23 research outputs found

    MRF-based image segmentation using Ant Colony System

    Get PDF
    In this paper, we propose a novel method for image segmentation that we call ACS-MRF method. ACS-MRF is a hybrid ant colony system coupled with a local search. We show how a colony of cooperating ants are able to estimate the labels field and minimize the MAP estimate. Cooperation between ants is performed by exchanging information through pheromone updating. The obtained results show the efficiency of the new algorithm, which is able to compete with other stochastic optimization methods like Simulated annealing and Genetic algorithm in terms of solution quality

    A spatial contextual postclassification method for preserving linear objects in multispectral imagery

    Get PDF
    Classification of remote sensing multispectral data is important for segmenting images and thematic mapping and is generally the first step in feature extraction. Per-pixel classification, based on spectral information alone, generally produces noisy classification results. The introduction of spatial information has been shown to be beneficial in removing most of this noise. Probabilistic label relaxation (PLR) has proved to be advantageous using second-order statistics; here, we present a modified contextual probabilistic relaxation method based on imposing directional information in the joint probability with third-order statistics. The proposed method was tested in synthetic images and real images; the results are compared with a "Majority" algorithm and the classical PLR method. The proposed third-order method gives the best results, both visually and numerically

    Assimilation of Standard Regularizer Contextual Model and Composite Kernel with Fuzzy-based Noise Classifier

    Get PDF
    The paper assay the effect of assimilating smoothness prior contextual model and composite kernel function with fuzzy based noise classifier using remote sensing data. The concept of the composite kernel has been taken by fusing two kernels together to improve the classification accuracy. Gaussian and Sigmoid kernel functions have opted for kernel composition. As a contextual model, Markov Random Field (MRF) Standard regularization model (smoothness prior) has been studied with the composite kernel-based Noise Classifier. Comparative analysis of new classifier with the conventional construes increase in overall accuracy

    A comparison of multisensor integration methods for land cover classification in the Brazilian Amazon.

    Get PDF
    Many data fusion methods are available, but it is poorly understood which fusion method is suitable for integrating Landsat Thematic Mapper (TM) and radar data for land cover classification. This research explores the integration of Landsat TM and radar images (i.e., ALOS PALSAR L-band and RADARSAT-2 C-band) for land cover classification in a moist tropical region of the Brazilian Amazon. Different data fusion methods?principal component analysis (PCA), wavelet-merging technique (Wavelet), high-pass filter resolution-merging (HPF), and normalized multiplication (NMM)?were explored. Land cover classification was conducted with maximum likelihood classification based on different scenarios. This research indicates that individual radar data yield much poorer land cover classifications than TM data, and PALSAR L-band data perform relatively better than RADARSAT-2 C-band data. Compared to the TM data, the Wavelet multisensor fusion improved overall classification by 3.3%?5.7%, HPF performed similarly, but PCA and NMM reduced overall classification accuracy by 5.1%?6.1% and 7.6% ?12.7%, respectively. Different polarization options, such as HH and HV, work similarly when used in data fusion. This research underscores the importance of selecting a suitable data fusion method that can preserve spectral fidelity while improving spatial resolution

    Fusion of Multisource Images for Update of Urban GIS

    Get PDF

    Hybrid consensus theoretic classification

    Full text link

    A multiple-point spatially weighted k-NN classifier for remote sensing

    Get PDF
    A novel classification method based on multiple-point statistics (MPS) is proposed in this article. The method is a modified version of the spatially weighted k-nearest neighbour (k-NN) classifier, which accounts for spatial correlation through weights applied to neighbouring pixels. The MPS characterizes the spatial correlation between multiple points of land-cover classes by learning local patterns in a training image. This rich spatial information is then converted to multiple-point probabilities and incorporated into the k-NN classifier. Experiments were conducted in two study areas, in which the proposed method for classification was tested on a WorldView-2 sub-scene of the Sichuan mountainous area and an IKONOS image of the Beijing urban area. The multiple-point weighted k-NN method (MPk-NN) was compared to several alternatives; including the traditional k-NN and two previously published spatially weighted k-NN schemes; the inverse distance weighted k-NN, and the geostatistically weighted k-NN. The classifiers using the Bayesian and Support Vector Machine (SVM) methods, and these classifiers weighted with spatial context using the Markov random field (MRF) model, were also introduced to provide a benchmark comparison with the MPk-NN method. The proposed approach increased classification accuracy significantly relative to the alternatives, and it is, thus, recommended for the identification of land-cover types with complex and diverse spatial distributions
    corecore