6,836 research outputs found

    A Touch of Evil: High-Assurance Cryptographic Hardware from Untrusted Components

    Get PDF
    The semiconductor industry is fully globalized and integrated circuits (ICs) are commonly defined, designed and fabricated in different premises across the world. This reduces production costs, but also exposes ICs to supply chain attacks, where insiders introduce malicious circuitry into the final products. Additionally, despite extensive post-fabrication testing, it is not uncommon for ICs with subtle fabrication errors to make it into production systems. While many systems may be able to tolerate a few byzantine components, this is not the case for cryptographic hardware, storing and computing on confidential data. For this reason, many error and backdoor detection techniques have been proposed over the years. So far all attempts have been either quickly circumvented, or come with unrealistically high manufacturing costs and complexity. This paper proposes Myst, a practical high-assurance architecture, that uses commercial off-the-shelf (COTS) hardware, and provides strong security guarantees, even in the presence of multiple malicious or faulty components. The key idea is to combine protective-redundancy with modern threshold cryptographic techniques to build a system tolerant to hardware trojans and errors. To evaluate our design, we build a Hardware Security Module that provides the highest level of assurance possible with COTS components. Specifically, we employ more than a hundred COTS secure crypto-coprocessors, verified to FIPS140-2 Level 4 tamper-resistance standards, and use them to realize high-confidentiality random number generation, key derivation, public key decryption and signing. Our experiments show a reasonable computational overhead (less than 1% for both Decryption and Signing) and an exponential increase in backdoor-tolerance as more ICs are added

    Controller workload, airspace capacity and future systems.

    No full text
    In air traffic control (ATC), controller workload – or controller mental workload – is an extremely important topic. There have been many research studies, reports and reviews on workload (as it will be referred to here). Indeed, the joke is that researchers will produce ‘reviews of reviews’ (Stein, 1998). The present document necessarily has something of that flavour, and does review many of the ‘breakthrough’ research results, but there is a concentration on some specific questions about workload

    A framework for real-time product quality monitoring system with consideration of process-induced variations

    Get PDF
    Department of Human and Systems EngineeringAs industrial technologies develop, the manufacturing industry is globally changing in more automated and complex manners, and the prediction of real-time product quality has become an essential issue. Although many of the physical manufacturing activities are getting more automated than ever, there still exist many uncovered parameters that, either directly or indirectly, affect the product quality. In many manufacturing sites, the quality tests in their processes still rely on few skilled operators and quality experts, which requires a lot of time and human efforts to manage the product quality issues. In this thesis, thus, a real-time/in-process quality monitoring system for small and medium size manufacturing environments is proposed to provide the data-driven product quality monitoring system framework. The proposed framework consists of a product quality ontology model for complex manufacturing supply chain environments, and a real-time quality prediction tool using the support vector machine (SVM) algorithm that enables the quality monitoring system to classify the product quality patterns from the in-process production data. Additionally, we propose a framework for analysis of the quality inspection results from the monitoring system with respect to quality costs, including inspection and warranty costs. In addition, this thesis establishes a relationship between the warranty cost and the severity of customer-perceived quality. Finally, we suggest a future work that a prescriptive product quality assessment concept using the Hidden Markov Models (HMM) that analyze and forecast possible future product quality problems using production data from manufacturing processes based on data flow analysis. Also, a door trim production data in an automotive company is illustrated to verify the proposed quality monitoring/prediction model.ope

    Sustainability Benefits Analysis of CyberManufacturing Systems

    Get PDF
    Confronted with growing sustainability awareness, mounting environmental pressure, meeting modern customers’ demand and the need to develop stronger market competitiveness, the manufacturing industry is striving to address sustainability-related issues in manufacturing. A new manufacturing system called CyberManufacturing System (CMS) has a great potential in addressing sustainability issues by handling manufacturing tasks differently and better than traditional manufacturing systems. CMS is an advanced manufacturing system where physical components are fully integrated and seamlessly networked with computational processes. The recent developments in Internet of Things, Cloud Computing, Fog Computing, Service-Oriented Technologies, etc., all contribute to the development of CMS. Under the context of this new manufacturing paradigm, every manufacturing resource or capability is digitized, registered and shared with all the networked users and stakeholders directly or through the Internet. CMS infrastructure enables intelligent behaviors of manufacturing components and systems such as self-monitoring, self-awareness, self-prediction, self-optimization, self-configuration, self-scalability, self-remediating and self-reusing. Sustainability benefits of CMS are generally mentioned in the existing researches. However, the existing sustainability studies of CMS focus a narrow scope of CMS (e.g., standalone machines and specific industrial domains) or partial aspects of sustainability analysis (e.g., solely from energy consumption or material consumption perspectives), and thus no research has comprehensively addressed the sustainability analysis of CMS. The proposed research intends to address these gaps by developing a comprehensive definition, architecture, functionality study of CMS for sustainability benefits analysis. A sustainability assessment framework based on Distance-to-Target methodology is developed to comprehensively and objectively evaluate manufacturing systems’ sustainability performance. Three practical cases are captured as examples for instantiating all CMS functions and analyzing the advancements of CMS in addressing concrete sustainability issues. As a result, CMS has proven to deliver substantial sustainability benefits in terms of (i) the increment of productivity, production quality, profitability & facility utilization and (ii) the reduction in Working-In-Process (WIP) inventory level & material consumption compared with the alternative traditional manufacturing system paradigms

    Statistical process control for high precision deep drawn sheet metal parts

    Get PDF
    In today\u27s world, industrial expertise has come to be judged in terms of the quality of the product. Good quality has become the ultimate aim in a manufacturing environment, which leads to many innovations for ease in the inspection of parts. In considering a metal working company like Hudson Tool & Die Company, a study of the various operations and the application of Statistical Process Control to the forming operations is performed using STORM software. Important characteristics have been carefully studied with regards to metal forming like uniform metal thickness, radius of the bend, depth of the drawing operation. In-depth analysis was performed on the pattern, and the cause of the variations. Various control charts such as average chart, range chart and p chart were obtained and different processes were studied. Computer aided quality control is fast becoming a standard in the manufacturing world. Non-contact gaging, coordinate measuring machines, and automatic conversion of the data into useful information are noteworthy and hence have been mentioned

    A principled approach to the measurement of situation awareness in commercial aviation

    Get PDF
    The issue of how to support situation awareness among crews of modern commercial aircraft is becoming especially important with the introduction of automation in the form of sophisticated flight management computers and expert systems designed to assist the crew. In this paper, cognitive theories are discussed that have relevance for the definition and measurement of situation awareness. These theories suggest that comprehension of the flow of events is an active process that is limited by the modularity of attention and memory constraints, but can be enhanced by expert knowledge and strategies. Three implications of this perspective for assessing and improving situation awareness are considered: (1) Scenario variations are proposed that tax awareness by placing demands on attention; (2) Experimental tasks and probes are described for assessing the cognitive processes that underlie situation awareness; and (3) The use of computer-based human performance models to augment the measures of situation awareness derived from performance data is explored. Finally, two potential example applications of the proposed assessment techniques are described, one concerning spatial awareness using wide field of view displays and the other emphasizing fault management in aircraft systems

    An activity based quality cost and information system

    Get PDF
    Many companies are increasing their competitiveness through quality improvement. However, a widely held view among quality practitioners is that companies simply do not know the true total cost of quality, which are mostly hidden among the general overhead of the business. This problem is often attributed to an inappropriate costing system. Thus, any system that assisted companies in identifying and properly quantifying these costs will be valuable. This research, therefore, was aimed at developing a Quality Cost Information System for manufacturing industry, and to show that such a system could provide a basis for analysing quality costs and developing and evaluating the quality improvement process. A literature review of the quality literature highlighted that the major problems that hindered potential users from implementing an effective and efficient Quality Cost system were: current quality cost measurement systems were limited by their inability to trace quality costs to their source; quality was manageable only if it could be measured; quality cost did not easily fit into the traditional cost accounting structure; traditional accounting systems were unlikely to change radically to accommodate proper quality costing. This literature review was complemented by an industrial survey aimed at identifying knowledge of quality costing and current practices in manufacturing industry. The findings of the literature review and industrial survey formed the basis for the remainder of the study. As part of an integrated solution, three approaches have been proposed and detailed: 1) A graphical model of quality costing in the form of a visual tool to facilitate the introduction and communication of a quality costing information system within the organisation. 2) A proposed integration of Activity Based Costing tools with the theory of quality costing to provide a system that can deliver valuable information. 3) A Software tool for the design of Quality Costing Information Systems. The thesis concludes with the major findings and issues raised from the research undertaken. This is followed by recommendations for the successful pursuit of the beneficial implementation of the proposed quality costing system and tools along with several suggestions for further work and future research potential

    A Framework for BIM-Enabled Life-Cycle Information Management of Construction Project

    Get PDF
    BIM has been widely used in project management, but on the whole the applications have been scattered and the BIM models have not been deployed throughout the whole project life-cycle. Each participant builds their own BIM, so there is a major problem in how to integrate these dynamic and fragmented data together. In order to solve this problem, this paper focuses on BIM-based life-cycle information management and builds a framework for BIM-enabled life-cycle information management. To organize the life-cycle information well, the information components and information flow during the project life-cycle are defined. Then, the application of BIM in life-cycle information management is analysed. This framework will provide a unified platform for information management and ensure data integrit
    corecore