2,952 research outputs found

    Innovative Solutions for Navigation and Mission Management of Unmanned Aircraft Systems

    Get PDF
    The last decades have witnessed a significant increase in Unmanned Aircraft Systems (UAS) of all shapes and sizes. UAS are finding many new applications in supporting several human activities, offering solutions to many dirty, dull, and dangerous missions, carried out by military and civilian users. However, limited access to the airspace is the principal barrier to the realization of the full potential that can be derived from UAS capabilities. The aim of this thesis is to support the safe integration of UAS operations, taking into account both the user's requirements and flight regulations. The main technical and operational issues, considered among the principal inhibitors to the integration and wide-spread acceptance of UAS, are identified and two solutions for safe UAS operations are proposed: A. Improving navigation performance of UAS by exploiting low-cost sensors. To enhance the performance of the low-cost and light-weight integrated navigation system based on Global Navigation Satellite System (GNSS) and Micro Electro-Mechanical Systems (MEMS) inertial sensors, an efficient calibration method for MEMS inertial sensors is required. Two solutions are proposed: 1) The innovative Thermal Compensated Zero Velocity Update (TCZUPT) filter, which embeds the compensation of thermal effect on bias in the filter itself and uses Back-Propagation Neural Networks to build the calibration function. Experimental results show that the TCZUPT filter is faster than the traditional ZUPT filter in mapping significant bias variations and presents better performance in the overall testing period. Moreover, no calibration pre-processing stage is required to keep measurement drift under control, improving the accuracy, reliability, and maintainability of the processing software; 2) A redundant configuration of consumer grade inertial sensors to obtain a self-calibration of typical inertial sensors biases. The result is a significant reduction of uncertainty in attitude determination. In conclusion, both methods improve dead-reckoning performance for handling intermittent GNSS coverage. B. Proposing novel solutions for mission management to support the Unmanned Traffic Management (UTM) system in monitoring and coordinating the operations of a large number of UAS. Two solutions are proposed: 1) A trajectory prediction tool for small UAS, based on Learning Vector Quantization (LVQ) Neural Networks. By exploiting flight data collected when the UAS executes a pre-assigned flight path, the tool is able to predict the time taken to fly generic trajectory elements. Moreover, being self-adaptive in constructing a mathematical model, LVQ Neural Networks allow creating different models for the different UAS types in several environmental conditions; 2) A software tool aimed at supporting standardized procedures for decision-making process to identify UAS/payload configurations suitable for any type of mission that can be authorized standing flight regulations. The proposed methods improve the management and safe operation of large-scale UAS missions, speeding up the flight authorization process by the UTM system and supporting the increasing level of autonomy in UAS operations

    NASA Automated Rendezvous and Capture Review. Executive summary

    Get PDF
    In support of the Cargo Transfer Vehicle (CTV) Definition Studies in FY-92, the Advanced Program Development division of the Office of Space Flight at NASA Headquarters conducted an evaluation and review of the United States capabilities and state-of-the-art in Automated Rendezvous and Capture (AR&C). This review was held in Williamsburg, Virginia on 19-21 Nov. 1991 and included over 120 attendees from U.S. government organizations, industries, and universities. One hundred abstracts were submitted to the organizing committee for consideration. Forty-two were selected for presentation. The review was structured to include five technical sessions. Forty-two papers addressed topics in the five categories below: (1) hardware systems and components; (2) software systems; (3) integrated systems; (4) operations; and (5) supporting infrastructure

    Pathfinder autonomous rendezvous and docking project

    Get PDF
    Capabilities are being developed and demonstrated to support manned and unmanned vehicle operations in lunar and planetary orbits. In this initial phase, primary emphasis is placed on definition of the system requirements for candidate Pathfinder mission applications and correlation of these system-level requirements with specific requirements. The FY-89 activities detailed are best characterized as foundation building. The majority of the efforts were dedicated to assessing the current state of the art, identifying desired elaborations and expansions to this level of development and charting a course that will realize the desired objectives in the future. Efforts are detailed across all work packages in developing those requirements and tools needed to test, refine, and validate basic autonomous rendezvous and docking elements

    Low-Cost Skewed Redundant IMU Configuration for State-Space Recovery in a Saturated Environment

    Get PDF
    Low-cost sensors for state space determination can be used successfully for ground vehicles, robots, unmanned aerial vehicles, and Internet-of-Things applications. When a high fidelity Inertial Measurement Unit (IMU) cannot be obtained for state space determination, low-cost sensors can be used to satisfactory standards, despite their limitations in capabilities, by using various implementation techniques. The research group was experimentally investigating state space information of an unstable flying vehicle for motion simulation validation. The high fidelity motion capture system would intermittently lose track of the flight vehicle which lost critical flight data. The goal was to determine the potential of low-cost off-the-shelf sensors to provide a lower fidelity backup source of data. There were periods during the flight test where the flying vehicle was known to experience rotation rates higher than the saturation limit of the low-cost sensors. The purpose of the experiment was to analyze the ability of a skewed-redundant IMU (SRIMU) configuration to extend the dynamic range of the MEMS gyroscope and to reconstruct body axis rotation rates that would have otherwise been saturated. The experiment was able to determine the potential of low-cost off the shelf IMU sensors in a skewed redundant IMU configuration to reconstruct saturated values. There was success in extending the dynamic range of the sensors in cases where a rotation matrix could be utilized to transform data between reference frames. However there were instances where the dynamic range could not be extended due to relative differences in time between sensors which incurred over the duration of the flight tests

    Active fault-tolerance of the unmanned aerial vehicle automatic control systems

    Get PDF
    This paper presents an introductory overview of principles of the three-layer hierarchy of active fault-tolerance, providing, determination of the fault type with as many details as enough to get recoverable fault reason and failure toleration by flexible redundancy using; the conception of active fault-tolerant control in abnormal modes is described. Developed models and methods of a systematic approach to fault tolerance in the direction of the effective use of the signal, parametric and structural redundancies and selection of parrying tools. Performed experimental researches of the unmanned aerial vehicle (UAV) automatic control systems (ACS)

    A Fault-Tolerant Multiple Sensor Fusion Approach Applied to UAV Attitude Estimation

    Get PDF
    A novel sensor fusion design framework is presented with the objective of improving the overall multisensor measurement system performance and achieving graceful degradation following individual sensor failures. The Unscented Information Filter (UIF) is used to provide a useful tool for combining information from multiple sources. A two-step off-line and on-line calibration procedure refines sensor error models and improves the measurement performance. A Fault Detection and Identification (FDI) scheme crosschecks sensor measurements and simultaneously monitors sensor biases. Low-quality or faulty sensor readings are then rejected from the final sensor fusion process. The attitude estimation problem is used as a case study for the multiple sensor fusion algorithm design, with information provided by a set of low-cost rate gyroscopes, accelerometers, magnetometers, and a single-frequency GPS receiver’s position and velocity solution. Flight data collected with an Unmanned Aerial Vehicle (UAV) research test bed verifies the sensor fusion, adaptation, and fault-tolerance capabilities of the designed sensor fusion algorithm

    Final design report of a personnel launch system and a family of heavy lift launch vehicles

    Get PDF
    The objective was to design both a Personnel Launch System (PLS) and a family of Heavy Lift Launch Vehicles (FHLLVs) that provide low cost and efficient operation in missions not suited for the Shuttle. The PLS vehicle is designed primarily for space station crew rotation and emergency crew return. The final design of the PLS vehicle and its interior is given. The mission of the FHLLVs is to place large, massive payloads into Earth orbit with payload flexibility being considered foremost in the design. The final design of three launch vehicles was found to yield a payload capacity range from 20 to 200 mt. These designs include the use of multistaged, high thrust liquid engines mounted on the core stages of the rocket

    Low-cost sensors data fusion for small size unmanned aerial vehicles navigation and guidance

    Get PDF
    A new integrated navigation system designed for small size Unmanned Aerial Vehicles (UAVs) is presented. The proposed system is based on a number of low-cost avionics sensors, including Global Navigation Satellite Systems (GNSS), Micro-Electro-Mechanical System (MEMS) based Inertial Measurement Unit (IMU) and Vision Based Sensors (VBS). The use of an Aircraft Dynamics Models (ADMs) to provide additional information to compensate for the shortcomings of Vision Based Navigation (VBN) and MEMS-IMU sensors in high-dynamics attitude determination tasks is also considered. Additionally, the research concentrates on the potential of carrier-phase GNSS for Attitude Determination (GAD) using interferometric techniques. The main objective is to design a compact, light and relatively inexpensive system capable of providing the required navigation performance (position and attitude data) in all phases of flight of small UAVs, with a special focus on precision approach and landing, where VBN techniques can be fully exploited in a multi-sensor data fusion architecture. An Extended Kalman Filter (EKF) is developed to integrate the information provided by the different sensors and to provide estimates of position, velocity and attitude of the UAV platform in real-time. Three different integrated navigation system architectures are implemented. The first architecture uses VBN at 20 Hz and GNSS at 1 Hz to augment the MEMS-IMU running at 100 Hz. The second mode also includes the ADM (computations performed at 100 Hz) to provide augmentation of the attitude channel. The third fusion architecture uses GNSS based attitude values. The simulations are carried out on the AEROSONDE UAV performing high-dynamics manoeuvres repre-sentative of the UAV operational flight envelope. Simulation of the VBN-IMU-GNSS (VIG) integrated navigation system shows that the system can attain position, velocity and attitude accuracies complying with Category Two (CAT II) precision approach requirements. Simulation of the VBN-IMU-GNSS-ADM (VIGA) system also shows promising results, since the achieved attitude accuracy is higher using the ADM-VBN-IMU than using VBN-IMU only. However, due to rapid divergence of the ADM virtual sensor, there is a need for frequent re-initialisation of the ADM data module, which is strongly dependent on the UAV flight dynamics and the specific manoeuvring transitions performed. In the simulation of the third integrated navigation system, the VIG system is augmented by employing the GAD, forming the VIG-GAD (VIGGA) system architecture. The performances achieved with the VIG, VIGA and VIGGA integrated Navigation and Guidance System (NGS) are presented and are in line with the International Civil Aviation Organization (ICAO) precision approach requirements
    • …
    corecore