor values or precisely matched op amps. This can be done if one resistor in the final stage can be adjusted either by a potentiometer or by laser trimming in the case of hybrid circuit fabrication

    A Power-Efficient Bio-Potential Acquisition Device with DS-MDE Sensors for Long-Term Healthcare Monitoring Applications

    Get PDF
    This work describes a power-efficient bio-potential acquisition device for long-term healthcare applications that is implemented using novel microelectromechanical dry electrodes (MDE) and a low power bio-potential processing chip. Using micromachining technology, an attempt is also made to enhance the sensing reliability and stability by fabricating a diamond-shaped MDE (DS-MDE) that has a satisfactory self-stability capability and superior electric conductivity when attached onto skin without any extra skin tissue injury technology. To acquire differential bio-potentials such as ECG signals, the proposed processing chip fabricated in a standard CMOS process has a high common mode rejection ratio (C.M.R.R.) differential amplifier and a 12-bit analog-to-digital converter (ADC). Use of the proposed system and integrate simple peripheral commercial devices can obtain the ECG signal efficiently without additional skin tissue injury and ensure continuous monitoring more than 70 hours with a 400 mAh battery

    Problems in assessment of novel biopotential front-end with dry electrode:A brief review

    Get PDF
    Developers of novel or improved front-end circuits for biopotential recordings using dry electrodes face the challenge of validating their design. Dry electrodes allow more user-friendly and pervasive patient-monitoring, but proof is required that new devices can perform biopotential recording with a quality at least comparable to existing medical devices. Aside from electrical safety requirement recommended by standards and concise circuit requirement, there is not yet a complete validation procedure able to demonstrate improved or even equivalent performance of the new devices. This short review discusses the validation procedures presented in recent, landmark literature and offers interesting issues and hints for a more complete assessment of novel biopotential front-end

    AC-coupled front-end for biopotential measurements

    Get PDF
    AC coupling is essential in biopotential measurements. Electrode offset potentials can be several orders of magnitude larger than the amplitudes of the biological signals of interest, thus limiting the admissible gain of a dc-coupled front end to prevent amplifier saturation. A high-gain input stage needs ac input coupling. This can be achieved by series capacitors, but in order to provide a bias path, grounded resistors are usually included, which degrade the common mode rejection ratio (CMRR). This paper proposes a novel balanced input ac-coupling network that provides a bias path without any connection to ground, thus resulting in a high CMRR. The circuit being passive, it does not limit the differential dc input voltage. Furthermore, differential signals are ac coupled, whereas common-mode voltages are dc coupled, thus allowing the closed-loop control of the dc common mode voltage by means of a driven-right-leg circuit. This makes the circuit compatible with common-mode dc shifting strategies intended for single-supply biopotential amplifiers. The proposed circuit allows the implementation of high-gain biopotential amplifiers with a reduced number of parts, thus resulting in low power consumption. An electrocardiogram amplifier built according to the proposed design achieves a CMRR of 123 dB at 50 HzPeer Reviewe

    A Two Channel Analog Front end Design AFE Design with Continuous Time Σ-Δ Modulator for ECG Signal

    Get PDF
    In this context, the AFE with 2-channels is described, which has high impedance for low power application of bio-medical electrical activity. The challenge in obtaining accurate recordings of biomedical signals such as EEG/ECG to study the human body in research work. This paper is to propose Multi-Vt in AFE circuit design cascaded with CT modulator. The new architecture is anticipated with two dissimilar input signals filtered from 2-channel to one modulator. In this methodology, the amplifier is low powered multi-VT Analog Front-End which consumes less power by applying dual threshold voltage. Type -I category 2 channel signals of the first mode: 50 and 150 Hz amplified from AFE are given to 2nd CT sigma-delta ADC. Depict the SNR and SNDR as 63dB and 60dB respectively, consuming the power of 11mW. The design was simulated in a 0.18 um standard UMC CMOS process at 1.8V supply. The AFE measured frequency response from 50 Hz to 360 Hz, depict the SNR and SNDR as 63dB and 60dB respectively, consuming the power of 11mW. The design was simulated in 0.18 m standard UMC CMOS process at 1.8V supply. The AFE measured frequency response from 50 Hz to 360 Hz, programmable gains from 52.6 dB to 72 dB, input referred noise of 3.5 μV in the amplifier bandwidth, NEF of 3

    Inductanceless high order low frequency filters for medical applications

    Get PDF
    In this paper, a designed circuit used for low-frequency filters is implemented and realized the filter is based on frequency-dependent negative resistance (FDNR) as an inductor simulator to substitute the traditional inductance, which is heavy and high cost due to the coil material manufacturing and size area. The simulator is based on an active operation amplifier or operation transconductance amplifier (OTA) that is easy to build in an integrated circuit with a minimum number of components. The third and higher-order Butterworth filter is simulated at low frequency for low pass filter to use in medical instruments and low-frequency applications. The designed circuit is compared with the traditional proportional integral controller enhanced (PIE) and T section ordinary filter. The results with magnitude and phase response were compared and an acceptable result is obtained. The filter can be used for general applications such as medical and other low-frequency filters needed

    A Design and Implementation of an Ambulatory Electrocardiogram (ECG) Acquisition Circuit for Emergency Application

    Full text link
    © 2018 IEEE. This paper presents the design and development of an ECG data acquisition circuit for emergency applications. The ECG signal extraction method and the design of the analogue front-end circuit are discussed. This design has been implemented in a printed circuit board (PCB), with comparable size to a 50 cent Australian coin. By applying the testing approach with this prototype, the output ECG trace quality is overall satisfactory with a clear display of QRS complex and certain robustness to motion artifacts

    Low-Noise Micro-Power Amplifiers for Biosignal Acquisition

    Get PDF
    There are many different types of biopotential signals, such as action potentials (APs), local field potentials (LFPs), electromyography (EMG), electrocardiogram (ECG), electroencephalogram (EEG), etc. Nerve action potentials play an important role for the analysis of human cognition, such as perception, memory, language, emotions, and motor control. EMGs provide vital information about the patients which allow clinicians to diagnose and treat many neuromuscular diseases, which could result in muscle paralysis, motor problems, etc. EEGs is critical in diagnosing epilepsy, sleep disorders, as well as brain tumors. Biopotential signals are very weak, which requires the biopotential amplifier to exhibit low input-referred noise. For example, EEGs have amplitudes from 1 μV [microvolt] to 100 μV [microvolt] with much of the energy in the sub-Hz [hertz] to 100 Hz [hertz] band. APs have amplitudes up to 500 μV [microvolt] with much of the energy in the 100 Hz [hertz] to 7 kHz [hertz] band. In wearable/implantable systems, the low-power operation of the biopotential amplifier is critical to avoid thermal damage to surrounding tissues, preserve long battery life, and enable wirelessly-delivered or harvested energy supply. For an ideal thermal-noise-limited amplifier, the amplifier power is inversely proportional to the input-referred noise of the amplifier. Therefore, there is a noise-power trade-off which must be well-balanced by the designers. In this work I propose novel amplifier topologies, which are able to significantly improve the noise-power efficiency by increasing the effective transconductance at a given current. In order to reject the DC offsets generated at the tissue-electrode interface, energy-efficient techniques are employed to create a low-frequency high-pass cutoff. The noise contribution of the high-pass cutoff circuitry is minimized by using power-efficient configurations, and optimizing the biasing and dimension of the devices. Sufficient common-mode rejection ratio (CMRR) and power supply rejection ratio (PSRR) are achieved to suppress common-mode interferences and power supply noises. Our design are fabricated in standard CMOS processes. The amplifiers’ performance are measured on the bench, and also demonstrated with biopotential recordings

    Microelectronic bioinstrumentation systems

    Get PDF
    The possibility of using RF fields to power biologically implanted transmitters used in biomedical experiments was investigated. This approach would be especially useful when animal subjects are strapped in chairs or confined in cages. A telemetry system using an external source of energy has the additional advantage of not being limited in operation by battery lifetime and can therefore operate for virtually infinite lengths of time. A description of a system based on this principle is given. Progress in the development of battery-driven transmitters is also reported, including an ingestible temperature telemetry system and a resistance-to-pulse frequency convertor for implantable temperature telemetry systems
    corecore