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A B S T R A C T

Orienting an undirected graph means replacing each edge by an arc with
the same ends. We investigate the connectivity of the resulting directed
graph. Orientations with arc-connectivity constraints are deeply understood
but very few results are known in terms of vertex-connectivity. Thomassen
conjectured that sufficiently highly vertex-connected graphs have a k-vertex-
connected orientation while Frank conjectured a characterization of the
graphs admitting such an orientation.

The results of this thesis are structures around the concepts of orienta-
tion, packing, connectivity and matroid. First, we disprove a conjecture of
Recski on decomposing a graph into trees having orientations with speci-
fied indegrees. We also prove a new result on packing rooted arborescences
with matroid constraints. This generalizes a fundamental result of Edmonds.
Moreover, we show a new packing theorem for the bases of count matroids
that induces an improvement of the only known result on Thomassen’s
conjecture.

Secondly, we give a construction and an augmentation theorem for a
family of graphs related to Frank’s conjecture. To conclude, we disprove the
conjecture of Frank and prove that, for every integer k > 3, the problem of
deciding whether a graph admits a k-vertex-orientation is NP-complete.

R É S U M É

Orienter un graphe c’est remplacer chaque arête par un arc de mêmes
extrémités. On s’intéresse à la connexité du graphe orienté ainsi obtenu.
L’orientation avec des contraintes d’arc-connexité est comprise en profondeur
mais très peu de résultats sont connus en terme de sommet-connexité. La con-
jecture de Thomassen avance que les graphes suffisament sommet-connexes
ont une orientation k-sommet-connexe. De plus, la conjecture de Frank
propose une caractérisation des graphes qui admettent une telle orientation.

Les résultats de cette thèse s’articulent autour des notions d’orientation, de
packing, de connexité et de matroïde. D’abord, nous infirmons une conjecture
de Recski sur la décomposition d’un graphe en arbres ayant des orientations
avec degrés entrants prescrits. Nous prouvons également un nouveau résultat
sur le packing d’arborescences enracinées avec contraintes de matroïdes. Ceci
généralise un résultat fondamental d’Edmonds. Enfin, nous démontrons un
nouveau théorème de packing sur les bases des matroïdes de dénombrement
qui nous permet d’améliorer le seul résultat connu sur la conjecture de
Thomassen.

D’autre part, nous donnons une construction et un théorème d’augmentation
pour une famille de graphes liée à la conjecture de Frank. En conclusion,
nous réfutons la conjecture de Frank et prouvons que, pour tout entier k > 3,
décider si un graphe a une orientation k-sommet-connexe est un problème
NP-complet.
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1I N T R O D U C T I O N

The notion of networks arises in many different forms. A classic one is the
social network describing the friendship relations among a group of people.
Another example is the natural food web depicting feeding connections
between species of an ecosystem. There are many other examples, but all
have a common pattern picturing a set of nodes linked to each other.

We may distinguish two types of networks depending on whether the links
transpose two-way relations or one-way relations. In the first case networks
are called undirected in opposition to directed in the second case. The social
network is an example of undirected network since anyone is a friend of
every friend of his/hers. On the other side, the food web is directed as preys
do not eat their predators. The type of the road network of a city, where
the nodes are crossings and each link is a street joining two crossings, is
contingent to the fact that all the streets are two-way or one-way.

Graphs and directed graphs (or, for short, digraphs) are the mathematical
tools capturing the common pattern of undirected networks and directed
networks respectively. In both objects a set of vertices represents the set
of nodes of the network. In graphs the links are called edges while in
digraphs they are called arcs. The development of Graph Theory provides
powerful approaches to address network design issues. For instance, city
road networks are typically required to be fault tolerant, that is, any place
in town should always be reachable from any other even if the traffic is
cut in a few streets or crossings. In Graph Theory, this robustness property
transforms into a connectivity property.

However, in an undirected road network any path joining two places may
be used in both directions while this symmetric property does not hold in a
directed one. So giving a direction to each street in an originally undirected
road network would drastically change its robustness and one may try to find
an assignment of directions such that the resulting directed road network
achieves nice robustness properties. In graphs, this operation of changing
each two-way link into a one-way link is called an orientation and the prob-
lem of finding a suitable assignment of directions becomes a problem of
finding an orientation of a graph satisfying connectivity properties. This
problem is the guiding principle of this document.

Connectivity is a fundamental notion in Graph Theory that is encountered
in a countless number of practical or theoretical problems while orientation
problems are more unusual. So this thesis is in a field where an essential
notion and a less frequent concept meet.

legacy

As the connectivity notion is not symmetric in digraphs we differentiate the
notions derived from the strong-connectivity defined by the existence of a
directed path from any vertex to any other from the notions resulting from
the rooted connectivity that focuses only on the existence of a directed path
from a special vertex, called the root, to any other vertex.
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2 introduction

In the field of graph orientations under connectivity constraints, the first
contribution is due to Robbins [65] who proved in 1939 a characterization
of graphs admitting a strongly-connected orientation. His proof technique
is based on a decomposition of 2-edge-connected graphs called the ear
decomposition. Twenty years later, Nash-Williams [60] settled the general
problem of k-arc-connected orientation, and even more. He proved that every
graph has a well-balanced orientation, that is, an orientation such that the
resulting arc-connectivity from any vertex u to any other vertex v is at least
half (rounded down) of the edge-connectivity between u and v in the original
undirected graph. This proves that every 2k-edge-connected graph admits a
k-arc-connected orientation; proving the converse is trivial. The key idea of
Nash-Williams is to reduce to the trivial Eulerian case by adding to the graph
a suitable pairing of the vertices of odd degree called an odd-pairing. Now
there exist alternative proofs of the characterization of graphs admitting a
k-arc-connected orientation.

The splitting-off technique introduced by Lovász [50] together with a result
of Lick [48] yields a new approach of the k-arc-connected orientation problem
via a constructive characterization of 2k-edge-connected graphs. Another
approach is developed by Frank [21] who solved the problem of covering
a supermodular set function. Frank [22] also showed how the submodular
flows techniques introduced by Edmonds and Giles [15] properly addresses
in polynomial time the initial k-arc-connected orientation problem with addi-
tional constraints such as minimizing a certain cost or bounding the indegree
of vertices. Bernáth, Iwata, T. Király, Z. Király and Szigeti [3] showed that
these two problems become NP-complete if one considers well-balanced
orientations. This algorithmic point of view draw a clear line separating the
problem of k-arc-connected orientation and the problem of well-balanced
orientation.

For rooted arc-connectivity, a characterization of graphs having a rooted
k-arc-connected orientation may be derived from the classic result of Tutte
[69] and Nash-Williams [61] on packing spanning trees and the theorem of
Edmonds [14] on packing spanning arborescences. A direct proof was given
by Frank [19].

In terms of vertex-connectivity, Thomassen [68] conjectured that every suf-
ficiently highly vertex-connected graph has a k-vertex-connected orientation
and Frank [26] conjectured a characterization of the graphs having such an
orientation. The basic case k = 1 is clearly settled by the theorem of Robbins.
For k = 2, Jordán [41] proved a construction of the family of graphs given
in Frank’s conjecture which enabled Berg and Jordán [2] to show that the
conjecture of Frank holds for weakly 4-connected Eulerian graphs. Using this
result and proving a packing theorem on spanning rigid subgraphs, Jordán
[40] settled the case k = 2 of Thomassen conjecture. Z. Király and Szigeti [46]
gave a generalization of the Berg and Jordán’s orientation theorem based on
the odd-pairing theorem of Nash-Williams.

outline and contributions

Chapter 2 gathers many definitions and results from Graph Theory and
Matroid Theory. Although most of them are basic, the definitions of bi-sets,
bi-set functions and count matroids are not so common. This chapter also
defines the g-bounded connectivity together with the suitable Menger’s
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theorem.

Chapter 3 offers a glimpse at two well understood areas of graphs orienta-
tion. The first one concerns with degree constrained orientation problems.
We state the classic results of the field and present a very modest contribution
resulting from a joint work with Klein, Nguyen1 and Szigeti [8] that emphasis
the link between Matroid Theory and graph orientation.

The second one is the k-arc-connected orientation problem. We present
three different successful approaches for this problem: the approach of
Lovász enabled by his splitting-off technique, the approach of Frank via a
general orientation theorem on covering a supermodular function and the
other approach of Frank that applies submodular flows techniques.

To conclude this chapter, we explain the original approach of Nash-
Williams’ for the k-arc-connected problem that leads to a deeper orientation
theorem. We also answer negatively a modest question asked in [3] about a
possible generalization of the odd-pairing technique.

Chapter 4 focuses on packing results. In Section 4.1, we state the classic
result of Tutte and Nash-Williams on packing spanning trees and one of its
recent generalization due to Katoh and Tanigawa [44] where the spanning
property is replaced by a matroid constraint. Then we look into a variation of
the spanning tree packing problem offered by Recski [64] where orientation
constraints are added. We prove this variation to be NP-complete [7] and so,
provided P 6= NP, we disprove a conjecture of Recski.

We mentioned that the characterization of graphs admitting a rooted k-
arc-connected orientation problem is a direct corollary of the classic result
of Tutte and Nash-Williams on packing spanning trees and its directed
counterpart, the Edmond’s theorem on packing spanning arborescences.
Frank [19] gave a direct proof of the characterization and show how to derive
the undirected packing of spanning trees from its directed counterpart. In
Section 4.2, we mimic this approach to derive the Katoh and Tanigawa
result from its directed counterpart via the theorem of Frank on covering
supermodular functions. This material is from a joint work with Nguyen and
Szigeti [9].

To settle the case k = 2 of Thomassen’s conjecture, Jordán proved a suf-
ficient connectivity condition for the existence of k edge-disjoint spanning
rigid subgraphs that generalizes a classic result of Lovász and Yemini [51]. In
Section 4.3, we weaken the sufficient condition given by Jordán and extend
the packing to spanning trees as well. This work provides a simpler proof of
a results of Jackson and Jordán [39] and enable us to improve upper bounds
given by Jordán on a conjecture of Kriesell and the Thomassen’s conjecture.
This material results from a collaboration with Cheriyan and Szigeti [5].
Finally, we come to a more general result addressing the packing of bases
of a quite general count matroid and spanning trees that comes from a joint
work with Nguyen.

In Chapter 5, first we discuss the conjecture of Thomassen and the two
conjectures of Frank arising questions on the k-vertex-connected orientations
and rooted k-vertex-connected orientations problems.

To address these conjectures, the successful approach of Lovász for the
k-arc-connected orientation problem motivates the study of the structure of
highly connected graphs. Jordán followed this path and proved a constructive
characterization of weakly 4-connected graphs that arise in the conjecture

1 To dispel any doubts, in this thesis Nguyen always refers to Nguyen Viet-Hang.
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of Frank. As for the approach of Lovász, the result of Jordán lies on a new
splitting-off theorem and a result of Kaneko and Ota [43] about the existence
of vertices of degree 4. In a more general context, we investigate the existence
of tight vertices that are of minimal degree with respect to the connectivity
of the graph. More specifically, we prove that every minimally g-bounded
k-connected graphs contains at least one tight vertex. The existence of tight
vertices has also been studied in digraphs by Mader [53, 54]. We give a
common generalization of a slight generalization of two results of Mader in
this field.

In the last section of Chapter 5, we generalize the characterization of
weakly 4-connected graphs to a larger class of graphs, namely the family of
mixed (2k,k)-connected graphs. To that extend we prove a new splitting-off
theorem settling also an augmentation problem. The material of this chapter
results from a joint-work with Zoltán Szigeti.

Finally, in Chapter 6 we disprove the two above mentioned conjectures of
Frank for k > 3 and prove that the problem of deciding whether a graph
has a k-vertex-connected orientation and the problem of deciding whether a
graph has a rooted k-vertex-connected orientation are both NP-complete for
k > 3.

La notion de réseau apparaît de nombreux contextes. L’une des plus
classiques est le réseau social qui décrit les relations d’amitié entretenues
dans un groupe de personnes. Un autre exemple est la chaîne alimentaire
qui représente les relations de prédation entre les espèces d’un écosystème.
Il existe bien d’autres exemples mais tous dessinent ce motif consititué de
nœuds reliés entre eux.

On peut cependant distinguer deux types de réseaux suivant que les liens
entre les nœuds traduisent des relations bilatérales ou unilatérales. Dans le
premier cas le réseau est qualifié de non-orienté par opposition au second
cas où il est qualifié d’orienté. Le réseau social est un exemple de réseau non-
orienté puisque toute personne est l’amie de ses propres amis. En revanche,
la chaîne alimentaire est orientée puisqu’une proie ne mange pas ses pré-
dateurs. Le réseau routier d’une ville, dont les nœuds sont les carrefours et
dont les liens sont les portions de rues reliant ces carrefours, est non-orienté
si toutes les rues sont à double sens et orienté si toutes les rues sont à sens
unique.

Les graphes et les graphes orientés sont les outils mathématiques qui cap-
turent respectivement l’essence des réseaux non-orientés et orientés. Dans ces
deux objets l’ensemble des nœuds du réseau est représenté par un ensemble
de sommets. Les liens entres les nœuds sont appelés arêtes dans les graphes et
arcs dans les graphes orientés. Le développement de la Théorie des Graphes
fournit des méthodes efficaces pour aborder certaines problématiques con-
cernant la conception de réseaux. Par exemple, une exigence typique est
la résistance du réseau routier d’une ville, c’est à dire que n’importe quel
lieu de la ville doit rester accessible depuis n’importe quel autre même si
la circulation est coupée dans quelques rues ou carrefours. En Théorie des
Graphes cette propriété de robustesse se traduit en une propriété de dite de
connexité.

Cependant dans un réseau routier non orienté, un chemin reliant deux
lieux peut être emprunter dans les deux sens alors que, dans un réseau
routier orienté, cette propriété de symétrie n’est plus valable. Par conséquent
donner un sens unique de circulation à chacune des rues dans un réseau
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routier dont les rues sont initialement à double sens va considérablement
changer sa robustesse. On peut alors chercher à trouver un choix des sens
uniques qui permette d’obtenir certaines propriétés de robustesse. Dans un
graphe, l’opération consistant à mettre chaque rue en sens unique est appelée
orientation et chercher un bon choix des sens uniques revient à chercher
une orientation du graphe qui satisfait certaines propriétés de connexité. Ce
problème est le fil rouge de cette thèse.

La connexité est une notion fondamentale en Théorie des Graphes qui
se rencontre dans d’innombrables problèmes tant pratiques que théoriques,
tandis que, les problèmes d’orientation sont moins habituels. Ainsi, cette
thèse investit un champs à l’intersection d’une notion essentielle avec un
concept plus exotique.

héritage

Puisque la notion de connexité n’est pas symétrique dans les graphes orientés
nous aurons soin de distinguer les notions dérivant de la forte connexité,
définie comme l’existence d’un chemin allant de n’importe quel sommet
à n’importe quel autre, des notions dérivant de la racine-connexité qui
s’intéresse seulement à l’existence de chemins allant d’un sommet spécifié,
appelé la racine, vers les autres sommets.

En terme d’orientation des graphes sous contraintes de connexité, la
première contribution est due à Robbins [65] qui a prouvé en 1939 une
caractérisation des graphes qui ont une orientation fortement connexe. Sa
preuve s’appuie sur une décomposition des graphes 2-arête-connexes appelée
décomposition en oreilles. Vingt ans plus tard, Nash-Williams [60] a résolu
le problème plus général de l’orientation k-arc-connexe, et plus encore. Il
a prouvé que tout graphe a une orientation bien équilibrée, c’est dire, une
orientation dans laquelle l’arc-connexité d’un sommet quelconque u à un
autre sommet quelconque v est au moins la moitié (arrondie inférieurement)
de l’arête-connexité entre u et v dans le graphe non-orienté de départ. Cela
prouve que tout graphe 2k-arête connexe a une orientation k-arc-connexe;
la réciproque est triviale. L’idée clef de Nash-Williams est de se ramener
au cas simple des graphes eulériens en ajoutant au graphe un couplage
approprié des sommets impairs. Il existe aujourd’hui d’autres preuves de la
caractérisation des graphes ayant une orientation k-arc-connexe.

La technique de séparation introduite par Lovász [50] utilisée avec un
résultat de Lick [48] donne une nouvelle approche pour le problème de
l’orientation k-arc-connexe au travers d’une caracterisation constructive des
graphes 2k-arête-connexes. Une autre approche est développée par Frank
[21] qui résoud le problème de couvrir un fonction sur-modulaire avec une
orientation. Frank [22] a aussi expliqué comment la technique des flots
sous-modulaires introduite par Edmonds and Giles [15] répond en temps
polynomial au problème initial de trouver une orientation k-arc-connexe
avec des contraintes additionnelles telles que minimiser un certain coût ou
borner les degrés entrants des sommets. Bernáth, Iwata, T. Király, Z. Király
and Szigeti [3] ont montré que ces deux problèmes deviennent NP-complets
si on considère des orientations bien-équilibrées. Ce point de vue algorith-
mique dessine une séparation claire entre les problèmes liés à l’orientation
k-arc-connexe et ceux issus de l’orientation bien-équilibrée.

Quant à la racine-connexité, une caractérisation des graphes qui ont une
orientation racine k-arc-connexe peut être déduite des résultats classiques de
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Tutte [69] and Nash-Williams [61] concernant le packing d’arbres couvrants
et le théorème d’Edmonds [14] concernant le packing d’arborescences cou-
vrantes. Une preuve directe a été données par Frank [19].

En termes de sommet-connexité, Thomassen [68] a conjecturé qu’un graphe
dont la sommet-connexité est suffisament grande a une orientation k-sommet-
connexe et Frank [26] a conjecturé une caractérisation des graphes qui ont
une telle orientation. Le cas k = 1 est résolu par le théorème de Robbins. Pour
k = 2, Jordán [41] a déterminé une construction de la famille de graphes en
question dans la conjecture de Frank qui a ensuite permis à Berg et Jordán
[2] de prouver que la conjecture de Frank est vraie pour les graphes eulériens
et faiblement 4-connexes. En utilisant ce résultat ainsi qu’en prouvant un
résultat de packing pour les sous-graphes rigides couvrant, Jordán [40] a
résolu le cas k = 2 de la conjecture de Thomassen. Z. Király et Szigeti [46]
ont donné une généralisation du théorème d’orientation de Berg et Jordán
basée sur le théorème de couplage des sommets impairs de Nash-Williams.

plan et contributions

Le Chapitre 2 rassemble de nombreuses définitions et résultats issus des la
Théorie des Graphes et de la Théorie des Matroïdes. Bien que la plupart
soit basique, les définitions de bi-ensembles, fonctions sur les bi-ensembles
et count matroïdes ne sont pas si usuelles. Ce chapitre définit également la
connexité g-bornée ainsi que le théorème de Menger correspondant.

Le Chapter 3 donne, en premier lieu, un aperçu rapide sur deux domaines
bien compris de l’orientation des graphes. Le premier concerne l’orientation
avec contraintes sur les degrés entrants. Nous énonçons le résultat classique
du domaine et présentons une bien modeste contribution issue d’une collab-
oration avec Klein, Nguyen2 et Szigeti [8] qui souligne le lien entre la Théorie
des Matroïdes et l’orientation des graphes.

Le second concerne le problème de l’orientation k-arc-connexe. Nous
présentons trois approches fructueuses pour ce problème : l’approche de
Lovász rendue possible par la technique de séparation, l’approche de Frank
via son théorème sur les orientations couvrant des fonctions sur-modulaires
et l’autre approche de Frank qui utilise les techniques de flots sous-modulaires.

Pour conclure ce chapitre, nous expliquons l’approche originel de Nash-
Williams pour le problème de l’orientation k-arc-connexe qui amène à un
résultat encore plus profond. De plus, nous répondons par la négative à une
question posée dans [3] et qui concerne une possible généralisation de la
technique de couplage des sommets impaires.

Le Chapitre 4 se concentre sur des résultats de packing. Dans la section
4.1, nous énonçons le résultat classique de Tutte et Nash-Williams à propos
du packing d’arbres couvrant et sa récente généralisation par Katoh and
Tanigawa [44] où la propriété de couverture est remplacée par une contrainte
de matroïde. Ensuite nous nous penchons sur autre variation du problème
de packing d’arbres couvrants proposée par Recski [64] où une contrainte
d’orientation est ajoutée. Nous montrons que cette variation est NP-complète
[7] et nous infirmons donc une conjecture de Recski, si tant est que P 6= NP.

Nous avons mentionné précédement que la caractérisation des graphes
ayant une orientation racine k-arc-connexe est un corollaire direct du ré-

2 Afin de dissiper tout doute possible, dans cette thèse Nguyen désigne toujours Nguyen Viet-
Hang.
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sultat classic de Tutte et Nash-Williams sur le packing d’arbres couvrants
et du résultat orienté analogue, le théorème d’Edmonds sur le packing
d’arborescences couvrantes. Frank a donné un preuve directe de cette car-
actérisation et a expliqué comment en déduire le packing dans le cas non-
orienté à partir du cas orienté. Dans la Section 4.2, nous imitons cette ap-
proche pour déduire le résultat de Katoh and Tanigawa depuis le résultat
orienté analogue via le théorème de Frank sur les orientations couvrant
des fonctions sur-modulaires. La contenu de cette section provient d’une
collaboration avec Nguyen et Szigeti [9].

Afin de résoudre le cas k = 2 de la conjecture de Thomassen, Jordán a
prouvé une condition suffisante pour l’existence de k sous-graphes rigides
couvrants arête-disjoints qui généralise un résultat classique de Lovász et
Yemini [51]. Dans la section 4.3, nous affaiblissons la condition suffisante
donnée par Jordán et étendons le packing aux arbres couvrants. Ce travail
fournit une preuve simplifiée d’un résulat de Jackson and Jordán [39] et
nous permet d’améliorer les bornes supérieures données par Jordán sur une
conjecture de Kriesell ainsi que sur la conjecture de Thomassen. La matière
de cette section résulte d’une collaboration avec avec Cheriyan et Szigeti [5].
Enfin, nous en venons à un résultat plus général qui aborde le packing des
bases d’un count matroïde plus général et d’arbres couvrant provenant d’un
travail avec Nguyen.

Le Chapitre 5 commence par une discussion sur la conjecture de Thomassen
et les deux conjectures de Frank qui traitent des orientations k-sommet-
connexes et racine k-sommet-connexes.

Pour aborder ces conjectures, l’approche fructueuse de Lovász du prob-
lème de l’orientation k-arc-connexe motive l’étude de la structure des graphes
hautement connexes. En suivant cette direction, Jordán a montré une carac-
térisation constructive des graphes faiblement 4-connexes dont il est question
dans la conjecture de Frank. Comme le résultat de Lovász, le résultat de
Jordán s’appuie sur un nouveau théorème de séparation et sur un résultat
de Kaneko et Ota [43] à propos de l’existence de sommets de degré 4. Dans
un contexte plus général, nous étudions l’existence de sommets serrés dont
le dégré est minimal en regard de la connexité du graphe. Plus précisément,
nous montrons que tout graphe minimalement k-connexe g-borné contient
au moins un sommet serré. L’existence de sommets serrés a aussi été étudiée
dans les graphes orientés par Mader [53, 54]. Nous donnons une légère
généralization de deux résultats de Mader dans ce domaine.

Dans la dernière section du Chapitre 5, nous généralisons la caractérisation
des graphes faiblement 4-sommet connexes à une classe de graphes plus
grande, à savoir la famille des graphes (2k,k)-connexes. A cette fin, nous
montrons un nouveau théorème de séparation qui résoud aussi un problème
d’augmentation. Le contenu de ce chapitre est issu d’une collaboration avec
Zoltán Szigeti.

Enfin, dans le Chapitre 6 nous infirmons les deux conjectures de Frank
mentionnées auparavant pour k > 3 et montrons que le problème de décider
si un graphe a une orientation k-sommet-connexe et le problème de décider
si un graphe a une orientation racine k-sommet-connexe sont tous les deux
NP-complet pour k > 3.





2P R E L I M I N A R I E S

2.1 graphs and digraphs

2.1.1 Basics

A graph G is a couple of sets. The first set, denoted by V(G) defines the
vertices of the graph. The second set, denoted by E(G) contains pairs of
vertices called the edges of the graph (see Figure 1 (a)). Given two vertices u
and v the edge {u, v} is denoted by uv or vu and u and v are called the ends of
uv. Given F ⊆ E(G), the set of the ends of the edges of F is denoted by V(F).
Two edges that have the same ends are called parallel. A graph containing no
parallel edges is simple.

A directed graph (or, for short, digraph) D is a couple of sets. The first set,
denoted by V(D), is a vertex set. The second set, denoted by A(V) is a set
of couples of vertices called the arcs of the directed graph (see Figure 1 (b)).
The first vertex of an arc is called the tail and the second one it called the
head. An arc with tail u and head v is denoted by uv. Whether uv refers to an
edge or an arc will be clear from the context. Given F ⊆ A, V(F) denotes the
set of heads and tails of the arcs of F. Two arcs having the same head and
the same tail are parallel and the arcs uv and vu are opposed. Reversing an arc
means replacing it by the opposed one.

(a) (b)

Figure 1: (a) A graph G with 7 vertices and 11 edges that contains two parallel
edges. (b) A digraph D that contains two opposed arcs. Note that D is an
orientation of G.

Observe that a unique graph can be obtained from a directed graph D
by replacing each arc uv by an edge uv. This graph is called the underlying
undirected graph of D. The inverse operation consists of replacing each edge
uv of a graph G by either the arc uv or the arc vu. The resulting digraph
is called an orientation of G (see Figure 1). Observe that G has 2m possible
orientations where m is the number of edges of G. If a digraph D ′ can
be obtained from an other digraph D by reversing some arcs then D ′ is a
reorientation of D. Note that a digraph with m arcs has 2m − 1 reorientations.

All the graphs and digraphs considered in this thesis have a finite number
of vertices, edges and arcs and have no loop, that is, an arc or an edge of
type vv.

In the following definitions G = (V ,E) is a graph and D = (V ,A) is a
digraph. A subgraph of G is a graph H = (U, F) where U ⊆ V and F ⊆ E
(see Figure 2). Note that, since H is a graph, V(F) ⊆ U. When equality holds,
H is the subgraph of G induced by F and we denote it G[F]. So we have

9
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V(F) = V(G[F]). If F is the set of edges of E with both ends in U then H is the
subgraph of G induced by U and we denote it G[U].

A subgraph of D is a digraph H = (U, F) where U ⊆ V and F ⊆ A. Note
that, since H is a digraph, V(F) ⊆ U. When equality holds, H is the subgraph
of D induced by F and we denote it D[F]. Again, we have V(F) = V(D[F]).

A subgraph H = (U, F) of G or D spans W ⊆ V if W ⊆ U. If H spans V
then H is simply called spanning.

(a) (b)

(c) (d)

Figure 2: (a) A graph G = (V ,E) where the black vertices define a set U ⊂ V and
the dashed edges define a set F ⊂ E. (b) The subgraph (U, F) of G. (c) The
subgraph G[U] induced by U. (d) The subgraph G[F] induced by F.

In G, a path joining u and v (or, for short, a uv-path) is a sequence of vertices
x0, x1, · · · , xk such that x0 = u, xk = v and xixi+1 is an edge of G for
all i ∈ {0, · · · ,k− 1}. The vertices x0 and xk are the ends of the path and
x1, · · · , xk−1 are the inner-vertices of the path. If the xi are pairwise distinct
except for u = v then the path is called a cycle. Observe that reversing the
order of the vertices in a uv-path results in a vu-path.

A set of vertices U is called connected if any two vertices of U are joined
by a path in G. A connected component of G is an inclusionwise maximal con-
nected set of vertices. We denote c(G) the number of connected components
of G. If G contains only one connected component (or, equivalently, V is
connected) then G is called connected. Note that the graph defined in Figure
1 is connected.

In D, a directed path from u to v (or, for short, a uv-dipath) is a sequence of
vertices x0, x1, · · · , xk such that x0 = u, xk = v and xixi+1 is an arc of D for
all i ∈ {0, · · · ,k− 1}. If the xi are pairwise distinct except for u = v then the
dipath is called a circuit. Unlike in graphs, the existence of a uv-dipaht does
not imply the existence of a vu-dipath.

A set of vertices U is called strongly connected if, for any two vertices
u, v of U, there exist a uv-dipath and a vu-dipath in D. A strongly connected
component ofD is an inclusionwise maximal strongly connected set of vertices.
If V is strongly connected then D is called strongly connected. Note that the
digraph defined in Figure 1 is not strongly connected. Its strongly connected
componants are given in Figure 3.
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Given a special vertex r, the digraph D is called rooted connected at r (or
simply rooted connected if r is clear from the context) if there exists a
rv-dipath for any v ∈ V \ r.

Figure 3: The two dashed rectangles represent the two strongly connected compo-
nents of the digraph.

2.1.2 Set Functions

Let Ω be a ground set and X and Y be subsets of Ω. The intersection and the
union of X and Y are denoted by X∩ Y and X∪ Y respectively. The sets X and
Y are intersecting if X∩ Y is not empty. The set of elements of Ω contained in
X but not in Y is denoted by X \ Y. The sets X and Y are properly intersecting
if they are intersecting and none of X \ Y and Y \X is empty. The sets X and
Y are crossing if they are properly intersecting and Ω \ (X∪ Y) is non empty.
We denote X = V \X the complement of a set X.

Let f : 2Ω 7→ Z be a set function. The function f is called submodular if

f(X) + f(Y) > f(X∩ Y) + f(X∪ Y) (2.1)

holds for every pair of sets X, Y ⊆ Ω. If equality holds for every pair of sets
then f is called modular. Note that a function f is modular if an only if there
exists a vector v ∈ RΩ such that f(X) =

∑
x∈X v(x). So we may consider

vectors as modular functions and vice versa. For a ∈ R we denote aΩ the
vector of RΩ where all the coordinates have value a.

When f is symmetric and submodular note that (2.1) applied for X and Y
gives

f(X) + f(Y) > f(X \ Y) + f(Y \X). (2.2)

If (2.1) is required only when X and Y are interesting (resp. crossing) then f
is called intersecting submodular (resp. crossing submodular). The function f is
called skew submodular if for every pair of sets X, Y ⊆ Ω at least one of (2.1)
and (2.2) holds.

The function f is called is supermodular (resp. intersecting supermodular, resp.
crossing supermodular, resp. skew supermodular) is −f is submodular (resp.
intersecting submodular, resp. crossing submodular, resp. skew submodular).

The complexity of algorithms involving a submodular function strongly
depends on the method used to evaluate the function. In this document we
make the very common assumption that arbitrary submodular functions are
given by an oracle that determines the value of the function on subsets of
Ω. The following theorem was proved by Iwata, Fleischer and Fujishige and,
independently, by Schrijver. This theorem has deep consequences in many
optimization problems.

Theorem 2.1 (Iwata, Fleisher and Fujishige [38], Schrijver [67]). A submodular
function can be minimized in polynomial time in |Ω| and the number of calls to the
oracle.
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Goemans and Ramakrishnan [34] pointed out that minimizing a crossing
submodular function can also be done in polynomial time since it reduces to
|Ω| calls to the submodular function minimization algorithm.

In the following definitions G = (V ,E) is a graph and D = (V ,A) is
a digraph. Given two disjoint vertex sets X and Y, dG(X, Y) denotes the
number of edges of G with one end in X \ Y and the other one in Y \X and
dD(X, Y) denotes the number of arcs of D with the tail in X \ Y and the head
in Y \X.

In G, an edge e enters a set X ⊂ V if one end of e belongs to X and the
other end belongs to V \X. The set of edges entering X is denoted by ∆G(X)
and the number of such edges, denoted by dG(X) = dG(X,V \X), is called
the degree of X (see Figure 4 (a)). The graph G is called Eulerian if the degree
of each vertex is even. We denote TG the set of vertices of odd degree in G.
For T ⊆ V , a T -join is a set F of edges (not necessarily in E) such that the set
of vertices of odd degree in (V , F) is T . Clearly adding a TG-join to G results
in an Eulerian graph. One may also easily see that, for every connected graph
G = (V ,E), E contains a TG-join.

An edge is induced by X ⊆ V if both of its ends are in X. For F ⊆ E,
iF(X) denotes the number of edges of F induced by X and eF(X) denotes the
number of edges of F with at least one end in X. Note that,

eF(X) − iF(X) = d(V ,F)(X), (2.3)

eF(V \X) + iF(X) = |F|. (2.4)

In D, an arc a enters a set X ⊂ V if the head of a belongs to X and the tail
of a belongs to V \X (see Figure 4 (b)). The set of arcs entering X is denoted
by ∆−

D(X) and the number of such arcs, denoted by ρD(X) = dD(V \ X,X),
is called the indegree of X. An arc leaves X if it enters V \ X. The set of
edges leaving X is denoted by ∆+

D(X) and we denote δD(X) = dD(X,V \X)

the outdegree of X. The digraph D is called Eulerian if, for each vertex v,
ρD(v) = δD(v).

X

(a)

X

(b)

Figure 4: (a) The dashed edges represent the set ∆G(X) of edges entering the set X
in G and dG(X) = 4. (b) The dashed arc represents the set ∆−

G(X) of arcs
entering the set X in D and ρD(X) = 1.

Degree functions have properties that are the foundations of many results.
For any vertex sets X and Y,

dG(X) + dG(Y) = dG(X∩ Y) + dG(X∪ Y) + 2dG(X, Y) (2.5)

ρD(X) + ρD(Y) = ρD(X∩ Y) + ρD(X∪ Y)
+ dD(X, Y) + dD(Y,X). (2.6)

We skip the proof of these equalities that consists of counting the contribution
of each edge or arc to each side. Interestingly it follows from (2.5) and (2.6)
that dG and ρD are submodular.
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2.1.3 Bi-Sets Functions

Let Ω be a ground set. For XI ⊆ XO ⊆ Ω, the pair X = (XO,XI) is called
a bi-set of Ω 1. The sets XI, XO and wb(X) = XO \ XI are the inner-set,
the outer-set and the wall of X, respectively. If XI = ∅ or XO = Ω then
the bi-set X is called trivial. The intersection and the union of two bi-sets
X = (XO,XI) and Y = (YO, YI) are defined by X u Y = (XO ∩ YO,XI ∩ YI)
and X t Y = (XO ∪ YO,XI ∪ YI). We say that X is included in Y, denoted by
X v Y, if XO ⊆ YO and XI ⊆ YI. We say that X and Y are innerly-disjoint if
XI ∩ YI = ∅. We extend the complement operation to bi-sets by defining the
complement of X as X = (XI,XO). For a family F of bi-sets of Ω, we denote
ΩI(F) = ∪X∈FXI.

A function defined on the set of bi-sets of Ω is called a bi-set function. In
this document, a tiny letter b is used the to prevent the confusion between
set and bi-set functions. A bi-set function fb is called submodular if, for all
bi-sets X and Y,

fb(X) + fb(Y) > fb(Xu Y) + fb(Xt Y). (2.7)

A bi-set function fb is called supermodular if −fb is submodular.

An edge e of G enters a bi-set X = (XO,XI) of V , if one end of e belongs to
XI and the other end of e does not belong to XO which is equivalent to say
that e enters both sets XI and XO. The degree of X, denoted by db

G(X), is the
number of edges entering X. We point out that db

G is a generalization of dG
since for a bi-set X such that the inner-set and the outer-set coincide we have
db
G(X) = dG(XI).

Fact 2.1. The degree bi-set function db
G is symmetric with respect to the complement

operation, submodular and, for every bi-sets X, Y of V ,

db
G(X) + d

b
G(Y) = d

b
G(Xu Y) + d

b
G(Xt Y) + dG(XO ∩ YO,XI ∩ YI)

+ dG(YO ∩XO, YI ∩XI). (2.8)

The symmetry of db
G is obvious and the submodularity, pointed out by

Frank and Jordán [30], is a consequence of (2.8) which can be proved by count-
ing the contribution of each edge of G to each side. Given a family F of bi-sets
we denote eb

G(F) the number of edges of G entering at least one element of F.

An arc a of D enters a bi-set X = (XO,XI) of V , if the head of a belongs
to XI and the tail of a does not belong to XO which is equivalent to say
that a enters both sets XI and XO. The indegree of X, denoted by ρb

D(X), is
the number of arcs entering X. An arc leaves the bi-set X if it enters X. The
number of arcs leaving X is denoted by δb

D(X). We point out that ρb
D is

a generalization of ρD since for a bi-set X such that the inner-set and the
outer-set coincide we have ρb

D(X) = ρD(XI).

Fact 2.2. The indegree bi-set function ρb
D is submodular and, for every bi-sets X, Y

of V ,

ρb
D(X) + ρb

D(Y) = ρb
D(Xu Y) + ρb

D(Xt Y) + dD(XO ∩ YO,XI ∩ YI)
+ dD(YO ∩XO, YI ∩XI). (2.9)

1 As fas as I know, the definition of bi-sets given is this document is due to Frank [27] and a
slightly different form was considered earlier by Frank and Jordán [30].
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2.1.4 Trees and Arborescences

Let G = (V ,E) be a graph. A tree is a connected cycle free subgraph of G. The
size |T | of a tree T is the number of edges of T . It is easy to see by induction
that |T | = |V(T)|− 1. Note that, for u, v ∈ V(T), there exists a unique path
joining u and v in T since T is connected and cycle free. A forest is a cycle free
subgraph of G. Thus, each connected component of a forest is a tree. The
size |F| of a forest F is the sum of the sizes of its trees and is given by

|F| = |V(F)|− c(G[F]). (2.10)

Let D = (V ,A) be a digraph and r ∈ V . An r-arborescence is a circuit-
free subgraph of G in which every vertex except r has indegree exactly
one. The special vertex r is called the root of the arborescence. The size |T |

of an arborescence T is defined as the number of arcs of T and is given
by |T | =

∑
v∈V(T) ρT (v) = |V(T)| − 1. As we shall see, arborescences are

somehow the directed counterparts of trees.
We claim and briefly prove that the underlying undirected graph of an

arborescence is a tree. Let T be an arborescence and let T ′ be the underlying
undirected graph. If there is cycle in T ′ then, by the indegree condition,
this cycle is a circuit in T , a contradiction. So T ′ is a forest and, by (2.10),
|V(T ′)|− c(G[T ′]) = |T ′| = |T | = |V(T)|− 1. Hence, since V(T) = V(T ′), T ′ is
connected.

Conversely, given a tree T ′ and r ∈ V(T ′), there exists a unique orientation
of T ′ which is an r-arborescence. Such an orientation is obtained by replacing
each edge incident to r by an arc with tail r and then, recursively, choose the
head v of an arc and replace each (not yet oriented) edge incident to v by
an arc leaving v. Hence a tree T ′ has |V(T ′)| orientations into arborescences
(depending on the root).

Suppose that given an r-arborescence T and r ′ ∈ V(T) \ r, we have to reori-
ent some arcs of T to obtain an r ′ arboresence. By the discussion above, it can
be done considering the underlying tree T ′ and finding an r ′-arborescence
orientation of T ′. However it can be done more efficiently. In T ′ there exists
a unique rr ′-path and, by the indegree condition, this path is an rr ′-dipath
in T . Reversing each arc of this dipath results in an r ′-arborescence. Indeed
this operation decreases the indegree of r ′ by one and increases the indegree
of r by one.

A branching is the union of pairwise vertex-disjoint arborescences. The
size |F| of a branching F, defined as the sum of the sizes of its arborescences,
satisfies (2.10).

2.2 connectivity in graphs and digraphs

So far we defined connectivity in graphs and strong-connectivity and rooted
connectivity in digraphs. These basic concepts are the foundations of classic
deeper connectivity notions such as edge-connectivity, vertex-connectivity,
and mixed-connectivity in graphs and (rooted) arc-connectivity and (rooted)
vertex-connectivity in digraphs. These notions describe graphs and digraphs
that keep a basic connectivity property even if some edges, arcs or vertices are
removed. For each connectivity notion there exists a theorem characterizing
graphs or digraphs that have this resiliance property with the existence, for
each pair of vertices, of a certain number of disjoint paths between them.
These results are variations of the essential theorem of Menger [57] who first
proved such a characterization.
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In the present chapter we introduce a general connectivity definition for
graphs and digraphs called g-bounded connectivity. This definition captures
each of the more classic connectivity notions mentioned above. In the undi-
rected case as in the directed one, a Menger’s type theorem comes along
with g-bounded connectivity. From these general results formulated in terms
of bi-sets we derive the classic characterizations concerning edge-connectivity,
vertex-connectivity and mixed-connectivity in graphs and (rooted) arc-connec-
tivity, and (rooted) vertex-connectivity in digraphs. Note that g-bounded con-
nectivity was introduced by Nagamochi and Ibaraki [58] and also studied by
Frank [27] in its rooted formulation for digraphs.

2.2.1 g-Bounded Connectivity

Let G = (V ,E) be a graph and g : V 7→ Z+ a positive function. For u, v ∈ V ,
a set P of pairwise edge-disjoint uv-paths is called g-bounded if each vertex
w ∈ V \ {u, v} is contained in at most g(w) paths of P. We emphasize that
g-boundedness automatically means that the paths are edge-disjoint. The g-
bounded connectivity between u and v, denoted by µG(u, v,g) is the maximum
number of g-bounded uv-paths. A graph G is called g-bounded k-connected if
any pair of vertices are joined by k g-bounded paths and

g(V \ v) > k (2.11)

holds for all v ∈ V . Since g is positive g-bounded 1-connectivity and con-
nectivity coincide on graphs with at least two vertices. A graph is called
minimally g-bounded k-connected if it is g-bounded k-connected and removing
any edge ruins this property.

Let u and v be distinct vertices of G, U ⊆ V \ {u, v} and F ⊆ E such that u
and v are in different connected components of G−U− F. Now consider a set
of µG(u, v,g) g-bounded uv-paths. Each path contains at least one element
of U ∪ F, each edge of F is contained in at most one path and each vertex
w ∈ U is contained in at most g(w) paths so |F|+ g(U) > µG(u, v,g).

A bi-set X of V separates two vertices if one of these vertices is in XI and the
other one is not in XO. By the previous observation, a bi-set X separating two
vertices u, v satisfies db

G(X) + g(w
b(X)) > µG(u, v,g). The following variation

of Menger’s theorem states that equality holds if the bi-set X minimizes the
left hand side of the inequality.

Theorem 2.2. Let G = (V ,E) be a graph and g : V 7→ Z+ a positive function. For
u, v ∈ V ,

µG(u, v,g) = min{db
G(X) + g(w

b(X))} (2.12)

where the minimum is taken over all the bi-sets X separating u and v. Moreover,
provided (2.11), the following assertions are equivalent,

(i) G is g-bounded k-connected

(ii) G−U− F is connected for all F ⊂ E, U ⊂ V satisfying |F|+ g(U) < k

(iii) db
G(X) + g(w

b(X)) > k for all non-empty X ⊂ V .

Note that the function fb
G : X 7→ db

G(X) + g(w
b(X)) is submodular since

db
G is submodular and X 7→ g(wb(X)) is modular. A bi-set X satisfying the

inequality in (iii) with equality is called tight. Tight bi-sets play an important
role when investigating properties resulting from g-bounded k-connectivity.
A key property of those bi-sets is the following.
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Fact 2.3. Let G = (V ,E) be a graph and let g : V 7→ Z+ be a positive function such
that G is g-bounded k-connected. If two tight bi-sets X and Y of G are crossing then
both Xu Y and Xt Y are tight and dG(XO ∩ YO,XI ∩ YI) = dG(YO ∩XO, YI ∩
XI) = 0.

Proof. By tightness of X and Y, (2.8), modularity of the bi-set function wb(.),
and g-bounded k-connectivity of G, we have,

k+ k = fb
G(X) + f

b
G(Y)

= db
G(X) + g(w

b(X) + db
G(Y) + g(w

b(Y)

= db
G(Xu Y) + g(w

b(Xu Y)) + db
G(Xt Y) + g(w

b(Xt Y))
+ dG(XO ∩ YO,XI ∩ YI) + dG(YO ∩XO, YI ∩XI)
> k+ k+ 0+ 0.

Hence equality holds in the last inequality and the Fact 2.3 follows.

In digraphs the definition of g-bounded connectivity follows the same
scheme. Let D = (V ,A) be a digraph and let g : V 7→ Z+ be a positive
function. For u, v ∈ V , a set of pairwise arc-disjoint uv-dipaths is called
g-bounded if each vertex w ∈ V \ {u, v} is contained in at most g(w) dipaths.
The g-bounded connectivity from u to v, denoted by µD(u, v,g) is the max-
imum number of g-bounded uv-dipaths. A digraph D is called g-bounded
k-connected if (2.11) holds and, for any pair u, v of vertices, there exists k g-
bounded uv-dipaths and k g-bounded vu-dipaths. As for graphs, g-bounded
1-connectivity and strong-connectivity coincide in digraphs with at least 2
vertices. Given a vertex r ∈ V , D is called rooted g-bounded k-connected at r (or
simply rooted g-bounded connected if r is clear from the context) if (2.11)
holds and µD(r, v,g) > k for all v ∈ V \ r.

As for g-bounded connectivity in graphs, the g-bounded connectivity
µD(u, v,g) from u to v is upper-bounded by |F|+ g(U) if U ⊆ V \ {u, v} and
F ⊆ A are such that there is no uv-path in D−U− F. Hence, for a bi-set X
of V such that v ∈ XI and u /∈ XO, we have ρb

D(X) + g(wb(X)) > µD(u, v,g).
The following directed counterpart of Theorem 2.2 states that equality holds
if X minimizes the left hand side.

Theorem 2.3. Let D = (V ,A) be a digraph and g : V 7→ Z+ a positive function.
For u, v ∈ V ,

µD(u, v,g) = min{ρb
D(X) + g(wb(X))} (2.13)

where the minimum is taken over all the bi-sets X such that v ∈ XI and u /∈ XO.
Moreover, provided that (2.11) holds, the following assertions are equivalent,

(i) D is g-bounded k-connected

(ii) D−U− F is strongly connected for all F ⊂ A, U ⊂ V satisfying |F|+g(U) <

k

(iii) ρb
D(X) + g(wb(X)) > k for every non trivial bi-set X of V .

Furthermore D is rooted g-bounded k-connected at a vertex r if and only if ρb
D(X) +

g(wb(X)) > k for every non trivial bi-set X of V such that r /∈ XO.

As for the undirected case, the function fb
D : X 7→ ρb

D(X) + g(wb(X)) is
submodular. A bi-set X satisfying the inequality in (iii) with equality is called
in-tight. The complement of an in-tight bi-set is called out-tight. As in graphs,
in digraphs tight bi-sets play an important role when investigating properties
resulting from g-bounded k-connectivity. The directed counterpart of Fact
2.3 holds in digraphs.
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Fact 2.4. Let D = (V ,E) be a digraph and g : V 7→ Z+ a positive function
such that D is g-bounded k-connected. If two intight bi-sets X and Y of D are
crossing then both X u Y and X t Y are in-tight and dD(XO ∩ YO,XI ∩ YI) =

dD(YO ∩XO, YI ∩XI) = 0.

2.2.2 Edge-Connectivity and Arc-Connectivity

Let G = (V ,E) be a graph and define g : V 7→ Z+ as the constant function of
value |E|. Clearly, for u, v ∈ V , a set of uv-paths is g-bounded if and only if
the paths are pairwise edge-disjoint. Hence, in this case the g-bounded con-
nectivity and the classic edge-connectivity coincide. We define the local edge-
connectivity between two vertices u and v, denoted by λG(u, v) = µG(u, v, |E|),
as the maximum number of pairwise edge-disjoint uv-paths. The graph G on
at least two vertices is k-edge-connected if any two vertices of G are joined by
k pairwise edge-disjoint paths or, equivalently, λG(u, v) > k for all u, v ∈ V .

For g = |E| note that (2.12) is minimized by a tight bi-set with an empty
wall. Note also that in a k-edge-connected graph, condition (ii) of Theorem
2.2 is violated if U is not empty and condition (iii) trivially holds if wb(X)

is not empty. It means that, considering edge-connectivity, we may consider
vertex sets instead of bi-sets. Hence Theorem 2.2 can reformulated as the
following classic results. The maximum number of pairwise edge-disjoint
uv-paths is the minimum degree of a set separating u and v. Moreover, a
graph Gwith at least two vertices is k-edge-connected if and only if removing
less than k edges preserves the connectivity or, equivalently, the degree of
each non trivial vertex set is at least k.

Let D = (V ,A) be a graph and define g : V 7→ Z+ as the constant function
of value |A|. Again, for u, v ∈ V , a set of uv-dipaths is g-bounded if and only
if the paths are pairwise arc-disjoint and the g-bounded connectivity and the
classic arc-connectivity coincide on digraphs containing at least two vertices.
We define the local arc-connectivity from a vertex u to another vertex v, denoted
by λD(u, v) = µD(u, v, |A|), as the maximum number of pairwise arc-disjoint
uv-dipaths. The digraph D on at least two vertices is k-arc-connected if, for
every pair u, v of vertices, there exist k pairwise arc-disjoint uv-paths and
k pairwise arc-disjoint vu-paths. Given a vertex r ∈ V , D is called rooted
k-arc-connected at r if λD(r, v) > k for all v ∈ V \ r.

As for graphs, the conditions given in Theorem 2.3 can be replaced by
conditions on vertex-sets rather that bi-sets to obtain the Menger’s type
classic results about arc-connectivity. The maximum number of pairwise
arc-disjoint uv-dipaths is the minimum indegree of a set containing v but not
u. Moreover, a digraph is k-arc-connected if and only if removing less than
k arcs results in a strongly-connected graph or, equivalently, the indegree
of each non trivial vertex set is at least k. And a digraph is rooted k-arc-
connected at r if and only if the indegree of every non-empty vertex-set not
containing r is at least k.

2.2.3 Vertex-Connectivity

Let G = (V ,E) be a graph and define g : V 7→ Z+ as the constant function
of value 1. For u, v ∈ V , a pair of uv-paths is g-bounded if and only if the
paths are pairwise innerly-disjoint that is the paths have no common inner-
vertices. A set of k innerly-disjoint uv-paths is called a k-fan joining u and v.
We define the local vertex-connectivity between two vertices u and v, denoted by
κG(u, v) = µG(u, v, 1), as the maximum number of pairwise innerly-disjoint
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uv-paths. The graph G is k-vertex-connected if |V | > k and any two vertices of
G are joined by a k-fan.

The classic formulation of Theorem 2.2 for vertex-connectivity states that,
given two non adjacent vertices u, v, the maximum number of pairwise
innerly-disjoint uv-paths is the minimum size of a vertex-set U ⊆ {u, v} such
that removing U disconnects u and v. It means that in (2.12) the minimum
can be taken over all bi-sets separating u and v entered by no edge. Indeed,
we choose X a bi-set minimizing the right hand side of (2.12) such that db

G(X)

is minimum and we show that db
G(X) = 0. Since, u and v are non-adjacent,

if there exists an edge xy entering X we may assume that x is none of u
and v. Hence the bi-set Y = (XO ∪ x,XI) separates u and v and satisfies
db
G(Y) + g(w

b(Y)) 6 db
G(X) + g(w

b(X)) with db
G(Y) < d

b
G(X), a contradiction

to the choice of X.

In a digraph D = (V ,A), the vertex-connectivity is obtained from g-
bounded connectivity by the same choice of g : V 7→ Z+ as the constant
function of value 1. Again, g-boundedness of dipaths corresponds to inner-
disjointness and we define a k-difan from a vertex u to a vertex v as a set of k
pairwise innerly-disjoint uv-dipaths. We define the local vertex-connectivity
from u to v, denoted by κD(u, v) = µD(u, v, 1), as the maximum number
of pairwise innerly-disjoint uv-dipaths. The graph D is k-vertex-connected
if |V | > k and, for every pair u, v of vertices, there exist a k-difan from u

to v and a k-difan from v to u. Given a vertex r ∈ V , D is called rooted
k-vertex-connected at r if there exists a k-difan from r to any other vertex.

As for graphs, Theorem 2.3 implies the following classic result. For two
vertices u, v such that uv /∈ A, the maximum number of pairwise innerly-
disjoint uv-dipaths is the minimum size of a vertex-set U ⊆ {u, v} such that,
in D−U, v is not reachable from u.

We prove a very simple fact that concerns both graphs and digraphs.

Fact 2.5. Every minimally k-vertex-connected graph or digraph is simple.

Proof. Let G = (V ,E) be a minimally k-vertex-connected graph and suppose
that there exists u, v ∈ V such that dG(u, v) > 2. By minimality there exists
a tight bi-set X such that u ∈ XI and v /∈ XO. By |V | > k and db

G(X) > 2, we
may assume that |XI| > 2. So the non trivial bi-set Y = (XO,XI \ u) satisfies
k 6 dG(Y) + |wb(Y)| 6 db

G(X) − dG(u, v) + |wb(X)|+ 1 < k, a contradiction.
For the directed case the proof is similar.

2.2.4 Mixed-Connectivity

Mixed-connectivity is defined from g-bounded connectivity by defining g
as a constant. So this concept generalizes both edge-connectivity and vertex-
connectivity in graphs.

Let G = (V ,E) be a graph, ` a positive integer. Mixed-(k, `)-connectivity
is defined as g-bounded k-connectivity where g is the constant function of
value `. In case ` divides k, this notion was introduced by Egawa, Kaneko and
Matsumoto [16] as follows: a pair u, v of vertices is mixed-(k, `)-connected
if there exists ` edge-disjoint k` -fans joining u and v. They also proved the
suitable version of Theorem 2.2.

A particular mixed connectivity is worth mentioning since it plays a role
in a conjecture of Frank [26] that will be introduced in Chapter 5. Mixed-
(2k, 2)-connectivity is called weak 2k-connectivity. For example, we say that
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G is weakly 4-connected if G is 4-edge-connected and, removing any vertex
from G results in a 2-edge-connected graph.

2.3 matroids

In this short section we define the notion of matroids introduced by Whitney
[74] and we state the few results of this field that will be needed in this
document.

2.3.1 Definition

Let S be a set and I a collection of subsets of S. The pair M = (S, I) is called
a matroid if the following three properties, called independence axioms, are
satisfied:

(I.1) ∅ ∈ I,

(I.2) if U ∈ I and T ⊆ U then T ∈ I,

(I.3) for each U ⊆ S, the maximal subsets of U which are in I have the same
cardinality.

The elements of I are called independent. Axiom (I.2) is called the hereditary
property. The maximal independent sets are called the basis of M. Two ele-
ments t, u ∈ S are called parallel if {t} ∈ I, {u} ∈ I and {t, u} /∈ I.

The motivation of Whitney was to capture the notion of independence in
linear spaces. Indeed, given a matrix M, if we define S as the set of columns
of M and I as the subsets of columns linearly independent, then M = (S, I)
is a matroid.

Another standard example of a matroid is the following. Let G = (V ,E)
be a graph and let I be the sets of edges that induce a cycle free subgraph
of G. In other words, I is the collection of the edge sets of the forests of
G. The set system C(G) = (E, I) clearly satisfies axioms (I.1) and (I.2). So to
prove that C(G) is a matroid it remains to prove (I.3). Let F ⊆ E and F ′ be a
maximal independent subset of F. By maximality of F ′, V(F ′) = V(F) and F ′

induces a tree in each connected component of F. Hence, by (2.10), we have,
|F ′| = |V(F ′)|− c(G[F ′]) = |V(F)|− c(G[F]). Thus the size of F ′ depends only
on F and axiom (I.3) is satisfied. The matroid C(G) is called the circuit matroid
of G. Observe that two edges are parallel in the graph G if and only if they
are parallel in C(G).

2.3.2 Rank Function

In a matroid M = (S, I), by axiom (I.3), all the maximal independent subsets
of U ⊆ S have the same cardinality. This number defines the rank of U and is
denoted by rM(U). Note that a matroid is characterized by its rank function
since a set U is independent if and only if |U| = rM(U).

When we showed that, for a graph G = (V ,E), C(G) is a matroid we
actually proved that, for F ⊆ E,

rC(G)(F) = |V(F)|− c(G[F]). (2.14)

Trivially the rank function of a matroid is a non-decreasing function. The
following property is even more interesting.
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Proposition 2.1. The rank function of a matroid is submodular.

Conversely, a matroid can be defined from a submodular function as
follows. For a set function b on S, let

I(b) = {U ⊆ S such that |T| 6 b(T) for all T ⊆ U}. (2.15)

Theorem 2.4 (Edmonds [13]). Let b be an integer-valued non-decreasing inter-
secting submodular function on S such that b(∅) = 0. Then M(b) = (S, I(b)) is a
matroid and the rank function of M(b) is given by

rM(b)(U) = min
{ t∑
i=1

b(Ti) + |U \T|
}

, (2.16)

where the minimum is taken over all subsets T of U ⊆ S and all partitions
{T1, · · · , Tt} of T. If b is fully submodular then the rank function is simply given
by

rM(b)(U) = min{b(T) + |U \T| : T ⊆ U}. (2.17)

2.3.3 Examples

Lorea and, independently, White and Whiteley introduced a class of matroids
defined on the edge set of graphs.

Theorem 2.5 (Lorea [49] White and Whiteley [73]). Let G = (V ,E) be a graph.
Let m be an element of (Z+)

V and ` an integer such that, for each edge uv ∈ E,
m(u) +m(v) > `. Then

F = {F ⊆ E : iF(X) 6 m(X) − `, ∀X ⊆ V such that iF(X) > 1} (2.18)

satisfies the independence axioms of matroids.

Proof. Let b be the set function on E defined by, b(∅) = 0 and b(F) =

m(V(F)) − ` for each non-empty set F of edges. It is easy to check that
F 7→ m(V(F)) is submodular. Hence b is non-decreasing integer-valued and
intersecting submodular and, by Theorem 2.4, defines a matroid M(b). We
prove that F is the set of the independent sets of M(b).

Let F ⊆ E be independent in M(b). Let X ⊆ V such that iF(X) > 1 and
denote J the subset of F induced by X. We have

iF(X) = |J| 6 b(J) = m(V(J)) − ` 6 m(X) − `,

that is F ∈ F.
Conversely, if F ⊆ E is not independent in M(b) then there exists J ⊆ F

such that |J| > b(J). Hence we have

iF(V(J)) > |J| > b(J) = m(V(J)) − `

that is F /∈ F.

The matroid (E,F) is called a count matroid or, to be more specific, the
(m, `)-count matroid. The circuit matroid of G = (V ,E) is the (1V , 1)-count
matroid. Indeed, if F ∈ F contains a cycle on the vertex set X, then iF(X) > |X|

which contradicts (2.18). Conversely, let F be a cycle free set of edges and let
X ⊆ V such that the set F ′ ⊆ F induced by X is non-empty. Since G[F ′] is a
forest, by (2.10), iF(X) = |F ′| = |V(F ′)|− c(G[F ′]) 6 |X|− 1.
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2.3.4 Matroid Union

Let M1 = (S1, I1), · · · ,Mk = (Sk, Ik) be matroids. The union of these ma-
troids is the set system defined by M = (S1 ∪ · · · ∪ Sk, I) where

I = {I1 ∪ · · · ∪ Ik : I1 ∈ I1, · · · , Ik ∈ Ik}. (2.19)

The following theorem is due to Edmonds [12]. The particular case where all
Mi are equal was formulated by Nash-Williams [62].

Theorem 2.6 (Edmonds [12]). Let M1 = (S1, I1), · · · ,M1 = (Sk, Ik) be ma-
troids with rank functions r1, · · · , rk, respectively. Then the union M of these
matroids is a matroid with rank function given by:

rM(U) = min
T⊆U

(r1(T ∩ S1) + · · ·+ rk(T ∩ Sk) + |U \ T |) (2.20)

for U ⊆ S1 ∪ · · · ∪ Sk.

Edmonds also proved algorithmic results on matroids.

Theorem 2.7 (Edmonds [12]). Given a matroid (S, I) by an oracle testing inde-
pendence, a maximum number of disjoint bases can be found in polynomial time.
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3.1 degree constrained orientation

3.1.1 m-Orientations

The paper Seven Bridges of Königsberg written by Euler in 1736 is regarded
as the birth of Graph Theory. Interestingly, from the early result of Euler one
may readily derive the following corollary on graph orientation.

Theorem 3.1 (Euler 1736). A graph G has an Eulerian orientation if and only if
G is Eulerian.

Actually, finding an Eulerian orientation is a particular case of a more
general problem. Let G = (V ,E) be a graph and m ∈ ZV+ an indegree
vector. An m-orientation of G is an orientation D such that, for each v ∈ V ,
ρD(v) = m(v). This generalizes the Eulerian orientations since an Eulerian
orientation is an m-orientation where m(v) = 1

2dG(v) for each vertex v. Note
also that the specifying the outdegree rather than the indegree would yield
an equivalent problem, since ρD(v) + δD(v) = dG(v). Hakimi proved the
following result.

Theorem 3.2 (Hakimi [36]). Let G = (V ,E) be an undirected graph and m ∈ ZV+
an indegree vector such that m(V) = |E|. Then G has an m-orientation if and only
if iE(X) 6 m(X) for every X ⊆ V .

The necessity of the condition is straightforward. Suppose that G has an
m-orientation D. For X ⊆ V , the orientation of each edge induced by X in G
results in an arc entering a vertex of X in D, so iE(X) 6

∑
v∈X ρD(v) = m(X).

Note also that by m(V) = |E| and (2.4), the condition iE(X) 6 m(X) for every
X ⊆ V is equivalent to the condition eE(X) > m(X) for every X ⊆ V .

As corollary of Hakimi theorem one may obtain the following result of
Ford and Fulkerson. The union of a graph (V ,E) and a digraph (V ,A) defines
a mixed graph denoted M = (V ,E∪A). So this object contains a set of vertices
and a set of connections of two types: edges and arcs. An orientation of M, is
a digraph (V ,E ′ ∪A) where E ′ is an orientation of E.

Theorem 3.3 (Ford and Fulkerson [18]). Let M = (V ,E∪A) be a mixed graph
union of a graph G = (V ,E) and a digraph D = (V ,A). There exists an Eulerian
orientation of M if and only if, δD(v) + ρD(v) + dG(v) is even for all v ∈ V and
dG(X) > ρD(X) − δD(X) for all X ⊆ V .

3.1.2 Bounding the indegree

Hakimi actually proved a more general result that characterises the existence
of an orientation where the indegrees satisfy a lower bound, instead of
being explicitly specified. For the same reason as above, replacing the lower
bound on the indegrees by an upper bound on the outdegrees gives an
equivalent problem. Thus, by reversing all the arcs, the lower bounded
indegree orientation problem is equivalent to the upper bounded indegree

23
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orientation problem. The problem of finding an orientation such that the
indegrees satisfies both a lower bound and an upper bound is solved by
Frank.

Theorem 3.4 (Hakimi [36] and Frank [25]). Let G = (V ,E) be an undirected
graph and f,g ∈ ZV+ two vectors such that f > g. The graph G has an orientation
D such that

(A) ρD(v) > f(v) for each v ∈ V if and only if, for all X ⊆ V ,

eE(X) > f(X),

(B) g(v) > ρD(v) for each v ∈ V if and only if, for all X ⊆ V ,

g(X) > iE(X),

(C) g(v) > ρD(v) > f(v) for each v ∈ V if and only if for all X ⊆ V ,

g(X) > iE(X) and eE(X) > f(X).

Interestingly in this result the part (C) can be reformulated as follow: there
exists an orientation satisfying the lower bound and the upper bound if
and only if there exists an orientation satisfying the lower bound and an
orientation satisfying the upper bound.

3.1.3 Sandwich problem for degree orientation

The graph sandwich problem for property Π is defined as follows: Given
two graphs G1 = (V ,E1) and G2 = (V ,E2) such that E1 ⊆ E2, is there a
graph G = (V ,E) such that E1 ⊆ E ⊆ E2 which satisfies property Π? In this
section, we propose to study the sandwich problems for property Π being
the existence of degree contrained orientation. This theorem resulting from
joint work with Klein, Nguyen and Szigeti [8] aims more to glimpse at the
link between matroid theory and graph orientation than to present new and
deep results on orientation.

Theorem 3.5 (Durand de Gevigney, Klein, Nguyen and Szigeti [8]). Let
G1 = (V ,E1) and G2 = (V ,E2) be two undirected graphs such that E1 ⊆ E2, let
m ∈ ZV+ be an indegree vector and denote M the (m, 0)-count matroid in G2. The
following assertions are equivalent.

(a) There exists E1 ⊆ E ⊆ E2 such that (V ,E) has an m-orientation.

(b) E1 is independent in M and M has an independent set of size m(V).

(c) rM(E1) = |E1| and rM(E2) > m(V).

(d) iE1(X) 6 m(X) 6 eE2(X) for all X ⊆ V .

Proof. (a) implies (d) Let X ⊆ V . By necessity in Theorem 3.2, we have
iE1(X) 6 iE(X) 6 m(X) 6 eE(X) 6 eE2(X).

(d) implies (c). By (2.18), iE1(X) 6 m(X) for all X ⊆ V , implies that E1 is
independent in M that is rM(E1) = |E1|. Now let F be a subset of E2, the
condition m(V(F)) 6 eE2(V(F)) implies that m(V) 6 m(V(F)) + eE2(V(F)) 6
m(V(F)) + |E2 \ F|. Hence, by Theorem 2.4, rM(E2) > m(V).

(c) implies (b). By definition.
(b) implies (a). By (I.3) in M there exists an independent set E of size m(V)

that contains E1. Hence, by (2.18) and Theorem 3.2, the graph (V ,E) admits
an m-orientation.
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3.2 arc-connected orientations

3.2.1 Nash-Williams’ Weak Theorem

The question answered in this section is the following: can one characterises
the graphs admitting a k-arc-connected orientation? For k = 1, the answer is
given by Robbins.

Theorem 3.6 (Robbins [65]). A graph G admits a strongly-connected orientation
if and only if G is 2-edge-connected.

The necessity easily derives from Menger theorems. Indeed, if D is a
strongly connected orientation of a graph G, then, for any non trivial vertex
set X, by Theorem 2.3, dG(X) = ρD(X) + δG(X) > 1+ 1, hence, by Theo-
rem 2.2, G is 2-edge-connected. Robbins’ proof of sufficiency relies on the
following decomposition of 2-edge-connected graphs.

Theorem 3.7 (Robbins [65]). A graph G = (V ,E) is 2-edge-connected if and only
there exists a sequence of graphs G0 ⊂ G1 ⊂ · · ·Gj = G such that G0 is a cycle
and each Gi is obtained from Gi−1 by adding a path Pi such that the ends of Pi
belong to V(Gi−1) and no inner-vertex of Pi belongs to Gi−1.

The sequence G0, · · · ,Gj is called an ears decomposition of G and the paths Pi
are the ears of the decomposition. Robbins observed that orienting G0 as a
circuit and each ear as a dipath results in a strongly connected orientation of
G. Thus this observation proves the sufficiency in Theorem 3.6.

For general k, the charaterization of graphs admitting k-arc-connected
orientations is given by Nash-Williams. The following result is hence a
generalization of Theorem 3.6.

Theorem 3.8 (Nash-Williams [60]). A graph G admits a k-arc-connected orienta-
tion if and only if G is 2k-edge-connected.

This theorem is refered to as Nash-Williams’ weak orientation theorem
as Nash-Williams actually shows a stronger orientation result that we post-
poned to Section 3.3. Again, in Theorem 3.8, the necessity directly derives
from the Menger’s theorem. So the difficulty remains in the sufficiency. In
the next subsection we present Lovász’ proof of sufficiency which relies
on a decomposition of 2k-edge-connected graphs. We will prove a similar
decomposition for another family of graphs in Chapter 5.

3.2.2 Structure of 2k-Edge-Connected Graphs

Let G = (V ∪ s,E) be a graph and let su and sv be two edges incident to
s (see Fig. 5). Splitting the pair (su, sv) means deleting these two edges and
adding the edge uv (see Fig. 6). The graph resulting from this operation is
denoted Gu,v. When dG(s) is even, we define a complete splitting-off at s as a
sequence of 12dG(s) splitting-off of disjoint pairs of edges incident to s (see
Fig. 7). Hence, in a graph obtained by such a complete splitting-off at s the
degree of s is zero.

We are interested in splitting-off that preserves some connectivity prop-
erties. In the present chapter this property is the 2k-edge-connectivity of V .
Provided that V is k-edge-connected in G, a splitting-off is called admissible if
V is k-edge-connected in the graph resulting from this operation. A complete
splitting-off is called admissible if each of the 12dG(s) splitting-off is admis-
sible. One may easily see that each possible splitting-off is not necessarily
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Figure 5: A graph with a special vertex s.
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Figure 6: Splitting the pair su, sv.
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Figure 7: A complete splitting-off at s.

admissible but Lovász proved that, provided that k > 2 and d(s) is even,
there always exists a pair of edges incident to s that defines an admissible
splitting-off. From this result he derived the following theorem.

Theorem 3.9 (Lovász [50]). Let G = (V ∪ s,E) be a graph and k be a positive
integer such that V is 2k-edge-connected and dG(s) is even and |V | > 3. Then there
exists an admissible complete splitting-off at s.

The splitting-off has an inverse operation. Pinching a set F of edges means
subdividing each edge with a new vertex and identifying the |F| new ver-
tices as a single one. In contrast with splitting-off, pinching enough edges
preserves the edge-connectivity.

Fact 3.1. Let G = (V ,E) be a 2k-edge-connected graph and let F ⊆ E, denote G ′

the graph arising from the pinching of F and denote s the new vertex in G ′. Then
the vertex set V is 2k-edge-connected in G ′. Moreover G ′ is 2k-edge-connected if
and only if |F| > k.

Since this pinching edges does not decrease the degree of subsets of V and by
Menger’s theorem, G ′ is 2k-edge-connected if and only if 2|F| = dG ′(s) > 2k.

The pinching operation is also defined in digraphs. In a digraph, pinching a
set F of arcs consists of subdividing each arc with a new vertex and identifying
the |F| new vertices as a single one1. As for undirected graphs, in digraphs
the pinching operation preserves the arc-connectivity.

Fact 3.2. Let D = (V ,A) be a k-arc-connected digraph, let F ⊆ A, denote D ′ the
digraph arising from the pinching of F and denote s the new vertex in D ′. Then the
vertex set V is k-arc-connected in D ′. Moreover D ′ is k-arc-connected if and only if
|F| > k.

Before we prove the constructive charaterization of 2k-edge-connected
graphs, leading to the proof of Theorem 3.8, we need another initially proved
by Lick, that will be generalized in Chapter 5. We recall that a graph G is

1 The splitting-off may also be defined in digraphs but we skip this operation that will not be
needed.
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called minimally k-edge-connected if G is k-edge-connected and the deletion
of any edge ruins this property.

Fact 3.3 (Lick [48]). Every minimally k-edge-connected graph contains a vertex of
degree k.

Now we can prove the promised decomposition theorem.

Theorem 3.10 (Lovász [50]). A graph G = (V ,E) is 2k-edge-connected if and
only if it can be constructed from a pair of vertices joined by 2k edges by a sequence
of the following operations:

(I) add an edge between existing vertices,

(II) pinch a set of k existing edges.

Proof. Since adding edges and, by fact 3.1, pinching k edges preserves 2k-
edge-connectivity, the sufficiency follows.

We prove the necessity by induction on |E|. The base case is trivial since a
pair of vertices joined by 2k edges is clearly a 2k-edge-connected. We have
to prove that any 2k-edge-connected graph such that |E| > 2k is obtained
from a 2k-edge-connected graph by the operation (I) or (II). If there exists
an edge e such that (V ,E \ e) is 2k-edge-connectivited then this is done. So
we may assume that G is minimally 2k-edge-connected. Thus, by Fact 3.3
and Theorem 3.9, there exist a vertex s of degree 2k in G and an admissible
complete splitting-off at s. We denote G ′ and F the graph and the edges
resulting from this operation respectively. So G is obtained from the 2k-edge-
connected graph G ′ by pinching the k edges of F.

This insight into the structure of 2k-edge-connected graphs enables us to
easily prove Nash-Williams’ weak orientation theorem.

Proof of Theorem 3.8. Suppose that G = (V ,E) has a k-arc-connected orienta-
tion D. Then, for any non-empty X ⊂ V , dG(X) = ρD(X) + δD(X) > k+ k =

2k. Hence, by Theorem 2.2, G is 2k-edge-connected.
We prove by induction on the number of edges that every 2k-edge-

connected graph has a k-arc-connected orientation. If |E| = 2k then the
graph is a pair of vertices joined by 2k edges and orienting half of the edges
is one way and the other half the other way results in a k-arc-connected
digraph. Let G = (V ,E) be a 2k-edge-connected graph such that |E| > 2k. By
Theorem 3.10, G is obtained from a smaller 2k-edge-connected graph G ′ by
operation (I) or (II). By induction G ′ admits a k-arc-connected orientation
D ′. If G is obtained from G ′ by adding an edge e then the orientation of G
resulting from D ′ by giving e an arbitrary orientation is k-arc-connected. If
G is obtained from G ′ by pinching a set F of k-edge then, by Fact 3.2, the
orientation of G obtained from D ′ by pinching the set of arcs corresponding
to F is k-arc-connected.

3.2.3 Abstract Connectivity Requirements

Fank initiated two approaches for graph orientations; each provides a deep
insight into the k-arc-connected orientation problem. The first one charac-
terizes the existence of an orientation covering a supermodular function.
This result is far reaching as it answers orientation questions about abstract
arc-connectivity requirements. It will be used in Chapter 4.2.

The second one derives from the submodular flows polyhedron introduced
by Edmonds and Giles. From an algorithmical point of view this approach
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is very efficient. It provides algorithmical tools to solve in polynomial time
two variations of the k-arc-connected orientation problem: find such an
orientation with minimum cost or with bounded degrees.

3.2.3.1 Covering Supermodular Functions

A digraph D = (V ,A) covers a set function p : 2V 7→ R if, for all X ⊆ V ,

ρD(X) > p(X). (3.1)

Theorem 3.11 (Frank [21]). Let G = (V ,E) be a graph and p : 2V → Z+ a
non-negative crossing supermodular function such that p(∅) = p(V) = 0. There
exists an orientation D covering p if and only if, for every partition P of V ,

eG(P) >
∑
X∈P

p(X), and (3.2)

eG(P) >
∑
X∈P

p(V \X). (3.3)

The condition (3.2) alone is sufficient if p is non-increasing. If p is non-increasing
and symmetric then (3.2) reduces to

dG(X) > 2p(X) (3.4)

for all non-empty X ⊂ V .

This theorem readily implies the weak orientation theorem of Nash-
Williams. Indeed define p by p(∅) = p(V) = 0 and p(X) = k for all non-empty
X ⊂ V . Clearly p is non-increasing, non-negative, symmetric and crossing
submodular. Hence, by the above theorem, there exists an orientation D of G
such that ρD(X) > k for all non-empty X ⊂ V , if and only if dG(X) > 2k for
all non-empty X ⊂ V .

We note that from Theorem 3.11, Frank also derived a characterization of
a k-arc-connected orientation with bounded indegrees.

3.2.3.2 Submodular Flows

Let D = (V ,A) be a digraph and let x : A 7→ R. For Y ⊆ V , we denote
ρxD(Y) = x(∆−

D(Y)) and δxD(Y) = x(∆+
D(Y)). Given a crossing submodular

function b : 2V 7→ R, the function x is called a submodular flow if, for every
Y ⊆ V ,

ρxD(Y) − δxD(Y) 6 b(Y). (3.5)

Given f,g : A 7→ R such that f 6 g, a submodular flow x is feasible if

f 6 x 6 g. (3.6)

Submodular flows were introduced by Edmonds and Giles [15] who proved
that the system defined by (3.5) and (3.6) is totally dual integral2. A direct
consequence is the following.

Theorem 3.12 (Edmonds and Giles [15]). Let D = (V ,A) be a digraph, b :

2V 7→ Z be a crossing submodular function and f,g : A 7→ Z such that f 6 g.
Then the polyhedron PD,b of RA defined by (3.5) and (3.6) is integer.

Frank [22] pointed out that the weak orientation of Nash-Williams can be
derived from Theorem 3.12.

2 We do not present any linear programming theory in this document so the definition of TDI
system is skipped.
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Proof of Theorem 3.8. Let G = (V ,E) be 2k-edge-connected graph. Choose
an arbitrary orientation D of G and define the set function b : 2V 7→ R

by b(X) = ρD(X) − k for all non-empty X ⊂ V and b(∅) = b(V) = 0. By
submodularity of ρD, b is crossing submodular. Let f = 0A and g = 1A the
constant functions over A. Observe that, by 2k-edge-connectivity of G, the
polyhedron of RA defined by (3.5) and (3.6) contains the vector x = 1

21A.
Indeed, by the choice of b and x, (3.5) is equivalent to

k 6 ρ
1
2
D(X) + δ

1
2
D(X) =

1

2
(ρD(X) + δD(X)) =

1

2
dG(X).

Hence P is not empty and, by Theorem 3.12, it contains an integer point y.
Let D ′ be the orientation of G obtained from D by reversing all the arcs a
such that y(a) = 1. The digraph D ′ is k-arc-connected since, for any non
empty X ⊂ V , ρD ′(X) = ρD(X) − ρyD(X) + δyD(X) > k.

By crossing submodularity of b− (ρxD − δxD) and Theorem 2.1, the poly-
hedron PD,b can be separated in polynomial time. Thus, by the ellipsoid
method of Grötschel, Lovász, and Schrijver [35], one may optimize in poly-
nomial time over this polyhedron. Yet this method does not provide a very
practical algorithm. In [22], Frank provided a combinatorial algorithm to
optimize over PD,b with bounds f = 0A and f = 1A. He pointed out that
this approach also allows to solve two variations of the k-arc-connected
orientation problem.

Theorem 3.13 (Frank [22]). Let G be a 2k-edge-connected graph. Given, for each
edge e of G, a non negative cost for each possible orientation of e, a k-arc-connected
orientation of G with minimum cost can be found in polynomial time.

Theorem 3.14 (Frank [22]). Let G be a 2k-edge-connected graph. Given, for each
vertex v of G, a lower bound α(v) and an upper bound β(v) a k-arc-connected
orientation D of G such that α(v) 6 ρD(v) 6 β(v) or a certificate that such an
orientation does not exist can be found in polynomial time.

3.3 well-balanced orientations

3.3.1 Nash-Williams’ Strong Orientation Theorem

In Section 3.2 we mentioned that, in [60], Nash-Williams proved a stronger
result than Theorem 3.8. This section is dedicated to this result which answers
the following problem: given a graph G = (V ,E) and a symmetric arc-
connectivity requirement r : V2 7→ Z+ find an orientation D of G such that
λD(u, v) > r(u, v) for all u, v ∈ V . The previous chapter answers this question
for the particular case where r is a constant.

When the general question has a positive answer one may easily derive
an upper bound on r. Indeed, if G has such an orientation D then, for
u, v ∈ V and a vertex set X containing u but not v minimizing (2.12), we have
λG(u, v) = dG(X) = ρD(X) + δD(X) > λD(v,u) + λD(u, v) > 2r(u, v) hence
r(u, v) 6 b12λG(u, v)c. The strong orientation theorem of Nash-Williams
proves that this upper bound can be reached. A well-balanced orientation D
of a graph G = (V ,E) is an orientation such that, for all u, v ∈ V ,

λD(u, v) >
⌊
1

2
λG(u, v)

⌋
. (3.7)

Theorem 3.15 (Nash-Williams [60]). Every graph has a well-balanced orientation.
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This theorem, called the Nash-Williams’ strong orientation theorem, di-
rectly implies Theorem 3.8. One may easily observe that, by Theorem 3.1 and
the following fact, Theorem 3.15 holds for Eulerian graphs.

Fact 3.4. Every Eulerian orientation of an Eulerian graph is well-balanced.

Proof. Let G = (V ,E) be an Eulerian graph and D an Eulerian orientation of
D. Let u, v ∈ V . By Theorem 2.3 there exists a set X containing v but not u
such that λD(u, v) = ρD(X). Observe that, ρD(X) − δD(X) =

∑
v∈X(ρD(v) −

δD(v)) = 0. Hence, by choice of X and dG(X) = ρD(X) + δD(X), we have
λD(u, v) = ρD(X) = 1

2dG(X) > b12λG(u, v)c. This proves that D is well-
balanced.

3.3.2 Odd-Pairing

It is a basic exercise of Graph Theory to check that, in a graph, the number of
vertices of odd degree is even. For a graph G = (V ,E) containing 2` vertices
of odd degree, an odd-pairing is a set M of ` edges (not necessarily belonging
to G) such that each vertex of odd degree is incident to an edge of M. Clearly
adding an odd-pairing to a graph results in a Eulerian graph. The idea of
Nash-Williams to find a well-balanced orientation of a graph G is to add to G
an odd-pairing M, take any Eulerian orientation of G+M, and then remove
from this digraph the arcs from M. However to be certain that the resulting
orientation of G will be well-balanced the odd-pairing must satisfies a certain
property.

For a non-empty subset X of V , we denote RG(X) = max
⌊
1
2λG(u, v)

⌋
where the maximum is taken over all the pairs of vertices u,v separated by
X. Thus, by Theorem 2.3 an orientation D is well-balanced if and only if, for
every non-empty proper subset X of V ,

ρD(X) > RG(X). (3.8)

An odd-pairing M is called admissible if, for all non-empty X ⊂ V ,

dM(X) 6 dG(X) − 2RG(X). (3.9)

Claim 3.1 (Nash-Williams [60]). Let G be a graph and M an admissible odd-
pairing of G. Deleting the arc from M in any Eulerian orientation of G+M results
in a well-balanced orientation of G.

Proof. Let D and M ′ be the orientations of G and M respectively resulting
from an arbitrary Eulerian orientation D ′ of G +M. For any non-empty
proper subset X of V , we have

ρD(X) = ρD ′(X) − ρM ′(X)

>
1

2
dG+M(X) − dM(X)

=
1

2
(dG(X) − dM(X))

> RG(X).

Hence (3.8) is satisfied, that is, D is well-balanced.

So Theorem 3.15 derives from Claim 3.1 and the following deep result of
Nash-Williams called the odd-pairing theorem.

Theorem 3.16 (Nash-Williams [60]). Every graph has an admissible odd-pairing.
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Note that in every orientation D obtained in Claim 3.1, for every vertex
v, |ρD(v) − δD(v)| 6 1. An orientation with this property is called smooth
and well-balanced smooth orientations are called best-balanced. Hence Nash-
Williams actually proved that every graphs has a best-balanced orientation.
From the odd-pairing theorem, Z. Király and Szigeti derived a generalization
of Theorem 3.15.

Theorem 3.17 (Z. Király, Szigeti [46]). LetG = (V ,E) be graph and {V1, · · · ,Vk}
a partition of V . Then there exists a best-balanced orientation D of G such that, for
each i, D[Vi] is a best-balanced orientation of G[Vi].

3.3.3 Ingredients for Proof

In addition to the original proof of Nash-Williams two proofs of Theorem
3.16 are known (Mader [53] and Frank [25]). In this document we do not
outline any and we refer the interested reader to the proof in the recent book
of Frank [28]. Yet, in this section, we present two essential ingredients of
these proofs. The first one is an observation made by Nash-Williams.

Fact 3.5 (Nash-Williams [60]). For every graph G, the function RG is skew
supermodular.

The second ingredient is a strengthening of the splitting-off result seen in
Section 3.2 yielding the constructive characterization of 2k-edge-connected
graphs. In contrast with the previous section, presently we are interested in
splitting-off operations that preserve local edge-connectivity for each pair
vertices rather than the global edge-connectivity. Mader proved that such an
operation exists under a weak assumption.

Theorem 3.18 (Mader [53]). Let G = (V ∪ s,E) be a graph such that no cut-edge
of G is incident to s and dG(s) 6= 3. Then there exists a pair of edges incident to s
that can be split preserving the local edge-connectivity between each pair of vertices
of V .

Frank proved that Mader’s result is equivalent to the following formula-
tion.

Theorem 3.19 (Frank [24]). Let G = (V ∪ s,E) be a graph such that dG(s) is
even and no cut-edge of G is incident to s. Then there exists a complete splitting-off
at s that preserves the local edge-connectivity between each pair of vertices of V .

Provided an efficient method for finding a complete splitting-off that
preserves local edge-connectivity, both proofs of Mader and Frank mentioned
above can be turned into an algorithm for finding an admissible pairing.
In [32], Gabow developed such a method and stated that, consequently,
an admissible odd-pairing can be found in time O(|V |6). But the following
question of Frank remains open.

Question 3.1. Given an odd-pairing M of a graph G can one decide in polynomial
time whether M is admissible?

3.3.4 Constrained Well-Balanced Orientations

In Subsection 3.2.3, we saw how crossing submodular functions can be
considered as a generalization of global arc-connectivity. The notion that
corresponds to local arc-connectivity is skew-submodular function. That
explains why the two approaches introduced in Subsection 3.2.3, are not
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suitable for the well-balanced orientation problem. It is unlikely that similar
approaches exist since the two variations of the k-arc-connected orientations
problems solved by submodular flows turn out to be NP-complete when one
considers well-balanced orientations.

Theorem 3.20 (Bernáth, Iwata, T. Király, Z. Király, and Szigeti [3]). Let G be a
graph. Given, for each edge e of G, a non negative cost for each possible orientation of
e and an integer bound K, deciding whether there exists a well-balanced orientation
of G with cost at most K is NP-complete.

Theorem 3.21 (Bernáth et al. [3]). Let G be a graph. Given, for each vertex v of
G, a lower bound α(v) and an upper bound β(v), deciding whether there exists a
well-balanced orientation D of G such that α(v) 6 ρD(v) 6 β(v) is NP-complete.

3.3.5 Abstract Odd-Pairing

In [3], the authors investigated a possible generalization of the odd-pairing
theorem of Nash-Williams. For a set function b : 2V 7→ Z we denote Tb the
set of elements v ∈ V such that b(v) is odd. Given a graph G = (V ,E), the
function bG : X 7→ dG(X) − RG(X) is symmetric skew-submodular since dG
is submodular and, as we mentioned, RG is skew supermodular. Moreover
TbG is exactly the set of vertices of G with odd degree since RG only takes
even values. This is also easy to see that bG(X) has the parity of |X∩ TbG | for
every X ⊆ V . Hence Theorem 3.16 answers positively the following question
for the special case b = bG.

Question 3.2. For every symmetric skew-submodular function b : 2V 7→ Z+ such
that b(∅) = 0 and b(X) has the parity of |X∩ Tb| for every X ⊆ V does there exist a
pairing M of Tb such that, for every X ⊆ V ,

dM(X) 6 b(X)? (3.10)

However Bernáth et al. disproved this statement. So they suggested a
generalization of the following corollary of Theorem 3.16.

Corollary 3.1. In every 2k-edge-connected graph G = (V ,E) there exists an odd-
pairing M such that, for all X ⊆ V ,

dM(X) 6 dG(X) − 2k. (3.11)

In a 2k-edge-connected graph G, the set function b ′G defined by b ′G(∅) =
b ′G(V) = 0 and b ′G(X) = dG(X) − 2k for non-empty X ⊂ V is non-negative
and crossing submodular. Moreover b ′G satisfies the same parity constraint as
bG. So Corollary 3.1 answers positively the following question in a particular
case.

Question 3.3 (Bernáth et al. [3]). For every symmetric crossing submodular
function b : 2V 7→ Z+ such that b(∅) = 0 and b(X) has the parity of |X∩ Tb| for
all X ⊆ V does there exists a pairing M of Tb satisfying (3.10)?

Note that the orientation result associated to the statement of Question 3.3
can be easily proved by Theorem 3.12 or Theorem 3.11.

Theorem 3.22 (Bernáth et al. [3]). Let G = (V ,E) be a graph and b : 2V 7→ Z+

a symmetric crossing submodular function such that Tb is the set odd degree
vertices of G. Then there exists an orientation D of G such that, for all X ⊆ V ,
ρD(X) − δD(X) 6 b(X).
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In the rest of this subsection we give a negative answer to Question 3.3
which remained opened in [3].

Let V be a set of 8 elements, say v1, · · · , v8. We define a collection H of 7
subsets of V as

H = {{v1, v2, v3, v4}, {v1, v2, v5, v6}, {v1, v2, v7, v8}, {v1, v3, v5, v7},

{v1, v3, v6, v8}, {v1, v4, v5, v8}, {v1, v4, v6, v7}}.

The set H is drawn in Figure 8. Let b : 2V 7→ Z+ be defined by

b(X) =

{
2 if X ∈ H or (V \X) ∈ H,

min(|X|, 8− |X|) otherwise.

v3

v1 v2

v4 v7

v5 v6

v8

Figure 8: Each set of the collection H is either the black one or the union of a dashed
colored set and a plain set of the same color.

Fact 3.6. The set function b is symmetric crossing submodular and, for all X ⊆ V ,
b(X) and |X∩ Tb| have the same parity.

Proof. The symmetry of b is obvious and, since Tb = V , the parity conditions
is trivial. To prove the crossing submodularity property we define H ′ as the
set of the complements of the elements of H. Let X and Y be two crossing
subsets of V .

If both X and Y belong to H ∪H ′ then observe that |X ∩ Y| = 2 and
|X∪ Y| = 6 thus b(X) + b(Y) = 2+ 2 = b(X∩ Y) + b(X∪ Y).

Suppose that X belongs to H ∪H ′ but Y does not. So we have |X| = 4 and
none of X \ Y or Y \X is empty. Hence

|X∩ Y|+ (8− |X∪ Y|) = |X|− |Y|− 2|X \ Y|+ 8

6 4− |Y|− 2+ 8

= b(X) + (8− |Y|) and

|X∩ Y|+ (8− |X∪ Y|) = |Y|− |X|− 2|Y \X|+ 8

6 |Y|− 4− 2+ 8

= b(X) + |Y|.

Thus, b(X∩ Y) + b(X∪ Y) = |X∩ Y|+ (8− |X∪ Y|) 6 b(X) + b(Y).
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Now suppose that none of X or Y belongs to H ∪H ′. Note that b(X∩ Y) 6
min{|X ∩ Y|, 8− |X ∩ Y|} and b(X ∪ Y) 6 min{|X ∪ Y|, 8− |X ∪ Y|} = min{|X|+
|Y|− |X∩ Y|, 8− |X|− |Y|+ |X∩ Y|}. Hence

b(X∩ Y) + b(X∪ Y) 6 min{|X|+ |Y|, 8− |X|+ 8− |Y|,

8− |X|− |Y|+ 2|X∩ Y|}
6 min{|X|+ |Y|, 8− |X|+ 8− |Y|,

8− |X|+ |Y|, |X|+ 8− |Y|}

6 b(X) + b(Y).

Fact 3.7. There exists no pairing M of Tb such that (3.10) holds for all X ⊆ V .

Proof. Now suppose by contradiction that there exists a pairing M of V such
that (3.10) holds. Since Tb = V we have |M| = 4. Each X ∈ H induces at least
one edge of M since dM(X) 6 b(X) = 2. Thus, since |M| = 4 < 7 = |H|, there
exists an edge e induced by more than one element of H. Denote H ′ the set
of elements of H that induce e. Observe that e is incident to v1, so e is unique
and |H ′| 6 3. Hence we have 3 = |M \ e| > |H \H ′| > 4, a contradiction.
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In this chapter we investigate relations between graphs orientation problems
and packing problems. First we consider a problem of Recski that combines
the well understood m-orientation problem (recall subsection 3.1.1) with
an other classic problem on packing spanning trees. We prove that the
combination of these two polynomial time solvable problems turns to be
NP-complete.

An other relation is given by Frank [19] who emphasized that, provided
the spanning arborescences packing theorem of Edmonds [14], the classic
result on packing spanning trees [69, 61] and the characterization of graphs
having a rooted k-arc-connected orientation are equivalent. As we will see,
this equivalence still holds if we consider more general problems.

Finally, we look into a relation given by Jordán [40] who proved a sufficient
condition for the existence of a packing of rigid spanning subgraphs to settle
a special case of Thomassen’s conjecture on vertex-connected orientations.
We will generalize the packing theorem of Jordán to improve the orientation
result.

4.1 packing of trees

In the first subsection of this section we state and prove the classic result
of Tutte [69] and Nash-Williams [61] that characterizes the existence of a
packing of spanning trees. The key point is that a spanning tree is the base
of the circuit matroid; so the problem is a special case of finding disjoint
bases of a matroid. Consequently, the results of Edmonds [12] solve both
theoretical and algorithmic aspects of the problem since the characterization
can be deduced from Theorem 2.6 and, by Theorem 2.7, the trees can be
found in polynomial.

In the second subsection, we introduce a recent theorem of Katoh and Tani-
gawa [44] that generalizes the characterization of Tutte and Nash-Williams
and discuss other formulations of it. In their variation of the problem, the
spanning property is replaced by a matroid constraint. In the next section we
will derive the theorem of Katoh and Tanigawa from its directed counterpart
proved by Nguyen, Szigeti and I [9].

In [64] Recski, motivated by the study of rigidity of framework in d-
dimensional spaces, introduced an other variation of the spanning tree
problem. In this variation each spanning tree is required to admit an ori-
entation with given indegrees. He conjectured that given the orientation
constraints, the existence of two edge-disjoint spanning trees that admit
degree constrained orientations can be decided in polynomial time. In the
last subsection, we disprove this conjecture provided that P 6= NP.

4.1.1 Packing of Spanning Trees

Let G = (V ,E) be a graph. For a partition P of V , we recall that eG(P) denotes
the number of edges of G between the different members of P. We always

35
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suppose that the members of P are not empty. Following Frank [28], G is
called k-partition-connected if, for every partition P of V ,

eG(P) > k(|P|− 1). (4.1)

Tutte and Nash-Williams independently showed that partition-connectivity
characterizes the existence of a packing of spanning trees.

Theorem 4.1 (Nash-Williams [61], Tutte [69]). A graph G contains k edge-
disjoint spanning trees if and only if G is k-partition connected.

We give the proof of this result for two reasons. First it emphasizes the help
of orienting trees into arborescences to prove the necessity. Second it gives a
first application of Theorem 2.6. Indeed, a spanning tree is a base of C(G)
the circuit matroid of G. Hence G contains k edge-disjoint spanning trees if
and only if the matroid Ck(G) defined as the union of k copies of C(G) has
rank k(|V |− 1) where |V |− 1 is the size of a base of C(G).

Proof of Theorem 4.1. Suppose that G contains k edge-disjoint spanning trees.
Choose arbitrarily a vertex r ∈ V and take an orientation D of G such that
each spanning tree results in an r-arborescence. For v ∈ V \ r, in each r-
arborescence there is a dipath from r to v and the dipaths are arc-disjoint
since the trees are edge-disjoint. Hence, D is rooted k-arc-connected at r. So,
for a partition P of V we have eG(P) >

∑
X∈P,r/∈X ρD(X) > k(|P|− 1), and

the necessity follows.
To see the sufficiency suppose that G is k-partition-connected. As we

pointed out above, we have to prove that

rCk(G)(E) = k(|V |− 1). (4.2)

By Theorem 2.6 and (2.14),

rCk(G)(E) = min
F⊆E

k(|V |− c(GF)) + |E \ F|,

where c(GF) is the number of connected components of GF = (V , F). Note
that rCk(E) 6 k(|V |− 1). Let F ⊆ E and define P as the connected components
of GF. By k-partition-connectivity of G, we have |E \ F| > eG(P) > k(|P|− 1) =
k(c(GF) − 1) thus k(|V |− c(GF)) + |E \ F| > k(|V |− 1) and (4.2) follows.

4.1.2 Matroid-Based Packing of Rooted-Trees

In this subsection we present a generalization of Theorem 4.1 due to Katoh
and Tanigawa [44].

Let G = (V ,E) be a graph, M a matroid on a ground set S with rank
function rM, and π : S 7→ V. In this subsection t will always denote |S| and
the elements of S will be denoted s1, · · · , st. The elements of S are called the
roots. The function π is a placement of the roots on the set of vertices. Note that
different roots may be placed at the same vertex. We denote SX = π−1(X) the
set of roots placed in X. The quadruple (G,M, S,π) is called a matroid-based
rooted-graph.

A rooted tree is a pair (T , s) where T is a tree of G and s ∈ S is placed on a
vertex of T . The element s is called the root of the rooted tree (T , s). Note that T
may consist of a single vertex π(s) with no edge.

The following definition was introduced by Katoh and Tanigawa [44]. A
matroid-based packing of rooted-trees of (G,M, S,π) is a set {(T1, s1), . . . , (Tt, st)}
of pairwise edge-disjoint rooted-trees such that for each v ∈ V , the set
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π(s3)

π(s1)

π(s2)

T2

T1

T3

Figure 9: A matroid-based packing of rooted-trees where the set of the independent
sets of the matroid on S = {s1, s2, s3} is 2S \ S.

{si ∈ S : v ∈ V(Ti)} of the elements of the matroid whose tree contains v
forms a base of M (see Figure 9). Note that the trees are not necessarily
spanning and each vertex of G belongs to exactly rM(S) trees.

Matroid-based packings of rooted-trees is a generalization of packings of
spanning trees. Indeed, if M is the free matroid on k elements then, since S
is the only base of M, each vertex is contained by the k trees. Note that in
this particular case the placement π of the roots is not relevant.

The following result characterizes matroid-based rooted-graphs that have
a matroid-based packing of rooted-trees. We say that the map π is M-
independent if Sv is independent in M for all v ∈ V . The quadruple (G,M, S,π)
is called partition-connected if, for every partition P of V ,

eG(P) > rM(S)|P|−
∑
X∈P

rM(SX). (4.3)

Theorem 4.2 (Durand de Gevigney, Nguyen, Szigeti [9]). Let (G,M, S,π) be
a matroid-based rooted-graph. There exists a matroid-based packing of rooted-trees
in (G,M, S,π) if and only if π is M-independent and (G,M, S,π) is partition-
connected.

Since matroid-based packing of rooted-trees is a generalization of packing of
spanning trees, Theorem 4.2 is a proper extension of Theorem 4.1. We may
also check that, if M is the free matroid on k elements then rM(S) = k and,
for every partition P of V ,

∑
X∈P rM(SX) = k thus (4.3) is exactly (4.1).

In [44], Theorem 4.2 is not explicitly stated. Katoh and Tanigawa did not
formulated the problem in terms of packing but in terms of decomposition,
that is finding subgraphs of Gwhose edge sets partition E. A rooted-component
of (G,M, S,π) is a pair (C, s) where C is a connected subgraph of G and
s ∈ SV(C).

Theorem 4.3 (Katoh, Tanigawa [44]). Let (G,M, S,π) be a matroid-based rooted-
graph. Then (G,M, S,π) can be decomposed into rooted-components (C1, s1), . . . ,
(Ct, st) such that the set {si ∈ S : v ∈ V(Ci)} is a spanning set of M for every
v ∈ V if and only if (G,M, S,π) is partition-connected.

In the paper of Katoh and Tanigawa, Theorem 4.3 is derived from the
following formulation and the proof implicitly proves Theorem 4.2. Here we
prove that Theorem 4.2 implies Theorem 4.4.

Theorem 4.4 (Katoh, Tanigawa [44]). Let (G,M, S,π) be a matroid-based rooted-
graph and denote k and rM the rank and the rank function of M respectively. Then
(G,M, S,π) admits a matroid-based rooted-tree decomposition if and only if π is
M-independent, |E|+ |S| = k|V | and iE(X) + |SX| 6 k|X|− k+ rM(SX) for all
non-empty X ⊆ V .
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Proof. The necessity is proved using orientation of the rooted-trees into
rooted-arborescences. We skip this part since, as one can see in [44], this is
quite straightforward and a similar argument will be detailed in the proof of
Theorem 4.2 in the next section.

Now suppose that the conditions hold. For every partition P of V , by the
inequality applied for X ∈ P and by |E|+ |S| = k|V |, we have

eG(P) = |E|−
∑
X∈P

iE(X)

> |E|−
∑
X∈P

(k|X|− k+ rM(SX) − |SX|)

= k|P|−
∑
X∈P

rM(SX).

Hence (G,M, S,π) is partition-connected. Then, since π is M-independent,
Theorem 4.2 implies that (G,M, S,π) admits a matroid-based packing of
rooted-trees {(T1, s1), · · · , (Tt, st)}. By (2.10), we have,

t∑
i=1

|Ti| =

t∑
i=1

(|V(Ti)|− 1)

=
∑
v∈V

|{si ∈ S : v ∈ V(Ti)}|− t

= k|V |− |S|.

Hence every edge of E belongs to a Ti, so {(T1, s1), · · · , (Tt, st)} is a matroid-
based rooted-tree decomposition of (G,M, S,π).

4.1.3 Decomposition into Two Trees with Orientation Constraints

By Theorem 2.7, finding the maximum number of edge-disjoint spanning
trees a graph contains can be done in polynomial time. Especially, deciding
whether the edge set of a graph can be partitioned into two trees is tractable
in polynomial time. In this subsection we show that if we ask each partition
to have an indegree constrained orientation then the problem becomes NP-
complete. The material of this subsection is from [7].

Let G = (V ,E) be a graph. For m ∈ ZV+, we recall from Subsection 3.1
that an m-orientation of F ⊆ E is an orientation of the edges in F such that
the number of arcs of F entering v is m(v) for each v ∈ V . Given b, r ∈ ZV+,
a (b, r)-partition of E is a partition of E into two spanning trees, say a blue
one and a red one, such that the blue tree has a b-orientation and the red
tree has an r-orientation. Recski [64] proved that the problem of finding a
(b, r)-partition is a special case of the 3 matroids intersection problem that
is known to be NP-hard [72] and he conjectured that deciding the existence
of a (b, r)-partition can be done in polynomial time. The following theorem
answers negatively this question if P 6= NP.

Theorem 4.5. Let G = (V ,E) be a graph and b, r ∈ ZV+. Deciding whether there
exists a (b, r)-partition of E is NP-complete.

To prove this result we give a reduction of an instance of NotAllEqual

3-Sat. In such an instance, each clause consists of three non-negated variables
and an assignment is a coloring of the variables with blue or red. A clause is
satisfied if it contains both a blue and a red variable. Schaefer [66] proved
that this variation of Sat is NP-complete.
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Theorem 4.6 (Schaefer [66]). NotAllEqual 3-Sat is NP-complete.

Let Π be an instance of NotAllEqual 3-Sat and denote n the number of
clauses. We will define a graph G(Π) = (V ,E) on 12n+ 1 vertices and two
indegree vectors b, r ∈ ZV+ with the following property.

Claim 4.1. There exists a (b, r)-partition of E if and only if there exists a coloring
of the variables satisfying Π.

Hence Theorem 4.5 will follow from Theorem 4.6 and Claim 4.1.

For each clause C of Π we add a copy C ′ of that clause. Hereinafter C will
always denote a clause that is originally in Π and C ′ will always denote a
copy.

For each clause C = (x, y, z) we construct a C-gadget on six vertices
uC

x ,uC
y ,uC

z , vCx , vCy , vCz . This gadget consists of the triangle on the vertex set
UC = {uC

x ,uC
y ,uC

z } and the edge set EC = {uC
x v

C
x ,uC

y v
C
y ,uC

z v
C
z } (see Figure 10).

This construction is also done for the copy C ′ of C. The indegree vectors b
and r are defined by b = r = 1 for each of the 6 vertices denoted by the
letter u in the C-gadget and the C ′-gadget, b = 1 and r = 0 for each of the 3
vertices denoted by the letter v in the C-gadget, and b = 0 and r = 1 for each
of the 3 vertices denoted by the letter v in the C ′-gadget.

uC
x

vCx

uC
y

vCy

uC
z

vCz

s

Figure 10: A clause gadget for C = (x, y, z). The coloring (dashed is blue and plain is
red) and the orientation of the edges corresponds to a blue coloring of x
and a red coloring of y and z.

We add a special vertex s and, for each vertex u of the 6n vertices denoted
by the letter u we add the edge su. The indegree vectors are defined on s by
b = r = 3n.

For each variable x, we add a cycle ∆x going trough all the vertices of type
vCx and vC

′
x where C contains x. This cycle alternates vertices from C-gadgets

and vertices from C ′-gadgets (see Figure 11). This ends the definition of G(Π).

Proposition 4.1. In every b-orientation of the blue tree and in every r-orientation of
the red tree of a (b, r)-partition of E, for every clause C = {x, y, z}, each arc resulting
from the orientation of an edge of EC enters UC, EC contains both a blue and a red
edge and both trees restricted to s∪UC are connected. This holds also for copies C ′

of the original clauses.

Proof. Let {Tb, Tr} be a (b, r)-partition of E and D be an orientation of G
resulting from a b-orientation of Tb and an r-orientation of Tr.
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v
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1
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u
C ′
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x

v
C2
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u
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v
C ′
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u
C ′
3

x

∆x

Figure 11: A variable gadget where the original clauses C1, C2 and C3 contain the
variable x. The coloring (dashed is blue and plain is red) of the edges
corresponds to a blue coloring of x.

Observe that the neighbors of s are the vertices denoted by the letter u in
the C-gadgets and the C ′-gadgets and there are 3 neighbors in each of the 2n
gadgets. So we have dG(s) = 6n = b(s) + r(s) hence

all the arcs of D incident to s enter s. (?)

Hence, by r(UC) = b(UC) = 3, each of the 6 arcs of D incident to UC in G− s

enters a vertex of UC, exactly 3 are blue and exactly 3 are red. So the arcs
resulting from the orientation of EC enter UC. The set EC contains both a
blue and a red edge otherwise one of the trees would contain the triangle
uC

x u
C
y u

C
z .

Hence, by permuting x, y and z if necessary, we may assume that the edge
uC

x v
C
x is blue and uC

y v
C
y and uC

z v
C
z are red. Thus the triangle uC

x u
C
y u

C
z contains

exactly two blue edges and, by (?) and r(uC
x ) = 1, the common end vertex

of the two blue edges is not uC
x . By permuting y and z if necessary, we may

assume that uC
x u

C
y and uC

y u
C
z are blue and uC

x u
C
z is red. One of the edges suC

x ,
suC

z is blue, otherwise the red tree would contain the triangle suC
x u

C
z , and

there is at most one blue edge from s to UC, otherwise the blue tree would
contain one of the cycles suC

x u
C
y s, suC

y u
C
z s, suC

x u
C
y u

C
z s. So either suC

x is blue
and suC

y , suC
z are red or suC

z is blue and suC
x , suC

y are red. In both cases each
of the trees restricted to s∪UC is connected.

Proposition 4.2. Let x be a variable. In every (b, r)-partition of E, all the edges
uC

x v
C
x , where C is an original clause containing x, have the same color and all the

edges uC ′
x v

C ′
x , where C ′ is a copy of an original clause containing x, have the other

color.

Proof. By Proposition 4.1, in a b-orientation of the blue tree and an r-
orientation of the red tree, the arcs of type vCx uC

x or vC
′

x u
C ′
x leave the cycle

∆x. Hence, since in ∆x vertices with r = 1 and b = 0 and vertices with r = 0
and b = 1 alternate, ∆x has a circuit orientation and the color of the edges
alternates.

Let Ci be an original clause containing x and suppose that the edge uCi
x v

Ci
x

is blue (for instance i = 1 in Figure 11). Denote by v
C ′j
x the neighbor of vCix in

∆x such that the edge vCix v
C ′j
x is blue (j = 1 in Figure 11). By Proposition 4.1,

there exist a blue path joining s and uCi
x in s∪UCi and a blue path joining
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s and uC ′j
x in s ∪UC ′j . Thus the edge u

C ′j
x v

C ′j
x is red, otherwise the blue tree

would contain a cycle including the two paths and the path uCi
x v

Ci
x v

C ′j
x u

C ′j
x .

The same argument shows that the edge uCk
x v

Ck
x is red where vCkx is the

other neighbor of v
C ′j
x in ∆x (k = 2 in Figure 11). Since ∆x is even, a repeated

application of this argument proves the proposition.

Proof of Claim 4.1. Suppose there exists a (b, r)-partition of E. By Proposition
4.2, for each variable x, all the edges of type uC

x v
C
x , where C is an original

clause containing x, have the same color. Hence it is consistent to color a
variable x with the color of an edge uC

x v
C
x for an original clause C containing

x. By Proposition 4.1, for each original clause C of Π, EC contains a blue and
a red edge, thus C contains a blue and a red variable, that is, C is satisfied. It
follows that this coloring satisfies Π.

Now suppose that there exists a coloring satisfying Π. For each variable x
and each original clause C containing x, color uC

x v
C
x with the color of x and

color uC ′
x v

C ′
x with the other color. Since each clause C contains a blue and a

red variable, the coloring of the edges induced by s∪UC can be done as in
Figure 11 (permute the variables and the colors if necessary). Do the same
for the coloring of the edges in the C ′-gadgets. For each variable x alternate
the color along the cycle ∆x. So far we obtained a partition of E into a blue
and a red spanning tree.

Now orient the edges incident to every C-gadget or C ′-gadget as in Figure
11 (or the inverse coloring of that figure). Observe that the multiplicity of
colors is the same in EC and in the arcs from UC to s. Hence, for each clause
C, there are exactly 3 blue edges and 3 red edges from UC ∪UC ′ to s and
the indegree of s is 12dG(s) = 3n in each tree. For each variable x orient the
bicolored cycle ∆x to obtain a circuit that satisfies the indegree constraints
on vertices of type vCx and vC

′
x . Hence we obtain a b-orientation of the blue

tree and an r-orientation of the red tree.

4.2 packing of arborescences

In this section we state a well know result of Edmonds [14] that is the
directed counterpart of Theorem 4.1. These two results characterize the
graphs admitting a rooted k-arc-connected orientation. In [19], Frank initiated
a new approach: he gave a direct proof of this characterization to derive
easily Theorem 4.1 from the theorem of Edmonds.

In this subsection we follow the approach of Frank for the matroid-based
packing of rooted trees problem. That is, we prove the directed counterpart
of Theorem 4.2 and we show how the undirected result can be immediately
obtained from the directed one and the general orientation theorem of Frank
on covering supermodular functions. The material of the second section is
from a joint work with Nguyen and Szigeti [9].

4.2.1 Packing of Spanning Arborescences

The theorem of Tutte and Nash-Williams states that partition-connectivity
characterizes the existence of a packing of spanning trees in undirected
graphs. Edmonds proved a similar result in digraphs: rooted-arc-connectivity
characterizes the existence of a packing of spanning arborescences.

Theorem 4.7 (Edmonds [14]). A digraph D = (V ,A) contains k arc-disjoint
spanning r-arborescences if and only if D is rooted k-arc-connected at r.
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Note that the necessity of the connectivity condition is straightforward.
Indeed, if there exist k arc-disjoint spanning r-arborescences then each ar-
borescence contains a dipath from r to any other vertex and the k dipaths
are pairwise arc-disjoint.

The link between Theorems 4.1 and 4.7 is an orientation result for which
Frank gave a direct proof.

Theorem 4.8 (Frank [19]). A graph G = (V ,E) has a rooted k-arc-connected
orientation if and only if G is k-partition-connected.

At first sight it may appear surprising that the position of the root is not
specified in the characterization. Actually the position of the root is not
relevant. Indeed, suppose that G has a rooted k-arc-connected orientation
D rooted at r ∈ V and choose r ′ ∈ V \ r. One may observe that, for X ⊂ V ,
reversing k arc-disjoint paths from r to r ′ in D increases ρD(X) by k if r ∈ X
and r ′ /∈ X and does not decrease ρD(X) if r ′ /∈ X. Hence, by Menger’s
theorem, this operation yields a rooted k-arc-connected orientation of G
rooted at r ′.

Provided the packing result of Edmonds, this orientation theorem and
the packing result of Tutte and Nash-Williams are equivalent since one can
be deduced from the other. The point of Frank, was to derive Theorem 4.1
from Theorem 4.8. More generally, to prove a result in undirected graphs, the
approach of Frank consists of proving an orientation result and the oriented
counterpart of the aimed result in digraphs. We follow this approach in the
next two subsections.

4.2.2 Matroid-Based Packing of Rooted-Arborescences

In this subsection we mimic Frank’s approach for matroid-based packing of
rooted-trees. We provide Theorem 4.9, the directed counterpart of Theorem
4.2, and show that this new result implies Theorem 4.2 via an orientation
theorem of Frank [21]. The proof of Theorem 4.9 is postponed to the next
subsection.

A matroid-based rooted-digraph is a quadruple (D,M, S,π) where D is a
digraph, S is a set, M is a matroid on ground set S and π is a placement of
the element of S on the vertices of D.

A rooted-arborescence is a pair (T , s) where s is an element of S and T is a
π(s)-arborescence. We say that s is the root of the rooted-arborescence (T , s).
Note that T may consist of the single vertex π(s) and no arcs.

A matroid-independent packing of rooted-arborescences of (D,M, S,π) is a set
{(T1, s1), . . . , (Tt, st)} of pairwise arc-disjoint rooted-arborescences such that,
for each v ∈ V , the set {si ∈ S : v ∈ V(Ti)} of the roots of the rooted
arborescences containing v is independent.

A matroid-based packing of rooted-arborescences is a matroid-independent
packing of rooted-arborescences such that, for each v ∈ V , {si ∈ S : v ∈ V(Ti)}
is a base of M (see Figure 12). For a better understanding, let us mention that
the rooted-arborescences are not necessarily spanning and each vertex of D
belongs to exactly rM(S) rooted-arborescences.

Matroid-based packings of rooted-arborescences is a generalization of
packings of spanning arborescences. Indeed, if M is the free matroid on k
elements and all the elements of S are placed at a vertex r then, since S is the
only base of M, each vertex is spanned by the k r-arborescences. Note that in
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π(s3)

π(s1)

π(s2)

T2

T1

T3

Figure 12: A matroid-based packing of rooted-arborescences where the set of the
independent sets of the matroid on S = {s1, s2, s3} is 2S \ S.

contrast with rooted-trees, in this particular case the placement π does matter.

The following result is the directed counterpart of Theorem 4.2. The
quadruple (D,M, S,π) is called rooted-connected if

ρD(X) > rM(S) − rM(SX) for all non-empty X ⊆ V . (4.4)

Theorem 4.9 (Durand de Gevigney, Nguyen, Szigeti[9]). Let (D,M, S,π) be
a matroid-based rooted-digraph. There exists a matroid-based packing of rooted-
arborescences in (D,M, S,π) if and only if π is M-independent and (D,M, S,π) is
rooted-connected.

Since matroid-based packing of rooted-arborescences is an generalization
of packing of spanning arborescences, Theorem 4.9 is a proper extension of
Theorem 4.7. Actually, Edmonds proved a more general result that is also a
corollary of ours. The root set of a branching B is the set of the roots of the
arborescences of B.

Theorem 4.10 (Edmonds [14]). Let D = (V ,A) be a digraph and let R1, . . . ,Rk
be subsets of V . Then there exist arc-disjoint branchings B1, . . . ,Bk such that, for
each i ∈ {1, . . . ,k}, Ri is the root set of Bi if and only if

ρD(X) > |{i : Ri ∩X = ∅}|

for all X ⊆ V .

Proof. Consider the matroid M obtained from the free matroid on {s1, . . . , sk}
by adding to the ground set, for each i ∈ {1, . . . ,k}, |Ri|− 1 elements parallel
to si. So the ground set S of M contains exactly

∑k
i=1 |Ri| elements. Define π

by placing on each vertex v one copy of si for each i such that v ∈ Ri.
The required packing in Theorem 4.10 is exactly a matroid-base packing

of rooted-arborescences in the matroid-based rooted-digraph (D,M, S,π).
Clearly π is M-independent hence, by Theorem 4.9, the existence of such a
packing is equivalent to

ρD(X) > rM(S) − rM(SX) = k− |{i : Ri ∩X 6= ∅}|.

for all non-empty X ⊆ V . Hence Theorem 4.10 follows.

The link between Theorem 4.2 and Theorem 4.9 is an orientation result
deriving from the general orientation theorem of Frank, Theorem 3.11.

Corollary 4.1. Let (G,M, S,π) be a matroid-based rooted-graph. There exists an ori-
entationD of G such that (D,M, S,π) is rooted-connected if and only if (G,M, S,π)
is partition-connected.
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Proof. Define the integer valued set function p on 2V by

p(X) =

{
0 if X is empty

rM(S) − rM(SX) otherwise.

Since X 7→ rM(SX) is submodular non-decreasing and upper bounded by
rM(S), p is crossing supermodular non-negative non-increasing and satisfies
p(∅) = p(V) = 0. The required orientation is exactly an orientation covering
p. By Theorem 3.11, such an orientation exists if an only if (4.3) is satisfied,
that is, (G,M, S,π) is partition-connected.

Let us show that Corollary 4.1 and Theorem 4.9 imply Theorem 4.2.

Proof of Theorem 4.2. First suppose that there exists a matroid-based packing
{(T1, s1), . . . , (Tt, st)} of rooted-trees in (G,M, S,π). Let D be an orientation of
Gwhere each rooted-tree (Ti, si) becomes a rooted-arborescence (T ′i , si). Then
{(T ′1, s1), . . . , (T ′t , st)} is a matroid-based packing of rooted-arborescences in
(D,M, S,π). By Theorem 4.9, π is M-independent and (D,M, S,π) is rooted-
connected and hence, by Corollary 4.1, (G,M, S,π) is partition-connected.

Now suppose that π is M-independent and (G,M, S,π) is partition-connected.
By Corollary 4.1, there exists an orientation D of G such that (D,M, S,π)
is rooted-connected. Then, by Theorem 4.9, there exists a matroid-based
packing of rooted-arborescences in (D,M, S,π) which provides, by forgetting
the orientation, a matroid-based packing of rooted-trees in (G,M, S,π).

Recently, Cs. Király gave a common generalization of Theorem 4.9 and
of other extensions of Theorem 4.7 due to Kamiyama, Katoh and Takizawa
[42] and Fujishige [31]. We recall that σD(X) ⊇ X is the set of vertices from
where X can be reached in D. Clearly in any matroid-independent packing of
rooted-arborescences, for each v ∈ V , rM({si ∈ S : v ∈ V(Ti)}) 6 rM(SσD(v)).
When equality holds for each v ∈ V , the matroid-independent packing of
rooted-arborescences is called maximal.

Theorem 4.11 (Cs. Király [45]). Let (D,M, S,π) be a matroid-based rooted-
digraph. There exists a maximal matroid-independent packing of rooted-arborescences
in (D,M, S,π) if and only if π is M-independent and

ρD(X) > rM(SσD(X)) − rM(SX) (4.5)

holds for each X ⊆ V .

One may easily derive the sufficiency in Theorem 4.9 from Theorem 4.11.
Indeed, if (D,M, S,π) is rooted-connected then, for X ⊆ V ,

rM(S) > rM(SσD(X)) > rM(S) − ρD(σD(X)) = rM(S).

Hence (4.4) implies (4.5) and a maximal matroid-independent packing of
rooted-arborescences is a matroid-based packing of rooted-arborescences.

4.2.3 Proof of the Main Theorem

First we prove the necessity of the M-independence of π and the rooted-
connectivity of (D,M, S,π), that are quite straightforward.

Proof of necessity in Theorem 4.9. Suppose that there exists a matroid-based
packing {(T1, s1), . . . , (Tt, st)} of rooted-arborescences in (D,M, S,π). Let v be
an arbitrary vertex of V and X a vertex set containing v. Then B := {si ∈ S :
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v ∈ V(Ti)} forms a base of M. Let B1 = B∩ SX and B2 = B \ SX. Then, since
B1 is independent in M and Sv ⊆ B1, π is M-independent. Moreover, since
rM is monotone, |B1| = rM(B1) 6 rM(SX). For each root si ∈ B2, there exists
an arc of Ti that enters X. Since the rooted-arborescences are arc-disjoint,
we have ρD(X) > |B2| = |B|− |B1| > rM(S) − rM(SX) that is (D,M, S,π) is
rooted-connected.

Before proving the sufficiency of the conditions we establish a technical
claim. A vertex set X is called M-tight if ρD(X) = rM(S) − rM(SX). For vertex
sets X and Y, we say that Y dominates X if SX ⊆ SpanM(SY). Note that
since, for Q ⊆ S, SpanM(SpanM(Q)) = SpanM(Q), domination is a transitive
relation. We say that an arc uv is bad if v dominates u, otherwise it is good.
Note that in a matroid-based packing of rooted-arborescences only good arcs
uv can be used in a rooted-arborescence whose root is placed at u, since
there must exist s ∈ Su such that Sv ∪ s is independent in M.

Claim 4.2. Suppose that (D,M, S,π) is rooted-connected. Let X be a M-tight set
and v a vertex of X.

(a) If Y is a M-tight set that contains v, then X ∩ Y and X ∪ Y are M-tight.
Moreover, if s ∈ SpanM(SX)∩ SpanM(SY), then s ∈ SpanM(SX∩Y).

(b) If no good arc exists in D[X], then v dominates X.

Proof. (a) If we have s, then let α = s, otherwise let α = ∅. By the monotonicity
and the submodularity of rM, s ∈ SpanM(SX)∩ SpanM(SY), the M-tightness
of X and Y, the submodularity of ρD, X∩ Y 6= ∅ and (4.4), we have

rM(SX∩Y) + rM(SX∪Y) = rM(SX ∩ SY) + rM(SX ∪ SY)

6 rM((SX ∩ SY)∪α) + rM((SX ∪ SY)∪α)
6 rM(SX ∪α) + rM(SY ∪α)
= rM(SX) + rM(SY)

= rM(S) − ρD(X) + rM(S) − ρD(Y)

6 rM(S) − ρD(X∩ Y) + rM(S) − ρD(X∪ Y)
6 rM(SX∩Y) + rM(SX∪Y).

Hence equality holds everywhere and (a) follows.

(b) Let us denote by Y the set σD[X](v) of vertices from which v is reachable
in D[X]. We show that v dominates Y and Y dominates X and then, since
domination is transitive, (b) follows.

For all y ∈ Y, there exists a directed path from y to v inD[X]. By assumption
there is no good arc in this path so each vertex of the path is dominated
by the next one and, by transitivity of domination, v dominates y. Hence
SY =

⋃
y∈Y Sy ⊆ SpanM(Sv) that is v dominates Y.

By the definition of Y, every arc of D that enters Y enters X as well.
Then, by (4.4), the M-tightness of X and the monotonicity of rM, we have
rM(S) − rM(SY) 6 ρD(Y) 6 ρD(X) = rM(S) − rM(SX) 6 rM(S) − rM(SY).
Thus equality holds everywhere and Y dominates X.

Now we can prove the main result.

Proof of sufficiency in Theorem 4.9. We prove it by induction on the number of
good arcs.

Base Case: No good arc exists.
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Then {(v, s) : v ∈ V , s ∈ Sv} forms a matroid-based packing of rooted-
arborescences in (D,M, S,π). Indeed, since V is M-tight, (b) in Claim 4.2
implies that Sv is a spanning set of M and hence, since π is M-independent,
Sv is a base of M for all v ∈ V .

Induction Step: At least one good arc exists.
For a good arc uv ∈ A and s ∈ Su \ Span(Sv), let D ′ = D− uv, S ′ the set

obtained by adding a new element s ′ to S, M ′ the matroid on S ′ obtained
from M by considering s ′ as an element parallel to s and π ′ the placement of
S ′ in V obtained from π by placing the new element s ′ at v (see Figure 13).

π(s)
u

v

π(s)
u

π(s ′)
v

Figure 13: The arc uv is removed and a copy s ′ of s is placed at v.

By the choice of s and since π is M-independent, it follows that π ′ is M ′-
independent. If the matroid-based rooted-digraph (D ′,M ′, S ′,π ′) is rooted-
connected, then, by induction, there exists a matroid-based packing P ′ of
rooted-arborescences in (D ′,M ′, S ′,π ′). Since s and s ′ are parallel in M ′, the
rooted-arborescences (T , s) and (T ′, s ′) of P ′ are vertex disjoint, so (T ′′, s) =
(T ∪ T ′ ∪uv, s) is a rooted-arborescence (see Figure 13). Then the collection of
rooted arborescences obtained from P ′ by substituting (T ′′, s) for (T , s) and
(T ′, s ′) is a matroid-based packing of rooted-arborescences in (D,M, S,π).
Hence the proof of the theorem is reduced to the proof of the following
claim.

Claim 4.3. There exists a good arc uv and s ∈ Su \ Span(Sv) such that (D ′,M ′,
S ′,π ′) is rooted-connected.

Proof. Assume that the claim is false. Let uv ∈ A be a good arc and s ∈
Su \ Span(Sv). By assumption, there exists ∅ 6= Xs ⊂ V such that ρD ′(Xs) <

rM(S) − rM ′(S ′Xs
). Hence, by (4.4) and the monotonicity of rM ′ , we have

ρD ′(Xs) + 1 > ρD ′(Xs) + ρuv(Xs)

= ρD(Xs)

> rM(S) − rM(SXs)

> rM(S) − rM ′(S ′Xs
)

> ρD ′(Xs) + 1,

so equality holds everywhere and thus uv enters Xs, Xs is M-tight in (D,M, S,π)
and s ∈ SpanM(SXs). Thus, defining X = ∪s∈Su\Span(Sv)Xs, we have Su \

Span(Sv) ⊆ Span(SX) and X dominates u since v ∈ X. By (a) in Claim 4.2, X
is also M-tight. So we proved that

every good arc uv enters a M-tight set X that dominates u. (4.6)

Among all pairs (uv,X) satisfying (4.6) choose one with X minimal. Since
X dominates u but v does not dominate u, v does not dominate X. Then, by
(b) in Claim 4.2, there exists a good arc u ′v ′ in D[X]. By (4.6), u ′v ′ enters a
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M-tight set Y that dominates u ′. By v ′ ∈ X∩ Y, the M-tightness of X and Y,
u ′ ∈ X, Su ′ ⊆ SpanM(SY) and (a) in Claim 4.2, we have that X∩ Y is M-tight
and Su ′ ⊆ SpanM(SX∩Y). Since the good arc u ′v ′ enters the M-tight set
X∩ Y that dominates u ′ and X∩ Y is a proper subset of X (since u ′ ∈ X \ Y),
this contradicts the minimality of X.

4.2.4 Polyhedral and Algorithmic Aspects

In this subsection we first study a polyhedron describing the matroid-based
packings of rooted-arborescences. Then we prove that finding a matroid-
based packing of rooted-arborescences can be done in polynomial time.

We need the following general result of Frank.

Theorem 4.12 (Frank [20]). Let D = (V ,A) be a digraph, p : 2V → Z+ a non-
negative intersecting supermodular set-function such that ρD(Z) > p(Z) for every
Z ⊆ V . Then the polyhedron defined by the following linear system is integer:

1 > x(a) > 0 for all a ∈ A,

ρxD(X) > p(X) for all non-empty X ⊆ V .

The following theorem is a corollary of Theorems 4.9 and 4.12.

Theorem 4.13. Let (D = (V ,A),M, S,π) be a matroid-based rooted-digraph where
M is of rank k with rank function rM. There exists a matroid-based packing of
rooted-arborescences in (D,M, S,π) if and only if the polyhedron PM,D defined by
the linear system

1 > x(a) > 0 for all a ∈ A, (4.7)

ρxD(X) > k− rM(SX) for all non-empty X ⊆ V , (4.8)

x(A) = k|V |− |S| (4.9)

is not empty. In this case, PM,D is integer and its vertices are the characteristic
vectors of the arc sets of the matroid-based packings of rooted-arborescences in
(D,M, S,π).

Proof. Suppose there exists a matroid-based packing of rooted-arborescences
in (D,M, S,π) and call A ′ ⊆ A its arc set. Let x be the characteristic vector
of A ′. We have x(A) = |A ′| =

∑
v∈V ρA ′(v) =

∑
v∈V (k− |Sv|) = k|V |− |S|

and ρxD(X) = ρA ′(X) > k− rM(SX) for all non-empty X ⊆ V by (4.4). So
x ∈ PM,D.

Now suppose that PM,D is not empty and pick arbitrarily x ∈ PM,D. As
we already pointed out in the proof of 4.1, p : X ⊆ V 7→ k − rM(SX) is
non-negative intersecting supermodular and, by (4.7) and (4.8), we have
ρD(X) > ρxD(X) > p(X) for all non-empty X ⊆ V . Hence Theorem 4.12

applies, that is the polyhedron P described by (4.7) and (4.8) is integer.
By (4.8), for all x ∈ P,

x(A) =
∑
v∈V

ρxD(v) >
∑
v∈V

(k− rM(Sv)) >
∑
v∈V

(k− |Sv|) = k|V |− |S|, (4.10)

that is, x(A) > k|V |− |S| is a valid inequality for P. Then, by (4.9), PM,D is a
face of the integer polyhedron P and hence PM,D is also integer.

Furthermore, for x ∈ PM,D, equality holds everywhere in (4.10), thus,
|Sv| = rM(Sv) for all v ∈ V and hence π is M-independent. A vertex x
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of PM,D defines an arc set A ′ = {a ∈ A, x(a) = 1}. By (4.8), the matroid-
based rooted-digraph ((V ,A ′),M, S,π) is rooted-connected. Therefore, by
Theorem 4.9, there exists a matroid-based packing of rooted-arborescences
in ((V ,A ′),M, S,π) whose arc set is, by (4.9), equal to A ′, and the theorem
follows.

This polyhedral description of the problem yield a polynomial time algo-
rithm to solve it provided that the matroid is given by an oracle for the rank
function.

Theorem 4.14. Let (D,M, S,π) be a matroid-based rooted-digraph. A matroid-based
packing of rooted-arborescences in (D,M, S,π) or a vertex v certifying that π is not
M-independent or a vertex set X certifying that (D,M, S,π) is not rooted-connected
can be found in polynomial time.

Proof. By the submodularity of ρD(X) + rM(SX), Theorem 2.1, using the
oracle on M and Theorem 4.9, we can either find a set violating (4.4) or a
vertex certifying that π is not M-independent or certify that there exists a
matroid-based packing of rooted-arborescences in polynomial time.

In the latter case, a matroid-based packing of rooted-arborescences can
be found in polynomial time following the proof of Theorem 4.9. Using the
oracle, test whether each arc is bad or good. When an arc uv is good, for each
s ∈ Su \ Span(Sv), determine in polynomial time whether (D ′,M ′, S ′,π ′) is
rooted-connected using the submodularity of ρD ′(X) + rM ′(S ′X), the oracle
for the rank function rM ′ (that is easily computed from rM) and Theorem
2.1. Either all arcs are bad or we find a good arc uv and s ∈ Su \ Span(Sv)
satisfying Claim 4.3. In the first case, {(v, s) : v ∈ V , s ∈ Sv} is the required
packing. In the second case, it leads to the computation of a matroid-based
packing of rooted-arborescences in (D ′,M ′, S ′,π ′) where D ′ contains less
arcs than D.

By the submodularity of ρxD(X)+ rM(SX) and by Theorem 2.1, PM,D can be
separated in polynomial time. Thus, using the ellipsoid method, by Grötschel,
Lovász and Schrijver [35], and by Theorem 4.14, we have the following result.

Theorem 4.15. Let (D,M, S,π) be a matroid-based rooted-digraph and c a cost
function on the set of arcs of D. If there exists a matroid-based packing of rooted-
arborescences in (D,M, S,π) then one of minimum cost can be found in polynomial
time.

The ellipsoid method does not provide a very practical algorithm hence the
above result raises the following question.

Question 4.1. Provide a combinatorial algorithm that finds in polynomial time a
minimum cost matroid-based packing of arborescences in a matroid-based rooted-
digraph when it exists.

Now we point out another variation of the initial problem. Let (D,M, S,π)
be a matroid-based rooted-digraph and b : V → Z a lower bound. A b-
matroid-independent packing of rooted-arborescences is a matroid-independent
packing of rooted-arborescences such that rM({si ∈ S : v ∈ V(Ti)}) > b(v)

for all v ∈ V . When the function b is constant, using Theorem 4.9 and
matroid truncation, one can derive a characterization of matroid-based
rooted-digraphs admitting a b-matroid-independent packing of rooted-
arborescences. On the other hand, for general b, the problem turns out
to be NP-complete since it contains the disjoint Steiner arborescences prob-
lem that is to find 2 arc-disjoint r-arborescences both covering a specified
subset of vertices ([28] page 342).
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4.3 packing of spanning count matroid bases

As a direct corollary of the Theorem 4.1 every 2k-edge-connected graph
G contains k edge-disjoint bases of the circuit matroid. Similar results
[51, 39, 40] state the existence of a packing of another count matroid, namely
the rigidity matroid, in highly connected graphs. In this section we give a
common generalization of these three results that comes from a joint work
with Cheriyan, Szigeti [5]. As I was writing the present document I reformu-
lated our proof as a discharging method. Using this approach Nguyen and I
could prove a packing result for a larger class of count matroids.

4.3.1 Rigidity of Graphs

In this subsection we are interesting in a particular count matroid called the
rigidity matroid. Let G = (V ,E) be a graph. The rigidity matroid of G, denoted
R(G), is the (2V , 3)-count matroid, i.e., a set of edges F ⊆ E is independent
in R(G) if, for all X ⊆ V of size at least 2,

iF(X) 6 2|X|− 3. (4.11)

A graph is called rigid if it contains an independent set of edges of maximal
theoretical size, i.e. rR(G)(E) = 2|V |− 3.

This definition of rigidity may seem very abstract but Lovász and Yemini
[51] proved that it transposes the natural meaning of rigidity. When speak-
ing about rigidity, the idea that should pop into the reader’s mind is the
following. Draw a graph G on the plane and imagine that the edges are
pieces of metal connected to each others by vertices made of magnets. If
one cannot deform the construction without breaking any piece of metal or
disconnecting an edge from a vertex then the drawing of the graph is called
rigid. Roughly speaking a graph G is rigid if G has a rigid drawing in the
plane. As an example a square is not rigid since it can be deformed into a
diamond but adding a diagonal to the square makes it rigid (in dimension
2).

Rigid graphs draw our attention because they have an interesting connecti-
vity property.

Proposition 4.3. A rigid graph with at least 3 vertices is 2-vertex-connected.

This result is not surprising if we consider the intuition of rigidity given
above. If a graph G = (V ,E) contains a vertex cut, say {v}, then every drawing
of G can be deformed rotating a connected component U of G− v while
keeping V \U fixed.

Lovász and Yemini proved that sufficiently highly connected graphs are
rigid.

Theorem 4.16 (Lovász, Yemini [51]). Every 6-vertex-connected graph is rigid.

They also showed the existence of a non-rigid 5-vertex-connected graph.
Hence the number 6 is the best possible in terms of vertex-connectivity.
However using the mixed connectivity Jackson and Jordán weakened the
condition.

Theorem 4.17 (Jackson, Jordán [39]). Every (6, 2)-connected simple graph is
rigid.
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To see that Theorem 4.17 proves Theorem 4.16, one may observe that
6-vertex-connectivity implies (6, 2)-connectivity and removing all the edges
but one in every set of parallel edges preserves 6-vertex-connectivity (Fact
2.5).

Again this mixed connectivity is the best possible. Indeed, the graph given
in [51] is (5, 2)-connected and the graph given in Figure 14 is non-rigid and
(6, 3)-connected.

Figure 14: A (6, 3)-connected non-rigid graph G = (V ,E). To prove it, consider the
collection H of the four dashed vertex sets and observe that, by Theorem
4.21, rR(G)(E) 6

∑
X∈H(2|X|− 3) = 4 ∗ (2 ∗ 8− 3) = 52 < 53 = 2 ∗ 28− 3 =

2|V |− 3.

4.3.2 Packing of Count Matroids Bases

The following result is an easy consequence of Theorem 4.1.

Corollary 4.2. Every 2k-edge-connected graph G contains k edge-disjoint spanning
trees.

Proof. Let G be a 2k-edge-connected graph and let P be a partition of V . We
have eG(P) = 1

2

∑
X∈P dG(X) >

1
2

∑
X∈P 2k = k|P|. Hence G is k-partition-

connected and, by Theorem 4.1, the result follows.

Jordán proved a generalization of Theorem 4.16 that has a similar state-
ment.

Theorem 4.18 (Jordán [40]). Let k be an integer. Every 6k-vertex-connected graph
contains k edge-disjoint spanning rigid subgraphs.

Jordán was motivated to settle the base cases of two conjectures. The state-
ment of one of these conjectures is postponed to Chapter 5. The other one is
the following statement of Kriesell.

Conjecture 4.1 (Kriesell in [40]). For every integer k, there exists a least integer
f(k) such that in every f(k)-vertex-connected graph G there exists a spanning tree
T such that G− T is k-vertex-connected.

Theorem 4.18 yields the existence of f(2) and the upper bound f(2) 6
12. Indeed, in every 12-vertex-connected graph there exist 2 edge-disjoint
spanning rigid subgraphs R1 and R2. By Proposition 4.3, R2 contains a
spanning tree T and G− T ⊇ R1 is 2-connected.

Clearly is this argument the 2-vertex-connectivity of R2 is redundant since
only the simple connectivity is useful. So in his paper Jordán mentioned that
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proving a packing theorem for spanning rigid subgraphs and spanning trees
may improve the upper bound. Cheriyan, Szigeti, and I successfully followed
this track and proved the following.

Theorem 4.19 (Cheriyan, Durand de Gevigney, Szigeti [5]). Let k > 1 and
j > 0 be two integers. Every (6k+ 2j, 2k)-connected simple graph contains k rigid
and j connected edge-disjoint spanning subgraphs.

According to plan, Theorem 4.19 proves f(2) 6 8. Indeed, every 8-vertex-
connected graph G is (8, 2)-connected thus contains a spanning tree T and a
rigid spanning rigid subgraph R that are edge-disjoint; hence G− T ⊇ R is
2-vertex-connected by Proposition 4.3.

Note also that Theorem 4.19 is a common generalization of Theorem 4.17

(k = 1 and j = 0) and Theorem 4.18 (j = 0) since 6k-vertex-connectivity
implies (6k, 2k)-connectivity and removing all the edges but one in every set
of parallel edges preserves 6-vertex-connectivity (Fact 2.5).

Very recently Nguyen and I generalized Theorem 4.19 to a larger class of
count matroids.

Theorem 4.20 (Durand de Gevigney, Nguyen). Let m, ` be integers such that
2 6 m 6 ` 6 2m − 1 and let k > 1 and j > 0 be two integers. In every
(2k`+ 2j,km)-connected simple graph the rank of the (mV , `)-count-matroid is
m|V |− ` and there exist k bases of the (mV , `)-count-matroid and j spanning trees
pairwise edge-disjoint.

4.3.3 Proof by Discharging

Before we start the proof Theorem 4.20 we derive from Theorem 2.4 the
following expression of the rank function of count matroids.

Theorem 4.21. Let m, ` be integers such that 2 6 m 6 ` 6 2m − 1 and let
G = (V ,E) be a simple graph. The rank of the (mV , `)-count matroid M is given,
for F ⊆ E, by

rM(F) = min
T⊆F

∑
X∈H

(m|X|− `) + |F \ T | (4.12)

where H is a collection of subsets of V such that {F(X);X ∈ H} partitions T and
|X| > 2m for all X ∈ H.

Proof. We recall from the proof of Theorem 2.5 that the (mV , `)-matroid
is defined by the non-decreasing integer-valued intersecting-submodular
function F ⊆ E 7→ m(V(F)) − `. Hence, by Theorem 2.4, the rank is given, for
F ⊆ E, by,

rM(F) = min
t∑
i=1

(m|V(Ti)|− `) + |F \ T |, (4.13)

where the minimum is taken over all subsets T of F and all partitions
{T1, · · · , Tt} of T . Let T ⊆ F and {T1, . . . , Tt} be a partition of T that minimize
the right hand side of (4.13) such that t is minimal and denote Xi = V(Ti)
for i ∈ {1, · · · , t}. The proof is concluded by the following two propositions.

Proposition 4.4. For each i ∈ {1, · · · , t}, |Xi| > 2m.

Proof. Consider the quadratic function f : k ∈ Z+ 7→ mk− `−
k(k−1)
2 . Since

f is concave, for every 2 6 k 6 2m− 1,

f(k) > min{f(2), f(2m− 1)} = 2m− `− 1 > 0. (4.14)
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Now suppose that there exists i such that |Xi| < 2m and consider T ′ = T \
Ti. Then, sinceG is simple and by (4.14) for |Xi|, |Ti| 6

|Xi|(|Xi|−1)
2 6 m|Xi|− `.

Hence, by (4.13) and choice of T ,

rM(F) 6
t∑

j=1,j6=i
(m|V(Tj)|− `) + |F \ T ′|

6
t∑
j=1

(m|V(Tj)|− `) + |F \ T |

= rM(F).

It means that T ′ and the partition {T1, · · · , Ti−1, Ti+1, · · · , Tt} minimizes the
right hand side of (4.13). This contradicts the minimality of t.

Proposition 4.5. For each i ∈ {1, · · · , t}, Ti = F(Xi).

Proof. No edge of F \ T is induced by an Xi otherwise adding this edge into
T would decrease the right hand side of (4.13). Hence, for each i, F(Xi) ⊆ T .
Now we prove that |Xi ∩Xj| 6 1 for i 6= j. It follows that F(Xi)∩ Tj = ∅, thus
F(Xi) ⊆ Ti and the proposition follows.

Suppose there exist i 6= j such that |Xi ∩Xj| > 1. By ` 6 2m− 1 we have

m|Xi ∪Xj|− ` = m|Xi|+m|Xj|−m|Xi ∩Xj|− `
6 m|Xi|+m|Xj|− 2m− `

< m|Xi|− `+m|Xj|− `.

Hence substituting Ti ∪ Tj for Ti and Tj in the partition of T would decrease
the right hand side of (4.13), a contradiction.

Let G = (V ,E) be a graph and m, ` be integers such that 2 6 m 6 ` 6
2m− 1. For two integers k > 1 and j > 0, we consider the matroid Mk,j which
is the union of k copies of the (mV , `)-matroid M and j copies of the graphic
matroid C(G). There exist k edge-disjoint bases of the (mV , `)-matroid of
sizes m|V |− ` and j spanning trees if and only if

rMk,j(E) = k(m|V |− `) + j(|V |− 1). (4.15)

Theorem 2.6 gives an expression for the left hand side of (4.15) and the proof
of Theorem 4.20 consists of finding a lower bound for this expression.

Proof of Theorem 4.20. Letm, `,k, j be integers as in the statement and suppose
by contradiction that there exists a simple (2k`+ 2j,km)-connected graph G
that contradicts the theorem. By the above discussion and Theorem 2.6, we
have

k(m|V |− `) + j(|V |− 1) > rMk,j(E)

= min
F⊆E

krM(F) + jrC(G)(F) + |E \ F|. (4.16)

Let F be a minimal set of edges minimizing the right hand side of (4.16). By
Theorem 4.21, rM(F) =

∑
X∈H(m|X|− `) + |F \ T | where T ⊆ F and H is a

collection of subsets of V such that {F(X),X ∈ H} partitions T and |X| > 2m
for all X ∈ H.

Fact 4.1. We may assume that V does not belong to H.
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Proof. Since mixed (2k`+ 2j,km)-connectivity implies 2j-edge-connectivity
and consequently j-partition-connectivity, we have, jrC(G)(F) + |E \ F| >
j(|V |− 1) (see proof of Theorem 4.1). Hence, if V ∈ H then rM(F) = m|V |− `

and (4.16) is violated and the theorem follows.

Proposition 4.6. T = F that is {F(X),X ∈ H} partitions F.

Proof. Suppose by contradiction that there exists e ∈ F \ T and denote F ′ =
F \ e. By Theorem 4.21, rM(F ′) 6

∑
X∈H(m|X|− `) + |F ′ \ T | = rM(F) − 1 and,

since the rank function of a matroid is non-decreasing, rC(G)(F
′) 6 rC(G)(F).

Hence we have

rMk,j(E) 6 krM(F ′) + jrC(G)(F
′) + |E \ F ′|

6 k(rM(F) − 1) + jrC(G)(F) + |E \ F|+ 1

6 rMk,j(E),

where the last inequality holds by k > 1 and choice of F. Hence F ′ also
minimizes the right hand side of (4.16) and contradicts the minimality of
F.

It follows from (4.16) and the above proposition that

k(m|V |− `) + j(|V |− 1) > k
∑
X∈H

(m|X|− `) + j(|V(F)|− c(G[F])) + |E \ F|.

(4.17)

Fact 4.2. For each X ∈ H, m|X| > 2`.

Proof. By |X| > 2m, 2 6 m and ` 6 2m− 1, we have m|X| > 2m2 > 4m >
2`.

For each X ∈ H, we define the border XB of X as the vertices of X that
belong to at least two elements of H and the proper part of X as XP = X \XB.
Denote by H ′ the set of elements of H that have a non-empty proper part. We
denote by K the set of connected components of F that intersect no element
of H ′. Note that

c(G[F]) 6 |K|+ |H ′|. (4.18)

Now comes the discharging method: we define a weight for each element
of V and E \ F that is initialized by 0 and we do the following operations.

(I) For each X ∈ H. For each v ∈ XP we increase w(v) by km and for
each v ∈ XB we increase w(v) by 1

2km. For each edge e entering XP in
G−XB we decrease e by 1

2 . Note that such an edge does not belong to
F.

Denote ∆Xw the total weight added for X. If X /∈ H ′ then ∆Xw =
1
2km|XB| =

1
2km|X| 6 k(m|X|− `) by Fact 4.2. If X ∈ H ′ then since

XP 6= ∅ and XP ∪ XB = X 6= V by Proposition 4.1, by (2k`+ 2j,km)-
connectivity of G, the total weight added during this step is

∆Xw = km|XP |+
1

2
km|XB|−

1

2
dG−XB(XP)

6 km|XP |+
1

2
km|XB|−

1

2
(2k`+ 2j− km|XB|)

= k(m|X|− `) − j.

(II) For each K ∈ K, we decrease by 1
2 the weight of each edge entering

K. By (2k`+ 2j)-edge-connectivity of G, the total weight added for K
satisfies ∆Kw = −12dG(K) 6 −12 (2k`+ 2j) 6 −j.
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(III) For each edge e = uv in E \ F.

(i) If none of u or v belongs to an element of H then we increase
w(u) and w(v) by 1

2 .

(ii) If exactly one of u or v, say u, belongs to an element of H then we
increase w(v) and w(e) by 1

2 .

(iii) If both of u and v belongs to an element of H then we increase
w(e) by one.

For each e ∈ E \ F, the total weight added is ∆ew = 1.

Hence, by (4.18), the total weight ∆w added during all the steps satisfies

∆w =
∑
X∈H

∆Xw+
∑
K∈K

∆Kw+
∑
e∈E\F

∆ew

6 k
∑
X∈H

(m|X|− `) − j|H ′|− j|K|+ |E \ F|

6 k
∑
X∈H

(m|X|− `) − jc(G[F]) + |E \ F| (4.19)

We now prove a lower bound on the total weight W. Let v ∈ V . If v belongs
to no element of H then each edge incident to v is in E \ F and increases w(v)
by 1

2 during steps (i) and (ii). Hence, by (2k`+ 2j)-edge-connectivity of G,
w(v) = 1

2dG(v) >
1
2 (2k`+ 2j) > km+ j. If v belongs to the proper part of an

element of H then w(v) = km by step (I). In the last case v belongs to the
border of at least two elements of H thus w(v) is increased by 1

2km at least
twice during step (I) and w(v) > km.

Let e ∈ E \ F. Note that if w(e) is decreased once by steps (I) and (II) then
(ii) occurs and if w(e) is decreased twice by steps (I) and (II) then case (iii)
occurs. So w(e) > 0 for each e ∈ E \ F. Hence the total weight W satisfies

W =
∑
v∈V

w(v) +
∑
e∈E\F

w(e)

> |V \ V(H)|(km+ j) + |V(H)|km+ 0

= km|V |+ j|V \ V(F)|. (4.20)

Since the initial weight is null we have W = ∆w, thus, by (4.19) and (4.20),

k
∑
X∈H

(m|X|− `) + j(|V(F)|− c(G[F])) + |E \ F| > km|V |+ j|V |,

a contradiction to (4.17).

Note that the arguments actually show that Theorem 4.20 still hold even
if at most k`+ j edges are removed from E. But this is not surprising since
Lovász and Yemini [51], Jackson and Jordán [39] and Jordán [40] gave a
similar redundancy property.
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Most of the orientation problems addressed so far in this document are solved
by Frank’s theorem on covering supermodular set-function1. Orientation
problems that require vertex-connectivity in the resulting digraph fall out of
the scope of this deep orientation theorem.

This chapter is motivated by three conjectures on vertex-connected orien-
tations. One is due to Thomassen [68] and the two others are due to Frank
[26, 29]. We state and discuss in detail these conjectures in the first subsection.

The approach of Robbins for the strongly-connected orientation problem
and the approach of Lovász for the k-arc-connected problem suggest that a
deep insight into the structure of highly connected graphs may help to solve
these conjectures. This motivates the next two sections.

The first one focuses on the existence of vertices in graphs and digraphs
that have a minimum degree with respect to the connectivity. We prove that
every minimally g-bounded k-connected undirected graph contains a tight
vertex and give a common generalization to two results of Mader [53, 54] in
the directed case.

In the last section we generalize a constructive characterization of Jordán
[41] of weakly 4-connected graphs to (2k,k)-connected graphs for k even.
Our approach that follows the path of Lovász and Jordán is based on a new
splitting-off theorem that enables us to solve an augmentation problem as
well.

The material of this chapter is based on a joint work with Szigeti [10].

5.1 conjectures of thomassen and frank

In the area of vertex-connected orientation, the starting point is the conjecture
of Thomassen stating that any sufficiently highly vertex-connected graph
admits a k-vertex-connected orientation.

Conjecture 5.1 (Thomassen [68]). For every integer k, there exists a least integer
h(k) such that every h(k)-vertex-connected graph admits a k-vertex-connected
orientation.

An easy observation is that if h(k) exists then h(k) > 2k. Indeed, consider
two disjoint copies of K2k and a matching between 2k− 1 vertices of the first
copy and 2k− 1 vertices of the second copy. The resulting graph G is (2k− 1)-
vertex-connected since each copy of K2k is clearly (2k− 1)-vertex-connected
and the two copies are joined by 2k− 1 vertex-disjoint paths. However G has
no k-vertex-connected orientation since in such an orientation there would
be at least k arcs from each copy to the other one, that is, 2k edges between
the two copies of K2k in G.

In the above argument we actually proved that every graph G admitting a
k-vertex-connected orientation D is 2k-edge-connected. We may push further
the necessary condition of the connectivity of G. For any non-trivial bi-set
X of the vertex set, by Theorem 2.3 we have, db

G(X) = ρb
D(X) + δb

D(X) >
2(k− |wb(X)|), that is, by Theorem 2.2, G is (2k, 2)-connected. We recall that
this special mixed-connectivity is also called weak 2k-connectivity. Frank

1 the best-balanced orientation problem is a notable exception
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conjectured that this necessary connectivity condition for the existence of a
k-vertex-connected orientation is sufficient.

Conjecture 5.2 (Frank [26]). A graph G admits a k-vertex-connected orientation
if and only if G is weakly 2k-connected.

The conjecture of Frank may be considered as a sharpening of the conjec-
ture of Thomassen since, Conjecture 5.2 would imply h(k) 6 2k in Conjecture
5.1 and thus h(k) = 2k by the lower bound discussed above.

The base case of both conjectures is settled by Robbins’ theorem (Theorem
3.6) stating that every 2-edge-connected graphs has a strongly connected
orientation. Gerards [33] proved the case k = 2 of Conjecture 5.2 for 4-regular
graphs. Then Berg and Jordán settled this case for Eulerian graphs.

Theorem 5.1 (Berg, Jordán [2]). Every Eulerian weakly 4-connected graph has a
2-vertex-connected orientation.

The constructive characterization of weakly 4-connected graphs given by
Jordán [41] is a key element of their proof. In Section 5.3, we will investigate
a generalization of this construction to (2k, k)-connected-graphs.

Using Nash-Williams’ odd pairing theorem (Theorem 3.16), Z. Király and
Szigeti found a simpler proof of Theorem 5.1 and actually showed a stronger
result. However their argument is unlikely to extend to higher connectivity.

Theorem 5.2 (Z. Király, Szigeti [46]). Let k > 2 be an integer. An Eulerian
graph G = (V ,E) has a k-arc-connected orientation D such that D− v is (k− 1)-
arc-connected for all v ∈ V if and only if G is 2k-edge-connected and G− v is
(2k− 2)-edge-connected for all v ∈ V .

Since the result of Berg and Jordán is restricted to Eulerian graphs it
does not readily imply the case k = 2 of Thomassen’s conjecture. Jordán
overcame this difficulty by proving his spanning rigid subgraphs packing
theorem (Theorem 4.18) that enabled him to prove that h(2) exists and is
upper bounded by 18.

Theorem 5.3 (Jordán [40]). Every 18-vertex-connected graph has a 2-vertex-
connected orientation.

Proof. Let G = (V ,E) be 18-vertex-connected graph. By Theorem 4.18, there
exist 3 edge-disjoint spanning rigid subgraphs of G say (V ,E1), (V ,E2) and
(V ,E3). By Proposition 4.3, each of the two subgraphs is 2-vertex-connected.
Hence G ′ = (V ,E1 ∪ E2) is weakly 4-connected and there exists F a TG ′-
join in (V ,E3). By Theorem 5.1, the Eulerian graph (V ,E1 ∪ E2 ∪ F) has
a 2-vertex-connected orientation D. Adding into D all the arcs resulting
from an arbitrary orientation of E \ (E1 ∪ E2 ∪ F) yields a 2-vertex-connected
orientation of G.

As for settling the case k = 2 of Kriesell’s conjecture, in the above proof,
the 2-vertex-connectivity of G3 is redundant since the simple connectivity is
sufficient to find a TG ′-join. Hence packing 2 spanning rigid graphs and a
spanning tree is sufficient to apply Theorem 5.1. So Theorem 4.19 allows to
decrease the upper bound on h(2) to 14.

Theorem 5.4 (Cheriyan, Durand de Gevigney, Szigeti [5]). Every 14-vertex-
connected graphs has a 2-vertex-connected orientation.

The problem of finding rooted k-vertex-connected orientations as not been
much studied although it may seem easier. Frank conjectured a characteriza-
tion of graphs admitting a rooted k-vertex-connected orientation.
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Conjecture 5.3 (Frank [29]). A graph G = (V ,E) admits an orientation that is
rooted k-vertex-connected at a vertex r if and only if

eb
G(F) >

∑
X∈F

(k− |wb(X)|) (5.1)

holds for every family F of pairwise innerly-disjoint bi-sets of V \ r.

One may easily see that the condition (5.1) is necessary. Suppose that
D is a rooted k-connected orientation of G rooted at r. Then, by Theorem
2.3, for any non trivial bi-set X such that r /∈ XO, ρb

D(X) > k − |wb(X)|.
Hence, for any family F of pairwise innerly-disjoint bi-sets of V \ r, we have
eb
G(F) >

∑
X∈F ρ

b
D(X) >

∑
X∈F(k− |wb(X)|). This condition also seems to

be a natural generalization of the partition connectivity condition given in
Theorem 4.8.

5.2 tight vertices

5.2.1 Tight Vertices in Graphs

It is trivial to see that in a g-bounded k-connected graph the degree of each
vertex is at least k. In such a graph G we call a vertex v tight if dG(v) = k. The
study of tight vertices is a tool to get a better insight into the structure of g-
bounded k-connected graphs. For instance, in Subsection 3.2.2, the existence
of a tight vertex (Fact 3.3) was an imperative ingredient to prove the Lovász’
constructive characterization of 2k-edge-connected graphs (Theorem 3.10).
Jordán [41] used the existence of a tight vertex in every tight bi-set in order
to prove a similar characterization for weakly 4-connected graphs.

Since adding an edge may ruin the tightness of a vertex, studying the
existence of tight vertices in arbitrary g-bounded k-connected graphs makes
little sense. However, it does in minimally g-bounded k-connected graphs.
When tight vertices exist, the natural question is to find a lower bound
on their number. This question has been studied for special values of g.
The starting point is a theorem of Halin [37] stating that every minimally
k-vertex-connected graph contains a tight vertex. A few years later Mader
[52] improved this result showing that every minimally k-vertex connected
graphs contains at least k+ 1 tight vertices. In minimally k-edge-connected
graphs Lick [48] first proved the existence of a tight vertex. Kaneko and Ota
[43] showed that every minimally (k`,k)-connected graphs contains at least `
vertices of degree k` which has been improved to `+ 1 by Mader [55]. These
results suggest the following statement.

Question 5.1. Let G be a minimally g-bounded k-connected graph and denote U
the set of tight vertices of G. Does g(U) > k hold?

We do not have the answer to this question, but we will prove the following
weaker statement.

Theorem 5.5. Every minimally g-bounded k-connected graph contains at least one
tight vertex.

To answer positively Question 5.1, it may be profitable to understand the loca-
tion of tight vertices in the graph. For edge-connectivity, vertex-connectivity
and more generally mixed-connectivity, the inner-set of every tight bi-set
contains a tight vertex [43]. But this may not hold for arbitrary g-bounded
connectivity. However, we will prove such a statement for the special g-
bounded 2k-connectivity where g(v) has the two possible values k or 2k for
each vertex v.
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5.2.1.1 Tight Vertices in Minimally g-Bounded Graphs

One key tool in the proof of Kaneko and Ota is the following result.

Claim 5.1 (Kaneko and Ota [43]). Let G = (V ,E) be a minimally (k, `)-connected
graph such that ` divides k. Then dG(u, v) 6 ` for every pair u, v of vertices.

A somehow equivalent upper bound for g-bounded connectivity would be

dG(u, v) 6 g(u) (5.2)

for every pair of vertices u, v. But the graph given in Figure 15 shows the
existence of minimally g-bounded connected graphs where (5.2) is violated.

u v w

Figure 15: A minimally g-bounded 2-connected graph where g(u) = g(w) = 1 and
g(v) = 2 containing exactly 2 tight vertices.

However we can prove that (5.2) is not violated at both ends of uv.

Claim 5.2. Let G = (V ,E) be a minimally g-bounded k-connected graph. If there
exists u, v ∈ V such that dG(u, v) > g(u) then dG(u, v) 6 g(v).

Note that this result implies Claim 5.1 since for mixed-connectivity g is a
constant. This claim is derived from the following fact.

Fact 5.1. Let G = (V ,E) be a g-bounded k-connected graph and X be a tight bi-set
of G. Then for every w ∈ wb(X),

dG(w,XI) > g(w) (5.3)

hold and the inequality is strict if X is inclusion wise minimal. Moreover, if |XI| > 2
then, for every v ∈ XI,

dG(v,XO) 6 g(v). (5.4)

Proof. Let w ∈ wb(X) and consider the non trivial bi-set Y = (XO \w,XI). By
g-bounded k-connectivity of G and tightness of X we have

k 6 db
G(Y) + g(w

b(Y))

= db
G(X) + dG(w,XI) + g(wb(X)) − g(w)

= k+ dG(w,XI) − g(w).

So (5.3) follows and the inequality is strict if X is inclusion wise minimal
since Y @ X.

Let v ∈ XI. If |XI| > 2 then the bi-set Z = (XO,XI \ v) is non trivial and, by
g-bounded k-connectivity of G and tightness of X,

k 6 db
G(Z) + g(w

b(Z))

= db
G(X) − dG(v,XO) + g(w

b(X)) + g(v)

= k− dG(v,XO) + g(v).

Proof of Claim 5.2. Suppose there exist two vertices u, v contradicting the
claim. By minimality of G, there exists a tight bi-set X such that u ∈ XI and
v /∈ XO. By (5.4) for u and X, XI = {u} and, by (5.4) for u and X, XO = {v}.
Hence we have the following contradiction to (2.11), g(V \ v) = g(XO) =

g(wb(X)) + g(u) < g(wb(X)) + dG(u, v) = fb(X) = k.
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Following the proof of Theorem 4 in [43] we prove a stronger property in
graphs where the degree function satisfies the upper bounded (5.2) suggested
above.

Lemma 5.1. Let G be a minimally g-bounded k-connected graph satisfying (5.2).
Denote U the set of tight vertices of G and W = V \U. Then, for any W ′ ⊆ W,
there exists w ∈W ′ such that dG[W ′](w) 6 g(w).

Proof. By contradiction we assume that there exists W ′ ⊆W contradicting
the theorem. So W ′ induces at least one edge and we choose an edge uv of
G[W ′] and a tight bi-set X entered by uv such that g(XI) is minimum and,
subject to that, X is minimal. We may assume that u ∈ XI.

The set XI is not reduced to the singleton {u} otherwise, by u ∈W, (5.2),
and tightness of X we would have k < dG(u) = db

G(X) + dG(u,wb(X)) 6
db
G(X)+g(w

b(X)) = k. Hence, by (5.4), there is a neighbor w of u in W ′ ∩XO.
By minimality of G there exists a tight bi-set Y such that u ∈ YI and w /∈ YO.
Clearly, Xu Y is non trivial, so, if Xt Y is non-trivial then, by Fact 2.3, Xu Y
is tight which contradicts the minimality of X. Thus we proved that Xt Y is
trivial, that is, XO ∪ YO = V .

As above, by u ∈ W, (5.2), and tightness of Y, YI is not reduced to the
singleton {u}. Hence, by XO ∪ YO = V , (5.4) applied to Y and tightness and
minimality of X, we have

g(XI) − g(YO) = g(XI ∩ YI) + g(wb(Xu Y)) − g(wb(X))

> dG(XI ∩ YI, YO) + g(wb(Xu Y)) − g(wb(X))

> db
G(Xu Y) − d

b
G(X) + g(w

b(Xu Y)) − g(wb(X))

= fb
G(Xu Y) − f

b
G(X) > 0.

Since uw enters Y this contradicts the choice of X.

To prove Theorem 5.5, we actually use Lemma 5.1 only in the caseW ′ =W.

Proof of Theorem 5.5. Let G be a minimally g-bounded k-connected graph.
First assume that (5.2) is violated in G and choose u and v satisfying
dG(u, v) > g(u) such that g(u) is minimum. We prove that u is tight. Let
X be an inclusion wise minimal tight bi-set such that u ∈ XI and v /∈ XO.
By Fact 5.1, XI is reduced to the singleton {u}. By minimality of X, (5.3) is
strict, so if there exists w ∈ w(X) then dG(w,u) = dG(w,XI) > g(w) and, by
Claim 5.2, g(u) > dG(w,u) > g(w). Thus the pair w,u violates (5.2) with
g(w) < g(u), a contradiction to the choice of u. So we proved that wb(X) = ∅,
that is, u is a tight vertex.

Now we may assume that (5.2) is satisfied in G. We claim that, for any
vertex u such that g(u) > k, decreasing g(u) by one preserves the minimal
g-bounded k-connectivity of G. Indeed, this operation preserves inequality
(iii) of Theorem 2.2 and (2.11) hence the g-bounded k-connectivity still holds.
Furthermore, the tightness of bi-sets is also preserved since the wall of no
tight bi-set contains a vertex of g-value greater than k.

So we may suppose that g(v) 6 k for any vertex. Denote U the set of
tight vertices of G and W = V \U. If W is empty then we are done, so
we assume that W is not empty and, by Lemma 5.1, we choose w ∈ W
such that k > g(w) > dG[W](w) = dG(w,W). Hence, by w ∈ W, we have
dG(w,U) = dG(w) − dG(w,W) > k − k = 0 which proves that U is not
empty.
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5.2.1.2 On Minimally 2k-T -Connected Graphs

Let G = (V ,E) be a graph and T ⊆ V . The graph G is called 2k-T -connected if
G is g-bounded 2k-connected where g is defined by

g(v) =

{
k if v ∈ T
2k if v /∈ T .

(5.5)

Lemma 5.2. Let G = (V ,E) be a minimally 2k-T -connected graph where T ⊆ V
and k is a positive integer. Then every inclusion wise tight bi-set of G has an empty
wall and its inner-set is reduced to a single tight vertex.

Proof. Let X = (XO,XI) be a minimal tight bi-set of G. Assume that XI is
not a singleton. We claim that G[Xi] is connected. Otherwise, there exists a
connected component Z ⊂ XI of G[XI]. Then the non-trivial bi-set Y = (XO \

Z,XI \Z) is tight since 2k = db
G(X) + g(w

b(X)) > db
G(Y) + g(w

b(Y)) > 2k by
tightness of X and 2k-T -connectivity of G. This contradicts the minimality of
X.

So there exists an edge uv induced by XI. By minimality of G, this edge
enters a tight bi-set Y of G. None of Xu Y and Xu Y is trivial, thus, by Fact
2.3 and minimality of X, both Xt Y and Xt Y are trivial. Hence, since X is
not trivial, XO ∩wb(Y) is not empty. Moreover, since uv enters Y, db(Y) > 1,
so wb(Y) = XO is reduced to a singleton of g-value k. Hence, by 2k-T -
connectivity of G and minimality of X, submodularity of db

G and tightness
of X and Y, we have the following contradiction

2k+ 2k < fb(Xu Y) + fb(Xu Y)
= g(wb(X)) + db

G(Xu Y) + d
b
G(Xu Y)

6 g(wb(X)) + db
G(X) + 2d

b
G(Y)

= 2k+ 2k.

This proves that XI is reduced to a singleton say {u}. If u is tight then we are
done. So in the following we assume that dG(u) > 2k.

Observe that dG(u,wb(X)) = dG(u) − d
b
G(X) > 2k− f

b
G(X) + g(w

b(X)) =

g(wb(X)). Hence there exists w ∈ wb(X) such that d(u,w) > g(w). By mini-
mality of G, there exists a tight bi-set Z of V such that u ∈ ZI and w /∈ ZO.
Note that wb(Z) is empty since db

G(Z) > dG(u,w) > g(w) > k. Note also
that XO ∩ ZO is empty by Fact 2.3 since X u Z @ X is non trivial and X is
minimal. Hence, since X is non trivial X u Z is not trivial and, by (2.8), we
have the following contradiction,

2k 6 fb
G(XuZ)

6 fb
G(X) + f

b
G(Z) − g(w

b(XtZ)) − dG(ZO ∩XI,ZI ∩XO)
6 4k− g(w) − dG(u,w)

< 4k− 2g(w)

6 2k.

This lemma may also be formulated as follows: in a minimally 2k-T -
connected graph, the inner-set of every tight bi-set contains a tight vertex.
Since the complement of a tight bi-set is tight, the lemma readily implies the
following result that answers positively a very special case of Question 5.1.

Corollary 5.1. In every minimally 2k-T -connected graph there exists at least 2
vertices of degree 2k.

The graph given in Figure 15 shows that the lower bounds in Question 5.1
and Corollary 5.1 are tight for 2k-T -connectivity.
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5.2.2 Tight Vertices in Digraphs

In this subsection we investigate the existence of vertices with indegree
and outdegree k in g-bounded k-connected digraphs. As for the undirected
case, we call these vertices tight. Mader [53] proved that every minimally
k-arc-connected digraph has a tight vertex and he conjectured the following.

Conjecture 5.4 (Mader [54]). Every minimally k-vertex-connected digraph con-
tains a tight vertex.

In [56] Mader settled the case k = 2 proving that every minimally 2-vertex-
connected graphs contains at least 2 tight vertices. For k > 3, the conjecture
is still open, so proving the directed counterpart of Theorem 5.5 seems
really challenging (if possible). However, for the special case of g-bounded
2-connectivity and under an assumption similar to (5.2), the existence of a
tight vertex is confirmed.

Theorem 5.6 (Durand de Gevigney, Szigeti [11]). Every minimally g-bounded
2-connected digraph such that, for every uv ∈ A,

dD(u, v) 6 g(u) (5.6)

holds, contains a tight vertex.

This result is actually a common ground for both results of Mader. Indeed,
in any minimally g-bounded 2-connected graph the multiplicity of arcs is
trivially in upper bounded by 2. So (5.6) holds in minimally 2-arc-connected
digraphs where g is defined by a constant function of value at least 2. By
Fact 2.5, minimally 2-vertex-connected digraphs are simple, so (5.6) is also
satisfied since for vertex-connectivity g is defined as 1V .

The proof of Theorem 5.6 follows the approach of Mader given in [56]
and requires a few notations. We denote V+ the set of vertices v ∈ V such
that ρD(v) > 2 and δD(v) = 2. Let A0 be the set of arcs uv ∈ A such
that ρD(v) > 2 and δD(u) > 2. Note that if D is minimally g-bounded 2-
connected then every arc a ∈ A \A0 enters a vertex v of indegree 2 or leaves
a vertex v of outdegree 2; in both cases we say that the vertex v covers a.

Proof. By contradiction, suppose that the theorem is false and let the digraph
D = (V ,A) be a counterexample. Since D is a counterexample every vertex v
covers at most 2 arcs, hence |A|− |A0| 6 2|V |, and satisfies ρD(v) + δD(v) > 4,
thus |A| = 1

2

∑
v∈V (ρD(v) + δD(v)) > 2|V |. This proves that A0 is not empty.

By minimality of D, every arc of A0 enters an in-tight bi-set or leaves
an out-tight bi-set. Among all these bi-sets, we choose X such that |XO|

is minimum and, with respect to that, |XI| is minimum. Without loss of
generality we may assume that X is in-tight and an arc ab of A0 enters X.

Claim 5.3. Every arc uv ∈ A0 such that v ∈ XI enters X.

Proof. By contradiction, assume that there exists uv ∈ A0 such that v ∈ XI
and u ∈ XO. By minimality of D, there exists a tight bi-set of V such that
v ∈ YI and u /∈ YO. The bi-set Xt Y is trivial otherwise, by Fact 2.4, Xu Y @ X
is in-tight and entered by uv ∈ A0 which contradicts the minimality of X.
This means that XO ∩ YO is empty.
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Thus, by tightness of Y and choice of X we have |YI| > |XO|, that is,
|XO ∩wb(Y)| > |XO ∩ YI|. Hence, by v ∈ XI ∩ YI, we have

2− 1 > fb
D(Y) − ρb

D(Y)

= g(wb(Y))

> |XO ∩wb(Y)|

> |XO ∩ YI|
= |wb(X)∩ YI|+ |XI ∩ YI|
> 0+ 1.

Hence equality holds everywhere, that is, wb(Y) is a single vertex contained
in XO and |YI| = |XO|. Hence, by tightness of Y and choice of X, |YO| > |XI|,
that is |wb(X)∩ YO| > |XI ∩ YO| > 1. So wb(X) is a singleton contained in YO
and |wb(Xt Y)| = 2. Hence, since Xu Y is not trivial, by minimality of X, (2.9),
tightness of X and Y, and positivity of g, we have the following contradiction,

2 < fb
D(Xu Y)

6 fb
D(X) + fb

D(Y) − g(wb(Xt Y))
6 4− |wb(Xt Y)|
= 2.

Now we prove that, in D[XO], b can be reached from any other vertex.
Actually it is sufficient to prove this statement in D[XI] since if wb(X) is not
empty then it is reduced to a singleton such that dD(wb(X),XI) > 1. Suppose
by contradiction that there exists a proper subset U of XI containing b such
that ρD[XI](U) = 0. Then the non-trivial bi-set set Z = (U∪wb(X),U) satisfies
2 6 ρb(Z) + g(wb(Z)) 6 ρb(X) + g(wb(X)) = 2. Hence Z is an in-tight bi-set
entered by ab such that |ZO| < |XO|, a contradiction to the choice of X.

Since ρD(b) > 2 and D contains no tight vertex, every vertex from which b
is reachable inD−A0 belongs to V+. Hence, by Claim 5.3, we have XO ⊆ V+,
and thus, the following inequalities hold

ρD(XI) = ρ
b
D(X) + dD(wb(X),XI)

6 ρb
D(X) + 2|wb(X)|

6 ρb
D(X) + g(wb(X)) + |wb(X)|

6 2+ 1 and

ρD(XI) =
∑
v∈XI

(ρD(v) − δD(v)) + δD(XI)

> |XI|+ 2

> 3.

So equality holds everywhere in both inequalities. In particular, XI = {b}

and wb(X) is a single vertex w such that dG(w,b) = 2 > 1 = g(w). This
contradicts (5.6).

5.3 on (2k, k)-connected graphs

In Section 5.1 we mentioned that Jordán proved a constructive characteriza-
tion of (4, 2)-connected graphs in [41]. The material of this section resulting
from a joint work with Szigeti [10] generalizes this result to (2k,k)-connected
graphs. As for the constructive characterization of 2k-edge-connected graphs
of Lovász given in Section 3.2.2, the approach of Jordán consists of proving a
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splitting-off theorem for vertices of degree 4. Following the same path the
natural generalization would be to prove a splitting-off theorem on vertices
of degree 2k. We actually proved a more general result that stands for every
vertex of even degree. This further generalization is not necessary for the
characterization since, as we saw in Section 5.2, every tight bi-set of a min-
imally (2k,k)-connected graph contains a vertex of degree 2k. However, it
enables us to address the following augmentation problem: given a graph G
and an integer k > 2, what is the minimum number of edges to be added to
make G (2k, k)-connected.

5.3.1 Preliminaries

We recall that a graph G = (V ,E) is (2k, k)-connected if and only if

fb
G(X) := d

b
G(X) + k|w

b(X)| > 2k, (5.7)

for all non-trivial bi-set X of V and that a bi-set is called tight if equality
holds in (5.7). We call G minimally (2k,k)-connected if G is (2k,k)-connected
and removing any edge destroys this property. Clearly, in a minimally (2k,k)-
connected graph every edge enters a tight bi-set.

Let H = (V ∪ s,E) be a graph with a special vertex s. For convenience, in
this chapter H will always denote a graph with a special vertex s. The graph
H is called (2k,k)-connected in V if (5.7) holds for every non-trivial bi-set of
V . Note that, considering the graph H, the complement of a bi-set is taken
relatively to the ground set V ∪ s.

Claim 5.4. Let H = (V + s,E) be a (2k,k)-connected graph in V . For every
non-trivial bi-set X of V ,

2k− fb
H(X) 6 dH(s,XO) − dH(s,XI), (5.8)

dH(s,XI) 6
⌊
1

2
(dH(s) − dH(s,wb(X)) + fb

H(X) − 2k)

⌋
. (5.9)

Moreover, for every pair of bi-sets X and Y of V ∪ s such that |wb(Xt Y)| > 2 and
Xu Y is a non-trivial bi-set of V ,

(fb
H(X) − 2k) + (fb

H(Y) − 2k) > d
b
H(Xt Y) + dH(XO ∩ YO,XI ∩ YI)

+ dH(YO ∩XO, YI ∩XI). (5.10)

Proof. For a non-trivial bi-set X of V , X ′ = (XI− s,XO− s) is also a non-trivial
bi-set of V and hence, by (5.7), dH(s,XO) − dH(s,XI) = fb

H(X
′) − fb

H(X) >
2k − fb

H(X). Then, (5.9) follows from (5.8) and dH(s,XO) − dH(s,XI) =

dH(s) − dH(s,wb(X)) − 2dH(s,XI).
The inequality (5.10) is just a combination of (2.8), fb

H(X u Y) > 2k and
k|wb(X∪ Y)| > 2k.

5.3.2 Blocking Bi-sets

In this chapter we will use notations concerning the splitting-off operation
that were introduced in Subsection 3.2.2. Let H = (V + s,E) be a (2k,k)-
connected graph in V with a special vertex s and (su, sv) a pair of edges.
In the current chapter we call the pair (su, sv) admissible if Hu,v is (2k,k)-
connected in V . Let X be a bi-set of V and observe that when splitting the
pair (su, sv) three cases may occur:

(a) If both u and v belong to XI then the degree of X decreases by 2.
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(b) If one of u and v belongs to XI and the other one belongs to wb(X) then
the degree of X decreases by 1.

(c) If none of the two above cases occurs then the degree of X is preserved.

A non-trivial bi-set X of V is called a blocking bi-set for the pair (su, sv) (for
short we say that X blocks (su, sv)) if either (a) occurs and fb

H(X) 6 2k+ 1

or (b) occurs and fb
H(X) 6 2k. A blocking bi-set is called dangerous in the

first case and critical in the second case. Note that a critical bi-set X blocking
(su, sv) is tight and wb(X) is either {u} or {v}. Clearly, a blocked pair is not
admissible. The following lemma states the converse.

Lemma 5.3. Let H = (V + s,E) be a (2k,k)-connected graph in V . A pair (su, sv)
is non-admissible if and only if there exists a bi-set of V blocking (su, sv).

Proof of necessity. Since (su, sv) is non-admissible, there exists a non-trivial
bi-set X of V which violates (5.7) in Hu,v. Since fb

H(X) > 2k, either the degree
of X decreases by 2 (that is (a) occurs) and fb

H(X) 6 2k+ 1 or the degree of X
decreases by 1 (that is (b) occurs) and fb

H(X) 6 2k.

The following obvious remarks will be used later. By definition every
blocking bi-set X satisfies

fb
H(X) − 2k 6 dH(s,XI) − 1, (5.11)

|wb(X)| 6 1. (5.12)

Observe also that if X blocks (su, sv) then, after any sequence of splitting-off
containing none of su or sv, X still blocks (su, sv). Hence, by Lemma 5.3, a
non-admissible pair in H remains non-admissible in any graph arising from
H by a sequence of splitting-off.

The following lemma gathers many technical details and will be used
extensively in the proofs of the further sections.

Lemma 5.4. Let H = (V + s,E) be a (2k,k)-connected graph in V with dH(s)
even. Let X be a maximal blocking bi-set for a pair (su, sv) with u ∈ XI. Let
w ∈ NH(s) \ XI and Y a blocking bi-set for the pair (su, sw). Then wb(X) and
wb(Y) coincide and are reduced to a singleton.

Proof. Note that u ∈ YO ∩XI and w ∈ YO \XI.

Fact 5.2. The bi-sets X and Y satisfy the following.

(i) If wb(Y)∩XI is empty then Xu Y is a non-trivial bi-set of V .

(ii) If both wb(X)∩ YI and wb(Y)∩XI are empty then Xu Y is a non-trivial bi-set
of V .

(iii) If both wb(X)∩ YI and wb(Y)∩XI are empty then Xu Y is a non-trivial bi-set
of V .

(iv) If both wb(X)∩ YI and wb(Y)∩XI are empty then Xt Y is a non-trivial bi-set
of V strictly containing X.

Proof. Since none of XO and YO contains V , to prove (i), (ii) and (iii), we may
only check that the inner-set of the bi-set resulting from the intersection is
non-empty.

(i) Since u ∈ XI ∩ YO, by wb(Y)∩XI = ∅, we have u ∈ XI ∩ YO = XI ∩ YI.
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(ii) Since w ∈ YO \ XI, by wb(Y) ∩ XI = ∅ and wb(X) ∩ YI = ∅, we have
w ∈ YO ∩XI = YI ∩XI = YI ∩XO.

(iii) Suppose that X u Y is trivial, that is XI ∩ YO = ∅. It implies that
XO ∩ YI = (wb(X) ∩ YI) ∪ (XI ∩ YO) ∪ (XI ∩wb(Y)) is empty. Hence, by w ∈
YO \ XI, we have X @ Y. Since Y blocks (su,uv), this contradicts to the
maximality of X.

(iv) Since w ∈ YO \ XI and wb(Y) ∩ XI = ∅, we have w ∈ YO ∩ XI =

YI ∩ XI. Hence X t Y strictly contains X. Since X is non-trivial and by the
conditions, it remains to prove that V 6= XO ∪ YO = XI ∪ YI. We have
dH(s,XI ∪ YI) = dH(s,XI) + dH(s, YI) − dH(s,XI ∩ YI). If Y is critical then,
by (5.9) and dH(s) even, dH(s,XI) + dH(s, YI) 6 1

2dH(s) +
1
2dH(s) − 1 <

dH(s,V). If Y is dangerous then u ∈ XI ∩ YI ∩NH(s), hence by (5.9) and
dH(s) even, dH(s,XI) +dH(s, YI) −dH(s,XI ∩ YI) 6 1

2dH(s) +
1
2dH(s) − 1 <

dH(s,V). In both cases V \ (XI ∪ YI) contains a neighbor of s.

Claim 5.5. At least one of the wall of X and Y is non-empty.

Proof. By contradiction suppose the claim is false. Then, u belongs to YI ∩
XI ∩NH(s) and, by Facts (i), (iii), (ii) and (iv), none of Xu Y, Xu Y, Xu Y and
XtY is a trivial bi-sets of V and X @ XtY. Hence by (2.8), (2k,k)-connectivity
of H and maximality of X, we have

(2k+ 1) + (2k+ 1) > fb
H(X) + f

b
H(Y)

= db
H(X) + d

b
H(Y)

> db
H(Xu Y) + d

b
H(Xu Y) + 2dH(s,XI ∩ YI)

= fb
H(Xu Y) + f

b
H(Xu Y) + 2dH(s,XI ∩ YI)

> 2k+ 2k+ 2

and

(2k+ 1) + (2k+ 1) > fb
H(X) + f

b
H(Y)

= db
H(X) + d

b
H(Y)

> db
H(Xu Y) + d

b
H(Xt Y)

= fb
H(Xu Y) + f

b
H(Xt Y)

> 2k+ (2k+ 2).

It follows that equality holds everywhere, in particular, db
H(Xu Y) = d

b
H(Xu

Y) = 2k are even and db
H(X) = 2k + 1 is odd. This contradicts db

H(X) =

db
H(Xu Y) + d

b
H(Xu Y) − 2dH(XI ∩ YI,XI ∩ YI).

Claim 5.6. None of wb(X) and wb(Y) is empty.

Proof. Suppose that the wall of X or Y is empty and call this bi-set A. By
Claim 5.5, the wall of the other blocking bi-set, say B, is non-empty.

Suppose that wb(B)∩AI = ∅. By Fact 5.2 (i), AuB is a non-trivial bi-sets
of V . If A = X then, by Fact 5.2 (iii), X u Y is non trivial. If A = Y then, by
Fact 5.2 (ii), Xu Y is non trivial. In both cases AuB is a non-trivial bi-set of V .
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Then, by (2k,k)-connectivity of H in V , since the edges between AI \BI and
AI ∩BI enters B but not s and by (5.11), we have the following contradiction,

2k+ 2k 6 fb
H(AuB) + f

b
H(AuB)

= dH(AI ∩BI) + dH(AI ∩BI)
= dH(AI) + 2dH(AI \BI,AI ∩BI)
6 db

H(A) + 2(d
b
H(B) − dH(s,BI))

= fb
H(A) + 2(f

b
H(B) − k|w

b(B)|− dH(s,BI))

6 2k+ 1+ 2(k− 1).

Hence, by (5.12) for B, we have wb(B)∩AI = ∅. By Fact 5.2 (iv), AtB is a
non-trivial bi-set of V strictly containing X @ At B. If A = X then, by Fact
5.2 (ii), Xu Y is non-trivial. If A = Y, the by Fact 5.2 (iii), Xu Y is non-trivial.
In both cases, AuB is a non-trivial bi-set of V . We have also

db
H(B) − dH(s,AI ∩BI) 6 k (5.13)

since B is a blocking bi-set with a non-empty wall and, if B is dangerous
then u ∈ AI ∩ BI. By maximality of X, the (2k,k)-connectivity of H, since
the edges between AI ∪BI and BI \AI enters B but not AI ∩BI and A is a
blocking bi-set, by (5.11) and (5.13), we have the following contradiction,

(2k+ 2) + 2k 6 fb
H(AtB) + f

b
H(AuB)

= dH(AI ∪BI) + dH(BI \AI)
= dH(AI ∪BI) + dH(BI \AI)
= dH(AI) + 2dH(AI ∪BI,BI \AI)
6 fb

H(A) + 2(d
b
H(B) − dH(s,AI ∩BI))

6 (2k+ 1) + 2k.

Claim 5.7. Y and X have the same wall.

Proof. Suppose wb(X) 6= wb(Y). By Claim 5.6 and (5.12), both wb(X) and
wb(Y) are singletons, we have 4 cases.

Case 1 Both wb(X) ∩ YI and wb(Y) ∩ XI are empty. Then |wb(X t Y)| = 2

and, by Fact (i), Xu Y is a non-trivial bi-set of V . Hence, by (5.10), since X and
Y are blocking bi-sets, by (5.11) and the choice of w, we have the following
contradiction

db
H(Xt Y) 6 (fb

H(X) − 2k) + (fb
H(Y) − 2k)

6 (dH(s,XI) − 1) + dH(s, YI \XI)

= dH(s,XI ∪ YI) − 1
6 db

H(Xt Y) − 1.

Case 2 Bothwb(X)∩YI andwb(Y)∩XI are empty. Then |wb(XtY)| = 2 and,
by Fact (ii), Xu Y is a non-trivial bi-set of V . By symmetry of fb

H and (5.11),
fb
H(X) − 2k = fb

H(X) − 2k < dH(s,XI) 6 db
H(X t Y) + dH(XI ∩ YO,XO ∩ YI).

If Y is dangerous, then u ∈ XI ∩ YI. Hence fb
H(Y) − 2k 6 d(s,XI ∩ YI) 6

dH(YO ∩ XI, YI ∩ XO). So we have, (fb
H(X) − 2k) + (fb

H(Y) − 2k) < db
H(X t

Y)+dH(XI ∩YO,XO ∩YO)+dH(YI ∩XI, YI ∩XO) and this contradicts (5.10).

Case 3 Both wb(X) ∩ YI and wb(Y) ∩ XI are empty. Then |wb(X t Y)| = 2

and, by Fact (iii), X u Y is a non-trivial bi-set of V . By symmetry of fb
H
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and (5.11), fb
H(Y) − 2k = fb

H(Y) − 2k < dH(s, YI) 6 db
H(X t Y) + dH(YI ∩

XO, YO ∩XI). Since wb(Y)∩XI = ∅, we have u ∈ YI ∩XI. Hence fb
H(X)− 2k 6

d(s,XI ∩ YI) 6 dH(XO ∩ YI,XI ∩ YO). So we have, (fb
H(X) − 2k) + (fb

H(Y) −

2k) < db
H(X t Y) + dH(XO ∩ YI,XI ∩ YO) + dH(YI ∩ XO, YO ∩ XI) and this

contradicts (5.10).

Case 4 Both wb(X) ∩ YI and wb(Y) ∩ XI are empty. Then |wb(X u Y)| = 2

and, by Fact (iv), X t Y is a non-trivial bi-set of V and X @ X t Y. If Y is
dangerous, then u ∈ XI ∩ YI, thus, since X is a blocking bi-set, 1+ db

H(X u
Y) > 1+ dH(s,XI ∩ YI) > (fb

H(X) − 2k) + (fb
H(Y) − 2k). By maximality of X

and submodularity of fb
H, we have the following contradiction,

2k+ 2 6 fb
H(Xt Y)

6 fb
H(X) + f

b
H(Y) − f

b
H(Xu Y)

6 db
H(Xu Y) + 1+ 4k− f

b
H(Xu Y)

= 1+ 2k.

Claims 5.6 and 5.7 prove Lemma 5.4.

Proposition 5.1. Let H = (V + s,E) be a (2k,k)-connected graph in V with dH(s)
even and X and Y two critical bi-sets with wall {w} such that dH(s,w) is odd. Then
NH(s) \ (XO ∪ YO) is non-empty. In particular, Xt Y is a non-trivial bi-set of V .

Proof. By (5.9), dH(s) even and dH(s,w) odd, we have

dH(s,XO ∪ YO) = dH(s,XI ∪ YI) + dH(s,w)
6 dH(s,XI) + dH(s, YI) + dH(s,w)

<
1

2

(
dH(s) − dH(s,w)

)
+
1

2

(
dH(s) − dH(s,w)

)
+ dH(s,w)

= dH(s).

Hence, there exists a neighbor of s in V \ (XO ∪ YO).

Claim 5.8. Let H = (V + s,E) be a (2k,k)-connected graph in V with dH(s)
even. Let X be a maximal blocking bi-set for (su, su) where u ∈ V such that
dH(s,u) >

dH(s)
2 . Then the pair (su, sv) is admissible for all v ∈ NH(s) \XO.

Proof. Since X is obviously dangerous and v ∈ NH(s) \XO, none of u and v
belongs to wb(X). Suppose that (su, sv) is non-admissible, that is, by Lemma
5.3, there exists a bi-set Y blocking the pair (su, sv). Then, by Lemma 5.4,
wb(X) and wb(Y) coincide and are reduced to a singleton. Hence, v,u ∈ YI
which gives dH(s, YI) > dH(s,u) + dH(s, v) > dH(s)

2 + 1, contradiction to
(5.9).

5.3.3 Obstacles

Let H = (V + s,E) be a (2k,k)-connected graph in V such that dH(s) is even.
The following definition of an obstacle extends the one given by Jordán in
[41]. The pair (t,C) is called a t-star obstacle at s (for short, an obstacle) if

t is a neighbor of s with dH(s, t) odd, (5.14a)

C is a collection of critical bi-sets, (5.14b)

each element of C has wall {t}, (5.14c)

the elements of C are pairwise innerly-disjoint, (5.14d)

NH(s) \ {t} ⊆ VI(C). (5.14e)
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If (t,C) is an obstacle at s, note that, by Lemma 5.3, no pair (st, su) with
u ∈ NH(s) \ {t} is admissible.

Some basic properties of obstacles are proven in the following proposition.

Proposition 5.2. Let H = (V + s,E) be a (2k,k)-connected graph in V with dH(s)
even and (t,C) an obstacle at s. Then

|C| > 3, (5.15)

H− st is (2k, k)-connected in V . (5.16)

Proof. (5.15): By (5.14e), (5.14a) and dH(s) even, |C| > 1. Let X and Y be
two (not necessarily distinct) elements of C. By (5.14b), (5.14c), (5.14a) and
Proposition 5.1, NH(s) \ (XO ∪ YO) is non-empty. Thus, by (5.14e), there
exists an element in C \ {X, Y}.

(5.16): Suppose that H− st is not (2k,k)-connected in V , that is, by (2k,k)-
connectivity of H, there exists in H a non-trivial tight bi-set X of V such that
t ∈ XI. Note that, by (5.14a), |wb(X)| 6 1.

SinceH is (2k,k)-connected in V and by (5.14c), for every Y ∈ C, dH(t, YI) =
dH(YI) − (fb

H(Y) − k|w
b(Y)|) > 2k − (2k − k) = k. If XI = {t} then, by

tightness of X, (5.14d), (5.15), (5.14a) and |wb(X)| 6 1, we have the fol-
lowing contradiction 2k = fb

H(X) > db
H(X) = dH(XI) − dH(XI,wb(X)) =

dH(t) − dH(t,wb(X)) > dH(t, s) +
∑
Y∈C,wb(X)/∈YI dH(t, YI) > 1 + 2k. So

XI 6= {t}.
Suppose that there exists Y ∈ C such that X u Y and X u Y are both non-

trivial bi-sets of V . Then, since X is tight, Y is critical, by symmetry of fb
H,

(2k, k)-connectivity of H in V and Fact 2.3, we have the following contradic-
tion, 0 = dH(XI ∩ YO,XO ∩ YI) > dH(s, t) > 1. Hence, for all Y ∈ C, Xu Y or
Xu Y is trivial, that is, since X and Y are non-trivial, YI ⊆ XO or XI ⊆ YO.

If, for all Y ∈ C, YI ⊆ XO then, by t ∈ XI and (5.14e), NH(s) ⊆ XO which,
by the tightness of X, contradicts (5.8). So there exists an element Y of C such
that XI ⊆ YO. By XI 6= {t} and (5.14d), this element is unique. Then, by (5.15),
(5.14d) and (5.14c), there are at least two distinct elements A,B ∈ C such
that AI,BI ⊆ (XO \ {t})∩ YI = (XI ∪wb(X))∩ YO ⊆ wb(X), a contradiction to
|wb(X)| 6 1.

The following lemma shows that to find an obstacle one does not have
to focus on the disjointness of the inner-sets. Its proof relies on the classic
uncrossing technique.

Lemma 5.5. Let H = (V + s,E) be a (2k,k)-connected graph in V with dH(s)
even. If there exists a pair (t,F) satisfying (5.14a), (5.14b), (5.14c) and (5.14e) then
there exists a t-star obstacle at s.

Proof. Choose a pair (t,C) satisfying (5.14a), (5.14b), (5.14c) and (5.14e) such
that

∑
X∈C |XI| is minimal. Suppose there exist two distinct elements X and

Y in C such that XI ∩ YI 6= ∅ that is Xu Y is a non-trivial bi-set of V . By choice
of C, X v Y or Y v X is not possible. Hence, by (5.14c), Xu Y and Xu Y are
non-trivial bi-sets of V . By Proposition 5.1, X t Y is a non-trivial bi-set of
V . Hence, by Fact 2.3, X u Y, X u Y and X u Y are tight. The bi-sets among
them which contain a neighbor of s are critical bi-sets with wall t. Hence
replacing X and Y by these critical bi-sets in C contradicts the minimality of∑
X∈C |XI|.

5.3.4 A New Splitting-off Theorem

The aim of this section is to prove the following result.
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Theorem 5.7. Let H = (V + s,E) be a (2k,k)-connected graph in V with k > 2

such that dH(s) > 4 is even. There is a complete admissible splitting-off at s if and
only if there exists no obstacle at s.

As a first result we prove the existence of an obstacle when there exists no
admissible pair at all.

Theorem 5.8. Let H = (V + s,E) be a graph that is (2k,k)-connected in V with
dH(s) even and k > 2. If there exists no admissible splitting-off at s then dH(s) = 4
and there exists an obstacle at s.

Proof. Suppose that there exists no admissible splitting-off at s, that is, by
Lemma 5.3, for each pair of edges incident to s, there exists a bi-set that
blocks it.

Let X be a maximal blocking bi-set for a pair (su, sv) with u ∈ XI. By (5.8),
there exists a neighbor w of s in XO ⊆ XI. Let Y be a maximal blocking bi-set
for the pair (su, sw). By Lemma 5.4, the wall of X and the wall of Y coincide
and are reduced to a singleton, say {t}. By choice of u ∈ XI and w ∈ XO, t is
different from u or w thus Y is a dangerous blocking bi-set.

For the same reasons, every maximal blocking bi-set for a pair (sa, sb)
with a ∈ YI and b ∈ NH(s)∩ YO 6= ∅ is a dangerous bi-set with wall {t}. By
repeating this argument once more, we have that every pair (sa, sb) with
a,b /∈ {t} is blocked by a dangerous bi-set with wall {t}. Hence, there exists
a family F of (maximal) dangerous bi-sets such that (5.14c) holds for F and
every pair of edges adjacent to s but not t is blocked by an element of F.

Now consider the graph H− t which is, by (2k,k)-connectivity of H in V ,
k-edge-connected in V − t. If (su ′, sv ′) is a pair of edges in H− t then, by the
definition of F, there exists a dangerous bi-set Z ∈ F such that u ′, v ′ ∈ ZI
and wb(Z) = {t}. Hence d(H−t)u ′ ,v ′

(ZI) = d
b
Hu ′ ,v ′

(Z) = db
H(Z) − 2 6 f

b
H(Z) −

k|wb(Z)| − 2 6 k − 1, that is splitting-off the pair (su ′, sv ′) destroys the
k-edge-connectivity of H− t in V − t.

Hence, since k > 2, by the theorem of Mader (Theorem 3.18), dH−t(s) = 3.
So, by dH(s) even and Claim 5.8, dH(s, t) is odd and smaller than dH(s)

2 . So
dH(s, t) = 1 and dH(s) = 4. Hence, by (5.8), the inner-set of each element of
F contains exactly two neighbors of s and |F| = 3. So, for X ∈ F, X ′ = (XI −

s,XO− s) is a non-trivial bi-set of V and X ′I contains exactly one neighbor of s,
say x. We have fb

H(X
′) = fb

H(X)−dH(s,XI)+dH(s,V \XO) 6 2k+1−2+1 =
2k thus X ′ is a critical bi-set blocking (st, sx). So (t,F ′) = (t, {X ′ : X ∈ F})

satisfies (5.14a), (5.14b), (5.14c) and (5.14e). The obstacle at s is obtained by
applying Lemma 5.5 on (t,F ′).

To prove the main result of this section we need to consider obstacles
arising after an admissible splitting-off. The following lemma describes the
two interesting situations that may occur.

Lemma 5.6. Let H = (V + s,E) be a (2k,k)-connected graph in V with dH(s) > 6
even, (su, sv) an admissible pair in H and (t,C) an obstacle at s in Hu,v.

(a) If t ∈ {u, v} then dH(s, t) > 2 and (st, st) is admissible in H.

(b) If t /∈ {u, v} then either there exists a t-star obstacle at s in H or there exists
no obstacle at s in Ht,w for some admissible pair (st, sw) in H.

Proof. (a) Suppose t = u. By (5.14a) in Hu,v, dH(s, t) = dHu,v(s, t) + 1 > 2.
Suppose now that (st, st) is non-admissible in H. Then, by Lemma 5.3,

there exists in H a maximal blocking bi-set X for this pair. If v belongs to
the inner-set of an element of C denote by Y this element and let Y = (∅, ∅)
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otherwise. Since u ∈ XI, X is a blocking bi-set, Y is a critical or empty bi-set,
by (5.9) and dH(s) even, we have,

dHu,v(s,XI ∪ YI) 6 dHu,v(s,XI) + dHu,v(s, YI)

6 (dH(s,XI) − 1) + dHu,v(s, YI)

6 (
1

2
dH(s) − 1) + (

1

2
dHu,v(s) − 1)

= dHu,v(s) − 1.

So, by (5.14e), there exists Z ∈ C \ Y and w ∈ NHu,v(s) \ (XI ∪ {v}) such that
w ∈ ZI and v /∈ ZI. Hence, Z is also a blocking bi-set for (st, sw) in H. Then,
by Lemma 5.4 applied in H, wb(X) = wb(Z) = {t} which contradicts the fact
that X blocks the splitting (st, st) in H.

(b)

Claim 5.9. If st belongs to no admissible pair in H then there exists a t-star obstacle
in H.

Proof. By t /∈ {u, v} and (5.14a), dH(s, t) = dHu,v(s, t) is odd thus it remains
to construct a collection of critical bi-sets in H satisfying (5.14c), (5.14d) and
(5.14e). By Lemma 5.5, it suffices to find one satisfying (5.14c) and (5.14e).

We initialize F as {X ∈ C, |XI ∩ {u, v}| < 2}. Clearly F is a collection of
critical bi-sets satisfying (5.14c). Suppose F does not satisfy (5.14e), that is,
there exists w ∈ NH(s) \ (VI(F)∪ {t}). Since st belongs to no admissible pair,
by Lemma 5.3, there exists a maximal blocking bi-set X for the pair (st, sw).
Now we prove that wb(X) = {t} that is X can be added into the collection F

constructed so far.
Assume, by contradiction, that t ∈ XI. We have NH(s) ∩ VI(F) ⊆ XI

otherwise, there exists Z ∈ F such that (NH(s) ∩ ZI) \ XI 6= ∅, thus by
Lemma 5.4, wb(X) = wb(Z) = {t}, a contradiction. Thus, by t ∈ XI, (5.9),
dH(s) even and dH(s) > 6, we have,

dHu,v(s) − dHu,v(s,VI(F)∪ {t}) > dHu,v(s) − dHu,v(s,XI)

> dH(s) − 2− dH(s,XI)

>
1

2
dH(s) − 2 > 1.

Hence, by (5.14e) in Hu,v, there exists a unique Y ∈ C \F such that NHu,v(s) \

{t} ⊆ VI(F) ∪ YI. Since {u, v} ⊆ YI, we have NH(s) \ {t} ⊆ VI(F) ∪ YI and,
in particular, w ∈ YI. If X is dangerous, w ∈ XI ∩ YI and, by (5.9), we have
dH(s,XI) − dH(s,XI ∩ YI) 6 1

2dH(s) − 1. If X is critical, by (5.9), we have
dH(s,XI) 6 1

2dH(s) − 1. Hence, by NH(s) ⊆ XI ∪ YI, and by (5.9), we have
the contradiction,

dH(s) = dH(s, YI) + dH(s,XI) − dH(s,XI ∩ YI)
= dHu,v(s, YI) + 2+ dH(s,XI) − dH(s,XI ∩ YI)

6 (
1

2
(dH(s) − 2) − 1) + 2+ (

1

2
dH(s) − 1)

= dH(s) − 1.

Claim 5.10. If (st, sw) is an admissible pair in H and there exists an obstacle
(t ′,C ′) in Ht,w then t = t ′.

Proof. Suppose t 6= t ′.
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Proposition 5.3. Let X ∈ C and X ′ ∈ C ′ such that XuX ′ is a non-trivial bi-set of
V . Then t ∈ X ′I or t ′ ∈ XI.

Proof. By contradiction assume that t /∈ X ′I and t ′ /∈ XI. Thus, by t 6= t ′

and X ′ critical in Ht,w, we have t /∈ X ′O and fb
H(X

′) = fb
Ht,w

(X ′) = 2k. Since
X is critical in Hu,v and by (5.11), we have, fb

H(X) − d
b
H(X t X

′) 6 fb
H(X) −

dH(s,XI) 6 fb
Hu,v

(X) − dHu,v(s,XI) 6 2k − 1. Hence, since |wb(X t X ′)| =
|{t, t ′}| = 2 and XuX ′ is non-trivial, by (5.10), 0 6 (fb

H(X) − 2k) + (fb
H(X

′) −
2k) − db

H(XtX
′) 6 −1, a contradiction.

Proposition 5.4. There exists X ∈ C such that t ′ ∈ XI.

Proof. Suppose for a contradiction that t ′ /∈ VI(C). Then by t 6= t ′ and (5.14e)
for (t,C) in Hu,v, t ′ is not a neighbor of s in Hu,v but a neighbor of s in Ht,w
(by (5.14a) for (t ′,C ′)) so t ′ coincides with u or v, say u. By (5.15) and (5.14d)
for (t ′,C ′) in Ht,w, there exists an element X ′ ∈ C ′ containing neither t nor v.
Hence, there exists a vertex in (NH(s)∩X ′I) \ {t

′,u, v, t} which, by (5.14e) for
(t,C) in Hu,v, is contained in the inner-set of an element X ∈ C. Thus, X ′ uX
is a non-trivial bi-set of V such that t /∈ X ′I and t ′ /∈ XI, a contradiction to
Proposition 5.3.

By Proposition 5.4, there exists X ∈ C such that t ′ ∈ XI. By (5.15) and
(5.14d) for (t,C) in Hu,v, there exists an element Y ∈ C \ X not containing
w. Hence, there exists a vertex in (NH(s) ∩ YI) \ {t ′,w, t} which, by (5.14e)
in Ht,w, is contained in the inner-set of an element X ′ ∈ C ′. Thus Y uX ′ is
non-trivial, so by Proposition 5.3 and t ′ /∈ YI, we have t ∈ X ′I.

Suppose that there exists a neighbor z of s in H ′ = H− {su, sv, sw} that
belongs to none of XI and X ′I. Then, by (5.15), (5.14d), t ′ ∈ XI and t ∈ X ′I,
there exists Z ∈ C \ X and Z ′ ∈ C ′ \ X ′ such that z ∈ ZI ∩ Z ′I. By t ′ ∈ XI,
t ∈ X ′I and (5.14d), this contradicts Proposition 5.3 for Z and Z ′. Hence, by
(5.9), we have the following contradiction

dH(s) − 3 = dH ′(s)

6 dH ′(s,XI) + dH ′(s, YI)

6 dHu,v(s,XI) + dHt,w(s, YI)

6 (
dHu,v(s)

2
− 1) + (

dHt,w(s)

2
− 1)

= dH(s) − 4.

Suppose there exists no t-star obstacle at s in H. Hence, by Claim 5.9,
there exists an admissible pair (st, sw) in H. By Claim 5.10, if there exists
an obstacle in Ht,w then it is a t-star obstacle (t,C ′). By t /∈ {u, v} and (5.14a)
in Hu,v, dH(s, t) is odd. Hence, by (5.14a) in Ht,w, w = t. Thus (t,C ′) is a
t-star obstacle in H, a contradiction.

Now we are in the position to prove our main result that characterizes the
existence of a complete admissible splitting-off.

Proof of Theorem 5.7. Suppose there exists an obstacle (t,C) at s. By (5.14a),
every sequence of 12dH(s) splitting-off of disjoint pairs at s contains a pair
(st, su) with u ∈ NH(s) \ {t}. As we noticed after the definition of an obstacle,
such a pair is not admissible. Hence there exists no admissible complete
splitting-off at s.

Now, we prove, by induction on dH(s), that if there exists no obstacle at
s, then there exists an admissible complete splitting-off at s. For dH(s) = 2,
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the only splitting-off is obviously admissible. Suppose dH(s) = 4 and there
exists no obstacle at s. By Theorem 5.8, there exists an admissible splitting-off
(su, sv) at s. Since the only possible splitting-off in Hu,v is admissible, there
exists an admissible complete splitting-off at s in H.

Now suppose that the theorem is true for dH ′(s) = 2` and ` > 2. Let
H = (V + s,E) be a (2k,k)-connected graph in V such that dH(s) = 2`+ 2 > 6
and there exists no obstacle at s. By Theorem 5.8, there exists an admissible
splitting-off (su, sv) at s. If there exists no obstacle at s in Hu,v, then, by
induction, there exists an admissible complete splitting-off at s and we are
done. So we may assume that there exists a t-star obstacle at s in Hu,v. Since
there exists no obstacle at s in H, if case (b) of Lemma 5.6 occurs then there
exists some admissible pair (st, sw) in H such that there exists no obstacle at
s in Ht,w. Thus, by induction, there exists a complete splitting at s in H and
we are done. So we may assume that case (a) of Lemma 5.6 occurs and we
consider Ht,t that is (2k,k)-connected in V . If there exists an obstacle (t ′,C ′)
at s in Ht,t, for the same reason as above, case (a) of Lemma 5.6 occurs.
Hence t = t ′ and (t,C ′) is an obstacle in H, a contradiction.

As we shall see in Subsection 5.3.6, having a polynomial time algorithm
that provides either an obstacle or a complete admissible splitting-off at s
would have an interesting application. However deriving such an algorithm
from the proof of Theorem 5.7 does not seem straightforward.

Testing whether a given splitting-off is admissible can be done in polyno-
mial time since this reduces to checking the (2k,k)-connectivity of a graph.
The difficulty arises from the fact that there may exist an obstacle in the
graph resulting from an admissible splitting-off (see Lemma 5.6). Hence a
sequence of consecutive admissible splitting-off may result in a graph with
no admissible splitting-off at s. Finding an algorithm that bounds (with a
polynomial upper bound) the number of such sequences that are explored
during the search for a complete splitting-off is not obvious.

5.3.5 Construction of (2k, k)-Connected Graphs

In this section we provide a construction of the family of (2k,k)-connected
graphs for k even. The special case k = 2 has been previously proved by
Jordán [41].

We need the following extension of Lemma 5.1 of [41] for k even. Let
G = (V ,E) be a (2k,k)-connected graph, s a vertex of degree even, (t,C) and
(t,C ′) two obstacles at s. We say that (t,C) is a refinement of (t,C ′) if there
exists X ′ ∈ C ′ such that X v X ′ for all X ∈ C. An obstacle that has no proper
refinement is called finest.

Lemma 5.7. Let G = (V ,E) be a (2k,k)-connected graph with k even. Let s be
a vertex of degree 2k and (t,C) a finest obstacle at s. Let X ∈ C, s ′ a vertex in
XI of degree 2k and (t ′,C ′) an obstacle at s ′. Then there exists X ′ ∈ C ′ such that
X ′I ⊆ XI.

Proof. By contradiction assume that the lemma is false.
Suppose t ′ ∈ XI. By assumption there exists Y ′ ∈ C ′ such that Y ′I \XI 6= ∅.

Suppose that t /∈ Y ′I, then Xu Y ′ is non-trivial and |wb(Xt Y ′)| = |{t, t ′}| = 2.
Hence, by (5.10) and since X and Y ′ are tight, we have 0 + 0 > db

G(X t
Y ′) > dG(s

′, Y ′I) > 1, a contradiction. Hence, t ∈ Y ′I. Now suppose that
XO ∪ Y ′O 6= V that is Xu Y ′ is non-trivial. We have wb(Xt Y ′) = |{t, t ′}| = 2,
then, by (5.10) and since X and Y ′ are tight, we have 0+ 0 > dG(Y ′I ∩XI, Y ′O ∩
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XO) + d
b
G(X t Y ′) > dG(s

′, Y ′I) > 1, a contradiction. Hence, Y ′O ∪ XO = V ,
and, for all X ′ ∈ C ′ − Y ′, X ′I ⊆ XI, a contradiction. Hence we proved t ′ /∈ XI.

Suppose t ′ 6= t. If t belongs to an element Z ′ ∈ C ′ then, by (5.9), dG(s ′) −
dG(s

′,Z ′I) > 2k− k = db
G(X). Hence there exists Y ′ ∈ C ′ with Y ′I ∩ XI 6= ∅

and t /∈ Y ′I. Thus Xu Y ′ is non-trivial and |wb(Xt Y ′)| = |{t, t ′}| = 2. Since X
and Y ′ are both tight, by (5.10) and (5.14a), 0+ 0 > dG(XO ∩ Y ′O,XI ∩ Y ′I) >
dG(t

′, s ′) > 1, a contradiction. Hence we proved that t = t ′.
By (2k,k)-connectivity of G and dG(s

′) = 2k, dG(s ′, t) 6 k. Thus, by
(5.14a) and k even, dG(s ′, t) < k. Hence dG(s ′)−dG(s ′, t) > 2k− k = db

G(X)

and there exists Y ′ ∈ C ′ with Y ′I ∩ XI 6= ∅. By |C ′| > 3 and assumption,
X t Y ′,X u Y ′ and X u Y ′ = Xt Y ′ are non-trivial, thus, by Fact 2.3, X u Y ′
and Xu Y ′ are tight bi-sets with wall t. Thus, in C, X can be replaced by the
bi-sets among Xu Y ′ and Xu Y ′ which contain at least one neighbor of s in
their inner-set. Hence, (t,C) is not a finest obstacle at s, a contradiction.

We can now describe and prove the construction of the family of (2k,k)-
connected graphs. We denote by kK3 the graph on 3 vertices where each pair
of vertices is connected by k parallel edges. Note that kK3 is (2k,k)-connected
and it is the only minimally (2k, k)-connected graph on 3 vertices.

Theorem 5.9. A graph G is (2k,k)-connected with k even if and only if G can be
obtained from kK3 by a sequence of the following operations:

(a) adding a new edge,

(b) pinching a set F of k edges such that, for all vertices v, dF(v) 6 k.

Proof. First we prove the sufficiency, that is these operations preserve (2k,k)-
connectivity. It is clearly true for (a). Let G ′ be a graph obtained from
a (2k,k)-connected graph G = (V ,E) by the operation (b) and call s the
new vertex. We must show that for every non-trivial bi-set X of V + s, we
have fb

G ′(X) > 2k. If X is a non-trivial bi-set of V then s /∈ XO and, by
(2k,k)-connectivity of G, fb

G ′(X) = d
b
G ′(X) + k|w

b(X)| > db
G(X) + k|w

b(X)| =

fb
G(X) > 2k. So, by symmetry of fb

G ′ , we may assume that XI = {s} or
wb(X) = {s}. If XI = {s} then, by dG ′(s) = 2k and dF(wb(X)) 6 k, we have
fb
G ′(X) = db

G ′(X) + k|w
b(X)| = dG ′(s) − dG ′(s,wb(X)) + k|wb(X)| = dG ′(s) −

dF(w
b(X)) + k|wb(X)| > 2k. If wb(X) = {s} then ∅ 6= XI 6= V . Hence, by

(2k,k)-connectivity of G and |F| = k, we have fb
G ′(X) = d

b
G ′(X) + k|w

b(X)| =

dG(XI) − dF(XI) + k > dG(XI) − |F|+ k > 2k.

To see the necessity, let G be a (2k,k)-connected graph with at least 4
vertices. Note that the inverse operation of (a) is deleting an edge and that of
(b) is a complete splitting-off at a vertex s of degree 2k such that dG(s, v) 6 k
for all v ∈ V . Note also that these inverse operations must preserve (2k,k)-
connectivity. Thus we may assume that, on the one hand, G is minimally
(2k,k)-connected and hence, by Lemma 5.2, G contains a vertex of degree 2k,
and, on the other hand, for every such vertex u, there exists no admissible
complete splitting-off at u, that is, by Theorem 5.7, there exists an obstacle at
u.

We choose in {(u, (t,C),X) : dG(u) = 2k, (t,C) a finest obstacle at u, X ∈ C}

a triple (u∗, (t∗,C∗),X∗) with X∗ minimal for inclusion. By Lemma 5.2, there
exists a vertex u ′ of degree 2k in X∗I . Then, as we have seen, there exists a
finest obstacle (t ′,C ′) at u ′. By Lemma 5.7, there exists X ′ ∈ C ′ such that
X ′I ⊆ X

∗
I . Since X ′I ∪ u ⊆ X

∗
I , the triple (u ′, (t ′,C ′),X ′) contradicts the choice

of (u∗, (t∗,C∗),X∗).
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We mention that the condition k even is necessary in Lemma 5.7 and
Theorem 5.9. Consider the graph obtained from K4 by adding a new vertex t
and 3 edges between t and each vertex of K4 (see Figure 16). This graph is
minimally (6, 3)-connected but there exists no complete admissible splitting-
off at any of the 4 vertices of degree 6. Indeed, if s,a,b, c denote the vertices
of degree 6, then {({a, t}, {a}), ({b, t}, {b}), ({c, t}, {c})}, is a t-star obstacle at s.

a b

cs

t

3 3

33

Figure 16: A minimally (6, 3)-connected graph that has no admissible complete split-
ting at any vertex of degree 6.

5.3.6 Augmentation

Augmenting the connectivity of a graph means adding a minimum number
of new edges such that the resulting graph satisfies a given connectivity
requirement. Regarding global edge-connectivity, Watanabe and Nakamura
[71] gave a polynomial time algorithm that solves the problem and then
Cai and Sun [4] gave a min-max formulation. Frank [23] developed a new
approach based on the spitting-off operation to address this problem as well
as the augmentation problem for local edge-connectivity.

For local vertex-connectivity the problem turns to be NP-complete [59] and
augmenting global vertex-connectivity remains an open problem. However,
the particular case of 2-vertex-connectivity is solved independently by Plesnik
[63] and Eswaran and Tarjan [17]. Furthermore Végh [70] showed how to
augment the vertex-connectivity by one by adding a minimum number of
edges.

In this section, we answer the following question for k > 2: given a graph
what is the minimum number of edges to be added to make it (2k,k)-
connected. For k = 1, the problem reduces to the 2-vertex-connectivity.
However, we have no polynomial time algorithm to find this minimum set of
edges since our approach is based on finding a complete admissible splitting-
off (a problem for which we did not develop a polynomial time algorithm).

We shall need the following definitions. Let G = (V ,E) be a graph and k
an integer. An s-extension of G is a graph H = (V + s,E∪ F) where F is a set
of edges between V and the new vertex s. The size of an s-extension of G is
defined by |F|.

We mimic the approach of Frank [24] for the augmentation problem: first
we prove a result on minimal extensions and then, by applying our splitting-
off theorem, we get a result on minimal augmentation.

Lemma 5.8. Let G = (V ,E) be a graph and k an integer. The minimal size of an s-
extension ofG that is (2k,k)-connected in V is equal to max

{∑
X∈X(2k− f

b
G(X))

}
where X is a family of non-trivial pairwise innerly-disjoint bi-sets of V .
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Proof. If H ′ = (V + s,E∪ F ′) is an s-extension of G that is (2k,k)-connected
in V and X ′ is an arbitrary family of non-trivial pairwise innerly-disjoint
bi-sets of V then

∑
X ′∈X ′(2k − fb

G(X
′)) 6

∑
X ′∈X ′(f

b
H ′(X

′) − fb
G(X

′)) =∑
X ′∈X ′ d

b
(V+s,F ′)(X

′) 6 |F ′|. This shows that max 6 min.
To prove that equality holds, we provide a family X of non-trivial pairwise

innerly-disjoint bi-sets of V and an s-extension of G that is (2k,k)-connected
in V of size

∑
X∈X(2k− f

b
G(X)). We consider the s-extension of G whose set

of new edges consists of maxX(2k− fb
G(X)) parallel edges sv, for each v ∈ V .

This extension is obviously (2k,k)-connected in V . Then we remove as many
new edges as possible without destroying the (2k,k)-connectivity in V . Let
us denote by F the set of remaining edges and H = (V + s,E ∪ F). In H, by
minimality of F, for each e ∈ F, there exists a tight bi-set of V entered by e.
Let X be a family of non-trivial tight bi-sets of V such that

each edge of F enters at least one element of X and (5.17)∑
X∈X |XI| is minimal. (5.18)

Claim 5.11. The elements of X are pairwise innerly-disjoint.

Proof. Note that, the degree of each tight bi-set X in X is at least one thus
|wb(X)| 6 1. Suppose there exist two distinct elements X and Y in X such
XI ∩ YI 6= ∅, that is Xu Y is a non-trivial bi-set of V .

If X t Y is a non-trivial bi-set of V then, by (2k,k)-connectivity in V of
H, tightness of X and Y and Fact 2.3, Xt Y is tight. Since all the edges of F
entering XI or YI enters (Xt Y)I, the family obtained from X by substituting
X t Y for X and Y satisfies (5.17) and, by XI ∩ YI 6= ∅, contradicts (5.18). So
XO ∪ YO = V .

If Xu Y and Xu Y are non-trivial bi-sets of V then, by (2k,k)-connectivity
in V of H, tightness of X and Y and Fact 2.3, both Xu Y and Xu Y are tight
and dH(XO ∩ YI,XI ∩ YO) = dH(YI ∩XO, YO ∩XI) = 0. Hence all the edges
of F entering XI or YI enters (Xu Y)I or (Xu Y)I. Thus the family obtained
from X by substituting X u Y and X u Y for X and Y satisfies (5.17) and,
by XI ∩ YI 6= ∅, contradicts (5.18). So, by symmetry, we may assume that
XI ⊆ YO.

We have NH(s)∩XI * YI otherwise X−X satisfies (5.17) and contradicts
the minimality of X. Thus, by XI ⊆ YO, dH(s,wb(Y)) > 1 and, since XO ∪
YO = V and Y is non-trivial, wb(X) \ YO = XO \ YO = (XO ∪ YO) \ YO =

V \ YO is non-empty. So |wb(Xt Y)| > 2.
For the same reason as above, NH(s)∩ YI * XI. Thus, by |wb(X)| 6 1 and

wb(X) \ YO 6= ∅, the set YI \ XO = YI \ XI contains a neighbor of s, that is
Xu Y is non-trivial. Thus, by symmetry of fb

H, tightness of X and Y and (5.10),
we have the following contradiction 0+ 0 = (fb

H(X) − 2k) + (fb
H(Y) − 2k) >

dH(XI ∩ YO,XO ∩ YI) > dH(s,wb(Y)) > 1.

By Claim 5.11, (5.17) and by tightness of the elements of X, we have |F| =∑
X∈X d

b
(V+s,F)(X) =

∑
X∈X(f

b
H(X) − f

b
G(X)) =

∑
X∈X(2k− f

b
G(X)).

The augmentation theorem goes as follows.

Theorem 5.10. Let G = (V ,E) be a graph and k > 2 an integer. The minimum
cardinality γ of a set F of edges such that (V ,E∪ F) is (2k,k)-connected is equal to

α =

⌈
1

2
max

{∑
X∈X

(2k− fb
G(X))

}⌉
,

where X is a family of non-trivial pairwise innerly-disjoint bi-sets of V .
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Proof. We first prove γ > α. Let X be a family of non-trivial bi-sets of V such
that the elements of X are pairwise innerly-disjoint. For each X ∈ X, we must
add at least 2k− fb

G(X) new edges entering the bi-set X when this quantity
is positive. Since the elements of X are pairwise innerly-disjoint, a new edge
may enter at most 2 elements of X. Hence 2γ >

∑
X∈X(2k− f

b
G(X)).

We now prove γ 6 α. By Lemma 5.8, there exists an s-extension H =

(V + s,E∪ F) of G that is (2k,k)-connected in V and a family X of non-trivial
pairwise innerly-disjoint bi-sets of V such that

|F| =
∑
X∈X

(2k− fb
G(X)).

If |F| is odd, then there exists a vertex u ∈ V such that dH(s,u) is odd, in this
case, let F ′ = F∪ su otherwise let F ′ = F. So, in the graph H ′ = (V ∪ s,E∪ F ′),
dH ′(s) is even. Suppose there exists an obstacle (t,C) at s. By Claim 5.16,
H ′ − st is (2k,k)-connected in V . If H = H ′ this contradicts the minimality
of |F|. Then dH(s) is odd and F ′ = F+ su for some vertex u ∈ V such that
dH(s,u) is odd. If u ∈ XI for some X ∈ C, then we have fH(X) = fH ′(X)− 1 =
2k− 1, a contradiction to the (2k,k)-connectivity of H. Thus, by (5.14e), u = t

and hence dH ′(s, t) = dH(s, t) + 1 is even which contradicts (5.14a). Hence,
by Theorem 5.7, there exists an admissible complete splitting-off at s in H ′.
Let us denote by F ′′ the set of edges obtained by this complete splitting-off.
Then (V ,E∪ F ′′) is (2k, k)-connected and

|F ′′| =
1

2
|F ′| =

⌈
1

2
|F|

⌉
=

⌈
1

2

∑
X∈X

(2k− fb
G(X))

⌉
.

This proves γ 6 α.

Following the above proof, having a polynomial time algorithm that finds
a complete admissible splitting-off when it exists would Developping an
algorithm that finds a set F of edges such that (V ,E∪ F) is (2k,k)-connected
in polynomial time
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In this chapter we disprove Conjectures 5.2 and 5.3 of Frank. Moreover,
we show that, given k > 3, the problem of deciding whether a graph has
a k-vertex-connected orientation and the problem of deciding whether a
graph has a rooted k-vertex-connected orientation at a given vertex are both
NP-complete. This work has been conducted when I was visiting University
of Waterloo. The material of this section is from [6].

6.1 preliminaries

In this section we provide tools that are used to prove connectivity properties.
In all this section G = (V ,E) is a graph, D = (V ,A) is a digraph and k is a
positive integer.

First, we extend the definitions of fans and difans introduced in Section
2.2. For U ⊂ V , a pair of paths of G (resp. dipaths of D) is called U-disjoint if
each vertex of U is contained in at most one path (resp. dipath). Let X and Y
be two disjoint vertex sets. A k-fan joining X and Y (resp. a k-difan from X to Y)
is a set of k pairwise U-disjoint paths joining X and Y (resp. dipaths from X

to Y) where U is defined by

U =


V \ (X∪ Y) if |X| = |Y| = 1,

V \X if |X| = 1 and |Y| > 1,

V \ Y if |Y| = 1 and |X| > 1,

V if |X| > 1 and |Y| > 1.

We recall, from Subsection 2.2.4, that the weak 2k-connectivity, the mixed
(2k, 2)-connectivity and the g-bounded 2k-connectivity where g = 2 coincide
and, two vertices are weakly 2k-connected if there exists 2 edge-disjoint
k-fans joining them. In G, a set of vertices is called weakly 2k-connected if
every pair of vertices contained in this set is weakly 2k-connected. We do
not prove the following statements that derive from Theorem 2.2. If X is a
weakly 2k-connected set of at least k vertices and v is a vertex in V \X such
that there exist 2 edge-disjoint k-fans joining v and X then X ∪ v is weakly
2k-connected. If X and Y are two disjoint weakly 2k-connected sets each of
at least k vertices such that there exist 2 edge-disjoint k-fans joining X and Y
then X∪ Y is weakly 2k-connected.

As for graphs, in digraphs the existence of k-difans proves k-vertex-
connectivity. In D, a set of vertices is called k-vertex-connected if for every pair
of vertices u, v of this set there exist a k-difan from u to v and a k-difan from
v to u. Again the following statements are direct corollaries of of Theorem 2.3.
If X is a k-vertex-connected set of at least k vertices and v is a vertex in V \X

such that there exist a k-difan from X to u and a k-difan from u to X then
X∪ v is k-vertex-connected. If X and Y are two disjoint k-vertex-connected
sets each of at least k vertices such that there exist a k-difan from X to Y and
a k-difan from Y to X then X∪ Y is k-vertex-connected.

The constructions in this chapter are based on the following easy observa-
tion deriving from Theorem 2.3.

77
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Fact 6.1. Let G = (V ,E) be a graph and S, T two disjoint sets of vertices such that
|T | = k− 1 and S∪ T 6= V . Then for any k-vertex-connected orientation D of G, in
D− T , at least one arc enters S and at least one arc leaves S.

Fact 6.2. Let G = (V ,E) be a graph and P a path of simple edges such that each
inner vertex v of P satisfies

dG(v) = 2k and (6.1)

v has exactly k+ 1 neighbors. (6.2)

Then in any k-vertex-connected orientation of G the orientation of the edges of P
results in a dipath.

Note that this fact holds also for cycles considered as closed paths where
every vertex is an inner-vertex. The next results is well known [1] and can be
proved by induction.

Proposition 6.1. For every positive integer k the complete graph on 2k+ 1 vertices
K2k+1 has a k-vertex-connected orientation.

6.2 global vertex-connectivity

6.2.1 Counterexamples

First, we disprove Conjecture 5.2 for k = 3, and then, we extend the construc-
tion to higher connectivity. For k = 3, the graph G3 defined in Figure 17 is
claimed to be a counterexample.

uata

va wa

x

ub tb

vbwb

y

A

B

Figure 17: The graph G3. Every thick and red edge represents a pair of parallel edges
and black edges represent simple edges.

Proposition 6.2. The graphG3 is weakly 6-connected and has no 3-vertex-connected
orientation.

Proof. First we show that G3 is weakly 6-connected. Observe that there exist
2 edge-disjoint 3-fans joining any pair of vertices in A \wa. Then, note that
there exist 2 edge-disjoint 3-fans joining wa and A \wa. Hence A is weakly
6-connected. Symmetrically, B is also weakly 6-connected. There exist 2 edge-
disjoint 3-fans joining A and B so A∪B is weakly 6-connected. There exists 2
edge-disjoint 3-fans joining x (resp. y) and A∪B. It follows that G3 is weakly
6-connected.

Suppose for a contradiction that G3 has a 3-vertex-connected orientation
D. Since each vertex of the path P = vawbyxwavb satisfies (6.1) and (6.2)
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for k = 3 and, by Fact 6.2, the orientation in D of the edges of P results in a
directed path from va to vb or from vb to va. In particular, both vawb and
vbwa are directed from A to B or from B to A. In both cases D− {x,y} is not
strongly connected, a contradiction.

Szigeti observed that G3 is not a minimal counterexample. Indeed, the
graphH3 obtained fromG3 by deleting the two vertices ta and tb and adding
the new edges uava, vay, yua, ubvb, vbx and xub is weakly 6-connected but
has no 3-vertex-connected orientation (see Figure 18). (Suppose that H3 has a
3-vertex-connected orientationD. Then, by Fact 6.2, inD the orientation of the
edges of the two triangles vaywb and vbxwa results in circuits. Considering
the cut {x,y}, we see that these circuits must be either both clockwise or both
counterclockwise, say clockwise. Hence, by Fact 6.2, in D the orientation of
the path uayxub results in a dipath from ua to ub or from ub to ua. In the
first case D− {y, vb} is not strongly connected, in the other case D− {x, va} is
not strongly connected.)

ua

va wa

x

ub

vbwb

y

Figure 18: The graph H3. A weakly 6-connected graph having no 3-vertex-connected
orientation.

We now extend the construction of counterexamples to higher connectivity.
Let k > 4 be an integer. We define the graph Gk = (V ,E) as follows (see
Figure 19). Let n > max{2k+ 1, 3k− 4} be an odd integer. Let A and B be
two sets of n vertices such that |A∩B| = k− 3. The vertex set V is the union
of A, B and 4 new vertices w, x,y and z. Now we add edges such that each
of A and B induces a complete simple graph and we add pairs of parallel
edges between vertices in (A∪B) \ (A∩B) and {w, x,y, z} such that

each vertex of A∪B is incident to at most one pair of parallel edges,

dGk(w,A) = dGk(z,B) = 2k− 2,

dGk(y,A) = dGk(x,B) = 2 and

dGk(x,A) = dGk(y,B) = 2k− 4.

Since n > 3k− 4, this is possible and we can also choose a ∈ A \ B and
b ∈ B \A such that neither a nor b is a neighbor of {w, x,y, z}. We conclude
the construction by adding the path P = azyxwb.

Proposition 6.3. Let k > 4 be an integer. The graph Gk = (V ,E) is weakly 2k-
connected and there exists F ⊂ E such that doubling each edge in F results in an
Eulerian graph that has no k-vertex-connected orientation.

Proof. Since n > 2k + 1 both of the complete graphs induced by A and
B are weakly 2k-connected. Note that there exist 2 edge-disjoint k-fans
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a

z

y x

w

b

A

B

Figure 19: G4 every thick and red edge represents a pair of parallel edges and black
edges represent simple edges.

joining A and B \A (one uses (A∩B)∪ {w, x,y} the other one uses (A∩B)∪
{x,y, z}), thus A ∪ B is weakly 2k-connected. Note also that, for any vertex
v ∈ {w, x,y, z}, there exist 2 edge-disjoint k-fans joining v and A∪B. Hence,
Gk is weakly 2k-connected.

Since n is odd each vertex in A \ (B ∪ a) or B \ (A ∪ b) or {w, x,y, z} has
even degree. Pick arbitrarily a vertex c ∈ (A∩B). We define F as the union of
{ac, cb} and, if the degree of the vertices in A∩B is odd, a perfect matching
of A∩B.

Suppose for a contradiction that Gk + F has a k-vertex-connected orien-
tation D. By Fact 6.2, since each inner vertex of P satisfies (6.1) and (6.2),
the orientation of the edges P results in the dipath azyxwb or the dipath
bwxyza. In both cases, D− ((A ∩ B) ∪ {x,y}) is not strongly connected, a
contradiction.

6.2.2 NP-completeness

In this section we prove the following result.

Theorem 6.1. Let k > 3 be an integer. Deciding whether a graph has a k-vertex-
connected orientation is NP-complete. This holds also for Eulerian graphs.

A reorientation of a digraph D is a digraph obtained from D by reversing
a subset of arcs. Obviously, the problem of finding a k-vertex-connected
orientation of a graph and the problem of finding a k-vertex-connected
reorientation of a digraph are equivalent. For convenience we prove the
NP-completeness of the second problem by giving a reduction from the
problem of Not-All-Equal 3-Sat which is known to be NP-complete [66].

Actually in this Chapter we consider a slight variation of the classic Not-
All-Equal 3-Sat defined in Subsection 4.1.3. In this classic version each
clause consists of three non-negated variables and an assignment true-false
of the variables satisfies the instance if and only if each clause contains both
a true and a false value. Here we consider that the clauses may contain
negated variables. Obviously this preserves the NP-completeness of the
problem and this will enables us to use the same construction for the rooted
vertex-connected orientation problem.

Let Π be an instance of Not-All-Equal 3-Sat and let k > 3 be an integer.
We define a directed graph Dk = Dk(Π) = (V ,A) satisfying the following
fact.
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Claim 6.1. There exists a k-vertex-connected reorientation of Dk if an only if there
is an assignment of the variables which satisfies Π.

The construction of Dk associates to each variable x a circuit ∆x and to
each pair (C, x), where x is a variable that appears in the clause C, a special
arc eCx (see Figure 20). A reorientation of Dk is called consistent if, for each
variable x, the orientations of the special arcs of type eCx and the circuit ∆x are
either all preserved or all reversed. A consistent reorientation of Dk defines
a natural assignment of the variables in which a variable x receives value true
if ∆x is preserved and false if ∆x is reversed.

tCx vCx uCx tC
′

x vC
′

x uC
′

x tCy vCy uCy tC
′

y vC
′

y uC
′

y tCz vCz uCz tC
′

z vC
′

z uC
′

z

wC wC ′

∆x ∆y ∆z

eCx

eCy
eCzeC

′
x

eC
′

y
eC

′
z

Figure 20: Representation of the circuits and the special arcs of D3(Π) where Π is
composed of the clauses C = (x, y, z) and C ′ = (x, y, z). The dashed boxes
represent the clause-variable gadgets.

For each clause C we construct a C-gadget (see Figure 21 (a)) that uses the
special arcs associated to C and a vertex wC. The following property will
result from the C-gadgets.

Proposition 6.4. Let D ′ be a consistent reorientation of Dk and Ω the natural
assignment defined by D ′. Then Ω satisfies Π if and only if, for each clause C, there
exist at least one special arc entering wC and at least one special arc leaving wC.

For each pair (C, x) where C is a clause and x is a variable that appears in
C we define a (C, x)-gadget (see Figure 21 (b)) which links the orientation of
∆x to the orientation of eCx . We will prove the following fact.

Proposition 6.5. Every k-vertex-connected reorientation of Dk is consistent.

Let L be a set of k− 1 vertices. We construct a clause gadget as follows.
For a clause C composed of the variables x, y and z we add the vertices
wC,uC

x ,uC
y ,uC

z . We add arcs such that L ∪wC induces a complete digraph.
We add the special arc uC

xw
C if x ∈ C and the special arc wCuC

x if x ∈ C.
This special arc is denoted by eCx . We define similarly the special arcs eCy and
eCz . This ends the construction of the C-gadget. Let W denote the set of all
vertices of type wC.

Let M be a set of k− 2 new vertices and choose arbitrarily one vertex
m ∈M. For each pair (C, x) where C is a clause and x is a variable that appears
in C we add the new vertices tCx , t ′Cx , vCx and denote UC

x a set containing uC
x

and 2k new vertices. In UC
x \uC

x we choose two vertices u ′Cx and u ′′Cx and a set
AC

x of k− 1 vertices. We add arcs such that UC
x induces a k-vertex-connected

digraph (Proposition 6.1), k− 2 vertex-disjoint arcs from M to AC
x and k− 2

vertex-disjoint arcs from AC
x to M. We add pairs of opposed arcs between the

pairs of vertices (tCx , t ′Cx ), (tCx ,u ′′Cx ), (vCx ,u ′Cx ), (vCx ,u ′′Cx ) and the pairs of type
(tCx ,m ′) and (vCx ,m ′) for each m ′ ∈M \m. Note that, so far, the undirected
degree of tCx and vCx is 2k− 2. We add an arc vCx tCx if x ∈ C and an arc tCx vCx if
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wC

uC
yuC

x uC
z

eCy
eCx eCz

L

(a)

u ′C
x uC

xu ′′C
x

vCx

tCx

t ′Cx m

wC
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x

N
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Figure 21: (a) A clause gadget for k = 3 and C = (x, y, z). (b) A (C, x)-gadget for k = 3.
In both pictures, each red and thick edge represents a pair of opposed arcs.

x ∈ C. Call this arc fCx . The definition of the (C, x)-gadget is concluded by the
following definition of the circuit ∆x.

For each variable x add arcs such that the set of vertices of type tCx and vCx
induce a circuit ∆x that traverses (in arbitrary order) all the (C, x)-gadgets
where C is a clause containing x. In this circuit connect a (C, x)-gadget to the
next (C ′, x)-gadget by adding an arc leaving the head of fCx and entering the
tail of fC

′
x (see Figure 20). Note that now the undirected degree of tCx and vx

is 2k.
We denote by N the union of L, M and all the vertices of type t ′Cx . By

adding new vertices in N if necessary, we may assume that |N| is odd and
larger that 2k. To conclude the definition of Dk we add arcs such that N
induces a k-vertex-connected digraph (Proposition 6.1).

The proof of Proposition 6.4 follows from the definition of the C-gadgets.

Proof of Proposition 6.4. Let eCx be a special arc associated to a clause C and
a variable x. In D ′, the arc eCx enters wC if and only if either x ∈ C and eCx
had been preserved that is x = true or x ∈ C and eCx has been reversed that is
x = false. Hence eCx enters wC if and only if the variable x brings to C a value
true. Thus C is satisfied if and only if there exist a special arc entering wC

and a special arc leaving wC.

The proof of Proposition 6.5 follows from the definition of the (C, x)-
gadgets.

Proof of Proposition 6.5. Let D ′ be a k-vertex-connected reorientation of Dk
and let x be a variable. Observe that each vertex incident to ∆x satisfies (6.1)
and (6.2) in the underlying undirected graph. Hence, by Fact 6.2, ∆x is either
preserved or reversed. Let C be a clause in which x appears. In D ′ − (M∪ tCx )
exactly one arc enters UC

x ∪ vCx and exactly one arc leaves UC
x ∪ vCx (see Figure

21 (b)). One of these arcs belongs to ∆x and the other is the special arc eCx .
Hence, by k-vertex-connectivity of D ′, eCx is reversed if and only if ∆x is
reversed.

The following fact derives easily from the definition of Dk. We recall that
W is the set of vertices of type wC.
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Proposition 6.6. Let D ′ be a consistent reorientation of Dk such that the orienta-
tion of each non special arc that belongs to no circuit of type ∆x is preserved. Then
the set V \W is k-vertex-connected in D ′.

Proof. Let C be a clause and x be a variable that appears in C. Without loss of
generality we may assume that x appears in an other clause C ′. The circuit
∆x contains a dipath from (resp. to) tCx to (resp. from) t ′C

′
x that is disjoint

from M∪ t ′Cx . Hence N∪ tCx is k-vertex-connected.
Since D ′ is consistent, we may assume without loss of generality that eCx

leaves uC
x and fCx leaves vCx (see figure 21 (b)). Observe that there is a k-difan

from M∪ t ′C ′x ∪ tCx to UC
x (the dipath from t ′C

′
x uses arcs of ∆x and vCx ) and a

k-difan from UC
x to M∪ tCx ∪ L (the dipath to L uses the arc eCx ). Hence, since

M and L are subsets of N, N∪ tCx ∪UC
x is k-vertex-connected. The circuit ∆x

contains a dipath from (resp. to) vCx to (resp. from) tCx that is disjoint from
M∪UC

x . Hence N∪ tCx ∪UC
x ∪ vCx is k-vertex-connected and the proposition

follows.

We can now prove Claim 6.1.

Proof of Claim 6.1. Let D ′ be a k-vertex-connected reorientation of Dk. By
Proposition 6.5, D ′ is consistent and defines a natural assignment Ω. By Fact
6.1 in D ′− L one special arc enters wC and one special arc leaves wC for each
clause C. Thus, by Proposition 6.4, Ω is satisfies Π.

Let Ω be an assignment of the variables that satisfies Π. Call D ′ the
reorientation of Dk obtained by reversing the circuit ∆x and the special arcs
eCx for each variable x assigned false. By Proposition 6.6, V \W is k-vertex-
connected in D ′. By Proposition 6.4, for each clause C, there are a special arc
enteringwC and a special arc leavingwC, henceD ′ is k-vertex-connected.

Denote by G ′k = G ′k(Π) the underlying undirected graph of Dk(Π). We
can now prove the main theorem of this section.

Proof of Theorem 6.1. By Claim 6.1, G ′k(Π) has a k-vertex-connected orienta-
tion if and only if there exists an assignment satisfying Π. Since the order
of G ′(Π) is a linear function of the size of Π and Not-All-Equal 3-Sat is
NP-complete (Theorem 4.6) this proves the first part of Theorem 6.1.

Observe that in G ′k the only vertices of odd degree are of type uC
x and

wC. Let l be an arbitrary vertex of L. We can add a set F of edges of type
uC

xm,ml, lwC such that G ′k + F is Eulerian. Observe that for any orientation
of F, Claim 6.1 still hold for Dk + F. This proves the second part of Theorem
6.1.

The following fact shows that G ′k(Π) is a counterexample to Conjecture
5.2 if Π is not satisfiable.

Proposition 6.7. The graph G ′k(Π) is weakly 2k-vertex-connected.

Proof. By Proposition 6.6, V \W is k-vertex-connected in Dk, thus V \W is
weakly 2k-connected in G ′k. Since there exist 2 edge-disjoint k-fans from wC

to V \W for every clause C, G ′k is weakly 2k-connected.

We now construct an Eulerian counterexample to Conjecture 5.2 for k = 3.
Let x be a variable and C = (x, x) be a clause. Let H ′3 be the Eulerian graph
obtained from G ′3({C}) by adding an edge uC

xm in each of the two copies of
the (C, x)-gadget. The next result follows from the discussion above.

Proposition 6.8. H ′3 is an Eulerian weakly 6-connected graph that has no 3-vertex-
connected orientation.
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6.3 rooted vertex-connectivity

In this section we mimic the previous section to prove the following result
and derive a counterexample to Conjecture 5.3.

Theorem 6.2. Let k > 3 be an integer. Deciding whether a rooted graph has rooted
k-vertex-connected orientation at given vertex is NP-complete.

The proof of Theorem 6.2 follows the proof of Theorem 6.1 and relies on
reducing the problem of 3-Sat to the problem of finding a rooted k-vertex-
connected reorientation of a digraph. Let Π be an instance of 3-Sat and
k > 3 be an integer. Recall the digraph Dk(Π) defined in subsection 6.2.2.
We define Drk(Π) = (V ,A) as the digraph obtained from Dk(Π) by adding
the root vertex r and an arc rv for each v ∈ N. In the rest of this chapter all
the rooted reorientation of Drk are considered rooted at r. A reorientation of
Drk(Π) is called consistent if it induces a consistent reorientation of Dk(Π).
The proof of the following result is very similar to the proof of Claim 6.1.

Claim 6.2. There exists a rooted k-vertex-connected reorientation of Drk if and only
if there is an assignment of the variables which satisfies Π.

The proof of the following fact is very similar to the proof of Proposition
6.4 and is skipped.

Proposition 6.9. Let D ′ be a consistent reorientation of Drk and Ω the natural
assignment defined by D ′. Then Ω satisfies Π if and only if, for each clause C, there
exists at least one special arc entering wC.

The following result is a direct corollary of Proposition 6.6.

Proposition 6.10. Let D ′ be a consistent reorientation of Drk such that the orienta-
tion of each non special arcs that belongs to no circuit of type ∆x is preserved. Then
the set V \W is rooted k-vertex-connected in D ′.

Proposition 6.5 does not hold anymore and is replaced by a weaker result.

Proposition 6.11. LetD ′ be a rooted k-vertex-connected reorientation ofDrk. Then,
for each clause C, ∆C is either preserved or reversed. And there exists a consistent
reorientation of D ′ such that, for each clause C, the number of special arcs entering
wC does not decrease.

Proof. Let D ′ be a rooted k-vertex-connected reorientation of Drk and let x be
a variable and v a vertex incident to ∆x. Observe that if we remove the k− 1
neighbors of v that are not incident to ∆x then only the two arcs of ∆x are
incident to v. Hence by rooted k-vertex-connectivity at least one of these arcs
enters v. Thus, since ∆x is a circuit, each vertex of ∆x is entered by exactly
one arc of ∆x in D ′, that is ∆x is either preserved or reversed.

If D ′ is not consistent choose a variable x and a clause C such that exactly
one of ∆x and eCx is preserved. In D ′ − (M∪ tCx ) exactly two arcs are incident
to UC

x ∪ vCx . One of them is the special arc eCx and the other one e belongs
to ∆x. By rooted k-vertex-connectivity and choice of x and C both e and eCx
enter UC

x . We reverse the special arc eCx . Repeat this operation to obtain a
consistent reorientation as claimed.

We can now prove Claim 6.2.

Proof of Claim 6.2. Let D ′ be a rooted k-vertex-connected reorientation of Dk.
Denote D ′′ a consistent reorientation of D ′ as in Proposition 6.11 and Ω the
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natural assignment associated to D ′′. Let C be clause, by rooted k-vertex-
connectivity of D ′ there exists at least one special arc entering wC in D ′ − L.
This property is preserved in D ′′ hence, by Proposition 6.9, Ω satisfies C.

Let Ω be an assignment of the variables that satisfies Π. Call D ′ the
consistent reorientation of Dk obtained by reversing the circuit ∆x and the
special arcs eCx for each variable x assigned false. By Proposition 6.10, V −W

is rooted k-vertex-connected in D ′. By Proposition 6.9, for each clause C,
there is a special arc entering wC. Hence D ′ is rooted k-vertex-connected.

Since the order Drk(Π) is a linear function of the size of Π, Theorem 6.2
directly derives from the NP-completeness 3-Sat and Claim 6.2.

The construction of counterexamples to Conjecture 5.3 is based on the
following observation.

Proposition 6.12. Let G be weakly 2k-connected graph and r any vertex of G.
Then (5.1) is satisfied.

Proof. By weak 2k-connectivity of G, db
G(X) > 2(k − |wb(X)|), for any bi-

set X. Thus for any family F of pairwise innerly-disjoint bi-sets eb
G(F) >

1
2

∑
X∈F d

b
G(X) >

∑
X∈F(k− |wb(X)|).

Denote by Grk(Π) the underlying undirected graph of Drk(Π). By Proposi-
tion 6.7 and |N| > 2k, Grk(Π) is weakly 2k-connected and, by Proposition 6.12,
(5.1) is satisfied. Hence if Π is not satisfiable then Grk(Π) is a counterexample
to Conjecture 5.3. For instance, the rooted graph Gr3({(x, x), (x, x)}) given in
Figure 22 is a counterexample to Conjecture 5.3 for k = 3.

r

K7 K7 K7 K7

N \ L

L

Figure 22: A graph that satisfies (5.1) for k = 3 but has no rooted 3-connected
orientation. The thick and red edges represent pairs of parallel edges and
the vertex set (N \ L)∪ L induces a complete graph.

6.4 remark on simple graphs

In Sections 6.2 and 6.3 the proofs strongly rely on the existence of vertices
satisfying (6.1) and (6.2). Such vertices do not exist in a simple graph hence
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the reader may wonder whether the results seen before still hold in the
particular case of simple graphs. In this section we answer this question
positively by explaining how the constructions seen so far can be adapted.

First we introduce the gadgets used to remove parallel edges. Given two
disjoint vertex sets A and B such that |A| > |B| > 1 an A-B-directed-connection
is a set of |B| vertex-disjoint arcs from A to B and of |B| vertex-disjoint arcs
from B to A that induces no parallel edges. Given a vertex v we define a
v-B-directed-connection as the following construction. Create a set S of 2k+ 1
new vertices that induces a k-vertex-connected digraph and add an S-(B∪ v)-
directed-connection. An A-B-connection or v-B-connection is defined as the
underlying undirected graph of a directed-connection. By Fact 6.1, in every
k-vertex-connected orientation of a graph that contains a v-B-connection
where |B| = k− 1 the two arcs between S and v have opposite directions.

6.4.1 Undirected Graphs

We use the definition of the graph family Gk given in Subsection 6.2.1. The
pairs of parallel edges incident to w are replaced by a w-Tw-connection
where Tw ⊂ A \ (B∪ a). Then the two edges w ′w, w ′′w from the connection
are removed and the edges wb and wx are replaced by the two edges w ′b
and w ′x. Finally, the vertex w is removed. Symmetrically, the edges incident
to z are replaced and z is removed. Each pair of parallel edges of type
yu such that u ∈ A (resp. u ∈ B) is replace by a y-Ty-connection where
Ty ⊂ A \ (B∪ a) (resp. Ty ⊂ B \ (A∪ b)). Symmetrically, each pair of parallel
edges incident to x is removed. We call Gsk the simple graph obtained (see
Figure 23).

The proof of the weak 2k-connectivity of Gsk is straightforward and is
skipped. Now suppose that Gsk has a k-vertex-connected orientation D. By
Fact 6.1, the edges w ′b and w ′x have opposite directions and the edges z ′a
and z ′y have opposite directions. Each pair of edges incident to y and issued
from a y-Ty-connection have opposite directions, hence by dGsk(y) = 2k, the
edges yz ′ and yx have opposite directions. Similarly, the edges xw ′ and xy
have opposite directions. Hence the orientation of the edges induced by the
path az ′yxw ′b results in a dipath and D− ((A∩B)∪ {x,y}) is not strongly
connected, a contradiction.

6.4.2 Directed Graphs

Recall the definition of Dk given in subsection 6.2.2. For each clause C, the
C-gadget is modified the following way (see Figure 24). The pairs of parallel
edges incident to wC are replaced by a wC-L-directed-connection. Then the
two arcs wCw ′C, w ′′CwC from the directed-connection are removed and wC

is replace by w ′C in the three special arcs incident to wC. Finally, the vertex
wC is removed.

Let C be a clause and x a variable that appears in C. The (C, x)-gadget is
modified the following way (see Figure 24). Since |AC

x | = k− 1 > 2 we may
assume that there is no parallel arcs between AC

x and M. Let BC
x be a subset

of UC
x disjoint from AC

x and uC
x of size k− 1. The parallel arcs incident to vCx

are replaced by a vCx -BC
x -directed-connection. Then the two arcs vCx v ′Cx , v ′′Cx vCx

from the directed-connection are removed and vCx is replaced by v ′Cx in the
two arcs of ∆x incident to vCx . Finally, the vertex vCx is removed. The parallel
arcs incident to tCx are removed and we add k − 2 tCx -(M ∪ t ′Cx )-directed-
connections and one tCx -BC

x -directed-connections.
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a

y x

b

w ′

z ′

K7

K7

K7

K7

K7

K7

A

B

Figure 23: Gs3: A simple weakly 6-connected graph that admits no 3-connected orien-
tation. The vertex sets A and B induce complete graphs.

The interested reader may check that Propositions 6.4, 6.5 and 6.6 and
Claim 6.1 hold for the digraph obtained Dk by the above alterations.
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WC
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x uC

y uC
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eCy
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N

AC
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Figure 24: On the left, a clause gadget for k = 3 and C = (x, y, z). On the right, a
(C, x)-gadget for k = 3 with no parallel arcs.



C O N C L U S I O N

Throughout this document we addressed several problems regarding the
orientation of graphs with connectivity constraints. As long as only the global
or rooted arc-connectivity is requested, there exist satisfactory methods and
algorithms to solve the problems and some variations of it. Some of these
approaches are restricted to Graph Theory but others, which use polyhedral
and submodular optimization, get into even more abstract issues.

Actually, deep results in the field of orientations of graphs enable us to de-
rive packing theorems in undirected graphs from their directed counterpart.
For instance, we deduced a recent theorem on packing matroid constrained
trees from a general orientation theorem and a result on packing matroid
constrained arborescences that we directly proved. However, we showed
that combining a packing problem and an orientation problem that are both
deeply understood may drastically rise the difficulty. Indeed, we proved that
the problem of Recski that assembles the spanning trees packing problem
and the indegree constrained orientation problem is NP-complete. The fact
that a slight alteration of the requirements may turn a simple problem into a
hard one is not surprising in Combinatorics. A classic example in the area
of packing is the problem of finding edge-disjoint Steiner trees for which
Kriesell [47] conjectured a sufficient condition: if every pair of vertices of U is
2k-edge-connected then there exist k edge-disjoint trees, each tree spanning
U. Using the strong orientation theorem of Nash-Williams this conjecture
could be deduced from its directed counterpart that we propose.

Conjecture 6.1. Let D = (V ,A) be a digraph and let U ⊆ V such that every
pair of vertices of U is k-arc-connected. Then there exist r ∈ U and k arc-disjoint
r-arborescences, each arborescence spanning U.

Concerning local arc-connectivity, the main orientation problem is algo-
rithmically solved efficiently but some variations of this problem turn out
to be NP-complete. No successful approach very different from the original
odd-pairing technique has been found and we proved that there is no hope
to extend this method to a more abstract framework.

In terms of vertex-connectivity, the problems concerning the orientation of
graphs are also challenging. There exists a characterization of graphs having
an Eulerian and 2-vertex-connected orientation that proves a very special case
of a conjecture of Frank. This characterization uses a construction of weakly 4-
connected graphs that we generalized to (2k,k)-connected graphs for k even.
For higher connectivity we gave counterexamples to the conjecture of Frank
and proved that the problem of finding a k-vertex-connected orientation is
NP-complete for k > 3. For rooted vertex-connectivity, we proved the same
statement and disproved another conjecture of Frank.

In this view, the conjecture of Thomassen stating that sufficiently highly
vertex-connected graphs have a k-vertex-connected orientation is even more
interesting. This conjecture has been settled for k = 2 by an approach based
on packing rigid spanning subgraphs and the characterization of graphs
having an Eulerian and 2-vertex-connected orientation. We improved this
result by proving a theorem on packing spanning rigid subgraphs and trees
that eventually appears to hold in the more general context of count matroids.

So far, the conjectures of Frank for the case k = 2 and Thomassen’s con-
jecture for k > 3 are still open. Having a better insight into the structure of
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k-vertex-connected digraphs may be a profitable approach to these problems.
In this area a classic problem is to decide the existence of tight vertices
in graphs and digraphs that are minimal with respect to a given connecti-
vity. We proved the existence of at least one tight vertex in the undirected
case for the g-bounded connectivity but previous works suggest a better
lower bound (Question 5.1). In the directed case, we gave a result for the
g-bounded 2-connectivity that generalizes results on 2-arc-connectivity and
2-vertex-connectivity. For higher arc-connectivity the problem is solved while
it remains open for k-vertex-connectivity if k > 3.

Hopefully, the works we conducted during the past three years will moti-
vate others to challenge the unsolved questions that concern the orientation
and the connectivity of graphs. In particular, the g-bounded k-connectivity
may be a suitable environment for proofs by induction since it provides a
very fine notion in-between vertex-connectivity, for which many essential
problems remain open, and edge/arc-connectivity, for which the equivalent
problems are solved. We tried to promote the use of bi-sets functions which
naturally arise with this connectivity notion and now we hope the reader is
convinced of their usefulness.

À travers ce document nous avons abordé plusieurs problèmes traitant
l’orientation des graphes avec des contraintes de connexité. Tant que seul
l’arc-connexité est en jeu, de façon globale ou enracinée, il existe des méth-
odes et des algorithmes satisfaisants pour résoudre les problèmes qui se
posent. Certaines de ces approches sont contenues dans le cadre de la Théorie
des Graphes mais d’autres, qui utilisent des outils d’optimisation polyédrale
ou sous-modulaire, ont une portée plus grande.

En effet, certains resultats profonds dans le domaine de l’orientation nous
permettent de déduire des théorèmes de packing dans les graphes non-
orientés depuis leurs analogues dans les graphes orientés. Par exemple, nous
avons déduit un théorème récent sur le packing d’arbres avec des contraintes
de matroïde depuis un théorème générale sur l’orientation et un résultat
sur le packing d’arborescences avec des contraintes de matroïdes dont nous
donnons une preuve. Nous avons également montré que combiner un prob-
lème de packing et un problème d’orientation qui, pris séparément, sont
polynomiaux peut engendrer un problème considérablement plus difficile.
C’est le cas du problème de Recski, regroupant le problème de packing des
arbres couvrants et celui de l’orientation avec degrés entrants prescrits, qui
s’avère être NP-complet. Le fait qu’une légère modification des contraintes
rende un problème simple très difficile n’est pas surprenant en Combinatoire.
Un exemple classique est le problème de trouver un packing de Steiner trees
pour lequel Kriesell [47] conjecture une condition suffisante : si toute paire
de sommet de U est 2k-arête-connexe alors il existe k arbres arête-disjoints,
chacun couvrant U. En utilisant la version forte du théorème d’orientation de
Nash-Williams cette conjecture pourraît être déduite de son analogue orienté
que nous proposons (Conjecture 6.1).

En ce qui concerne l’orientation avec des contraintes d’arc-connexité locale,
le problème principal est théoriquement résolu et une solution peut être
calculée de façon efficace. Cependant certaines variations de ce problème se
révèlent être NP-complètes. À ce jour, aucune méthode vraiment différente
de l’approche originelle basée sur le couplage des sommets impairs n’a pas
encore été apportée et nous avons prouvé qu’on ne peut pas espérer étendre
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cette méthode dans un cadre plus abstrait.

En termes de sommet-connexité, les problèmes qui concernent l’orientation
des graphes sont aussi stimulants. Il existe une caractérisation des graphes
ayant une orientation eulérienne et 2-sommet-connexe qui établit un cas par-
ticulier d’une conjecture de Frank. Cette caractérisation utilise la construction
des graphes faiblement 4-connexes que nous avons généralisée aux graphes
(2k,k)-connexes pour k pair. Pour chaque k > 3, nous avons donné un contre-
exemples à la conjecture de Frank et montré que décider si un graphe admet
une orientation k-sommet-connexe est NP-complet. Nous avons également
prouvé la même assertion concernant la racine sommet-connexité et infirmé
la conjecture de Frank correspondante.

De ce fait, la conjecture de Thomassen qui stipule que tout graphe dont
la sommet-connexité est suffisament grande a une orientation k-sommet-
connexe devient encore plus intéressante. Cette conjecture a été vérifiée pour
k = 2 en suivant une approche basée sur le packing de sous-graphes rigides
couvrants ainsi que la caractérisation des graphes ayant une orientation
eulérienne et 2-sommet-connexe. Nous avons améliorer ce résultat en démon-
trant un théorème de packing de sous-graphes rigides couvrants et d’arbres
couvrants qui s’étend dans le cadre plus général des count matroïdes.

Les conjectures de Frank pour k = 2 et la conjecture de Thomassen pour
k > 3 restent ouvertes. Une meilleure compréhension de la stucture des
graphes orientés k-sommet-connexes apporterait probablement de nouveaux
éléments de réponse. Dans ce domaine un problème classique est de savoir
si un graphe ou un graphe orienté contient des sommets serrés dont le degré
est minimal au regard d’une certaine connexité. Dans le cas non orienté,
nous avons montré l’existence d’au moins un sommet serré pour la connexité
g-bornée mais certains travaux antérieurs suggèrent que cette borne inférieur
peut-être améliorée (Question 5.1). Dans le cas orienté, nous avons donné un
résultat concernant la 2-connexité g-bornée qui généralise certains résultats
sur la 2-arc-connexité et la 2-sommet-connexité. Le problème est résolu pour
toute k-arc-connexité mais reste ouvert dans le cas de la k-sommet-connexité
dès lors que k > 3.

J’espère que le travail que nous avons effectué pendant ces trois dernières
années amèneront d’autres personnes à relever les défis que représentent les
nombreuses questions ouvertes que posent l’orientation et la connexité des
graphes. En particulier, la k-connexité g-bornée peut être un environnement
adapté aux preuves par récurrence puisque qu’elle donne une notion très
fine située entre la sommet-connexité, pour laquelle de nombreux problèmes
restent ouverts, et l’arête/arc-connexité, pour laquelle les problèmes corre-
spondant sont résolus. Nous avons tenté de promouvoir l’utilisation des
bi-ensembles qui accompagnent naturellement cette connexité et espérons
maintenant que le lecteur est convaincu de leur utilité.
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