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Abstract: Many data fusion methods are available, but it is poorly understood which 
fusion method is suitable for integrating Landsat Thematic Mapper (TM) and radar 
data for land cover classification. This research explores the integration of Landsat 
TM and radar images (i.e., ALOS PALSAR L-band and RADARSAT-2 C-band) for 
land cover classification in a moist tropical region of the Brazilian Amazon. Dif-
ferent data fusion methods—principal component analysis (PCA), wavelet-merging 
technique (Wavelet), high-pass filter resolution-merging (HPF), and normalized mul-
tiplication (NMM)—were explored. Land cover classification was conducted with 
maximum likelihood classification based on different scenarios. This research indi-
cates that individual radar data yield much poorer land cover classifications than TM 
data, and PALSAR L-band data perform relatively better than RADARSAT-2 C-band 
data. Compared to the TM data, the Wavelet multisensor fusion improved overall 
classification by 3.3%–5.7%, HPF performed similarly, but PCA and NMM reduced 
overall classification accuracy by 5.1%–6.1% and 7.6% –12.7%, respectively. Dif-
ferent polarization options, such as HH and HV, work similarly when used in data 
fusion. This research underscores the importance of selecting a suitable data fusion 
method that can preserve spectral fidelity while improving spatial resolution.

INTRODUCTION

An increasing variety of remotely sensed data is becoming available, from very 
high spatial resolution images such as QuickBird and WorldView to very coarse spatial 
resolution data obtained from the MODerate resolution Imaging Spectroradiometer 
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(MODIS) and the Advanced Very High Resolution Radiometer (AVHRR). Spectral 
resolution ranges from the limited number of multispectral bands of the Landsat 
Thematic Mapper (TM) to the over 200 bands of the hyperspectral Hyperion. Passive 
optical sensors such as Landsat and SPOT can be contrasted with active sensors 
such as the Advanced Land Observation Satellite (ALOS) Phased Array type L-band 
Synthetic Aperture Radar (PALSAR) and RADARSAT. Several researchers and schol-
ars, such as Estes and Loveland (1999) and Lefsky and Cohen (2003), have previously 
reviewed the characteristics of major types of remote sensing data. Effective use of 
different kinds of remotely sensed data, such as the integration of optical and radar 
data, has become an active research topic because of the advantages of distinct fea-
tures in data collection and representation. In general, the combination of multisensor 
data can be based on incorporation of one sensor’s data as extra bands added to multi-
spectral imagery or based on other data fusion methods (Haack and Herold, 2007; Lu 
et al., 2007). 

Data fusion is often used for the integration of multisensor or multiresolution 
data to enhance visual interpretation and/or to improve the performance of quantita-
tive analysis (Klonus and Ehlers, 2007; Lu and Weng, 2007). In general, data fusion 
involves two major procedures: (1) geometric co-registration of two datasets; and (2) 
mixture of spectral and spatial information contents to generate a new dataset that 
contains the enhanced information from both originals (Lu and Weng, 2007). Accurate 
co-registration between two datasets is extremely important for precisely extracting 
information content from both datasets, especially for linear features such as roads and 
rivers. Radiometric and atmospheric calibration may also be required before multisen-
sor data are merged. Data fusion can incorporate the same sensor data with different 
spatial resolutions, such as from QuickBird, IKONOS, SPOT, and Landsat ETM+ 
(Enhanced Thematic Mapper Plus), including multispectral and panchromatic data 
(Ehlers et al., 2010; Zhang, 2010). Data from different sensors may also be combined, 
such as from Landsat TM and radar or hyperspectral and lidar (LIght Detection And 
Ranging) (Lucas et al., 2006; Lu et al., 2007; Ali et al., 2009; McNairn et al., 2009). 

Many data fusion methods, such as principal component analysis (PCA), the 
wavelet-merging technique (Wavelet), intensity-hue-saturation (IHS), Brovey trans-
form, color normalization spectral sharpening, Gram Schmidt fusion, support  vector 
machine, and Ehlers fusion, have been developed to integrate spectral and spatial 
information (Gong, 1994; Pohl and van Genderen, 1998; Chen and Stow, 2003; 
Klonus and Ehlers, 2007; Dong et al., 2009; Ceamanos et al., 2010; Ehlers et al., 
2010; Zhang, 2010). Data fusion can work on three levels—pixel, feature, and deci-
sion (Gong, 1994; Jimenez et al., 1999; Chitroub, 2010). Solberg et al. (1996) broadly 
divided data fusion methods into four categories: statistical, fuzzy logic, evidential 
reasoning, and neural network. Pohl and van Genderen (1998) reviewed data fusion 
methods, including color-related techniques, statistical/numerical methods, and vari-
ous combinations of these methods. A recent review paper by Zhang (2010) further 
outlined multisource data fusion techniques and discussed their trends. A challenge in 
selecting a data fusion method is evaluating the fused results. Li et al. (2010) discussed 
the measures based on multivariate statistical analysis to evaluate the quality of data 
fusion results. An alternative is based on the comparison of land cover classification 
results from different data fusion methods (Lu et al., 2008).
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Although many data fusion methods are available (e.g., Pohl and van Genderen, 
1998; Zhang, 2010), it is not fully understood which fusion method is suitable for 
integrating Landsat TM and radar data to improve land cover classification, especially 
in moist tropical regions. It is also unclear which radar wavelength (e.g., L-band or 
C-band) and which polarization option (e.g., HH and HV) have better land cover clas-
sification performance for the same data fusion method. Therefore, this research aims 
to identify which wavelength and polarization and which data fusion method—PCA, 
Wavelet, high-pass filter resolution-merging method (HPF), or normalized multiplica-
tion method (NMM)—yield better classification in the moist tropical region. Landsat 
TM, ALOS PALSAR L-band HH and HV images, and RADARSAT-2 C-band HH and 
HV images were used for exploring the data fusion methods for improving land cover 
classification in Altamira, Pará State, Brazil. 

STUDY AREA

The study area consists of the city of Altamira, located along the Transamazon 
Highway (BR-230) in the northern Brazilian state of Pará, as well as the surrounding 
area, encompassing a total of roughly 3,116 km2. The city lies on the Xingu River at 
the eastern edge of the study area (Fig. 1). Extensive deforestation in the region began 

Fig. 1. Study area in and around Altamira, Pará State, Brazil.
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in the early 1970s, coincident with the construction of the Transamazon Highway 
(Moran, 1981), and has continued since that time. The dominant native types of vege-
tation are mature moist forest and liana forest. Deforestation has led to a complex land-
scape consisting of different stages of secondary succession, pasture, and agricultural 
lands (Moran et al., 1994; Moran and Brondizio, 1998). Various stages of successional 
vegetation are distributed along the Transamazon Highway and feeder roads. Annual 
rainfall in Altamira is approximately 2,000 mm and is concentrated from late October 
through early June; the dry period occurs between June and September. Average tem-
perature is about 26° C.

METHODS

Field Data Collection and Determination of a Land Cover Classification System

Sample plots for different land cover types, especially for different stages of 
secondary succession and pasture, were collected in the Altamira study area during 
July–August 2009. Prior to the field work, candidate sample locations of complex veg-
etation areas were identified in the laboratory. Primary forest is distributed away from 
the roads and different stages of succession vegetation, pastures, and agricultural lands 
are distributed along the main and secondary roads, forming the familiar “fishbone” 
pattern of deforestation. Because of the difficulty in accessing forested sites in moist 
tropical regions like this study area, random allocation of sample plots for field survey 
is not feasible. Therefore, the majority of sample plots relevant to non-forest vegeta-
tion and pastures were allocated along the roadsides. In each sample area, the locations 
of different vegetation cover types were recorded using a global positioning system 
(GPS) device, and detailed descriptions of vegetation stand structures (e.g., height, 
canopy cover, composition of dominant tree species) were recorded. Field photos also 
were taken of each vegetation type. Sketch map forms were used in conjunction with 
small field maps showing the candidate sample locations to note the spatial extents and 
patch shapes of vegetation cover types in the area surrounding the GPS point. 

The sample plots were used to create representative region of interest (ROI) poly-
gons. Based on the field survey and a QuickBird image, a total of 432 plots were 
sampled. Of the sampled plots, 220 ROIs were used as training plots for image classi-
fication, and 212 ROIs were used as test plots for accuracy assessment. ROI polygons 
were created by identifying areas of uniform pixel reflectance in window sizes from 
approximately 3 × 3 pixels to 9 × 9 pixels on the Landsat TM imagery, depending on 
the patch sizes of different land covers. Based on the research objectives, compat-
ibility with previous research work (Mausel et al., 1993; Moran et al., 1994; Moran 
and Brondizio, 1998), and field surveys, three forest classes (upland [UPF], flooding 
[FLF], and liana [LIF]), three succession stages (initial [SS1], intermediate [SS2], and 
advanced [SS3]), agropasture (AGP), and three non-vegetated classes (water [WAT], 
wetland [WET], and urban [URB]) were developed and used for the land cover clas-
sification system. Due to cloud conditions in the rainy season, good-quality optical 
sensor data are mainly available in the dry season (July and August in this study area). 
During the dry season, agricultural lands and pastures have similar spectral features 
and cannot be separated using optical sensor data; thus, they are grouped into the AGP 
class. An emphasis of this research was to explore improvement in extraction of veg-
etation, rather than non-vegetation categories.
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Remote Sensing Data Collection and Preprocessing

Landsat 5 TM, ALOS PALSAR L-band, RADARSAT-2 C-band, and QuickBird 
images were used in this research, as summarized in Table 1. The TM image has 
six spectral bands with 30 × 30 m spatial resolution covering visible, near-infrared, 
and shortwave infrared wavelengths, and one thermal band with 120 × 120 m spa-
tial resolution. The thermal-band image was not used in this research due to its rela-
tively coarse spatial resolution and its representation of land surface temperature. The 
TM image was geometrically co-registered to a previously rectified Landsat 5 TM 
image using the Universal Transverse Mercator (UTM) projection, Zone 22 South. 
The root mean square error (RMSE) of geometric co-registration was less than 0.5 
pixels. During image-to-image registration, a nearest-neighbor resampling algorithm 
was used to resample the TM imagery with a pixel size of 30 × 30 m as the original 
image. An improved image-based dark object subtraction model was used to imple-
ment radiometric and atmospheric corrections (Chavez, 1996; Lu et al., 2002; Chander 
et al., 2009). The gain and offset for each band and sun elevation angle were obtained 
from the image header file. The path radiance for each band was identified from deep 
water bodies.

ALOS PALSAR and RADARSAT-2 are active microwave sensors using L-band 
and C-band frequencies, respectively, to achieve land observations in cloud condi-
tions (Rosenqvist et al., 2007). In this research, the ALOS PALSAR FBD (Fine Beam 

Table 1. Summary of Remotely Sensed Data Used in Research

Sensor data
Major characteristics of:

Different sensor data Selected sensor data 

Landsat 5 TM Six spectral bands, covering visible, 
near-infrared, and shortwave infra-
red bands with 30 × 30 m spatial 
resolution; one thermal band with 
120 m spatial resolution.

Path/row: 226/62; UTM zone: 22, 
south; image acquisition date: 2 July 
2008; sun elevation angle: 50.4°.

ALOS  
PALSAR

Radar L-band HH and HV polar-
ization options with 12.5 m pixel 
spacing.

FBD Level 1.5 products: ground 
range, unsigned 16-bit integral 
number. Four scenes acquired on 25 
June and 2 July 2009 covered the 
study area.

RADAR-
SAT-2

Radar C-band HH and HV polariza-
tion options with 8 m pixel spacing.

Standard beam mode SGX with dual 
polarization options: ground range, 
unsigned 16-bit integer number. 
Acquired on 30 August 2009.

QuickBird Four spectral bands (blue, green, 
red, and near-infrared) with 2.4 m 
spatial resolution and one panchro-
matic band (visible wavelength) 
with 0.6 m spatial resolution.

20 June 2008.



350 lu et al.

Double Polarization) Level 1.5 product with HH and HV polarization options with 
12.5 × 12.5 m pixel spacing (http://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm) was 
utilized. From RADARSAT-2 the standard beam mode SGX (SAR Georeferenced 
Extra) product with dual polarization options HH and HV with 8 × 8 m pixel spacing 
(http://www.radarsat2.info/) was used. Four scenes of PALSAR L-band HH and HV 
images, acquired on June 25 and July 2, 2009, were mosaicked into one image based 
on a histogram match between overlapping areas. One scene of RADARSAT-2 C-band 
HH and HV images, acquired August 30, 2009, were also included for analysis. 

The collected radar images were carefully examined to check data quality. Some 
null pixels in the urban area existed in the PALSAR L-band data due to the impacts of 
tall buildings. The null pixels were first detected and then replaced with a median value 
from the pixels within a 5 × 5 window based on the null pixel as a center. Both radar 
L-band and C-band images were registered into the previously rectified TM images. 
For the PALSAR L-band image, the RMSE was 1.020 pixel (x error: 0.914; y error: 
0.452) based on 28 points. For the RADARSAT-2 C-band, the RMSE was 1.395 pixel 
(x error: 1.067; y error: 0.899) based on 15 points. Both radar images were resampled 
to pixel size of 10 × 10 m using the nearest neighbor technique. In order to make full 
use of both HH and HV data features, a new image based on normalization with the 
following equation was used: NL = (HH * HV)/(HH + HV). Both ALOS PALSAR 
L-band and RADARSAT-2 C-band data were saved in digital number (amplitude) as 
unsigned 16-bit integers.

Speckle in the radar image is often a problem and should be reduced before the 
image is used for further quantitative analysis. Various speckle reduction methods, 
such as median, Lee-Sigma, Gamma-Map, local-region, and Frost (Lee et al., 1994), 
can be used to reduce the speckle problem. It is important to identify a suitable filter-
ing method and suitable moving window size based on certain criteria. In general, the 
following criteria were used to identify the best filtering method: (1) speckle reduc-
tion, (2) edge sharpness preservation, (3) line and point target contrast preservation, 
(4) retention of texture information, and (5) computational efficiency (Lee et al., 1994; 
ndi Nyoungui et al., 2002). In this research, median, Lee-Sigma, Gamma-Map, local-
region, and Frost—with window sizes of 3 × 3, 5 × 5, 7 × 7, and 9 × 9, respectively, 
were examined. A comparative analysis based on visual interpretation of the filtered 
images and the time required for image filtering indicated that the Lee-Sigma and 
Frost methods were similar, but the Frost method required much longer time for image 
processing than the Lee-Sigma method. Ultimately, the Lee-Sigma with a 5 × 5 win-
dow was selected for this study.

Integration of Landsat TM and Radar Data

Although many data fusion methods have been developed (see reviews by Pohl 
and van Genderen, 1998; Zhang, 2010), most use spectral sharpening methods to 
improve visual interpretation (Welch and Ehlers, 1987; Vrabel, 1996; Ehlers et al., 
2010). However, it is not fully understand which fusion method is best for integrat-
ing multisensor data for land cover classification, especially in moist tropical regions. 
Therefore, four data fusion methods—PCA, Wavelet, HPF, and NMM—were selected 
for further comparison based on their capabilities in preserving spectral fidelity, easy 
availability, and abilities in integrating multisensor data. In this research, Landsat TM, 
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PALSAR L-band, and RADARSAT-2 C-band images were used. The HH, HV, and 
NL images from both PALSAR L-band and RADARSAT-2 C-band data were used 
separately during the data fusion method to examine which polarization option works 
better for land cover classification in a moist tropical region. The following subsec-
tions briefly describe these four fusion methods. 

Principal Component Analysis. PCA is often used to reduce data dimension by 
concentrating the major information from multispectral data into a limited number 
of components (Jensen, 2005). Another important application of PCA is to integrate 
different datasets into a new dataset by making use of both multispectral features and 
high spatial resolution information. In this study, PCA was used to integrate Landsat 
TM multispectral bands and radar imagery in order to incorporate radar information 
into the fused image while improving spatial resolution. The major steps of the PCA-
based fusion method (Pohl and van Genderen, 1998; ERDAS, 2009) include: (1) trans-
forming TM multispectral bands into six principal components (PCs); (2) remapping 
the radar image into the data range of the first principal component (PC1); (3) substi-
tuting PC1 with the remapped radar image; and (4) applying an inverse PCA to the 
data. Because the reverse transform uses the eigen matrix file that is created during 
the forward transform of multispectral data, it is necessary to remap the radar image 
to the same data range as PC1 based on minimum and maximum values before the 
substitution (Welch and Ehlers, 1987; Pohl and van Genderen, 1998; Zhang, 2010). 
Remapping is often required, especially for radar data, due to the different data ranges 
and histograms between the radar image and PC1. 

Wavelet-Merging Technique. Wavelet theory is similar to Fourier transform 
analysis, but the Wavelet transform uses short, discrete wavelets instead of long con-
tinuous waves as in Fourier transforms (Amolins et al., 2007; Lemeshewsky, 1999). 
Much literature has detailed the Wavelet theory (e.g. Chibani, 2006; Amolins et al., 
2007; Hong and Zhang, 2008; ERDAS, 2009). Figure 2 illustrates the concept of data 
fusion with the discrete Wavelet transform method. In theory, an image can be decom-
posed into high-frequency and low-frequency components. The low-frequency com-
ponent is the lower spatial resolution image and the high-frequency component is the 
higher spatial resolution image containing greater spatial detail. In general, the high 
spatial resolution image is a single band, such as the ALOS PALSAR L-band and 
RADARSAT-2 C-band HH and HV images in this research. The low spatial resolution 
image is from a multispectral image such as the Landsat TM image here. Because the 
substitution of the low spatial resolution image is from multispectral data, it is neces-
sary to select a single image from the multispectral image to replace the low-frequency 
image from the Wavelet transform. Therefore, PCA was used to convert the multispec-
tral bands to a new dataset and PC1 from Landsat TM multispectral bands was used 
to replace the low-frequency image, because PC1 contained most of the information. 
The inverse Wavelet transform was then used to convert the replaced dataset into a 
new multispectral dataset, which incorporated both multispectral and radar informa-
tion and improved spatial resolution.

HPF Resolution-Merging Method. The HPF-based fusion method involves a 
convolution of the high spatial resolution image using a high-pass filter. The filtered 
high resolution image is then added to each multispectral band with low spatial resolu-
tion at the pixel level. The determination of the size of a high-pass kernel relies on the 
ratio of pixel resolutions between the high spatial resolution image and multispectral 
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bands (ERDAS, 2009). This HPF-based fusion method can be summarized as consist-
ing of four major steps (ERDAS, 2009):

Determine a suitable kernel size based on the ratio of pixel sizes between 1. 
Landsat TM and radar data. Depending on the ratio range, a default kernel 
size, such as a 5 × 5 window size, is used for the ratio range between 1 and 
2.5, and a 7 × 7 window size for the ratio range from 2.5 to 3.5 (ERDAS, 
2009). In this research, a kernel size of 7 × 7 with a default central value of 
48 and others of -1 was used because the ratio value is 3 (the pixel size in TM 
image is 30 and in radar image is 10).

Conduct high-pass filtering on the high spatial resolution image (i.e., each HH, 2. 
HV, and NL image from both ALOS PALSAR L-band and RADARSAT-2 
C-band data) and resample the Landsat TM multispectral image to the same 
pixel size as in the radar image, with the bilinear algorithm (i.e., four nearest 
neighbors).

Add the filtered radar image (i.e. HH, HV, and NL separately) to each multi-3. 
spectral band with Equation (1): 

, (1) Merged_result SARj
SDMSi
SDSARj
------------------ MF×⎝ ⎠
⎛ ⎞× MSi+=

Fig. 2. Framework of the Wavelet-merging approach for integration of Landsat TM and radar 
data. 
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where SARj is the filtered image of each radar image (i.e., HH, HV, and NL sepa-
rately), SDMSi and SDSARj are the global standard deviation of the TM multispectral 
band i and each radar image j (i.e., the HH, HV, and NL images from PALSAR 
L-band, or RADARSAT-2 C-band), MF is the modulating factor to determine the 
crispness of the output image, with a default value of 0.5 based on the ratio value 
(ERDAS, 2009), and MSi is the resampled Landsat TM multispectral band i.

Stretch the new multispectral image to match the mean and standard devia-4. 
tion of the original Landsat TM multispectral image.

Normalized Multiplication Method. A common multiplication method for data 
fusion is the Brovey transform, which is often based on three multispectral bands and 
one panchromatic band (Pohl and van Genderen, 1998) to improve visual interpreta-
tion. However, other bands also contain important information that is useful for land 
cover classification. In order to make full use of all spectral bands in the Landsat TM 
multispectral image, the Brovey transform method was modified to Equation (2) in 
this research:

, (2) NMM
MSi

MSii 1=

n∑
-------------------- SARj×=

where MSi is the Landsat TM multispectral band i, SARj is each radar image (i.e. the 
HH, HV, and NL images from PALSAR L-band or RADARSAT-2 C-band separately), 
and n is the number of Landsat TM multispectral bands.

Land Cover Classification with Maximum Likelihood Classification 

Many classification methods, such as maximum likelihood classification (MLC), 
artificial neural networks, decision tree, support vector machine, object-based clas-
sification algorithms, sub-pixel based algorithms, and contextual algorithms are avail-
able (Franklin and Wulder, 2002; Lu and Weng, 2007; Rogan et al., 2008; Filippi 
et al., 2009; Blaschke, 2010). However, MLC may be the most common classifier 
used in practice because of its sound theory and its ubiquitous nature in commercial 
image processing software. MLC assumes a normal or near normal distribution for 
each feature of interest and an equal prior probability among the classes. This classifier 
is based on the probability that a pixel belongs to a particular class. It takes the vari-
ability of classes into account by using the covariance matrix. A detailed description 
of MLC can be found in textbooks (e.g., Lillesand and Kiefer, 2000; Jensen, 2005). In 
this research, MLC was used to conduct land cover classification based on different 
scenarios, including individual TM multispectral, PALSAR, or RADARSAT images, 
combinations of TM and PALSAR or RADARSAT data as extra bands, and different 
data fusion methods. Based on the field survey and QuickBird image, a total of 220 
sample plots (over 3,500 pixels) covering the 10 land covers, each having 15–30 plots, 
were used for each classification scenario. The classification results were evaluated 
with accuracy assessment methods for identifying the best scenario for land cover 
classification in the moist tropical region.
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Evaluation of Land Cover Classification Results

A common method for accuracy assessment uses an error matrix because it pro-
vides detailed assessment of the agreement between the classified result and reference 
data, and provides information on how the misclassification occurred (Congalton and 
Green, 2008). Different accuracy assessment parameters, such as overall classifica-
tion accuracy (OCA), producer’s accuracy (PA), user’s accuracy (UA), and overall 
kappa coefficient (OKC) can be calculated from the error matrix, as previous literature 
has described (e.g., Foody, 2002; Wulder et al., 2006; Congalton and Green, 2008). 
Both OCA and OKC reflect the overall classification situation but cannot indicate the 
reliability of each land cover class; thus, PA and UA of each class are often used to 
provide the complementary analysis of the accuracy assessment. 

In this study, a total of 212 test sample plots from the field survey and the 
QuickBird image were used for accuracy assessment. An error matrix was developed 
for each classified image, then PA and UA (for each class) and OCA and OKC (for 
each image) were calculated from the corresponding error matrix. The land cover clas-
sification result based on the Landsat TM multispectral image was used as a basis for 
the comparative analysis of other results from different scenarios in order to under-
stand the role of radar data and different data fusion methods in improving land cover 
classification performance.

RESULTS AND DISCUSSION

Classification Results from TM, Radar, and Their Combinations

The comparison of classification results among TM, radar, and their combina-
tions (Table 2) indicates that TM provided much better classification than individual 
PALSAR or RADARSAT-2 data. The PALSAR L-band data provided better classifica-
tion than the RADARSAT-2 C-band, but both types of radar data performed poorly in 
the separation of vegetation classes and in the identification of the wetland, and urban 
classes. The combination of radar data as extra bands into TM spectral data did not 
significantly improve overall classification accuracy but the combination of PALSAR 
L-band and TM spectral bands did improve FLF, SS1, and AGP classification accura-
cies. As an example, Table 3 provides an error matrix based on classification results 
from the TM imagery. It indicates major misclassification among UPF, FLF, and LIF; 
among SS1, SS2, and SS3; and between SS1 and AGP because of their similar spectral 
features. 

Similar forest stand structures among UPF, FLF, and LIF and the impacts of shad-
ows from the forest canopy produce similar spectral signatures, resulting in misclas-
sification among them (Lu et al., 2008). The misclassification among SS1, SS2, and 
SS3 is due to a lack of distinct boundaries between the succession stages, as shown 
in Table 3. A similar situation occurs between SS1 and agropasture because of the 
similar features they share. Because optical sensor data such as Landsat TM mainly 
reflect land surface information and cannot penetrate the forest stand structure to cap-
ture the structure information, vegetation classification using optical sensor data often 
yields misclassification among vegetation types. In contrast, microwave sensors can 
penetrate the forest canopy to a certain degree depending on the wavelengths, and thus 
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radar data may capture more vegetation stand structure information (Leckie, 1998). 
For example, ALOS PALSAR L-band has a longer wavelength than RADARSAT-2 
C-band, and thus L-band data may capture more understory information than C-band 
data. As Table 2 indicates, L-band data yield better classification for FLF than C-band 
data because of the water component under the forest canopy. However, the radar data 
cannot effectively capture the different stand structures of succession stages, UPF, 
and LIF. Therefore, pure radar data cannot effectively provide as good classification 
results as TM images. Because L-band data perform relatively well in classification of 
FLF and AGP, combining TM and L-band data as extra bands improved FLF, SS1, and 
AGP classification. In contract, C-band data perform relatively well in classification of 
AGP; thus a combination of TM and C-band data as extra bands only slightly improve 
AGP classification but yield very limited improvement in classification of other land 
cover types. 

The analysis above indicates that individual radar data did not have the capabil-
ity to satisfactorily classify land covers with finely detailed vegetation classes in this 
research. However, Table 2 indicates that PALSAR L-band data did provide relatively 
good separation of FLF from UPF and LIF, AGP from SS1, and SS2 from SS1 and 
SS3. RADARSAT-2 C-band data performed relatively well in classification of SS2 
and AGP. Further analysis of the error matrices indicates that the major misclassi-
fication from radar data is in the vegetation classes, wetland, and urban. When we 
merged vegetation types into coarse classes, for example, merging UPF, FLF, and LIF 
as Forest and merging SS1, SS2, and SS3 as SS, and finally merging Forest and SS as 
one class, the PA and UA values were much improved, as shown in Table 4. This result 
implies that radar data, especially from the PALSAR L-band, are valuable for land 
cover classification in a coarse classification system, but not suitable for a detailed 
vegetation classification system. 

Color Composites from Different Data Fusion Methods 

Different data fusion methods have different capabilities in preserving spectral 
fidelity while improving spatial resolution. Figure 3 provides a comparison of color 
composites among original TM bands and different fusion results by assigning bands 
4, 5, and 3 as red, green and blue, respectively, as well as radar data by assigning HH, 
HV, and NL as red, green and blue, respectively. Figure 3 shows that both Wavelet and 
HPF fusion methods preserve the spectral fidelity of the input dataset, but the HPF-
derived fusion result appears very noisy. The PCA- and NMM-based methods distort 
the spectral signatures, although these color composites seem to improve visual inter-
pretation effects. Analysis of all color composites from the data fusion methods based 
on TM multispectral bands and different radar images (i.e., HH, HV, and NL images 
from the PALSAR L-band or the RADARSAT-2 C-band separately) yields a similar 
conclusion: the Wavelet fusion method best preserves spectral fidelity, followed by the 
HPF-based fusion method, no matter what polarization (HH, HV, or NL) image from 
PALSAR L-band or RADARSAT-2 C-band is used. Comparison of the color com-
posites with their land cover classification results is valuable for better understanding 
the importance of preserving spectral fidelity when multisensor data are used for data 
fusion in quantitative analyses.
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Fig. 3. A comparison of color composites from TM, radar, and their fused images using different 
data fusion methods. A and B are TM color composites with bands 4, 5, and 3 assigned as red, 
green, and blue, respectively. A is the entire area, whereas B through L show an enlarged area to 
better illustrate the different features among the data fusion results. C is a color composite based 
on PALSAR L-band HH, HV, and NL. D is a color composite based on RADARSAT-2 C-band 
HH, HV, and NL. E–H are data fusion results from PCA, Wavelet, HPF, and NMM based on 
TM and PALSAR L-band HH imagery. I–L are data fusion results from PCA, Wavelet, HPF, and 
NMM based on TM and RADARSAT-2 C-band HH data.



360 lu et al.
Ta

bl
e 

5.
 C

om
pa

ris
on

 o
f C

la
ss

ifi
ca

tio
n 

R
es

ul
ts 

fro
m

 D
iff

er
en

t D
at

a 
Fu

sio
n 

M
et

ho
ds

 B
as

ed
 o

n 
TM

 a
nd

 P
A

LS
A

R
 L

-B
an

d 
H

H
, H

V,
 a

nd
 N

L 
D

at
a

La
nd

 
co

ve
r t

yp
e

PC
A

W
av

el
et

H
PF

N
M

M

PA
U

A
PA

U
A

PA
U

A
PA

U
A

D
at

a 
fu

si
on

 b
as

ed
 o

n 
T

M
 a

nd
 P

A
L

SA
R

 L
-b

an
d 

H
H

 d
at

a
U

PF
 6

9.
7

 6
9.

7
 7

5.
8

 8
9.

3
 6

9.
7

 7
4.

2
 7

2.
7

 7
5.

0
FL

F
 8

6.
7

 6
8.

4
 9

3.
3

 7
0.

0
 9

3.
3

 7
0.

0
 8

6.
7

 8
1.

3
LI

F
 8

3.
3

 6
6.

7
 9

1.
7

 8
4.

6
 7

5.
0

 6
9.

2
 8

3.
3

 6
2.

5
SS

1
 4

7.
4

 6
0.

0
 7

9.
0

 7
1.

4
 6

3.
2

 6
6.

7
 2

1.
1

 2
5.

0
SS

2
 7

5.
0

 7
5.

0
 8

7.
5

 9
1.

3
 7

5.
0

 8
5.

7
 5

8.
3

 6
6.

7
SS

3
 5

7.
1

 7
0.

6
 9

0.
5

 8
6.

4
 8

5.
7

 7
5.

0
 5

2.
4

 6
1.

1
A

G
P

 8
0.

8
 7

2.
4

 8
0.

8
 9

1.
3

 8
0.

8
 8

7.
5

 8
0.

8
 6

5.
6

W
AT

 8
7.

5
 10

0.
0

 8
7.

5
 10

0.
0

 9
1.

7
 10

0.
0

 8
7.

5
 10

0.
0

W
ET

 7
3.

3
 9

1.
7

 8
0.

0
 10

0.
0

 7
3.

3
 10

0.
0

 6
0.

0
 10

0.
0

U
R

B
 10

0.
0

 8
5.

2
 10

0.
0

 7
9.

3
 10

0.
0

 8
2.

1
 10

0.
0

 7
4.

2

O
C

A
 

75
.9

4
 

85
.8

5
 

80
.6

6
 

70
.7

5
O

K
C

 
0.

73
05

 
0.

84
13

 
0.

78
35

 
0.

67
21

D
at

a 
fu

si
on

 b
as

ed
 o

n 
T

M
 a

nd
 P

A
L

SA
R

 L
-b

an
d 

H
V

 d
at

a
U

PF
 6

6.
7

 7
1.

0
 7

5.
8

 8
3.

3
 6

9.
7

 7
4.

2
 6

3.
6

 6
3.

6
FL

F
 8

6.
7

 6
8.

4
 9

3.
3

 7
3.

7
 9

3.
3

 7
3.

7
 7

3.
3

 6
1.

1
LI

F
 8

3.
3

 7
1.

4
 8

3.
3

 8
3.

3
 7

5.
0

 6
9.

2
 8

3.
3

 7
1.

4
SS

1
 5

7.
9

 5
7.

9
 7

9.
0

 7
1.

4
 6

3.
2

 6
6.

7
 5

7.
9

 5
2.

4
SS

2
 7

5.
0

 6
9.

2
 8

7.
5

 9
1.

3
 7

5.
0

 7
8.

3
 7

0.
8

 6
5.

4
SS

3
 5

7.
1

 7
5.

0
 9

0.
5

 8
6.

4
 8

5.
7

 7
5.

0
 5

2.
4

 7
3.

3
A

G
P

 7
3.

1
 7

3.
1

 8
0.

8
 9

1.
3

 7
6.

9
 8

7.
0

 7
6.

9
 7

6.
9



 multisensor integration methods 361
W

AT
 8

7.
5

 10
0.

0
 8

7.
5

 10
0.

0
 8

7.
5

 10
0.

0
 8

7.
5

 10
0.

0
W

ET
 8

0.
0

 9
2.

3
 8

0.
0

 10
0.

0
 7

3.
3

 10
0.

0
 6

0.
0

 9
0.

0
U

R
B

 10
0.

0
 8

5.
2

 10
0.

0
 7

9.
3

 10
0.

0
 7

9.
3

 10
0.

0
 8

2.
1

O
C

A
 

75
.9

4
 

85
.3

8
 

79
.7

2
 

72
.6

4
O

K
C

 
0.

73
07

 
0.

83
64

 
0.

77
29

 
0.

69
34

D
at

a 
fu

si
on

 b
as

ed
 o

n 
T

M
 a

nd
 P

A
L

SA
R

 L
-b

an
d 

N
L 

da
ta

U
PF

 6
9.

7
 6

7.
7

 7
2.

7
 8

5.
7

 7
5.

8
 7

5.
8

 6
6.

7
 6

8.
8

FL
F

 8
6.

7
 7

2.
2

 9
3.

3
 7

0.
0

 9
3.

3
 6

6.
7

 8
0.

0
 6

6.
7

LI
F

 7
5.

0
 6

9.
2

 8
3.

3
 7

6.
9

 7
5.

0
 8

1.
8

 8
3.

3
 7

1.
4

SS
1

 5
2.

6
 5

8.
8

 7
9.

0
 6

8.
2

 7
3.

7
 7

0.
0

 5
2.

6
 5

0.
0

SS
2

 7
0.

8
 6

8.
0

 8
3.

3
 9

0.
9

 7
9.

2
 9

0.
5

 6
6.

7
 6

4.
0

SS
3

 5
2.

4
 6

8.
8

 9
0.

5
 8

6.
4

 8
1.

0
 7

7.
3

 5
2.

4
 6

8.
8

A
G

P
 7

6.
9

 7
1.

4
 8

0.
8

 9
1.

3
 8

0.
8

 9
1.

3
 7

6.
9

 7
6.

9
W

AT
 9

1.
7

 10
0.

0
 8

7.
5

 10
0.

0
 9

1.
7

 10
0.

0
 8

7.
5

 10
0.

0
W

ET
 8

0.
0

 9
2.

3
 8

0.
0

 10
0.

0
 7

3.
3

 10
0.

0
 7

3.
3

 9
1.

7
U

R
B

 10
0.

0
 8

8.
5

 10
0.

0
 7

9.
3

 10
0.

0
 8

2.
1

 10
0.

0
 8

2.
1

O
C

A
 

75
.4

7
 

84
.4

3
 

82
.5

5
 

73
.5

8
O

K
C

 
0.

72
5

 
0.

82
6

 
0.

80
45

 
0.

70
42



362 lu et al.
Ta

bl
e 

6.
 C

om
pa

ris
on

 o
f C

la
ss

ifi
ca

tio
n 

R
es

ul
ts

 fr
om

 D
iff

er
en

t D
at

a 
Fu

si
on

 M
et

ho
ds

 B
as

ed
 o

n 
TM

 a
nd

 R
A

D
A

R
SA

T-
2 

C
-B

an
d 

H
H

, H
V,

 a
nd

 
N

L 
D

at
a

La
nd

 c
ov

er
 

ty
pe

PC
A

W
av

el
et

H
PF

N
M

M

PA
U

A
PA

U
A

PA
U

A
PA

U
A

D
at

a 
fu

si
on

 b
as

ed
 o

n 
T

M
 a

nd
 R

A
D

A
R

SA
T-

2 
C

-b
an

d 
H

H
 d

at
a

U
PF

 
69

.7
 

71
.9

 
75

.8
 

89
.3

 
72

.7
 

75
.0

 
57

.6
 

67
.9

FL
F

 
86

.7
 

54
.2

 
93

.3
 

70
.0

 
93

.3
 

73
.7

 
93

.3
 

66
.7

LI
F

 
75

.0
 

75
.0

 
83

.3
 

83
.3

 
83

.3
 

76
.9

 
83

.3
 

58
.8

SS
1

 
57

.9
 

68
.8

 
79

.0
 

71
.4

 
68

.4
 

65
.0

 
36

.8
 

36
.8

SS
2

 
79

.2
 

79
.2

 
91

.7
 

88
.0

 
79

.2
 

82
.6

 
58

.3
 

66
.7

SS
3

 
71

.4
 

79
.0

 
90

.5
 

86
.4

 
81

.0
 

77
.3

 
47

.6
 

76
.9

A
G

P
 

61
.5

 
66

.7
 

76
.9

 
90

.9
 

76
.9

 
90

.9
 

69
.2

 
56

.3
W

AT
 

87
.5

 
10

0.
0

 
87

.5
 

10
0.

0
 

91
.7

 
10

0.
0

 
87

.5
 

10
0.

0
W

ET
 

60
.0

 
75

.0
 

80
.0

 
10

0.
0

 
73

.3
 

10
0.

0
 

86
.7

 
92

.9
U

R
B

 
10

0.
0

 
82

.1
 

10
0.

0
 

79
.3

 
10

0.
0

 
82

.1
 

95
.7

 
84

.6

O
C

A
 

75
.0

0
 

85
.3

8
 

81
.6

0
 

69
.8

1
O

K
C

 
0.

72
02

 
0.

83
65

 
0.

79
40

 
0.

66
26

D
at

a 
fu

si
on

 b
as

ed
 o

n 
T

M
 a

nd
 R

A
D

A
R

SA
T-

2 
C

-b
an

d 
H

V
 d

at
a

U
PF

 
72

.7
 

70
.6

 
78

.8
 

89
.7

 
75

.8
 

75
.8

 
51

.5
 

68
.0

FL
F

 
86

.7
 

52
.0

 
93

.3
 

70
.0

 
93

.3
 

73
.7

 
93

.3
 

63
.6

LI
F

 
75

.0
 

75
.0

 
83

.3
 

83
.3

 
83

.3
 

83
.3

 
83

.3
 

62
.5

SS
1

 
52

.6
 

66
.7

 
79

.0
 

75
.0

 
63

.2
 

66
.7

 
36

.8
 

31
.8

SS
2

 
79

.2
 

82
.6

 
91

.7
 

91
.7

 
79

.2
 

86
.4

 
45

.8
 

64
.7

SS
3

 
76

.2
 

88
.9

 
90

.5
 

86
.4

 
85

.7
 

78
.3

 
57

.1
 

66
.7

A
G

P
 

61
.5

 
64

.0
 

80
.8

 
91

.3
 

80
.8

 
87

.5
 

65
.4

 
54

.8



 multisensor integration methods 363
W

AT
 

87
.5

 
10

0.
0

 
87

.5
 

10
0.

0
 

91
.7

 
10

0.
0

 
87

.5
 

10
0.

0
W

ET
 

53
.3

 
72

.7
 

80
.0

 
10

0.
0

 
73

.3
 

10
0.

0
 

86
.7

 
10

0.
0

U
R

B
 

10
0.

0
 

82
.1

 
10

0.
0

 
79

.3
 

10
0.

0
 

82
.1

 
10

0.
0

 
85

.2

O
C

A
 

75
.0

0
 

86
.3

2
 

82
.5

5
 

68
.4

0
O

K
C

 
0.

72
00

 
0.

84
70

 
0.

80
44

 
0.

64
73

D
at

a 
fu

si
on

 b
as

ed
 o

n 
T

M
 a

nd
 R

A
D

A
R

SA
T-

2 
C

-b
an

d 
N

L 
da

ta
U

PF
 

72
.7

 
68

.6
 

78
.8

 
89

.7
 

75
.8

 
75

.8
 

60
.6

 
71

.4
FL

F
 

86
.7

 
54

.2
 

93
.3

 
73

.7
 

93
.3

 
73

.7
 

93
.3

 
66

.7
LI

F
 

75
.0

 
81

.8
 

83
.3

 
83

.3
 

83
.3

 
76

.9
 

83
.3

 
62

.5
SS

1
 

47
.4

 
64

.3
 

79
.0

 
75

.0
 

63
.2

 
70

.6
 

31
.6

 
30

.0
SS

2
 

75
.0

 
78

.3
 

91
.7

 
91

.7
 

79
.2

 
86

.4
 

54
.2

 
61

.9
SS

3
 

76
.2

 
88

.9
 

95
.2

 
87

.0
 

85
.7

 
81

.8
 

66
.7

 
73

.7
A

G
P

 
61

.5
 

59
.3

 
80

.8
 

91
.3

 
84

.6
 

88
.0

 
65

.4
 

65
.4

W
AT

 
87

.5
 

10
0.

0
 

87
.5

 
10

0.
0

 
91

.7
 

10
0.

0
 

87
.5

 
10

0.
0

W
ET

 
53

.3
 

72
.7

 
80

.0
 

10
0.

0
 

73
.3

 
10

0.
0

 
86

.7
 

10
0.

0
U

R
B

 
10

0.
0

 
82

.1
 

10
0.

0
 

79
.3

 
10

0.
0

 
82

.1
 

10
0.

0
 

85
.2

O
C

A
 

74
.0

6
 

86
.7

9
 

83
.0

2
 

71
.2

3
O

K
C

 
0.

70
91

 
0.

85
22

 
0.

80
97

 
0.

67
86



364 lu et al.

Classification Results from Different Data Fusion Methods

The land cover classification results from the MLC among different data fusion 
methods indicate that, compared to the original Landsat TM image, the Wavelet 
method improved land cover classification and HPF had similar OCA values; in con-
trast, PCA and NMM reduced classification quality. For example, the Wavelet method 
improved OCA by 3.3%–5.7%, HPF performed similarly, but PCA and NMM reduced 
OCA by 5.1%–6.1% and 7.6% –12.7%, respectively. In particular, the Wavelet fusion 
method improved vegetation classification accuracies, no matter which wavelengths 
(L-band or C-band) and which polarization options (HH or HV, or the NL image) were 
used. Comparing the land cover classification results (Tables 5 and 6) and the color 
composites (see Fig. 3) shows the importance of preserving the spectral fidelity of the 
TM multispectral signatures.

Comparative analysis of the accuracy assessment results among different data 
fusion methods further indicates that Wavelet and HPF are helpful in improving veg-
etation classification accuracies. This finding implies that it is important to understand 
the role of a specific data fusion method in enhancing specific kinds of land cover 
types. Polarizations HH, HV, and NL perform similarly in land cover classification 
when they are used for data fusion with TM images, except for the NMM method. 
As a comparison, the error matrix (Table 7) from the Wavelet fusion result based on 
TM and PALSAR L-band HH shows that UPF, LIF, SS1, SS3, and AGP are especially 
improved, compared to the original TM image (see Table 3). A comparison of some 
classification results (Fig. 4) among the selected scenarios indicates that both radar 
images (ALOS PALSAR L-band and RADARSAT-2 C-band data in this research) 
cannot separate different land cover classes, except water (see Figs. 3C and 3E). 
Incorporation of TM and radar data provided spatial patterns of land cover distribution 
(see Figs. 3D and 3F) similar to the original TM image classification result (see Fig. 
3B). 

In general, data fusion is often applied to improve spatial resolution, and thus 
may reduce mixed-class pixels. This spatial improvement is helpful for sites having 
relatively small patches of land cover, such as different stages of successional vegeta-
tion. However, due to the complex stand structure in vegetation types, especially for 
primary forest and advanced succession, increased spatial resolution may enlarge the 
spectral variation within the same land cover, as shown in Figures 3G and 3F, and thus 
reduce the classification accuracy. Therefore, there is a tradeoff between patch size of 
land covers and the spectral variation caused by improved spatial resolution. Future 
research should examine how different spatial resolutions affect the selection of data 
fusion methods and what classification algorithm is suitable for land cover classifica-
tion corresponding to the fusion images. 

CONCLUSIONS

This research indicates that a TM image provides higher land cover classifica-
tion accuracy than individual radar datasets, and PALSAR L-band data provide better 
classification than RADARSAT-2 C-band data. Neither PALSAR nor RADARSAT 
data have the capability for detailed vegetation classification, but they are valuable for 
coarse land cover classification. When radar data are used as extra bands incorporated 
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into TM multispectral data, the land cover classification is not significantly improved. 
However, compared to the TM data, Wavelet multisensor fusion improved overall clas-
sification accuracy by 3.3%–5.7%. In contrast, performance of the HPF-based fusion 
method was similar to the TM image, whereas the PCA-based and NMM methods 
reduced overall classification accuracy by 5.1%–6.1% and 7.6% –12.7%, respectively. 
Different polarization options, such as HH, HV, and NL, performed similarly when 
they were used for multisensor data fusion. This research shows the importance of pre-
serving spectral fidelity in improving land cover classification performance. Wavelet 
and HPF methods can better preserve spectral fidelity than PCA and NMM for the 
fusion of TM and radar data. In particular, the Wavelet multi-sensor fusion method is 
recommended in the moist tropical region for detailed land cover classification. 

Fig. 4. A comparison of classification results from different scenarios. A is a classified image 
for the entire study area based on the original TM spectral data; the other five images show the 
rectangular area outlined in red in image A. B is the original TM image. C is the classified image 
based on PALSAR L-band HH, HV and NL data. D is based on TM and PALSAR L-band HH 
Wavelet fusion image. E is based on RADARSAT-2 C-band HH, HV and NL data. F is based on 
TM and a RADARSAT-2 C-band HH Wavelet fusion image.
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