78 research outputs found

    Orientations des graphes (structures et algorithmes)

    Get PDF
    Orienter un graphe c'est remplacer chaque arête par un arc de mêmes extrémités. On s'intéresse à la connexité du graphe orienté ainsi obtenu. L'orientation avec des contraintes d'arc-connexité est maintenant comprise en profondeur mais très peu de résultats sont connus en terme de sommet-connexité. La conjecture de Thomassen avance que les graphes suffisament sommet-connexes ont une orientation k-sommet-connexe. De plus, la conjecture de Frank propose une caractérisation des graphes qui admettent une telle orientation. Les résultats de cette thèse s'articulent autour des notions d'orientation, de packing, de connexité et de matroïde. D'abord, nous infirmons une conjecture de Recski sur la décomposition d'un graphe en arbres ayant des orientations avec degrés entrants prescrits. Nous prouvons également un nouveau résultat sur le packing d'arborescences enracinées avec contraintes de matroïdes. Ceci généralise un résultat fondamental d'Edmonds. Enfin, nous démontrons un nouveau théorème de packing sur les bases des matroïdes de dénombrement qui nous permet d'améliorez le seul résultat connu sur la conjecture de Thomassen. D'autre part, nous donnons une construction et un théorème d'augmentation pour une famille de graphes liée à la conjecture de Frank. En conclusion, nous réfutons la conjecture de Frank et prouvons que, pour tout entier k >= 3, décider si un graphe a une orientation k-sommet-connexe est un problème NP-complet.Orienting an undirected graph means replacing each edge by an arc with the same ends. We investigate the connectivity of the resulting directed graph. Orientations with arc-connectivity constraints are now deeply understood but very few results are known in terms of vertex-connectivity. Thomassen conjectured that sufficiently highly vertex-connected graphs have a k-vertex- connected orientation while Frank conjectured a characterization of the graphs admitting such an orientation. The results of this thesis are structures around the concepts of orientation, packing, connectivity and matroid. First, we disprove a conjecture of Recski on decomposing a graph into trees having orientations with specified indegrees. We also prove a new result on packing rooted arborescences with matroid constraints. This generalizes a fundamental result of Edmonds. Moreover, we show a new packing theorem for the bases of count matroids that induces an improvement of the only known result on Thomassen's conjecture. Secondly, we give a construction and an augmentation theorem for a family of graphs related to Frank's conjecture. To conclude, we disprove the conjecture of Frank and prove that, for every integer k >= 3, the problem of deciding whether a graph admits a k-vertex-orientation is NP-complete.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Proceedings of the 10th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications

    Get PDF

    A simple algorithm and min-max formula for the inverse arborescence problem

    Get PDF
    In 1998, Hu and Liu developed a strongly polynomial algorithm for solving the inverse arborescence problem that aims at minimally modifying a given cost-function on the edge-set of a digraph D so that an input spanning arborescence of D becomes a cheapest one. In this note, we develop a conceptually simpler algorithm along with a new min-max formula for the minimum modification of the cost-function. The approach is based on a link to a min-max theorem and a simple (two-phase greedy) algorithm by the first author from 1979 concerning the primal optimization problem of finding a cheapest subgraph of a digraph that covers an intersecting family along with the corresponding dual optimization problem, as well. (C) 2021 The Author(s). Published by Elsevier B.V

    Algorithms for finding a rooted (k, 1) -edge-connected orientation

    Get PDF
    A digraph is called rooted (k,1)-edge-connected if it has a root node r0 such that there exist k arc-disjoint paths from r0 to every other node and there is a path from every node to r0. Here we give a simple algorithm for finding a (k,1)-edge-connected orientation of a graph. A slightly more complicated variation of this algorithm has running time O(n4+n2m) that is better than the time bound of the previously known algorithms. With the help of this algorithm one can check whether an undirected graph is highly k-tree-connected, that is, for each edge e of the graph G, there are k edge-disjoint spanning trees of G not containing e. High tree-connectivity plays an important role in the investigation of redundantly rigid body-bar graphs

    A Study of Arc Strong Connectivity of Digraphs

    Get PDF
    My dissertation research was motivated by Matula and his study of a quantity he called the strength of a graph G, kappa\u27( G) = max{lcub}kappa\u27(H) : H G{rcub}. (Abstract shortened by ProQuest.)
    • …
    corecore