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 A multiple-point spatially weighted k-NN classifier for remote sensing 

A novel classification method based on multiple-point statistics (MPS) is 

proposed in this paper. The method is a modified version of the spatially 

weighted k-nearest neighbour (k-NN) classifier, which accounts for spatial 

correlation through weights applied to neighbouring pixels. The MPS 

characterises the spatial correlation between multiple points of land cover classes 

by learning local patterns in a training image. This rich spatial information is then 

converted to multiple-point probabilities and incorporated into the k-NN 

classifier. Experiments were conducted in two study areas, in which the proposed 

method for classification was tested on a WorldView-2 subscene of the Sichuan 

mountainous area and an IKONOS image of the Beijing urban area. The 

multiple-point weighted k-NN method (MPk-NN) was compared to several 

alternatives; including the traditional k-NN and two previously published 

spatially weighted k-NN schemes; the inverse distance weighted k-NN, and the 

geostatistically weighted k-NN. The classifiers using the Bayesian and support 

vector machine (SVM) methods, and these classifiers weighted with spatial 

context using the Markov random field (MRF) model, were also introduced to 

provide a benchmark comparison with the MPk-NN method. The proposed 

approach increased classification accuracy significantly relative to the 

alternatives, and it is, thus, recommended for the identification of land cover 

types with complex and diverse spatial distributions. 
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1. Introduction 

The use of remotely sensed data for the classification of land cover is important for a 

wide range of applications. Numerous methods have been proposed for increasing the 

accuracy of classification. Amongst these, contextual classifiers, which use spatial 

information along with spectral information, can potentially achieve greater accuracy 

than non-contextual classifiers (Magnussen, Boudewyn, and Wulder 2004; Ghimire, 

Rogan, and Miller 2010; Pasolli et al. 2014). The spatial contextual classifier known as 

the Markov random field (MRF) method is popular and has been shown to increase 



classification accuracy (Solberg, Taxt, and Jain 1996; Sun et al. 2016). Geostatistics is a 

useful framework for modelling spatial data and quantifying spatial dependence, and it 

has shown some promise for contextual classification (Atkinson and Lewis 2000). 

However, the spatial weighting established using geostatistics is based on two-point 

statistics, failing to describe the joint variability at three or more points at a time 

(Strebelle 2002). 

Multiple-point statistics (MPS) has been proposed as a development of 

traditional geostatistics (Guardiano and Srivastava 1993). Instead of two-point-based 

functions such as the variogram, MPS borrows rich spatial structure information from 

training images, from which the local patterns of the target field can be constructed. 

Recently, a few studies applied MPS to the classification of remote sensing data. For 

example, Ge and Bai (2011) extracted linear objects from remotely sensed imagery 

using MPS. Tang et al. (2013) proposed a post-classification method based on MPS and 

compared it with contextual classification methods. Ge (2013) explored a sub-pixel 

mapping method, in which the MPS method was applied to characterise the spatial 

structural properties of surface objects. However, most studies related to classification 

using MPS increased the accuracy by simply combining the spatial and spectral 

information or applying the MPS directly to the classification result rather than 

improving the classifier itself.  

The k-nearest neighbour (k-NN) classifier retains the location information 

associated with training data, such that a geographical weighting can be integrated 

readily into the classifier. It has been shown that both a distance weighting scheme and 

a geostatistical (variogram) scheme can lead to sound classification results (Atkinson 

and Naser 2010). It is, therefore, of interest to explore whether replacing the variogram 

with MPS can further increase the achievable accuracy. The objective of this paper was, 



thus, to introduce the MPS-based spatial weighting into the k-NN classifier in order to 

extract the spatial structure of the multiple class distribution, then the spatial 

information can be converted to the multiple-point probability combined with the 

spectral information to increase the accuracy of the k-NN classifier. A WorldView-2 

image in the Sichuan mountainous region and an IKONOS image in the Beijing urban 

area of China were used to assess the new method in comparison to classifiers based on 

spectral information and other types of spatial weighting. 

2. Methods 

The training image, data event, and multi-grid concepts in MPS are applied here to the 

proposed MPS-based classification method, so these concepts are introduced briefly in 

this section. Then the multiple-point weighted k-NN method is presented, with a brief 

review of the traditional distance-weighted and the alternative geostatistically-weighted 

k-NN methods. 

2.1. The MPS approach 

MPS characterises spatial dependence from a training image, which should be chosen to 

depict the types of structures that the area of interest exhibits. A training image 

substitutes for the variogram or covariance function in traditional geostatistics, and 

provides the prior knowledge required for spatial correlation modelling. A data template, 

composed of multiple nodes with any user-specified configuration, is used to scan the 

training image, and the number of replicates of each different data event is retrieved 

(Liu, 2006). A data template with a central node u is defined as T(u) = {h1, …, hn}, 

which is composed of n locations ui (i = 1, …, n), where hi is a vector (for both distance 

and direction)  between ui and u. The data template T(u) is used to scan the training 

image. To capture multiple-point statistical information, a data event consists of 



categorical values and is obtained by the (geometrically) same template that is used to 

scan the training image. A data event can be expressed as dev(u) = {c(u1), …, c(un)}, 

where c(ui) (i = 1, …, n) is the categorical value at location ui within the template 

(Okabe and Blunt 2005).  

The number of replicates of a data event can be calculated when the training 

image is scanned by the template, and the relative frequency of each data event can be 

converted to a conditional probability. Only those proportions corresponding to the data 

events actually found over the training image are utilised directly as conditional 

probabilities without any prior modelling (Strebelle 2002).  

The multi-grid simulation approach can be adopted in MPS to capture structures 

of different sizes in the training image (Tran 1994). The multi-grid approach expands 

the size of the simulated grid while not increasing the number of nodes. It is assumed 

that the data template T(u) has L multi-grid levels. The new geometrical template is 

constructed by rescaling the original template such that  1 1

1( ) 2 , ,2L L L

nT u   h h . 

2.2. Multiple-point weighted k-NN 

In the traditional k-NN method, the classifier allocates pixels to the neighbours to which 

it is closest in feature space. An inverse distance weighting (IDW) function can be 

incorporated into the k-NN classifier to give more weight to information from a 

neighbour close to an unclassified observation than from a more distant neighbour 

(Dudani 1976). IDW can be expressed as: 

 ,

,

1
u k p

u kd
   (1) 

where du,k measures the distance between the current pixel u and its neighbouring 

training pixel k in feature space, ωu,k is the weight based on an inverse distance, and the 



exponent p is an integer that determines the magnitude of the weight. The term wk-NN 

is used to refer to the IDW-based k-NN method. 

In a geostatistically weighted k-NN classifier (gk-NN), the probability that a 

pixel u belongs to class m can be evaluated as follows (Atkinson and Naser 2010): 
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where the subscript u,k of h indicates the distance and direction between pixel u and its 

neighbour k.  , ,m m u kp h  is the fitted model of the spatial covariance, which also refers to 

the class-conditional probability. Term m' is a class index for m' = 1, …, M classes, and 

m is the class of interest. Sg is a proportional weight between 0 and 1.  

In the proposed MPS-based k-NN approach, instead of training samples, the 

conditional probability is derived from the training image to provide spatial information. 

For an unknown location u (i.e., the category of u needs to be estimated), k nearest 

neighbour training pixels uk can be found. Thus, the data template at location u can be 

defined as T(u) = {h1, …, hk}, where hk is measures the distance and direction between 

uk and u. So the template centred at u consists of the same separation vector hk  and the 

same classes with the neighbouring k pixels. This template is used to scan the training 

image and derive the multiple-point probability for pixel u by counting the replicates of 

the data event dev(u), where dev(u) = {c(u1), …, c(uk)}. The probability of pixel u with 

class m equals the proportion of the number of dev(u) that possesses class m at the 

central node to the total number of dev(u). For another pixel, a different template is 



applied to estimate another probability from the training image. The multiple-point 

probability that a pixel u belongs to class m is, thus, expressed as: 
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Note that dev(u) = 1 means that the data event dev(u) is found in the training 

image, indicating that all k pixels at location uk should match exactly the corresponding 

classes (i.e., c(uk) = mk). The indicator function I takes a value of one if the condition is 

satisfied, otherwise zero. Thus, the multiple-point based k-NN classifier (MPk-NN in 

brief) can be written as: 
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Similar to Sg, SMP is a multiple-point statistical weight given to the classifier, 

ranging from 0 to 1.  

To estimate the multiple-point probability in the MPk-NN method, a training 

image is defined. It can be obtained either for the same area that needs to be classified 

using the MPk-NN method or represent a different place. However, the training image is 

required to have a similar class spatial distribution to that of the study area and, thus, to 

provide prior knowledge on the character of spatial information. The data template is 



then defined, which consists of k nearest neighbour pixels of the current pixel. 

Therefore, one pixel in the image corresponds to only one data template, and the data 

templates are different at each location. The multi-grid concept is applied to the data 

template. Instead of expanding the data template, the rescaled template is constructed by 

condensing the original one. Thus, the data template is formed as: 

 1 1

1( ) 2 , , 2L L L

nT u   h h . Figure 1 displays an example of data template 

construction, the process of estimating the multiple-point probability, and the data 

templates with a multi-grid level L of 3.  

[Figure 1 near here] 

 

As shown in Figure 1(a), to estimate the category of a pixel in an image 

(geographical space) (step 1), the k-NN method first projects this pixel into feature 

space, which is usually constructed with the spectral dimensions of the image. Then k 

nearest neighbouring training pixels in feature space related to the unknown pixel are 

found, for example, k = 5 (step 2). Among 5 training pixels, if 3 pixels belong to 

categories 1, 3, and 4, respectively, and 2 pixels belong to category 2, then this pixel is 

classified as category 2 using the k-NN classifier, determined by majority voting. 5-NN 

training pixels are then projected back to geographical space (step 3). The data template 

is constructed by the 5-NN training pixels centred on the unknown pixel (although the 

unknown pixel may not be the centre in geographical space). This data template 

corresponds only to the current unknown pixel, and this is used to scan the training 

image (step 4). In the scanning process, the categories of all the 5 pixels in the data 

template should be exactly matched (i.e., a data event is matched), then the current 

category at the centre of the data template is recorded, for example, category 1 (step 5). 

The scanning process is from top to bottom and left to right of the training image. For 

simplicity, we assume that 16 matched data events are found by this data template after 



scanning the whole training image. And among 16 data events, 3 nodes at the centre of 

the data template belong to category 1, 6 nodes belong to category 2, 7 nodes belong to 

category 3, and none belong to category 4. Thus, the multiple-point probabilities are 

3/16, 6/16, 7/16 and 0 for the four categories (step 6). Figure 1(b) shows the compact 

multi-grid data templates. For example, if L is taken as 3, the data template was 1/2 and 

1/4 of the original one for L = 2 and 3, respectively.  

A flowchart representing the MPk-NN classification process is shown in Figure 

2. A remotely sensed image and training samples for classification are first provided, 

along with a training image, which reflects the desired spatial pattern and provides prior 

information on the area of interest. Here, for a fair comparison with other classification 

methods, the training image is derived from an initial classification or a simulation 

result. Then the data template is constructed using the k-NN rule as shown in Figure 

1(a), and the multi-grid data templates at each location are used to scan the training 

image. The replicates of the data events are recorded according to the class type of the 

central node (the red node in Figure 1(a)). This information is then converted to a 

conditional probability for each class and incorporated into the gk-NN classifier, as 

shown in Equation (4).  

[Figure 2 near here] 

3. Case study 

3.1. Study area and data processing 

The wild giant panda (Ailuropoda melanoleuca) lives in a few mountain ranges in 

central China, mainly in Sichuan Province, where bamboos act as the main food source. 

Estimating and mapping suitable habitat plays a critical role in conservation planning 

and the development of policy for endangered species. Therefore, knowledge of the 



spatial distribution of bamboos is important for identifying suitable habitat for giant 

pandas. 

The first study site is located at Dengsheng Ditch in Wolong region, Sichuan 

Province, China. The study area is shown in Figure 3(a). The image is a subscene 

(30°50ʹ19ʺ–30°50ʹ51ʺN, 102°57ʹ35ʺ–102°57ʹ48ʺE) from WorldView-2 imagery with 

size 493  161 pixels, acquired on 28 May 2014. The dataset consists of eight 

multispectral bands with a spatial resolution of 2 m. The altitude of Dengsheng Ditch is 

from 2.7 to 4.5 km. The area is covered by various species of vegetation, the forest 

cover types of which are defined as bamboo, coniferous, broadleaved, and mixed 

woodland. Two further categories were included in the classification: bare land and 

shadow.  

Extensive fieldwork at Dengsheng Ditch was carried out in two field visits. The 

first was on 13 June 2014, with the aim of measuring feature points for image geometric 

correction and the collection of training samples. The second field visit occurred on 12 

September 2014, for the purpose of testing the accuracy of the classification. A 

Trimble
○R

 GeoXHTM 6000 handheld GPS was used to collect location points. An 

antenna was connected to the GPS to ensure that the signal could be received from more 

than three satellites under the canopy of large trees. 

[Figure 3 near here] 

 

When collecting sample points in the field, only four types of forest cover 

(bamboo, coniferous, broadleaved, and mixed woodland) were recorded. The sample 

points of bare land and shadow were chosen manually from the image, since they were 

easy identifiable and thus no ground control points were collected. Of 576 sample 

points, 365 sample points were used for training and 211 points were used for testing. 

The numbers of training samples are 57, 68, 63, 63, 51 and 63 for the classes of bamboo, 



coniferous, broadleaved, mixed woodland, bare land and shadow, respectively. The 

spatial distributions of the sample points are shown in Figure 3(b) and 3(c). The sample 

points of the bamboo class account for a larger proportion because they were 

specifically targeted in the fieldwork, although coniferous and mixed woodland are the 

main forest covers in the area.  

Another case study was undertaken on an IKONOS image (39°57ʹ55ʺ–

39°58ʹ28ʺN, 116°24ʹ5ʺ–116°24ʹ49ʺE) with size 256  256 pixels over the Beijing urban 

area (Figure 4(a)), acquired in May 2000. The IKONOS dataset consists of four 

multispectral bands with a spatial resolution of 4 m. The typical urban area can be 

classified generally into four high-level classes: buildings, vegetation, road/bare land 

and shadow. Since the four classes in the IKONOS image can be identified readily by 

visual inspection, the training and testing samples were labelled manually in the image. 

600 points in total were selected as samples, among which, 300 points were used for 

training and 300 points were used for testing. The numbers of training samples are 80, 

94, 72 and 54 for the classes of buildings, vegetation, road/bare land and shadow, 

respectively. The spatial distributions of the sample points are shown in Figure 4(b) and 

4(c). 

[Figure 4 near here] 

 

3.2. Classification 

The classification process was the same for both study areas. To provide benchmarks, 

the traditional k-NN classifier was first applied to all the multispectral bands based on 

the spectral values of each pixel, with a value of k equal to 5. wk-NN classification was 

then performed given the same training samples. The IDW scheme was used in the k-



NN classifier with an exponent parameter p of 2 in Equation (1). gk-NN is a two-point 

statistical weighted method. The class-conditional probability plots were estimated from 

the same training points used for classification, and then fitted with covariance-type 

models.  

To compare the proposed method with other state-of-the-art classifiers, two popular 

classification methods were applied: the Bayesian and support vector machine (SVM) 

methods. Also, previous studies have shown the advantages using the MRF spatial 

contextual classifier to improve both the Bayesian and SVM classification methods (Wu 

and Ouyang 2011; Moser and Serpico 2013). Therefore, the spatial weighting using 

MRF was also applied to the Bayesian and SVM methods to provide a further 

benchmark comparison with the MPS-based weighting method. The radial basis 

function (RBF) kernel function was used in the SVM method. A 10-fold cross-

validation was applied to select optimal parameters (the penalisation constant C and the 

kernel parameter γ) for RBF kernel. It is found that the optimal parameter C = 1 and γ = 

0.0125 with the mean accuracy equals 96.5% and the standard deviation equals 0.076 

for the Wolong case study, and C = 0.8 and γ = 0.0053 with the mean accuracy equals 

98.7% and the standard deviation equals 0.018 for the Beijing case study. The simulated 

annealing optimisation approach using a Gibbs sampler was employed in the MRF 

model (Berthod et al. 1996). 

Here, the training image was produced using the spatially smoothed gk-NN 

classification result. The data template for each pixel consisted of five nearest neighbour 

nodes. The multi-grid level L was taken as 3, and the multiple-point statistical weight 

SMP was set as 0.6 for the Wolong case study and 0.8 for the Beijing case study, which 

were estimated using sensitivity analysis. 



3.3. Results 

In the Wolong case study, the classification results obtained using the proposed method 

and the seven benchmark methods are displayed in Figure 5, and the classification 

accuracies are summarised in Table 1. As can be seen, in terms of overall accuracy, the 

proposed MPk-NN method produced an accuracy of 81.04% compared to the traditional 

k-NN method for which the accuracy was only 73.46%. The two spatial k-NN methods 

produced accuracies of 74.41% (wk-NN) and 74.88% (gk-NN), which lie somewhere 

between the non-spatial k-NN method and the proposed method. The overall accuracies 

are 74.41% and 76.78% using the Bayesian and SVM methods, which are greater than 

the traditional k-NN methods. Then the MRF model further increased the accuracies to 

76.78% and 77.73% using the Bayesian and SVM classifiers, respectively. Nevertheless, 

the overall accuracy and the kappa coefficient () of the MPk-NN result are the largest, 

which indicates the MPS spatial weighting increases the accuracy of classification more 

than the MRF weighting. 

[Figure 5 near here] 

[Table 1 near here] 

 

The four k-NN results in Figures 5(a)-(d) are very similar. The bamboo class 

appears more commonly in the k-NN result, but with the lowest user’s accuracy. This is 

because the k-NN method is sensitive to sample size, and the number of training 

samples for the bamboo class is the largest among all the classes. The gk-NN method 

has a greater overall accuracy and  than the wk-NN method. In fact, a large distributed 

class patch in the wk-NN result was not modified using the gk-NN method; in most 

cases, the gk-NN changed the allocation of mixed pixels near the land cover borders. In 

the MPk-NN result in Figure 5(d), the area of coniferous woodland in the lower right of 



the image is spatially smoother than the same area in the other classification results, 

which indicates that MPk-NN can act as an effective smoother to increase classification 

accuracy. Two of the Bayesian results have the least pixels allocated to the bamboo 

class, whereas the number of pixels in the bamboo class in two of the SVM results is the 

largest. However, the producer’s accuracies of the bamboo class are both very low for 

the Bayesian and SVM methods. The MRF-based methods in Figure 5(f) and (h) 

spatially smoothed the classification results according to the neighbouring classes 

compared to the original results in Figure 5(e) and (g), leading to an increase in the 

producer’s accuracies of the bamboo class. In fact, bamboos are covered by tree crowns 

at most locations in the study area. Therefore, bamboos are usually sparsely distributed 

as fragments only, and many pixels were misclassified as bamboos in the centre of the 

image.  

Since the environment is complex in Wolong, and the forest covers are not very 

easily be identified, the second case study in the urban area of Beijing was introduced. 

The classification results are displayed in Figure 6, and the classification accuracies are 

summarised in Table 2. As shown in Table 2, similarly, the two weighted k-NN 

methods produced greater overall accuracies (78.67% for wk-NN and 81.67% for gk-

NN) than the traditional k-NN method (77.67%), whereas the MPk-NN has the greatest 

overall accuracy (89.33%) and . Different from the previous case study, the Bayesian 

(73.33%) and SVM (77.67%) methods do not show an advantage over the k-NN 

classifier, but the MRF weighting still increased the accuracies compared to the non-

spatial methods (76.33% for Bayesian with MRF and 80.00% for SVM with MRF).  

[Figure 6 near here] 

[Table 2 near here] 

 



In this case, it is difficult to distinguish buildings from road/bare land since these 

two classes have similar spectral responses. Many pixels belonging to the building class 

were obviously misclassified as road/bare land in the Bayesian result in Figure 6(e), and 

the MRF-based result in Figure 6(f) further smoothed the building class, leading to the 

greatest producer’s accuracy of the road/bare land class. In the SVM result in Figure 

6(g), on the other hand, some roads in the upper right and some bare land classes in the 

centre of the image were misclassified as buildings. Through MRF smoothing, some 

pixels were corrected in the upper right of the image, but some bare land classes in the 

centre were still allocated as buildings in Figure 6(h). The k-NN result in Figure 6(a) 

distinguished these two classes, although the classified map appears more noisy than the 

Bayesian and SVM results. The wk-NN result in Figure 6(b) does not show much 

difference from the traditional k-NN result in Figure 6(a), whereas the gk-NN result in 

Figure 6(c) changed some pixels from buildings to the road/bare land class, improving 

the producer’s accuracy of the road/bare land class. The MPk-NN result in Figure 6(d) 

clearly shows a smoothing effect. But unlike the MRF weighting, which filters the noise 

and smooths the edges according to neighbouring information, the MPS-based 

weighting accounts for the dominant spatial patterns in the training image. When 

applying a post-processor such as a mean filter to smooth an image, the processor is 

operating on the result of the classification. Here, the MPk-NN is a more sophisticated 

form of post-processing where the processor borrows structures from other parts of the 

training image, and at varying spatial resolutions using multi-grid data templates, in 

order to update the gk-NN classified image.  

3.4. Significance test and higher-order statistics 

An analysis of variance (ANOVA) for the classification accuracy was performed using 

the F-test. To do so, the classification results were first compared to testing data. A 



binary variable was created for each method representing classification success/failure 

(the variable was set to one if the classification value equals the testing data, otherwise 

zero). Then all the results were compared with the MPk-NN result. As shown in Tables 

3 and 4, the MPk-NN result produced significant increases in accuracy with respect to 

all the classification results at the 70% confidence interval except for the SVM 

classification weighted with the MRF model in the Wolong case study. It indicates that 

it is worth applying the MPS-based weighting to increase the classification accuracy 

compared to the other classification methods and spatial weightings. In fact, in the case 

study of Beijing, the increase in accuracy of the MPk-NN method reached 90% 

confidence level compared to all the other methods, in which the F-value equals 2.71. 

Therefore, although Tables 1 and 2 show that the MPk-NN method does not always 

result in the greatest producer’s and user’s accuracy for each class, it has a greater 

probability to provide a significant increase in overall accuracy than the other methods. 

[Table 3 near here] 

[Table 4 near here] 

 

We applied higher-order statistics to the classification results to investigate the 

ability of the classifiers to recreate the desired spatial patterns. A three-node template 

was used to detect the correlation between the start point and two other points away 

from the start point at distances h1 and h2 along the given direction (Dimitrakopoulos, 

Mustapha, and Gloaguen 2010). Four templates were used: templates with two distances 

both along the x axis and both along the y axis, an L-shaped template with two distances 

along the x and y axes, and a template with two distances both along 45° counter-

clockwise from the x axis. A third-order cumulant statistic for each class was estimated. 

The class in focus was set as one and other classes were set as zero. Thus, the classes of 



all the three nodes in the template are required to be the same to result in one for the 

third-order cumulant statistic. Tables 5 and 6 show the summation of the cumulants for 

all the classes, which reflects the overall connectivity of the spatial patterns and the 

spatial correlation within classes for the classification results. It can be seen that the 

MPk-NN always yields the largest cumulant, contributed by the statistics captured from 

multiple points. The results indicate that the predicted spatial patterns for MPk-NN 

generally have greater connectivity and spatial correlation than the other methods. 

[Table 5 near here] 

[Table 6 near here] 

4. Discussion  

4.1. Parameter analysis 

Several parameters were introduced to the MPk-NN method in Equation (4), which are 

worth further discussion. Firstly, the number of NN pixels k is considered. Much 

research has discussed the choice of k in the k-NN classifier (Ghosh 2006; Hassanat et 

al. 2014). What is different here from the traditional k-NN method is that the data 

templates used in the MPS are also constrained by the number of k. Thus, if k is set to a 

very large value, the classification takes a longer time, and it is possible that no data 

event can be found in the training image by the strict conditioning of the data template. 

If the data template cannot find any matched data event, then the multiple-point 

probability of the corresponding pixel equals 0, which means that the MPS does not 

provide any weighting information to this pixel. Here, we set k as 5 in the experiments. 

The percentages of the pixels that failed to produce a multiple-point probability under 

the three multi-grid levels were 4.7% and 3.4% for the two case studies, respectively. 

Therefore, it is not suggested to take a value larger than 5 in the MPk-NN method. 



Conversely, a smaller value k may decrease the classification accuracy as a result of 

choosing the majority class in feature space from a smaller number k of neighbours. 

The multi-grid template in the MPk-NN method is derived from the nearest 

neighbour nodes, which is different to the locally compact window commonly used in 

MPS. It may be preferable to restrict the template to be more compact because the 

template can sometimes be spatially extensive, and expanding the template may fail to 

capture data events inside a spatially limited training image. Also, a spatially limited 

template may be more suited to capturing spatial dependence since near things tend to 

be similar. Taking the value 3 for the number of multi-grid levels is a common choice in 

the MPS, and a larger value would increase the scanning time. However, sometimes the 

template is already small at the original scale, in which case it is not necessary to further 

condense the template. Future research should, therefore, be focused on the use of 

appropriate multi-grid levels for different templates. For example, small data templates 

are only used at the original grid level, whereas large data templates are used at smaller 

grid levels to ensure that at least one data event can be matched until the template 

cannot be condensed. 

Since the multiple-point weight SMP was introduced in the MPk-NN method, a 

sensitivity analysis was performed. The sensitivity analysis was undertaken for the case 

study of Beijing only. The overall accuracy, and the user’s and producer’s accuracies of 

the classes of buildings and road/bare land were tested against a varying weight SMP 

from 0.1 to 0.9. The result is shown in Figure 7. As can be seen, the overall accuracy is 

larger than for the other k-NN methods when SMP varies from 0.3 to 0.9. SMP was taken 

as 0.8 because it resulted in the greatest overall accuracy. It is of interest to compare the 

spatial information of MPS with the spatial covariance provided by traditional 

geostatistics. Firstly, the multiple-point probability is not estimated as a function of 



distance. Thus, it may have a large effect via the spatial weighting, even if the data 

template is large. Secondly, the spatial covariance measures the spatial correlation 

between the central node and one of its k-NN nodes at one time; MPS summarises the 

correlation of the central node and all of its k-NN nodes. Finally, because of the second 

difference, the weight factor SMP accounts for more weight than Sg. Thus, it may not 

take a large value. For example, SMP was set to 0.6 in the case study of Wolong. 

[Figure 7 near here] 

4.2. Training image test 

It should be noted that the training image introduced in the MPk-NN method is 

generally not available in the other methods. However, to demonstrate the power of the 

proposed method, and to avoid using new data and, thus, provide a fair comparison with 

the benchmarks, the training image used in the present implementation of the MPk-NN 

method was a prior classification of the identical target area produced using the 

common input dataset. In this implementation, the MPk-NN method acts in the same 

way as the other spatial k-NN classifiers, but reprocesses the rich multiple point spatial 

information in a previous classification map to determine the spatial weights. 

Importantly, the MPk-NN classifier uses the previous classified map only as rich spatial 

structure information. It does not use the classified map as a starting point for further 

updating. Thus, the MPk-NN classifier effectively borrows spatial structure from 

multiple parts of the training image (class map) to condition the classification of other 

parts of the raw input image for which there may be uncertainty about the appropriate 

spatial structure. There are also important effects in terms of borrowing spatial 

information across scales (e.g., using large spatial patterns found in the training image 

to condition the mapping of smaller patterns that are less well resolved). 

[Figure 8 near here] 



 

When implemented in the above way the proposed method represents an 

increase in classification accuracy without the need for new data. In practice, however, 

generally the investigator may seek a training image from a different source and use that 

additional spatial information to condition the classification result. Here, a training 

image test was applied for the Beijing case study. Specifically, we tested the effects on 

the MPk-NN result of using different training images. As shown in Figure 8(a), the 

original training image was derived from the spatially smoothed gk-NN result. Four 

different training images were tested: a flipped training image of Figure 8(a) (not shown 

in Figure 8), a subset of the original training image (Figure 8(b)), a training image from 

a different area (Figure 8(c)), and a training image with the simplest pattern that 

accounts only for the proportion of the four classes (Figure 8(d)). Under the same 

conditioning, the classification accuracies using the MPk-NN method with these four 

training images are (a) 83.33% (flipped image), (b) 85.33%, (c) 84.67% and (d) 81.67%. 

For the last training image with the simplest pattern, the resulting accuracy using the 

MPk-NN equals the accuracy using the gk-NN method (81.67%), which means this 

training image does not provide any useful information. The other training images 

increased the accuracy to a greater or lesser degree compared with the gk-NN method. 

However, the increase in accuracy was greatest for the original training image, since the 

original training image is of the same area. Therefore, the most important attribute of a 

training image is that it can reflect the desired spatial distribution of the target area. 

Which method is used to produce the training image and the per-point accuracy of the 

training image are of little concern. It is suggested to use a previous classification result 

or its derivatives as a training image to achieve a high classification accuracy. Moreover, 

in the present demonstration of the new MPk-NN method in this paper, this approach 



has the added advantage that the new method does not use or require any new 

information relative to the benchmarks. Questions, however, still remain about the 

appropriateness and accuracy of the training image that may be selected, and this is 

currently the focus of much research in the field of MPS. Thus, future research should 

be focused on the selection of the training image and its effect to the MPS result. 

5. Conclusion 

This paper explored the potential of MPS for spatial weighting a remote sensing 

classification. A new multiple-point statistical k-NN classification method was proposed 

and tested on two remotely sensed images. The new MPk-NN classification method can 

account for the multiple point spatial correlation provided by a training image, in 

contrast to common spatial weighting schemes, which are limited to two-point statistics 

or average neighbourhood information. The MPS-based weighting was compared to the 

IDW, geostatistical, and MRF contextual weighting schemes, and the MPk-NN method 

was compared to the Bayesian and SVM classifiers. The results demonstrated that 

greater classification accuracy can be achieved using the MPk-NN method. Although 

the proposed method was tested on the fine spatial resolution images, generalisations of 

the MPk-NN method for both at different spatial resolutions (e.g., Landsat dataset) and 

upon object-oriented method on fine spatial resolution images are expected to explore in 

the future. 

Acknowledgements 

The paper was supported by the [National Science and Technology Support Program] 

under Grant [2013DFG21640]; the [National Natural Science Foundation of China] 

under Grant [41501489]; the [100 Talents Program of the Chinese Academy of Science] 

under Grant [Y34005101A]; and the [Major Program of High Resolution Earth 



Observation System] under Grant [30-Y20A37-9003-15/17]. The authors thank the 

Editor Prof. Arthur Cracknell and three anonymous reviewers for providing helpful 

suggestions that greatly improved the manuscript. 

 

References 

Atkinson, P. M., and P. Lewis. 2000. “Geostatistical Classification for Remote Sensing: 

An Introduction.” Computers & Geosciences 26: 361-371. doi:10.1016/S0098-

3004(99)00117-X. 

Atkinson, P. M., and D. K. Naser. 2010. “A Geostatistically Weighted K-NN Classifier 

for Remotely Sensed Imagery.” Geographical Analysis 42(2): 204-225. 

doi: 10.1111/j.1538-4632.2010.00790.x. 

Dimitrakopoulos, R., H. Mustapha, and E. Gloaguen. 2010. “High-Order Statistics of 

Spatial Random Fields: Exploring Spatial Cumulants for Modeling Complex Non-

Gaussian and Non-Linear Phenomena.” Mathematical Geosciences 42(1): 65-99. 

doi: 10.1007/s11004-009-9258-9. 

Berthed, M., Z. Kato, S. Yu, and J. Zerubia. 1996. “Bayesian image classification using 

Markov random fields.”  Image and Vision Computing 14(4): 285-295. 

doi:10.1016/0262-8856(95)01072-6. 

Dudani, S. A. 1976. “The Distance Weighted K-Nearest Neighbour Rule.” IEEE 

Transactions on Systems Man, and Cybernetics SMC-6(4): 325-327. 

doi:10.1109/TSMC.1976.5408784. 

Ge, Y., and H. Bai. 2011. “Multiple-Point Simulation-Based Method for Extraction of 

Objects with Spatial Structure from Remotely Sensed Imagery.” International 

Journal of Remote Sensing 32(8): 2311-2335. doi:10.1080/01431161003698278. 

Ge, Y. 2013. “Sub-Pixel Land-Cover Mapping with Improved Fraction Images upon 

Multiple-Point Simulation.” International Journal of Applied Earth Observation 

and Geoinformation 22: 115-126. doi:10.1016/j.jag.2012.04.013. 

Ghimire, B., J. Rogan., and J. Miller. 2010. “Contextual Land-Cover Classification: 

Incorporating Spatial Dependence in Land-Cover Classification Models Using 

Random Forests and the Getis Statistic.” Remote Sensing Letters 1(1): 45-54. 

doi:10.1080/01431160903252327. 



Ghosh, A. K. 2006. “On Optimum Choice of K in Nearest Neighbor Classification.” 

Computational Statistics & Data Analysis 50(11): 3113-3123. doi: 

doi:10.1016/j.csda.2005.06.007. 

Guardiano, F., and R. M. Srivastava. 1993. “Multivariate geostatistics: beyond bivariate 

moments.” In Geostatistics Tróia’92, edited by Amilcar Soares, 133-144. 

Dordrecht: Kluwer Academic Publications. 

Hassanat, A. B., M. A. Abbadi, G. A. Altarawneh, and A. A. Alhasanat. 2014. “Solving 

the Problem of the K Paramter in the KNN Classifier Using an Ensemble Learning 

Approach.” International Journal of Computer Science and Information Security 

12(8): 33-39. 

Liu, Y. 2006. “Using the Snesim Program for Multiple-Point Statistical Simulation.” 

Computers & Geosciences 32(10): 1544-1563. doi: 10.1016/j.cageo.2006.02.008. 

Magnussen, S., P. Boudewyn, and M. Wulder. 2004. “Contextual Classification of 

Landsat TM Images to Forest Inventory Cover Types.” International Journal of 

Remote Sensing 25(12): 2421-2440. doi: 10.1080/01431160310001642296. 

Moser, G., and S. B. Serpico. 2013. “Combining Support Vector Machines and Markov 

Random Fields in An Integrated Framework for Contextual Image Classification.” 

IEEE Transactions on Geoscience and Remote Sensing 51(5): 2734-2752. doi: 

10.1109/TGRS.2012.2211882. 

Okabe, H., and M. J. Blunt. 2005. “Pore Space Reconstruction Using Multiple-Point 

Statistics.” Journal of Petroleum Science and Engineering 46(1-2): 121-137. 

doi:10.1016/j.petrol.2004.08.002. 

Wu, E., and Q. Ouyang. “SVM- and MRF-based Method for Contextual Classification 

of Polarimetric SAR Images.” 2011. 2011 International Conference on Remote 

Sensing, Environment and Transportation Engineering (RSETE) 818-821. doi: 

10.1109/RSETE.2011.5964403. 

Pasolli, E., F. Melgani, D. Tuia, F. Pacifici, and W. J. Emery. 2014. “SVM Active 

Learning Approach for Image Classification using Spatial Information.” IEEE 

Transactions on Geoscience and Remote Sensing 52(4): 2217-2233. doi: 

10.1109/TGRS.2013.2258676. 

Solberg, A. H. S., T. Taxt, and A. K. Jain. 1996. “A Markov Random Field Model for 

Classification of Multisource Satellite Imagery.” IEEE Transactions on 

Geoscience and Remote Sensing 34(1): 100-113. doi: 10.1109/36.481897. 



Sun, S., P. Zhong, H. Xiao, and R. Wang. 2016. “Spatial Contextual Classification of 

Remote Sensing Images using A Gaussian Process.” Remote Sensing Letters 7(2): 

131-140. doi: 10.1080/2150704X.2015.1117152. 

Strebelle, S. 2002. “Conditional Simulation of Complex Geological Structures Using 

Multiple-Point Statistics.” Mathematical Geology 34: 1-22. doi: 

10.1023/A:1014009426274. 

Tang, Y., P. M. Atkinson, N. A. Wardrop, and J. Zhang. 2013. “Multiple-Point 

Geostatistical Simulation for Post-Processing A Remotely Sensed Land Cover 

Classification.” Spatial Statistics 5: 69-84. doi:10.1016/j.spasta.2013.04.005. 

Tran, T. 1994. “Improving Variogram Reproduction on Dense Simulation Grids.” 

Computers & Geosciences 20(7-8): 1161-1168. doi:10.1016/0098-3004(94)90069-

8. 

  



Table 1. Confusion matrix using different classification methods in Wolong area (OA = 

overall accuracy, PA = producer’s accuracy, UA = user’s accuracy, class name: 1-

bamboo, 2-coniferous, 3-broadleaved, 4-mixed woodland, 5-bare land, 6-shadow). 

Method   OA(%) 
PA / 

UA 

Accuracy for each class (%) 

1 2 3 4 5 6 

k-NN 0.675 73.46 
PA 35.56 78.72 93.75 79.07 83.33 88.46 

UA 50.00 62.71 83.33 80.95 93.75 88.46 

wk-NN 0.687 74.41 
PA 35.56 82.98 90.63 79.07 83.33 92.31 

UA 51.61 65.00 80.56 82.93 93.75 88.89 

gk-NN 0.693 74.88 
PA 35.56 82.98 93.75 79.07 83.33 92.31 

UA 51.61 66.10 81.08 82.93 93.75 88.89 

Bayes 0.689 74.41 
PA 31.11 89.36 90.63 76.74 100 80.77 

UA 63.64 73.68 76.32 80.49 75.00 72.41 

Bayes-

MRF 
0.715 76.78 

PA 44.44 91.49 90.63 79.07 94.44 73.08 

UA 62.50 68.25 90.63 77.27 94.44 86.36 

SVM 0.716 76.78 
PA 26.67 93.62 96.88 86.05 94.44 80.77 

UA 66.67 69.84 81.58 72.55 100 87.50 

SVM-

MRF 
0.725 77.73 

PA 66.67 97.87 90.63 67.44 83.33 57.69 

UA 61.22 66.67 100 85.29 100 100 

MPk-

NN 
0.767 81.04 

PA 66.67 97.87 93.75 65.12 88.89 80.77 

UA 61.22 77.97 93.75 82.35 100 100 

 



Table 2. Confusion matrix using different classification methods in Beijing area (OA = 

overall accuracy, PA = producer’s accuracy, UA = user’s accuracy, class name: 1-

buildings, 2-vegetation, 3-road/bare land, 4- shadow). 

Method  OA(%) 
PA / 

UA 

Accuracy for each class (%) 

1 2 3 4 

k-NN 0.693 77.67 
PA 72.46 92.93 60.00 91.89 

UA 57.47 96.84 70.37 91.89 

wk-NN 0.706 78.67 
PA 69.57 91.92 66.32 91.89 

UA 61.54 96.81 70.00 89.47 

gk-NN 0.746 81.67 
PA 63.77 92.93 78.95 91.89 

UA 72.13 96.84 70.75 89.47 

Bayes 0.625 73.33 
PA 20.29 94.95 83.16 89.19 

UA 51.85 97.92 56.43 89.19 

Bayes-MRF 0.665 76.33 
PA 20.29 95.96 92.63 86.49 

UA 70.00 97.94 59.06 94.12 

SVM 0.695 77.67 
PA 86.96 93.94 49.47 89.19 

UA 56.60 96.88 75.81 91.67 

SVM-MRF 0.726 80.00 
PA 84.06 96.97 55.79 89.19 

UA 58.59 96.97 79.10 94.29 

MPk-NN 0.852 89.33 
PA 79.71 93.94 88.42 97.30 

UA 87.30 95.88 81.55 97.30 

 

 

  



Table 3. ANOVA for the classification methods in Wolong area using F-test at the 70% 

confidence level (Y = yes, N = no). 

Method F-ratio F-value 1.08 

k-NN 3.50 Y 

wk-NN 2.69 Y 

gk-NN 2.33 Y 

Bayes 2.69 Y 

Bayes-MRF 1.15 Y 

SVM 1.15 Y 

SVM-MRF 0.71 N 

 



Table 4. ANOVA for the classification methods in Beijing area using F-test at the 70% 

confidence level (Y = yes, N = no). 

Method F-ratio F-value 1.08 

k-NN 20.75 Y 

wk-NN 12.93 Y 

gk-NN 7.17 Y 

Bayes 26.31 Y 

Bayes-MRF 18.25 Y 

SVM 15.14 Y 

SVM-MRF 10.18 Y 

 

 

  



Table 5. Third-order cumulant statistic of the classification results along different 

directions in Wolong area. 

 xx yy L-shape 45° 

k-NN 2857.3 18862.1 6888.1 5057.2 

wk-NN 2846.3 18662.8 6814.5 5025.2 

gk-NN 2772.3 18037.5 6631.9 4837.0 

Bayes 1674.8 10631.7 3789.6 3013.8 

Bayes-MRF 2063.7 12743.0 4477.1 3706.1 

SVM 2959.3 18229.6 6744.6 5199.2 

SVM-MRF 3776.0 25248.6 8362.3 7416.5 

MPk-NN 3985.8 26827.2 9284.8 7575.8 

 

 

  



Table 6. Third-order cumulant statistic of the classification results along different 

directions in Beijing area. 

 xx yy L-shape 45° 

k-NN 7953.1 5782.1 6718.6 13750.7 

wk-NN 7773.4 5707.8 6561.9 13005.1 

gk-NN 8164.1 6048.5 6909.6 13678.6 

Bayes 8234.7 6006.9 7059.7 17419.2 

Bayes-MRF 8777.8 6168.4 7670.2 18292.6 

SVM 8563.5 6180.3 7062.2 14268.9 

SVM-MRF 10058.5 6624.2 7818.3 17886.9 

MPk-NN 10067.5 6869.5 7987.7 19051.8 

 



 

Figure 1.  Data template construction and multi-grid data template: (a) the process for 

data template construction: step 1: the unknown pixel needs to be estimated in 

geographical space, step 2: finding k-NN nodes in feature space, step 3: k-NN nodes are 

projected back to geographical space, step 4: the data template is constructed by k-NN 

nodes in geographical space, step 5: the training image is scanned by the data template, 

step 6: calculating the multiple-point probabilities, and (b) the multi-grid data template 

with a level L equals 3. 



 

Figure 2. Flowchart representing the MPk-NN classification process. 

  



 

Figure 3. Image of study area and sample points: (a) WorldView-2 image of Dengsheng 

Ditch (true colour composite), (b) the spatial distribution of training samples, and (c) the 

spatial distribution of testing samples. 

  



 

Figure 4. Image of study area and sample points: (a) IKONOS image of Beijing urban 

area (true colour composite), (b) the spatial distribution of training samples, and (c) the 

spatial distribution of testing samples. 

  



 

Figure 5. Classification of land cover of WorldView-2 image using the (a) k-NN, (b) 

wk-NN, (c) gk-NN, (d) MPk-NN, (e) Bayesian, (f) Bayesian with MRF, (g) SVM, and 

(h) SVM with MRF methods. 



 

Figure 6. Classification of land cover of IKONOS image using the (a) k-NN, (b) wk-

NN, (c) gk-NN, (d) MPk-NN, (e) Bayesian, (f) Bayesian with MRF, (g) SVM, and (h) 

SVM with MRF methods. 

  



 

Figure 7. Plots of accuracies against SMP weighting between 0.1 and 0.9 for the 

classification in Beijing. 

  



 

Figure 8. Training image tests: (a) the original training image, (b) a subset from the 

original training image, (c) a training image from different area, and (d) a training 

image with the simplest pattern. 

 

 


