
Electronic Letters on Computer Vision and Image Analysis 2(2):12-24, 2003  

MRF-based image segmentation using Ant Colony System  

Salima Ouadfel and Mohamed Batouche 

Computer Vision Group, LIRE Laboratory 
Computer Science Department, Mentouri University 
Route de Ain El-Bey, Constantine, 25000, Algeria 

E-mail: {souadfel, batouche}wissal.dz 
 

Received 28 February 2003; accepted 9 July 2003 

Abstract 
In this paper, we propose a novel method for image segmentation that we call ACS-MRF method. ACS-MRF 

is a hybrid ant colony system coupled with a local search.  We show how a colony of cooperating ants are able to 
estimate the labels field and minimize the MAP estimate. Cooperation between ants is performed by exchanging 
information through pheromone updating. The obtained results show the efficiency of the new algorithm, which 
is able to compete with other stochastic optimization methods like Simulated annealing and Genetic algorithm in 
terms of solution quality.  
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1 Introduction 

Image segmentation is a low level image processing task that aims at partitioning                     
an image into regions in order that each region groups contiguous pixels sharing similar attributes (intensity, 
color, etc.). It is a very important process because it is the first step of the image understanding process, and 
all others steps, such as feature extraction, classification and recognition, depend heavily on its results. Image 
segmentation has been the subject of intensive research, and a wide variety of image segmentation 
techniques have been reported in the literature. A good review of these methods can be found in [22]. 
Among them, Markov random field (MRF) is one of the most frequently utilized [2, 4, 7, 15, 23, 25, 26, 29, 
32, 33, 37]. The MRF-based image segmentation method is a process seeking the optimal labeling of the 
image pixels. A labeling process consist of accurately labeling the image pixels with a group of given labels. 
A label set represents the pattern classes in the image. Through a process based on local interactions among 
pixels, MRF allows the label selection of a pixel to be conditioned explicitly on the local interaction between 
the pixel and its neighbors within a well-defined neighborhood system without involving all the pixels of the 
image.  

The image is segmented by maximizing the a posteriori probability (MAP) of the labeling space given the 
image data [31]. The MRF-MAP framework involves solving an energy maximization (or minimization) 
problem. However this maximization is combinatorial and the energy function is usually non convex and 
may exhibits many local minima in the solution space. The often used methods for solving such 

 
 Correspondence to: souadfel@wissal.dz , batouche@wissal.dz 

 Recommended for acceptance by Enric Martí 
 ELCVIA ISSN: 1577-5097 
 Published by Computer Vision Center / Universitat Autonoma de Barcelona, Barcelona, Spain 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/33157964?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:souadfel@wissal.dz.
mailto:batouche@wissal.dz


S. Ouadfel et al. / Electronic Letters on Computer Vision and Image Analysis 2(2): 12-24, 2003       13 

combinatorial problem are the iterated conditional method (ICM) [12], the simulated annealing (SA) [28] 
and the genetic algorithm (GA) [9, 23].  

ICM is a deterministic optimization method proposed by Besag [12] and based on a descent gradient 
strategy. For each pixel, the label which gives the large decrease of the energy function is chosen. ICM 
converge quickly to a local solution and the solution quality depends much on the initial partition [31, 35]. 
SA is a stochastic algorithm based on the classical Metropolis method and introduced in computer vision by 
Geman and Geman [28]. The SA algorithm converges to global minima of the energy function but with an 
exponential time [30]. GA developed by Holland [14], is a stochastic optimization method that mimic the 
principles of natural evolution. Unlike the above-mentioned methods, which operate on a single 
configuration, GA is a population-based method, which operates on a population of individuals called 
chromosomes. Each chromosome represents a solution to the given problem. The chromosomes evolve 
through successive generations and two genetic operators are used to produce offspring: crossover and 
mutation [6]. The resulting offspring update the population according to a fittest function. Applications of the 
GA in the image segmentation can be found in [9, 10, 13, 36]. 

Ant Colony Optimization (ACO) metaheuristic [17, 21] is a recent population-based approach inspired by 
the observation of real ants colony and based upon their collective foraging behavior. In ACO, solutions of 
the problem are constructed within a stochastic iterative process, by adding solution components to partial 
solutions. Each individual ant constructs a part of the solution using an artificial pheromone, which reflects 
its experience accumulated while solving the problem, and heuristic information dependent on the problem. 
In this paper, we applied the concept of ACO for discrete optimization in MRF-based image segmentation. 
Our main motivation is that ACO metaheuristic has been successfully applied to several NP-hard 
combinatorial optimization problems and has been shown to be competitive against conventional 
optimization methods like GA and SA [18]. We have designed a constructive algorithm called ACS-MRF 
algorithm, in which a colony of artificial ant searches for an optimal labeling of image pixels that maximizes 
the MAP estimate. Individual ant constructs a candidate partition, by a relaxation labeling with respect to the 
contextual constraints. After some iterations, the partition representing the optimum value of the energy 
function is obtained. Experimental results are provided to compare the ACS-MRF method with the SA and 
GA. The results show that the ACS-MRF based image segmentation yields good quality solution comparable 
to SA and GA. 

Consequently and in order to be self-contained, the rest of the paper is organized as follows. Section 2 
presents a brief review on image modeling using MRF. Section 3 describes ACO algorithm and the ACS 
algorithm. Section 4 investigates the application of ACS for MRF-based image segmentation. In section 5 we 
present the experimental results and finally a conclusion is drawn in section 6. 

2 Image Modeling using Markov Random Field 

The MRF was introduced in image analysis by Geman and Geman [28]. MRF theory provides a tool for 
modeling a vision problem within the Baye’s framework using spatial continuity. MRF is a stochastic 
process in which spatial relations within the image are included in the labeling process through statistical 
dependence among neighboring pixels. This section briefly describes the MRF model for image 
segmentation. The image pixels are indexed by a rectangular lattice S and each pixel s is characterized by the 
gray level from the set . The labeling process consists of accurately labeling each pixel 

 with a class label representing the pattern class in the image. A label set is defined as , 
where C is the total number of the pattern classes in the image. A labeling is denoted by 

sy { Ssyy s    : ∈= }
Ss   ∈ { }C,...1=Λ

{ }Sss    ,  ∈Λ∈xxx s  :=  
where indicates that that the class label l is assigned to the pixel s.  lxs =

)The goal is to find the labeling  of the image, which is the estimation of the true but unknown labeling 
x*. According to the MAP estimate [28] we have 

x
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According to Baye's theorem [27], we have  
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where P(x) is the prior density of the labeling x and is the conditional probability density of the 
image y.  
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We assumed that the image data are obtained by adding an identical independently distributed (i.i.d.) 
Gaussian noise. We have 
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Based on the conditional independence assumption of y, the conditional density takes the form of ) | ( xyP
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which can be written as 
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The prior model is based on 2-D MRF and assumes that the adjacent pixels are likely to have the same 
class label. We consider the neighboring system , where is the set of pixels neighboring s. 
x is a particular realization of a random field Χ, which is an MRF on S with respect to a neighboring system 
N, if for all ,  

{ }SsNN s    , ∈= sN

Ω∈  x
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where Ω is the set of all possible labeling and  indicates the neighborhood excluding the pixel s. s\sN sN
 
According to the Hammersley-Clifford theorem [12], the prior model is given by a Gibbs 

distribution with respect to the neighboring system N. takes the form of  
)(xP

)(xP
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where Z is the normalization function, V  is the potential function for clique c and C is the set of all 
cliques over the image. A clique is a set of pixels that are neighbors of one another. In this paper we consider 
only the pair-site clique potentials of 8-neighborhood system, with the form V  if and 0 
otherwise. β is a positive parameter and the larger β, the larger is the influence of the neighboring pixels. 
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From (7) and (9), we can write the posterior probability  
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where the energy functionU  has the form  )(x
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The problem of finding the MAP estimate of the segmentation is expressed as the minimization of the 
posterior energy function. This task is usually a hard optimization problem because the number of possible 
label configurations is generally very large and moreover, the energy function may contains local minima. 
This paper describes a new effective approach for the minimization of the energy function, following the 
concept of Ant Colony Optimization and strongly based on Ant Colony System.  

3 Ant Colony System  

Ant Colony Optimization (ACO) is a population-based approach first designed by Marco Dorigo and co-
workers [17] and inspired by the foraging behavior of ant colonies. Individuals ants are simple insects with 
limited memory and capable of performing simple actions. However, the collective behavior of ants provides 
intelligent solutions to problems such as finding the shortest paths from the nest to a food source. Ants 
foraging for food lay down quantities of a volatile chemical substance named pheromone, marking their path 
that it follows. Ants smell pheromone and decide to follow the path with a high probability and thereby 
reinforce it with a further quantity of pheromone. The probability that an ant chooses a path increases with 
the number of ants choosing the path at previous times and with the strength of the pheromone concentration 
laid on it [18, 24]. 

This concept has been applied to hard combinatorial optimization problems by creating a population of 
artificial ants that searches for optimal solutions according to the problem’s constraints. In the ACO 
metaheuristic, artificial ants are defined as simple agents that repeatedly construct candidate solutions by 
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adding components to partial solutions. Partial solutions are seen as the states of the construction process and 
the ant moves from one state to another until a complete solution is built. Each ant, moving from state i to the 
state j is probabilistically guided by two measures: an artificial pheromone trail τ(i, j) representing 
experience gathered by ants in previous iteration when choosing this move and a heuristic information η(i, j) 
that represents a priori information of the given problem. Each ant updates pheromone trails after having 
construct a complete solution, and the amount of pheromone deposited is a function of the quality of the 
solution constructed. The goal of this update process is the increasing the probability of choosing the moves 
that were part of good solutions, while decreasing all others. ACO algorithms have been successfully applied 
to diverse combinatorial optimization problems including symmetric and asymmetric traveling salesman [18, 
19], quadratic assignment [8, 34], graph-coloring [5], vehicle routing [3], telecommunication networks [11] 
and sequential ordering [16]. A good review of these algorithms can be found in [21]. 

ACS is one of the best implementation of ACO for the TSP problem. ACS introduced a particular use of 
pheromone trails. Pheromone trails are used for exploration and exploitation. Exploration allowed the 
construction of new solutions by choosing in a probabilistic way the components of a solution: a higher 
probability is given to components with a strong pheromone trail. Exploitation is based on the choice of the 
components with a strong pheromone trail and a decreasing cost. Also the pheromone is updated in two 
stages. A local pheromone updating rule is applied after an ant has built a candidate solution to the problem. 
Once all ants have built solutions, only the so-far best solution is used to globally increase the pheromone 
trail. The local updating has a diversification effect: every time an ant chooses a component of the solution 
the quantity of pheromone trail associated to this choice is decreased and it becomes less attractive that 
others. On the other hand, the global updating has an intensification effect because it permits the 
intensification of the search in the neighborhood of the best solution computed during the next iteration. The 
reader is referred to [20] for amore detailed description of the ACS algorithm. 

4  ACS Algorithm for MRF Image Segmentation 

In this paper, we applied the concept of ACS algorithm for discrete optimization in MRF-based image 
segmentation. We have designed a constructive algorithm called ACS-MRF in which a colony of artificial 
ants searches for a globally optimum solution defined as a correct labeling of image pixels with respect to the 
contextual constrains. An individual ant in turn traces a solution in a solution space made up of all possible 
labeling of image pixels. Each component of a solution is a pair (s, l) representing the assignment of the class 
label l to a pixel s. In ACS-MRF, K ants explore the image in parallel, and this process is repeated for M 
iterations. During each iteration, ants construct complete solutions communicating only indirectly via 
pheromone updates. The artificial pheromone trail is numeric information encoded as a matrix of dimension 
(N, C) where N is the number of image pixels and C is the total number of the pattern classes in the image. 
The decisional basis for the solution construction step of an ant is provided by the artificial pheromone trail 

 associated to the pair ( , which represents the desirability of setting in a solution, and made 
available by previous attempts of other ants. Once each ant has built a complete solution, this is improved 
using a local search method in order to enhance the quality of the solutions found during the search process. 
Finally, the pheromone trails are updated locally during solutions construction and globally at the end of 
each iteration according to the quality of the best solution found from the beginning of the labeling process. 
The algorithm stop iterating when a maximum of number of iterations has been performed. 

( ls  ,τ ) )ls  , lxs   =

Figure 1 shows a pseudo-code for the complete ACS-MRF algorithm. More details of the algorithm are 
described in the following subsections. 

In figure1, K is the number of ants, and  kx  is a solution constructed by ant k, where k = 1…K. xib denotes 
the iteration best solution, and xgb

 denotes the best solution found since the start of the algorithm. 

 

 



S. Ouadfel et al. / Electronic Letters on Computer Vision and Image Analysis 2(2): 12-24, 2003       17 

4.1 Pheromone trail initialization 

In ACS-MRF we initialize all pheromone values τ for pairs ( with a value)ls  ,  ))(.(1 0
 0 xUN=τ , where 

x0 is an initial solution created by a greedy heuristic. Image pixels are treated in order, and for each one is 
assigned the locally best possible class label that minimizes the local energy function given by 
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The first two terms of U represent the binding between the gray level at pixel s and the segmentation; the 
last term indicated the smoothness constraints in the prior model.  

s

4.2 Solution construction 

ACS-MRF goal is to find the optimal labeling that minimizes the energy function given in (11). K ants 
build possible labeling in parallel. The construction of a solution involves two steps. First, a pixel has to be 
chosen and next a class label has to be assigned to it. Each ant is initially put on a random chosen pixel and 
then iteratively moved from pixel to pixel until all image pixels have been treated.  For the second step the 
pheromone trails are used, τ  referring to the desire of assigning class label l to pixel s. The decision 
over which class label l is assigned to pixel s is made by the following pseudo-random-proportional rule 
according to [20]. Let a random number uniformly distributed in  and q

( ls  , )

] q [ 1,0 0 a fixed probability.  

• If then, the ant chooses to the pixel s the class label l for which the pheromone trail τ  
is highest.  
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• Otherwise a random decision is made in which a class label l =1,….C  is chosen with probability 
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The parameter q0 controls the relative importance of exploitation of already accumulated knowledge 
reflected in the pheromone trails versus the exploration of the new solutions. 

4.3 Local pheromone update 

While building a solution, the ant chooses a class label l to a pixel s and changes the amount of 
pheromone trail of the pair (s, l) by applying the following local pheromone update: 

0.) ,(.1) ,( τρlsρ)(ls oldnew +−= ττ  
 

(15) 
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Algorithm 1 ACS for MAP-MRF image segmentation: 
 
Create initial solution x0 by a greedy heuristic.  

Set ))(.(1 0
 0 xUN=τ . 

FOR each pair (s, l)  Set τ   END-FOR 0 ) ,( τ=ls
REPEAT 
    FOR each ant k=1,…..,K DO 
           FOR each pixel  DO Ss   ∈

                WITH probability q0 : 
                        l      ) ,( max arg  us

u
τ

Λ∈
=

                 ELSE 

                             Choose l randomly from the labels set Λwith probability 
∑

Λ∈u
us

ls
  ) ,(

 ) ,( 
τ

τ  

                 lxks   =
    END-FOR 

END-FOR 
FOR each ant k=1,…..,K DO 
      FOR each pixel  DO Ss   ∈
             τ , where  0.) ,(.1) ,( τρlsρ)(ls +−= τ lxks   =

      END-FOR 
END-FOR 
FOR each ant k=1,….., K DO 
         Locally improve   kx

         Evaluate  by computing U  kx )( kx

END-FOR 
( ))( argmin

,...,1
xUx

Kxxx

ib

=
=  

IF U THEN  )(  )( gbib xUx < ibgb xx =

FOR each pixel  DO Ss   ∈
       FOR each class label l  DO Λ∈  
             τ     ) ,(.  ) ,(.1) ,( lsls)(ls τατα ∆+−=

           




 ∈

=
otherwise            0

   ) ,(       
)(

1
  ) ,(

gb
gb xlsif

xUlsτ∆  

     END-FOR  
END-FOR  

UNTIL M iterations are performed. 

Figure 1. The main algorithm of the ACS-MRF. 
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where   is a parameter in ]0,1[, which represents the evaporation of the pheromone trail as in the 
behavior of the real ants and τ

ρ

)

0 is the initial pheromone value.  
The effect of local updating is to decrease the amount of the pheromone value associated to the pair (s,l) 

used by an ant  in order to reduce it’s attractivity for the other ants building solutions in parallel.  

4.4 Global pheromone update 

When all ants have built a solution, the best solution corresponding to the  is recorded. The 

pheromone trails are then modified by the ants. Like in ACS [20], we allow only the best ant to deposit 
additional pheromones on the pairs  belonging to its solution . The global update is done by 
applying the following global update rule: 

K1,....,k
))(( min

=

kxU
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where α, with 0 , is the persistence of the trail so that (1-α) simulates the pheromone 
evaporation.  Evaporation decreases the intensity as time goes and reduces the danger of premature 
convergence to poor local optima. U is the energy function of the best solution found since the 
beginning of the algorithm (Eq.11). The best solution represent the optimal partition in which each pixel s is 
mapped to its closest classes taking into account the class labels of it’s immediate neighborhood. The 
pheromone values of the so-far best solution’s pairs (s,l) are increased to intensify the research of next 
solutions in a neighborhood of this solution during the next cycle by the future ants.  

1      << α

)( gbx

4.5 Local improvement  

In order to improve the performance of ACS-MRF algorithm an additional local search is performed for 
each partition built by an ant. Adding a local search yields a faster convergence of the algorithm and an 
earlier detection of high quality solutions. Each created solution is locally improved before its evaluation. 
The local search algorithm start with a partition x found by an ant and iteratively improves it using 
neighborhood search N(x) and a search strategy [1]. The neighborhood N(x) is a set of candidate partitions 
that can be reached from x by making small modifications. The modifications should perform local fine-
tuning towards a local optimum [1]. In ACS-MRF algorithm, we consider the first improving neighbor 
selection strategy. For each solution x, we evaluate the neighboring candidates solutions  and the 
first x’ for which U , ie. the first improving neighbor encountered, is selected. The neighborhood 
of a solution is defined by a set of solutions that can be obtained by exchanging the class labels of two pixels 
[38]. The sequential version of the local search algorithm is given in figure2. 

)(  ' xNx ∈
)(  ')( xUx <
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Algorithm 2 A local search algorithm  
 
Let  the segmentation to improve X  ∈x
Let φ   =w
WHILE (  φ) DO ≠ /)( wxN

          )(lution GenerateSo  ' xx =

          IF U THEN         ) U(  )'( xx <

               Return   'x
         ELSE       
             '      xww U=
END-WHILE 

Return   x 

Figure 2. The local search  algorithm  

5  Experimental results 

To evaluate the performance of the proposed method other heuristics, we empirically compare the ACS-
MRF algorithm to the simulated annealing algorithm (SA) and the genetic algorithm (GA). All these 
algorithms have been implemented in Language C. Experiments were conducted by performing a variable 
number of runs for each algorithm with several parameters whose values are tabulated in Table 1. 

Simulated annealing (SA) Genetic algorithm (GA) Ant colony system (ACS-MRF) 
Parameters Value Parameters Value Parameters Value 
T0 2 N 30 Q0 0.6 
Tm 0.9 Pc 0.8 τ0 0.001 
Ni 100 Pm 0.01 ρ 0.9 
Nmax 3000 Nmax 1000 Nants 10 
    Nmax 2500 

Table1. Parameters of the Simulated annealing, Genetic algorithm and Ant colony system algorithms.  
T0 : initial temperature, Tm : temperature multiplier, Ni : number of iterations after which temperature is 

reduced, Nmax : maximum number of iterations allowed, N : the population size, Pc : crossover probability,  
Pm : mutation probability, q0 : parameter with determine the relative importance of exploitation versus 

exploration, τ0 : the initial pheromone trail, ρ  : the pheromone decay parameter and Nants : number of ants.  

Experiments were conducted both on synthetic cerebral magnetic resonance (MR) images and on a real 
world mage represented by a house image.  

5.1 MR images 

Brain matter can generally be categorized as white matter (WM), gray matter (GM) and cerebrospinal 
fluid (CSF). The most problems with the segmentation of MR images are due to the presence of noise and to 
the intensity inhomogeneities. Assessing the performance of the image segmentation method is difficult 
when the ground truth is non-known. For this reason we used a computationally synthesized phantom 
available on the site Brainweb: http://www.bic.mni.mcgill.ca/brainweb/. The Brainweb site offers a large 
amount of different phantoms of MR brain images with different levels of noise and inhomogeneities. From 

http://www.bic.mni.mcgill.ca/brainweb/
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these phantoms, the tissues classification in CSF, GM and WM are known a priori. Theses phantom images 
are labeled manually by a medical researcher and considered as the "ground truth" which is taken as a 
reference image and allows us to test the suggested algorithm. Tests have been done on the Brainweb 
phantoms (Figure3) containing 0%, 3% or 5% of noise and have an inhomogeneity of 20% or 40%. We 
tested each of SA, GA and ACS-MRF methods on each combination of these parameters for the Brainweb 
phantoms.  

To validate the accuracy and reliability of the segmentation method, compared with the ground truth, we 
computed the Jaccard similarity, which measures the similarity of two sets as the ration of the size of their 
intersection divided by the size of their union. Let V and V denotes the total number of pixels labeled into 
a tissue class k in the ground truth (g) and the obtained segmentation (s). For tissue class k the Jaccard 
similarity  is defined by  

kg ks

),( sgJ k

kskg

kskgk

VV
VV

sgJ
∪
∩

=),(  
 

(18) 

 
A good segmentation is obtained when is near 1 which means that the tissue class k of the brain is 

well detected. We computed the Jaccard similarity for each segmentation method. Table2 shows obtained 
results. All values are average values over 10 test runs. Results show that ACS-MRF is completive with SA 
and GA and in most of the time, ACS found better solutions.  

),( sgJ k

 
 Inhomogeneity =20% Inhomogeneity =40% 
 
 
 
 
Noise=0% 

  
 
 
 
Noise=3% 

  
 
 
 
Noise=5% 

  

Figure 3. Brain phantoms with different values of noise and inhomogeneities 
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  N= 0% N = 3% N = 5% 
  20% 40% 20% 40% 20% 40% 

LCR 0.86 0.87 0.86 0.85 0.82 0.80 
GM 0.91 0.89 0.88 0.88 0.86 0.84 

 
SA 

WM 0.90 0.86 0.88 0.84 0.83 0.81 
LCR 0.85 0.89 0.87 0.86 0.82 0.81 
GM 0.96 0.90 0.90 0.88 0.87 0.85 

 
GA 

WM 0.91 0.86 0.88 0.84 0.83 0.82 
LCR 0.89 0.87 0.87 0.85 0.86 0.82 
GM 0.94 0.89 0.90 0.89 0.88 0.86 

 
ACS-MRF 

WM 0.93 0.88 0.89 0.86 0.84 0.82 

Table2. Comparison of Jaccard similarity measure of the SA, GA and ACS algorithms for segmentation 
of MR images. 

5.2 Real world image 

Our algorithm has been applied to a real world image represented by a house image. The experimental 
results are presented in Figure 4. It can be shown that the algorithm accurately segmented the regions of 
interest and produced more compact regions as a whole.  

a b c d 

Figure 4. Results of segmentation of a house image. a) a house image. b) Result of SA algorithm,  
c) Result of the GA algorithm, d) Result of ACS-MRF algorithm.  

6 Conclusion 

In this paper, we have described a novel approach to image segmentation based on a hybrid Ant Colony 
System with a local search for the discrete optimization of the MRF–based image segmentation. MRF theory 
provides a convenient and consistent way to model contextual constraints among image pixels by conditional 
probability over small neighborhoods of pixels. The image is segmented by maximizing the a posteriori 
probability of the labeling space given the image pixels. The problem of finding the MAP estimate of the 
segmentation is expressed as the minimization of the posterior energy function. This minimization is 
combinatorial and so difficult to solve. ACS-MRF algorithm is a distributed algorithm based on a population 
of ants. Each ant constructs a candidate partition using the pheromone information accumulated by the others 
ants. After some iterations, the best partition representing the optimum value of the posterior energy function 
is found. A simple local search algorithm is used to improve the quality of the solution found by an ant and 
yielding a faster convergence of the algorithm. Experimental results show that the ACS-MRF based image 
segmentation is able to find high-quality solutions and is competitive with the other optimization methods 
like SA and GA. Two important directions for future research are as follows. First, it would be interesting to 
include a suitable heuristic function in conjunction with the pheromone trail and to investigate the 
performance of others kinds of pheromone updating strategy. Second, it would be interesting to study a 
parallel implementation of ACS-MRF algorithm to speed up the convergence process.  
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