
Discrete Applied Mathematics 166 (2014) 263–268

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note

Algorithms for finding a rooted (k, 1)-edge-connected
orientation
Csaba Király ∗
Department of Operations Research, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary

a r t i c l e i n f o

Article history:
Received 21 March 2013
Received in revised form 26 September
2013
Accepted 1 October 2013
Available online 1 November 2013

Keywords:
Orientation
Rooted edge-connectivity
Highly k-tree-connected

a b s t r a c t

A digraph is called rooted (k, 1)-edge-connected if it has a root node r0 such that there exist
k arc-disjoint paths from r0 to every other node and there is a path from every node to r0.
Here we give a simple algorithm for finding a (k, 1)-edge-connected orientation of a graph.
A slightly more complicated variation of this algorithm has running time O(n4

+ n2m) that
is better than the time bound of the previously known algorithms. With the help of this
algorithm one can check whether an undirected graph is highly k-tree-connected, that is,
for each edge e of the graph G, there are k edge-disjoint spanning trees of G not containing
e. High tree-connectivity plays an important role in the investigation of redundantly rigid
body–bar graphs.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

All graphs and digraphs considered here are loopless but may contain parallel edges, and k and ℓ are always positive
integers with k ≥ ℓ. The number of vertices and edges in a graph will be denoted by n and m, respectively. A digraph
D = (V , A) with a root node r0 ∈ V is called r0-rooted (k, ℓ)-edge-connected if δD(X) ≥ k and ϱD(X) ≥ ℓ for every set X ⊂ V
with r0 ∈ X , where δD(X) denotes the out-degree of X and ϱD(X) denotes the in-degree of X . By Menger’s theorem this is
equivalent to the following: there are k arc-disjoint paths from r0 to every other node and there are ℓ arc-disjoint paths from
every node to r0. A rooted (k, 0)-edge-connected digraph is called rooted k-edge-connected.

An undirected graph G = (V , E) is called (k, ℓ)-partition-connected if

eG(P) ≥ k(|P | − 1)+ ℓ

for every partition P of V , where eG(P) denotes the number of edges that are not induced by any set of the partition. A
(k, 0)-partition-connected graph is called k-partition-connected. Tutte’s theorem [13] implies that a graph G = (V , E) is
(k, ℓ)-partition-connected for positive integers k and ℓ if and only if, for every at most ℓ edges of G, there are k edge-disjoint
spanning trees of G avoiding these ℓ edges. When ℓ = 1 this property is called high k-tree-connectivity. Connelly, Jordán
and Whiteley [1] proved that the ‘‘body–bar graph’’ GH of a graph H is ‘‘redundantly rigid’’ in Rd if and only if H is highly

d+1
2

-tree-connected. This result motivates us to give a simple algorithm for testing high k-tree-connectivity.

From the result of Frank [5] it is easy to show that (k, ℓ)-partition-connectivity and (k, ℓ)-edge-connected orientability
are equivalent. (To prove this, just use the main theorem of the paper with the following function: l(X) = k if r0 ∉ X ≠
∅, l(X) = ℓ if r0 ∈ X ≠ V , l(X) = 0 if X ∈ {∅, V }.)

Theorem 1.1. For k, ℓ integers with k ≥ ℓ a graph with a root node r0 has an r0-rooted (k, ℓ)-edge-connected orientation if and
only if it is (k, ℓ)-partition-connected. �

∗ Tel.: +36 702853293; fax: +36 13812174.
E-mail address: cskiraly@cs.elte.hu.

0166-218X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.dam.2013.10.004

http://dx.doi.org/10.1016/j.dam.2013.10.004
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2013.10.004&domain=pdf
mailto:cskiraly@cs.elte.hu
http://dx.doi.org/10.1016/j.dam.2013.10.004

264 C. Király / Discrete Applied Mathematics 166 (2014) 263–268

The proof of [5] gives rise to an algorithm for finding a rooted (k, ℓ)-edge-connected orientation (and by this for testing
(k, ℓ)-partition-connectivity); the algorithm is rather involved. For the case where ℓ = 0, when we want to give a rooted k-
edge-connected orientation of a graph, the proof presented in [4] and in [6, Section 9.1] gives rise to a simpler algorithm. Yet
another algorithm is given byGabow andManu in [9]. These algorithms output either a rooted k-edge-connected orientation
of the input graph G = (V , E) or a partition P of V for which

eG(P) < k(|P | − 1),

showing that G is not k-partition-connected.
A more efficient algorithm for finding a (k, ℓ)-edge-connected orientation can be read out from the proof of Theorem 1.1

given implicitly in [6,7] that first gives the proper orientation through its in-degree vector and then uses the orientation
lemma of Hakimi [10] (that has an algorithmic proof) to realize it. Though not explicitly stated in [7], the complexity of
this algorithm is O(n5

+ n2m). The involved part of this algorithm is that it uses the bi-truncation algorithm of Frank and
Tardos [8,12].

Moreover, this idea of using the orientation lemma leads to a more efficient algorithm for the case where ℓ = 0
because then only the truncation algorithm of Frank and Tardos [8] is needed (see [11] and [6, Section 15.4.4]); thus
we get a bound O(n4

+ n2m) for the running time. Since we use the truncation algorithm instead of the bi-truncation
algorithm, this algorithm is less involved. The previously mentioned algorithm of Gabow and Manu [9] has a time bound
of O(min{n, log(N)}n2m∗ log(n2/m∗)) wherem∗ is the edge number of the underlying simple graph and N is the maximum
number of parallel copies of an edge.

Although our main aim is to give a simple and efficient algorithm for the case of ℓ = 1, we begin by giving a new
algorithm for the case of ℓ = 0 as this algorithm will be used as a subroutine in the latter algorithms. This algorithm, that
arises from modifying Frank’s earlier algorithm [4] for finding rooted k-edge-connected orientations – using a simple data
structure – has a time bound of O(n4

+ n3k). Next, we turn to giving a new proof of Theorem 1.1 for the case where ℓ = 1.
This proof shows a simple algorithm for testing high k-tree-connectivity. The algorithm uses the rooted k-edge-connected
orientation algorithm as a subroutine. (This algorithm can be extended to hypergraphs.) Finally, by combining the ideas of
these two algorithms, we obtain another algorithm for finding a (k, 1)-edge-connected orientation of graphs that runs in
time O(n4

+ n3k).
We note that to have a (k, ℓ)-edge-connected orientation (for k ≥ ℓ), the graph needs a maximum of 2k parallel edges

between two nodes, and thus m = O(n2k). However, at some points this can be reduced to the edge number of the
underlying simple graph, that is, to amaximumofO(n2). To achieve this in the following algorithms, the graph (respectively,
its orientation) will be stored via its adjacency matrix ((ai,j)) where ai,j is the number of ij-edges (respectively, arcs).

2. A more efficient algorithm for rooted k-edge-connected orientability

As noted before, there exists an algorithm for finding a rooted k-edge-connected orientation of a graph that has a running
time of O(n4

+ n2m). However, this algorithm uses a polyhedral technique. Here we describe another algorithm based on
Frank’s algorithm [4] with a running time of O(n4

+ n3k) that uses only basic graph theoretical arguments.
First we sketch Frank’s algorithm:

Algorithm 2.1 (Frank [4]). Input: A graph G = (V , E) and a root r0 ∈ V .

Output:
−→
G = (V ,

−→
E), an r0-rooted k-edge-connected orientation of G OR a partition P of V with eG(P) < k(|P | − 1).

Phase 1: We add new edges to the graph from the root r0 to some vertices so as to obtain a rooted k-edge-connected
orientation D = (V , A) of the extended graph with ϱD(r0) = 0. More precisely, we add k parallel r0v-edges for every
v ∈ V − r0, we orient all r0v-edges towards v for every v ∈ V − r0 and we orient the remaining edges arbitrarily.
Phase 2:We try to omit one by one the newly added arcs from D in such a way that the rooted k-edge-connected orientation
is preserved. If the omission of a new arc r0t decreases the in-degree of a t r̄0-set (that is, a set containing t but avoiding r0)
below k, then we reverse a path starting at t and ending at a node v ∈ V such that the digraph becomes rooted k-edge-
connected. (Frank showed in [4,6] that one can find such a v if the graph is k-partition-connected.) We will call this step of
the algorithm an elimination step. If there is no appropriate v for a new edge, the elimination step fails and the algorithm
returns a partition violating eG(P) ≥ k(|P | − 1) that can be calculated in O(n4) running time (see [4]). ♣

We need to resolve two issues to reduce the running time. First, an elimination step is relatively slow since one needs
to run a flow algorithm O(n) times to determine whether there is any reversible path. Second, there are O(nk) new edges
resulting in O(nk) elimination steps that need to run a flow algorithm O(n2k) times. To reduce the running time of the
elimination steps, we present here a new simple data structure where k arc-disjoint one-way paths will bemaintained from
r0 to v for every v ∈ V − r0. Using these one-way paths it will be easy to check the reversibility of a path in the second
phase of Algorithm 2.1 and it will be readily usable in a latter algorithm. Usually, these paths can be built up by running
n − 1 flow algorithms; however in our cases the task will be simpler. Moreover, these paths can be updated easily when
an arc is omitted or a path is reversed (after an omission of an arc), as follows. When a new arc r0t is omitted, we omit the
r0v-path containing this arc from these k arc-disjoint paths if any exists and find k paths – if possible – using one augmenting

C. Király / Discrete Applied Mathematics 166 (2014) 263–268 265

path-searching step of the Ford–Fulkerson algorithm [3]. Note that if we update the data structure with this method, then
there may remain only k − 1 paths to some of the vertices and our algorithms will make a path reversal step to restore
the rooted k-edge-connectivity. After a path P0 is reversed, we first modify the P0-arc-intersecting r0v-paths, that is, the
r0v-paths intersecting P0 in at least one arc. Where a path P enters P0 at a point x we modify P such that from x we follow
the reversed path

←−
P0 until another P0-arc-intersecting r0v-path P ′ leaves P0 or we arrive at the start point of P0. Thus we

obtain at least k − 2 one-way paths from r0 to v (along with some circuits and some other paths) – as there were at least
k−1 r0v-paths before the reversal of P0. With these k−1 pathswe need only run one augmenting path-searching step of the
Ford–Fulkerson algorithm to find k r0v-paths. We call both methods – that is, both the one we perform after the omission of
an arc and the onewe perform after a path reversal – a v-path update or a v-path check, whenwe just want to check whether
after reversing a path there remain k arc-disjoint r0v-paths. One can see that the running time of a v-path update or check,
respectively, is O(n2). We call the method when we call a v-path update for all v ∈ V − r0 an all-path update.

Using this data structure we modify Algorithm 2.1 as follows.

Algorithm 2.2. Input: A graph G = (V , E) and a root r0 ∈ V .

Output:
−→
G = (V ,

−→
E), an r0-rooted k-edge-connected orientation of G along with the data structure of the k arc-disjoint

r0v-paths for every v ∈ V − r0 OR a partition P of V with eG(P) < k(|P | − 1).
Phase 1: The same as Phase 1 of Algorithm 2.1.
Phase 2:
Step 1: Initialize the data structure of k one-way paths: take the k newly added arcs to every v ∈ V − r0 as the k r0v-paths.
Label every node in V − r0 with non-inspected.
Step 2: Let t be a non-inspected node.
Step 3: As long as there is a newly added r0t-arc, omit it, and do an all-path update; and if there remain only k−1 arc-disjoint
paths from r0 to t , then for each v ∈ V that is reachable from t in a path P0, do a v-path check with the reversed path P0
until we find a vertex to which there remain k arc-disjoint paths and we can finish with doing an all-path update for the
current reversed path. If there is no appropriate v, then the elimination step fails and we can return a partition violating
eG(P) ≥ k(|P | − 1) as in Algorithm 2.1.
Step 4:Modify the label of t to inspected. If there is a non-inspected node go to Step 2; otherwise return the current orientation
and the current state of the data structure. ♣

Algorithm 2.2 works since it is similar to Algorithm 2.1. It is easy to see that with the data structure, the running time of
an elimination step is reduced from O(n4) (that is, the running time of O(n) flow algorithms) to O(n(n+m)) ≤ O(n3) (that
is, the running time of O(n) augmenting path-searching steps of the Ford–Fulkerson algorithm). The main point in Step 3 is
that we omit the new arcs going to the same node sequentially; thus we can prove the following lemma.

Lemma 2.3. If the omission of γ r0t-edges for a vertex t ∈ V − r0 is possible in Step 3 of Algorithm 2.2, then in these elimination
steps we need to check the reversibility of O(n+ γ) paths starting at t. The reversibility of a tv-path can be checked by a v-path
check; thus the omission can be done with O(n+ γ) path checks and O(γ) all-path updates.

Proof. Let T denote the set of vertices (currently) reachable from t . It is easy to see that after reversing a tv-path, no nodes
in V − T become reachable from t . However, T could become a smaller set.

After omitting one of these new edges, a path reversal is needed if there arises a set not containing r0 with in-degree k−1.
This setmust contain t since the single omitted edge is r0t and before its omission the digraphwas rooted k-edge-connected.
Hence by Menger’s theorem, if there remain k arc-disjoint r0t-paths, then the digraph remains rooted k-edge-connected.
Thus after the omission wemust do an all-path update and check whether there are still k arc-disjoint r0t-paths. If there are
not, then a path reversal is needed.

The reversal of a tv-path is sufficient to restore the rooted k-edge-connectivity if after its reversal the in-degrees of the
t r̄0-sets become at least k and the in-degrees of the vr̄0-sets are not reduced under k since the in-degrees of the other subsets
of V − r0 do not change. Thus for a node v, there is a reversible path if v ∈ T , the in-degree of any vr̄0-set is at least k and the
in-degree of any set containing v and not containing t and r0 is at least k + 1. Since the reversal of a path can increase the
in-degree of any set by at most 1, if there was a t r̄0-set X with in-degree k−1 after removing some r0t-edges andwe restore
its in-degree with a path reversal, then the omission of the next r0t-edge reduces ϱ(X) to k − 1. The in-degree of a set not
containing t and r0 cannot increase and, as noted before, T becomes smaller and smaller. Therefore, if after the omission of
some r0t-edges there is no reversible tv-path, then it is not necessary to check v again. Thus every node v is checked at most
once plus as many times as there have been tv-path reversals. Hence we need to check O(n + γ) times. As we omitted γ
edges and reversed at most γ paths, the number of all-path updates is clearly O(γ). �

Therefore, we have the following corollary as we need to omit k r0t-edges for each node t ∈ V − r0.

Corollary 2.4. The running time of Algorithm 2.2 is O(n(n+ k)n2
+ n4) = O(n4

+ n3k). �

266 C. Király / Discrete Applied Mathematics 166 (2014) 263–268

3. A simple algorithm for rooted (k, 1)-edge-connected orientability

In this section we give a new algorithmic proof for Theorem 1.1 when ℓ = 1. The proof will be based on the following
simple lemmas.

Let D/R (or G/R, respectively) denote the digraph (or graph, respectively) obtained by shrinking R into a single node rR
and deleting the loops while keeping the parallel edges. D[R] denotes the digraph induced by R in D. For two disjoint subsets
X and Y of the nodes of D, δD(X, Y) denotes the number of arcs with tail in X and head in Y .

Lemma 3.1. Let D = (V , A) be a digraph with a root node r0 ∈ V . Let R ⊂ V be a set of nodes containing r0 for which D[R] is
r0-rooted k-edge-connected and D/R is rR-rooted k-edge-connected. Then D is r0-rooted k-edge-connected.

Proof. For a set r0 ∈ X ⊂ V , if R ⊈ X , then δD(X) ≥ δD(X, R − X) ≥ δD(X ∩ R, R − X) = δD[R](X ∩ R) ≥ k where the last
inequality holds because of the r0-rooted k-edge-connectivity of D[R].

For a set r0 ∈ X ⊂ V , if R ⊆ X , we get δD(X) = δD/R(X − R+ rR) ≥ k by the r0-rooted k-edge-connectivity of D/R. �

The next lemma holds for general ℓ, although we will need it only for ℓ = 1.

Lemma 3.2. Let D = (V , A) be a digraph with a root r0 ∈ V . Let R ⊂ V be a set of nodes that contains r0 and for which D[R] is
r0-rooted (k, ℓ)-edge-connected and D/R is rR-rooted (k, ℓ)-edge-connected. Then D is r0-rooted (k, ℓ)-edge-connected.

Proof. By using Lemma 3.1 both for D and for the reverse digraph
←−
D (for ℓ in place of k), we get that D is r0-rooted k-edge-

connected and
←−
D is r0-rooted ℓ-edge-connected. Hence D is r0-rooted (k, ℓ)-edge-connected. �

In the special case ℓ = 1, Theorem 1.1 is as follows.

Theorem 3.3. A graph G = (V , E) with a root node r0 has an r0-rooted (k, 1)-edge-connected orientation if and only if it is
(k, 1)-partition-connected.

Proof. As the necessity of (k, 1)-partition-connectivity is straightforward (after observing that in an r0-rooted (k, 1)-edge-
connected orientation of G, the in-degree of a member of a partition of V is at least 1 if it contains r0, and at least k
otherwise), we only prove sufficiency. We will use induction on |V |. Let e0 = r0u ∈ E be an arbitrary edge. By the (k, 1)-
partition-connectivity of G,G − e0 is k-partition-connected. Hence G − e0 has an r0-rooted k-edge-connected orientation.
This orientation gives us an orientation D of G if we orient e0 towards r0. Let R be the set of nodes in D from which there
is a path to r0. Thus ϱ(R) = 0 and ϱD[R](X) ≥ 1 whenever r0 ∈ X ⊂ R. By the rooted k-edge-connectivity, there are k
arc-disjoint paths from r0 to v for every v ∈ R − r0. Since ϱD(R) = 0, these paths cannot leave R. Therefore, by Menger’s
theorem, δD[R](X) ≥ k whenever r0 ∈ X ⊂ R. Hence D[R] is r0-rooted (k, 1)-edge-connected. We also see that |R| ≥ 2
because r0, u ∈ R. If R = V , then we are done.

If R ≠ V , we do the following. If P = {X1, X2, . . . , Xt} is a partition of V − R + rR, where rR ∈ X1, then eP (G/R) =
eP ′(G) ≥ k(|P | − 1)+ 1 for the partition P ′ = {X1 − rR ∪ R, X2, X3, . . . , Xt} of V . Hence G/R is (k, 1)-partition-connected.
By induction, there is an rR-rooted (k, 1)-edge-connected orientation D′ of G/R. Let

−→
G be the new orientation of G obtained

by keeping the orientation of D on R and by orienting the other edges like in D′. Using Lemma 3.2 for
−→
G we get that

−→
G is

r0-rooted (k, 1)-edge-connected. �

We note that this approach does not seem to work in the case where ℓ > 1 since D[R] need not be (k, ℓ)-edge-connected
in this case. If with another definitionwe defineD[R] to be themaximal r0-rooted (k, ℓ)-edge-connected subgraph ofD, then
the approach will also fail for ℓ > 1 as D[R]will be able to consist of the single node r0. From the proof presented above, one
can obtain the following algorithm.

Algorithm 3.4. Input: A graph G = (V , E) and a root r0 ∈ V .
Output:

−→
G = (V ,

−→
E), an r0-rooted (k, 1)-edge-connected orientation of G OR a partition P of V with eG(P) <

k(|P | − 1)+ 1.
Let e0 ∈ E be an arbitrary edge adjacent to r0. Run Algorithm 2.1 (or 2.2) on G − e0 to decide whether there is an r0-

rooted k-edge-connected orientation of G − e0. If no such orientation exists, the subroutine outputs a partition P with
eG(P)− 1 ≤ eG−e0(P) < k(|P | − 1) and we return this partition.

Suppose now that this subroutine has found an orientation and let D = (V ,
−→
E
′

) be the digraph that we get by taking
this orientation on G− e0 and orienting e0 towards r0. We will denote the oriented mate of e ∈ E in D with−→e

′
.

Let R be the set of nodes from which r0 is reachable in D that we could get by running any search algorithm. If R = V ,
then D is (k, 1)-edge-connected so we can return

−→
G := D. Otherwise, for e ∈ E[G], let −→e ∈

−→
E be −→e

′
∈
−→
E
′

and run the
algorithm recursively on G/Rwith root rR (see Remark 3.5) and orient the edges not in G[R] as this algorithm does. ♣

C. Király / Discrete Applied Mathematics 166 (2014) 263–268 267

Remark 3.5. In Algorithm 3.4, |R| > 1 because r and the other endpoint of e0 are in R. Hence we can run the algorithm on
G/R recursively.

It is easy to see that if the subroutine outputs a partition P ′ of the node-set of the possibly contracted graph G′ with
eG′−e0(P

′) < k(|P ′| − 1), then we can modify it easily to get a partition P of V with eG(P) < k(|P | − 1)+ 1. Namely, let
P be the partition that we get by changing the new node r∗ that represents the contracted set to the set that it represents
in the member of P ′ containing r∗.

One can see that the algorithm runs the subroutine and the search algorithm O(n) times; hence the running time of the
algorithm is O(n(ϑ + n+m)) where ϑ is the running time of the subroutine.

3.1. Extension to hypergraphs

To extend the algorithm to hypergraphs we need to consider directed hypergraphs. A directed hypergraph or dypergraph
D = (V , A) consists of the node-set V and the set A ⊆ 2V of directed hyperedges. Here, as in [7], a directed hyperedge,
called a dyperedge, has one head node while all of its other nodes are the tails. (We assume that a dyperedge of a dypergraph
and a hyperedge of a hypergraph consist of at least two nodes.)

One can define (k, ℓ)-partition-connectivity of hypergraphs and rooted (k, ℓ)-edge-connectivity of dypergraphs like for
graphs (see [7]).We note thatMenger’s theorem can be extended to dypergraphs by usingMenger’s theorem for the digraph
that we get by changing every dyperedge to a new node and arcs from every tail of the dyperedge to this node and one arc
from the new node to the head of the dyperedge. Frank, Király and Király [7] extended Theorem 1.1 to hypergraphs with
an algorithmic proof. The case where ℓ = 0 can be solved by using Edmonds’ matroid partition algorithm [2]. To extend
Algorithm 3.4, one needs this algorithm as a subroutine. Observe that the proof of the lemmas and Theorem 3.3 is nearly the
same as for graphs. The single issue is the following. In the proof of the extension of Lemma 3.2, we cannot use the extended
Lemma 3.1 for the reverse dypergraph as it cannot be well defined. Hence we need to prove a hypergraphic counterpart
of Lemma 3.1 where rooted (0, ℓ)-edge-connectivity is considered. Fortunately, the same proof works; one only needs to
substitute δ with ϱ in the proof. Therefore, the extension of Algorithm 3.4 works well for hypergraphs.

4. A quicker algorithm for rooted (k, 1)-edge-connected orientability

In this section we modify Algorithm 3.4 to achieve a running time of O(n4
+ n3k) for graphs. The main idea of this

modification is the following. Instead of reorienting every edge of G/R in each step, we keep the orientation given by D/R
and augment it using the idea of Step 3 of Algorithm 2.2. As in Section 2 for every v ∈ V − r0, k arc-disjoint one-way paths
will be stored from r0 to v. It is easy to see that these paths give the same structure on D/R for a set Rwith r0 ∈ R ⊆ V if we
cut down the first part of them from r0 to their last node in R. Now we are ready to describe the algorithm.

Algorithm 4.1. Input: A graph G = (V , E); and a root r0 ∈ V .

Output:
−→
G = (V ,

−→
E), an r0-rooted (k, 1)-edge-connected orientation of G OR a partition P of V with eG(P) < k(|P | −

1)+ 1.
Step 1: Let e0 = r0u ∈ E be an arbitrary edge. Decide whether there is an r0-rooted k-edge-connected orientation of G− e0
with Algorithm 2.2. If no such orientation exists, the subroutine outputs a partition P with eG(P) − 1 ≤ eG−e0(P) <
k(|P | − 1) and we return this partition.

Step 2: Suppose now that Algorithm 2.2 has found an orientation and let D = (V ,
−→
E
′

) be the digraph that we get by taking
this orientation on G− e0 and orienting e0 towards r0. We will denote the directed pair of e ∈ E in Dwith−→e . Note that the
k arc-disjoint r0v-paths for every v ∈ V − r0 given by Algorithm 2.2 for the orientation of G− e0 are still present in D.
Step 3: Run any search algorithm to find the set of nodes R from which r0 is reachable in D. If R = V , then D is (k, 1)-edge-
connected, so we can return

−→
G := D. Otherwise, go to Step 4.

Step 4: Let−→e be an arc of D/R leaving rR. Run an elimination step for−→e as in Step 3 of Algorithm 2.2. If the elimination step
fails, output the partition that is given by Step 3 of Algorithm 2.2 (after substituting rR with all the nodes in R in the member
of the partition containing rR). Otherwise, update D to this new graph along with adding the reversed pair←−e of−→e to it and
go to Step 3. ♣

It is easy to see that Algorithm4.1works, as it is just amodification of Algorithm3.4. Hencewe only prove that its running
time is O(n4

+ n3k).

Theorem 4.2. Algorithm 4.1 runs in time O(n4
+ n3k).

Proof. As we have seen in Corollary 2.4, Step 1–2 runs in time O(n4
+ n3k). Step 3–4 runs O(n) times since |R| increases

in each run of Step 3. In Step 3 we run a search algorithm; hence the running time of this step is O(n2). By Lemma 2.3 the
running time of Step 4 is O(n3) if we find an augmenting path and O(n4) otherwise, but this case could only happen once,
when the algorithm terminates by outputting a partition. Thus the total running time of Step 3–4 in the whole algorithm is
O(n4). Therefore, the algorithm runs in time O(n4

+ n3k). �

268 C. Király / Discrete Applied Mathematics 166 (2014) 263–268

Acknowledgments

The author received grants (No. CK 80124 and No. K 109240) from the National Development Agency of Hungary, based
on a source from the Research and Technology Innovation Fund. The research was supported by the MTA-ELTE Egerváry
Research Group.

The author is grateful to András Frank for inspiring discussions and his comments.

References

[1] R. Connelly, T. Jordán, W. Whiteley, Generic global rigidity of body–bar frameworks, J. Combin. Theory Ser. B (2013) in press (http://dx.doi.org/10.
1016/j.jctb.2013.09.002). See also Technical Report TR-2009-13, Egerváry Research Group, Budapest, 2009. www.cs.elte.hu/egres.

[2] J. Edmonds, Minimum partition of a matroid into independent sets, J. Res. Natl. Bur. Stand., Sect. B 69 (1965) 67–72.
[3] L.R. Ford, D.R. Fulkerson, Flows in Networks, Princeton Univ. Press, Princeton, 1962.
[4] A. Frank, On disjoint trees and arborescences, in: Algebraic Methods in Graph Theory, in: Colloquia Mathematica Soc. J. Bolyai, vol. 25, North-Holland,

1978, pp. 59–169.
[5] A. Frank, On the orientation of graphs, J. Combin. Theory Ser. B 28 (3) (1980) 251–261.
[6] A. Frank, Connections in Combinatorial Optimization, Oxford Univ. Press, 2011.
[7] A. Frank, T. Király, Z. Király, On the orientation of graphs and hypergraphs, Discrete Appl. Math. 131 (2) (2003) 385–400.
[8] A. Frank, É. Tardos, Generalized polymatroids and submodular flows, Math. Program. 42 (1988) 489–563.
[9] Harold N. Gabow, K.S. Manu, Packing algorithms for arborescences (and spanning trees) in capacitated graphs, Math. Program. 82 (1998) 83–109.

[10] S.L. Hakimi, On the degrees of the vertices of a directed graph, J. Franklin Inst. 279 (4) (1969) 290–308.
[11] Cs. Király, Algoritmusok szupermoduláris függvények fedésére, Master’s Thesis, 2010 (in Hungarian).
[12] T. Naitoh, S. Fujishige, A note on the Frank–Tardos bi-truncation algorithm for crossing-submodular functions, Math. Program. 53 (1992) 361–363.
[13] W.T. Tutte, On the problem of decomposing a graph into n connected factors, J. Lond. Math. Soc. 142 (1961) 221–230.

http://dx.doi.org/10.1016/j.jctb.2013.09.002
http://dx.doi.org/10.1016/j.jctb.2013.09.002
http://dx.doi.org/10.1016/j.jctb.2013.09.002
http://dx.doi.org/10.1016/j.jctb.2013.09.002
http://dx.doi.org/10.1016/j.jctb.2013.09.002
http://dx.doi.org/10.1016/j.jctb.2013.09.002
http://dx.doi.org/10.1016/j.jctb.2013.09.002
http://dx.doi.org/10.1016/j.jctb.2013.09.002
http://dx.doi.org/10.1016/j.jctb.2013.09.002
http://dx.doi.org/10.1016/j.jctb.2013.09.002
http://dx.doi.org/10.1016/j.jctb.2013.09.002
www.cs.elte.hu/egres
www.cs.elte.hu/egres
www.cs.elte.hu/egres
www.cs.elte.hu/egres
www.cs.elte.hu/egres
http://refhub.elsevier.com/S0166-218X(13)00420-4/sbref2
http://refhub.elsevier.com/S0166-218X(13)00420-4/sbref3
http://refhub.elsevier.com/S0166-218X(13)00420-4/sbref4
http://refhub.elsevier.com/S0166-218X(13)00420-4/sbref5
http://refhub.elsevier.com/S0166-218X(13)00420-4/sbref6
http://refhub.elsevier.com/S0166-218X(13)00420-4/sbref7
http://refhub.elsevier.com/S0166-218X(13)00420-4/sbref8
http://refhub.elsevier.com/S0166-218X(13)00420-4/sbref9
http://refhub.elsevier.com/S0166-218X(13)00420-4/sbref10
http://refhub.elsevier.com/S0166-218X(13)00420-4/sbref12
http://refhub.elsevier.com/S0166-218X(13)00420-4/sbref13

	Algorithms for finding a rooted (k, 1) -edge-connected orientation
	Introduction
	A more efficient algorithm for rooted k -edge-connected orientability
	A simple algorithm for rooted (k, 1) -edge-connected orientability
	Extension to hypergraphs

	A quicker algorithm for rooted (k, 1) -edge-connected orientability
	Acknowledgments
	References

