19,271 research outputs found

    Applications of Automated Identification Technology in EHR/EMR

    Get PDF
    Although both the electronic health record (EHR) and the electronic medical record (EMR) store an individuals computerized health information and the terminologies are often used interchangeably, there are some differences between them. Three primary approaches in Automated Identification Technology (AIT) are barcoding, radio frequency identification (RFID), and biometrics. In this paper, technology intelligence, progress, limitations, and challenges of EHR/EMR are introduced. The applications and challenges of barcoding, RFID, and biometrics in EHR/EMR are presented respectively

    RFID-based Drug Management and Monitoring System, Case of Public Hospitals in Tanzania, A Review Paper

    Get PDF
    Radio frequency Identification (RFID) is an automatic identification technology that enables tracking of people and objects. Recently, RFID technology has been deployed in hospital environment for patient and equipment tracking, surgical equipment monitoring, medication monitoring and improving health record access in emergency cases. The main advantages RFID technology are to provide resource optimization, quality customers’ care, enhanced accuracy, efficient and effective business processes and healthcare processes. The pharmacy department undergoes challenges such as complex manual work of record keeping and inventory management. The RFID technology can be deployed in pharmacy hospital unit to automate pharmacy process. In this work we present a review on current pharmacy management practices in the case study of public hospital in Tanzania, review on different research work to address the pharmacy challenges and finally proposed a system to overcome the limitation identified in the current systems

    On revisiting vital signs IoT sensors for COVID-19 and long COVID-19 monitoring: a condensed updated review and future directions

    Get PDF
    Background: Although the world has been facing the COVID-19 pandemic for over a year, we understand that there are still some challenges in using Internet of Things (IoT) devices as allies in this fight. Among the main difficulties, we can mention the selection of appropriate devices and the correct measurement and subsequent analysis of previously obtained vital signs.  Methods: In this context, we present a condensed compilation of IoT devices to monitor the vital signs often used to monitor COVID-19. We focus on easy-to-use devices currently available on the market to the general user. Also, the presented analysis is helpful for long COVID-19 monitoring, which is particularly useful to governments and hospitals to analyze eventual sequels on those citizens who tested positive beforehand. Results: The review resulted in 148 heterogeneous devices offering different capabilities. Our first contribution resides in detailing several aspects of each IoT device, indicating which are the most suitable for particular use-case situations. Moreover, our article introduces some challenges and insights into assembling a smart city composed of IoT devices. Conclusion: Here, technological trends such as Serverless computing, homomorphic cryptography, Federated Learning, Elixir programming language, Web Assembly, and vertical elasticity are discussed towards enabling vital sign-driven data capturing and processing. Although there are several IoT devices for health monitoring, there is still work to standardize data formats and APIs for data extraction

    M-health review: joining up healthcare in a wireless world

    Get PDF
    In recent years, there has been a huge increase in the use of information and communication technologies (ICT) to deliver health and social care. This trend is bound to continue as providers (whether public or private) strive to deliver better care to more people under conditions of severe budgetary constraint

    Patient Monitoring Systems

    Get PDF
    book chapterBiomedical Informatic

    Wearable devices and IoT applications for symptom detection, infection tracking, and diffusion containment of the COVID-19 pandemic: a survey

    Get PDF
    Until a safe and effective vaccine to fight the SARS-CoV-2 virus is developed and available for the global population, preventive measures, such as wearable tracking and monitoring systems supported by Internet of Things (IoT) infrastructures, are valuable tools for containing the pandemic. In this review paper we analyze innovative wearable systems for limiting the virus spread, early detection of the first symptoms of the coronavirus disease COVID-19 infection, and remote monitoring of the health conditions of infected patients during the quarantine. The attention is focused on systems allowing quick user screening through ready-to-use hardware and software components. Such sensor-based systems monitor the principal vital signs, detect symptoms related to COVID-19 early, and alert patients and medical staff. Novel wearable devices for complying with social distancing rules and limiting interpersonal contagion (such as smart masks) are investigated and analyzed. In addition, an overview of implantable devices for monitoring the effects of COVID-19 on the cardiovascular system is presented. Then we report an overview of tracing strategies and technologies for containing the COVID-19 pandemic based on IoT technologies, wearable devices, and cloud computing. In detail, we demonstrate the potential of radio frequency based signal technology, including Bluetooth Low Energy (BLE), Wi-Fi, and radio frequency identification (RFID), often combined with Apps and cloud technology. Finally, critical analysis and comparisons of the different discussed solutions are presented, highlighting their potential and providing new insights for developing innovative tools for facing future pandemics

    Reliable Patient Monitoring: A Clinical Study in a Step-down Hospital Unit

    Get PDF
    This paper presents the design, deployment, and empirical study of a wireless clinical monitoring system that collects pulse and oxygen saturation readings from patients. The primary contribution of this paper is an in-depth clinical trial that assesses the feasibility of wireless sensor networks for patient monitoring in general (non-ICU) hospital units. The trial involved 32 patients monitored in a step-down cardiology unit at Barnes-Jewish Hospital, St. Louis. During a total of 31 days of monitoring, the network achieved high reliability (median 99.92%, range 95.21% - 100%). The overall reliability of the system was dominated by sensing reliability (median 80.55%, range 0.38% - 97.69%) of the pulse oximeters. Sensing failures usually occurred in short bursts, although long bursts were also present and were caused by the sensor disconnections. We show that the sensing reliability could be significantly improved through oversampling and by implementing a disconnection alarm system that incurs minimal intervention cost. Our results also indicate that the system provided sufficient resolution to support the detection of clinical deterioration in two patients who were transferred to the ICU. The results show the feasibility of using wireless sensor networks for patient monitoring and may guide future research. We also report lessons learned from the deployment in the clinical environments with patient users

    IoT Platform for COVID-19 Prevention and Control: A Survey

    Full text link
    As a result of the worldwide transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19) has evolved into an unprecedented pandemic. Currently, with unavailable pharmaceutical treatments and vaccines, this novel coronavirus results in a great impact on public health, human society, and global economy, which is likely to last for many years. One of the lessons learned from the COVID-19 pandemic is that a long-term system with non-pharmaceutical interventions for preventing and controlling new infectious diseases is desirable to be implemented. Internet of things (IoT) platform is preferred to be utilized to achieve this goal, due to its ubiquitous sensing ability and seamless connectivity. IoT technology is changing our lives through smart healthcare, smart home, and smart city, which aims to build a more convenient and intelligent community. This paper presents how the IoT could be incorporated into the epidemic prevention and control system. Specifically, we demonstrate a potential fog-cloud combined IoT platform that can be used in the systematic and intelligent COVID-19 prevention and control, which involves five interventions including COVID-19 Symptom Diagnosis, Quarantine Monitoring, Contact Tracing & Social Distancing, COVID-19 Outbreak Forecasting, and SARS-CoV-2 Mutation Tracking. We investigate and review the state-of-the-art literatures of these five interventions to present the capabilities of IoT in countering against the current COVID-19 pandemic or future infectious disease epidemics.Comment: 12 pages; Submitted to IEEE Internet of Things Journa

    Security Issues in Healthcare Applications Using Wireless Medical Sensor Networks: A Survey

    Get PDF
    Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs). Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are highly sensitive. Therefore, security is a paramount requirement of healthcare applications, especially in the case of patient privacy, if the patient has an embarrassing disease. This paper discusses the security and privacy issues in healthcare application using WMSNs. We highlight some popular healthcare projects using wireless medical sensor networks, and discuss their security. Our aim is to instigate discussion on these critical issues since the success of healthcare application depends directly on patient security and privacy, for ethic as well as legal reasons. In addition, we discuss the issues with existing security mechanisms, and sketch out the important security requirements for such applications. In addition, the paper reviews existing schemes that have been recently proposed to provide security solutions in wireless healthcare scenarios. Finally, the paper ends up with a summary of open security research issues that need to be explored for future healthcare applications using WMSNs
    corecore