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ABSTRACT

Low-Cost Skewed Redundant IMU Configuration for State-Space

Recovery in a Saturated Environment

Levi Hubbard

Low-cost sensors for state space determination can be used successfully for ground vehicles,
robots, unmanned aerial vehicles, and Internet-of-Things applications. When a high fidelity Inertial
Measurement Unit (IMU) cannot be obtained for state space determination, low-cost sensors can be
used to satisfactory standards, despite their limitations in capabilities, by using various implemen-
tation techniques. The research group was experimentally investigating state space information of
an unstable flying vehicle for motion simulation validation. The high fidelity motion capture system
would intermittently lose track of the flight vehicle which lost critical flight data.

The goal was to determine the potential of low-cost off-the-shelf sensors to provide a lower fidelity
backup source of data. There were periods during the flight test where the flying vehicle was known
to experience rotation rates higher than the saturation limit of the low-cost sensors. The purpose
of the experiment was to analyze the ability of a skewed-redundant IMU (SRIMU) configuration to
extend the dynamic range of the MEMS gyroscope and to reconstruct body axis rotation rates that
would have otherwise been saturated.

The experiment was able to determine the potential of low-cost off the shelf IMU sensors in a
skewed redundant IMU configuration to reconstruct saturated values. There was success in extending
the dynamic range of the sensors in cases where a rotation matrix could be utilized to transform
data between reference frames. However there were instances where the dynamic range could not
be extended due to relative differences in time between sensors which incurred over the duration of
the flight tests.



Acknowledgments

A humble gratitude to Dr. Browning who facilitated the ability to continue my education by joining

his research team. His hard work and dedication will be an example for all my future endeavors.

My committee members, Dr. Wade Huebsch and Dr. Christopher Griffin. For working along side

them on the project.

My colleague Dr. Joe Dygert for help in the lab and mentorship in my research.

Special thanks to John Kantelis from Systems Engineering Group for working on this exciting project

together.

My wife, my strength, who among all was the most instrumental in keeping me going through

engineering. The sleepless nights, the long days, would not have been achievable without her.

soli deo gloria

iii



Dedication

To my Father,

Blessed be the lord our God! Whom I count it all joy for the blessings laid out upon my life, you

Father, being chief among them.

The cycles that transcend generations are not often nor are they easily broken, yet standing before

me is a father figure that broke the mold and dedicated his life to being the most tender-hearted and

caring man he could be. I couldn’t hope, in my wildest dreams, to follow in your footsteps. I should

count it a success to be half of what you are, be that even attainable.

My early memories consist of being by your side, trowel in hand, ready to help spread mortar for

your bricks. Or excitedly waiting for you to come home from work so we could all eat pecan rolls

together. Irregardless of how exhausted you were, it was a party when Dad came home from work.

I will be forever grateful for the strong character you shaped and molded in me. You taught me

how to have a strong work ethic as I grew up, how to be kind to others, and how to be gentle to those

we love.

If I’ve learned anything from you, it is that there is no higher calling in life than to sacrifice for

your family, in any capacity. A successful life is worn hands, a tired back, and your family around

you.

We’ve always been best friends, and we always will be.

I love you

iv



Contents

Abstract ii

Acknowledgments iii

Dedication iv

List of Figures vii

List of Tables x

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Historical Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Review of Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Redundant Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.2 Data Fusion and Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.3 Low Cost Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.4 Attitude Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Proposed Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Methodology 8

2.1 IMU Sensor Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Relative Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Rotation Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Genetic Algorithm Skew Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Flight Test Payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Wind Tunnel Test Payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

v



2.7 Vicon Motion Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.9 Post-Processing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Results 31

3.1 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Uncertainty Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Flight Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Run 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2 Run 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.3 Run 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.4 Run 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.5 Run 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Conclusions & Future Development 62

Appendix A 65

Appendix B 66

Appendix C 67

Appendix D 68

vi



List of Figures

2.1 Sparkfun 9DOF Razor IMU. Source https://learn.sparkfun.com/tutorials/9dof-razor-

imu-m0-hookup-guide/all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Visualization of relative angular rotation as described through skew angle θ . . . . . 11

2.3 Augmented Matrix reconstruction for reference frame transformation . . . . . . . . . 14

2.4 Monte Carlo simulation noting probability of recovering saturated rotation rates for

the selected set of skew angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Monte Carlo simulation noting probability of recovering saturated rotation rates for

cases of one saturated channel, two saturated channels, and three saturated channels

on the body axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Monte Carlo recovery rate process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Initial effort to place skewed IMU platforms within internal geometry constraints . . 20

2.8 Instrumentation payload showing tungsten ballasts and battery pack . . . . . . . . . 21

2.9 Instrumentation payload with IMUs wired together and placed in the tail cone of the

flight vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.10 IMU sensor holder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.11 Vicon motion capture calibration wand. Photo: WVU-AJ Research Project . . . . . 24

2.12 Example design of reflective Vicon marker placement establishing Euclidean distance

between markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.13 Final reflective marker configuration designed for the wind tunnel instrumentation

payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.14 Reedsville, WV. Wind tunnel test setup . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.15 Wind tunnel instrumentation payload IMU holder wired for testing . . . . . . . . . . 28

vii



2.16 Wind tunnel illustration visualizing the arresting system on the left hand side, the

motion capture cameras along the top, and a typical curved flight path of the test

payload starting from right to left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Cross section representation of 3D printed uncertainty due to layer thickness and the

maximum difference possible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Run 1: Frequency domain analysis for temporal alignment of sensors . . . . . . . . . 37

3.3 Run 1: Relative IMU ROI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Run 1: IMU data as recorded (a) and after conversion to common reference frame (b) 38

3.5 Run 1: Rotation about the x axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Run 1: Rotation about the y axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 Run 1: Rotation about the z axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Run 1: Converted IMU data and Kalman Filter data fit . . . . . . . . . . . . . . . . 40

3.9 Run 2: Frequency domain analysis for temporal alignment of sensors . . . . . . . . . 41

3.10 Run 2: Relative IMU ROI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.11 Run 2: IMU data as recorded (a) and after conversion to common reference frame (b) 42

3.12 Run 2: Rotation about the x axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.13 Run 2: Rotation about the y axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.14 Run 2: Rotation about the z axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.15 Run 2: Converted IMU data and Kalman Filter data fit . . . . . . . . . . . . . . . . 44

3.16 Run 2: Vicon and body axis roll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.17 Run 3: Frequency domain analysis for temporal alignment of sensors . . . . . . . . . 46

3.18 Run 3: Relative IMU ROI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.19 Run 3: IMU data as recorded (a) and after conversion to common reference frame (b) 47

3.20 Run 3: Rotation about the x axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.21 Run 3: Rotation about the y axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.22 Run 3: Rotation about the z axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.23 Run 3: Converted IMU data and Kalman Filter data fit . . . . . . . . . . . . . . . . 49

3.24 Run 4: Frequency domain analysis for temporal alignment of sensors . . . . . . . . . 50

3.25 Run 3: ROI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.26 Run 4: IMU data as recorded (a) and after conversion to common reference frame (b) 51

3.27 Run 4: Rotation about the x axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.28 Run 4: Rotation about the y axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

viii



3.29 Run 4: Rotation about the z axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.30 Run 4: Converted IMU data and Kalman Filter data fit . . . . . . . . . . . . . . . . 53

3.31 Run 5: Frequency domain analysis for temporal alignment of sensors . . . . . . . . . 54

3.32 Run 5: Relative IMU ROI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.33 Run 5: IMU data as recorded (a) and after conversion to common reference frame (b) 55

3.34 Run 5: Rotation about the x axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.35 Run 5: Rotation about the y axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.36 Run 5: Rotation about the z axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.37 Run 5: Converted IMU data and Kalman Filter data fit . . . . . . . . . . . . . . . . 57

3.38 Run 5: Rotation about the x axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Hand drawn calculations for marker placement . . . . . . . . . . . . . . . . . . . . . 65

4.2 Euclidean distance calculation considering all permutations between reflective mark-

ers. Measurements were in inches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

ix



List of Tables

3.1 IMU skew angles in degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 X Axis Channel contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Y Axis Channel contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Z Axis Channel contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 X & Y Axis Channel contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Y & Z Axis Channel contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7 X & Z Axis Channel contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.8 X, Y, & Z Axis Channel contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.9 sine and cosine relative uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

x



Acronyms

Symbol Description

BA Body Axis

DOF Degrees of Freedom

EKF Extended Kalman Filter

FAA Federal Aviation Association

FFT Fast Fourier Transform

GA Genetic Algorithm

GPS Global Positioning System

INS Inertial Navigation System

IMU Inertial Measurement Unit

SLA Stereo lithography

SRIMU Skewed Redundant Inertial Measurement Unit

UAV Unmanned Aerial Vehicle

UAS Unmanned Aerial System

UKF Unscented Kalman Filter

dps Degrees Per Second

Nomenclature

Symbol Description

PQR Yaw, Pitch, and Roll

local notes the measurement relative to an IMU

ba notes the measurement relative to the IMU aligned with the body axis

xi



Chapter 1

Introduction

State space determination is the measurement of the current physical configuration of a system.

State information is important because it describes the behavior of the system being measured at a

given time. the measurements of a system can effectively be captured through the implementation

of low-cost sensors. Although there can be limitations to their capabilities, low-cost sensors can

be used to adequate standards for applications such as ground vehicles, robotics, IoT (Internet of

Things), and unmanned aerial vehicles. Because of the price, typical ease of implementation, and

abundant supporting documentation, they can be beneficial to individuals, student design teams,

start-ups, or research teams that are measuring the behavior of an object.

In the experimental work performed, state information of a flying vehicle was measured in order

to validate motion simulations. The flight data was used to reconstruct the aerodynamic coefficients

to better tune the model of the flight vehicle motion simulation. For the experiment, motion capture

was used as the primary data acquisition system to record body rotation rates of the flight vehicle.

Due to the unstable characteristics of the flight vehicle, there were rapid transitions between attitude

orientations which in turn caused the motion capture system to intermittently lose track of the flight

vehicle and lose critical flight data.

The goal was to create a secondary source of lower fidelity data for the experiment that could be

used to fill in the missing regions of data. Due to the limitations of the sensor capabilities, a method

was developed to extend the dynamic range of the MEMS gyroscope. The low-cost sensors were

placed in a skewed redundant configuration to leverage the relative difference in coordinate frames to

extend the dynamic range of the sensors. This method allowed the capabilities of readily accessible

sensors to be extended so that they could be used in place of otherwise expensive hardware.
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1.1 Motivation

The researchers experienced a loss of state-space information of a flying vehicle during flight tests.

Complexities of the unstable aerodynamic behavior would intermittently cause the primary mo-

tion capture data acquisition system to briefly lose track of the flying vehicle, losing critical flight

information.

The research group investigated the characteristics of an unstable flying vehicle to provide valida-

tion to simulations. The aerodynamic coefficients of the flight vehicle were extracted from the flight

data to provide an improved simulation of the model. The experiment was carried out by launching

a scaled model of the flying vehicle from a pneumatically actuated cannon. The flight was observed

from the initiation of the launch until the scale model was stopped in an arresting net approximately

one hundred yards down range. The primary data acquisition system used to record data of the

experiment was a motion capture system that allowed the observation of the flying vehicle without

introducing external factors into the experiment.

Preliminary results showed the flight vehicle would rapidly transition between attitude orienta-

tions in a manner that caused the motion capture system to intermittently lose track of the flight

vehicle. The loss of data created regions of the test with no state-space information. The lack of

data of the flight vehicle required additional efforts to provide a source of backup data that could

be used to fill in the regions of the flight data with no state-space information.

It was determined that Inertial Measurement Units (IMUs) would be used to provide a backup

source of data to the primary data acquisition system. An IMU sensor system that would be quickly

and efficiently integrated into the flight vehicle was desired. Therefore, an off-the-shelf sensor was

chosen for ease of implementation. Additionally, it was desired that the secondary data acquisition

system was readily affordable.

Because the desires for the secondary data acquisition system were affordability and ease of

implementation, the sensors available had limitations in their capabilities. There was increased risk

of failure due to the quality of sensors. And it was known that the rotation rates experienced by

the flight vehicle was higher than the nominal range of the sensor. Therefore, the secondary data

acquisition system needed a source of redundancy and a method to increase the dynamic range of

the MEMS-gyroscope.

2



1.2 Historical Relevance

Inertial Measurement Units (IMUs) are systems constructed of one or more sensors that sense change

in angular displacement, angular velocity, or acceleration. Gyroscopes specifically, a type of sensor

in an IMU, measure angular velocity through a natural phenomenon known as precession. First

discovered by early Greeks, Chinese, and Romans, this phenomenon was observed through spinning

tops as toys. The occurrence was understood, albeit with little to no practical use. Serson, an

Englishman in the 1740’s observed spinning tops’ ability to remain upright despite the movement of

the surface it rotated upon [1]. He proposed it could be used as an artificial horizon for ships but

was not able to test his idea. The term ‘gyroscope’ was cemented by French physicist Leon Foucault

in 1852. He first studied the rotation of the earth through motion of a pendulum, and observed

the change in direction as the earth rotated below it. He later studied a high-speed spinning top

placed inside a ring and wheel. During a twenty-four-hour period, the axis came back to point at

the original starting position. In the early twentieth century, German inventor Hermann Anschutz-

Kaempfe created the gyrocompass in his polar expedition endeavors. The practical implementation

of the gyroscope, the gyrocompass, had the ability to measure relative angular motion and display it

in a meaningful way. This allowed the implementer a measure of feedback from a reference orientation

in three-dimensional space [2]. The further practical implementation of gyroscopes saw important

usage as the world prepared for WWII. The advancement in technology due to the war, propelled

the integration of gyroscopes into axis and allied aircraft to maintain heading as the endurance

of aircraft increased. Mechanical gyroscopes also found themselves in the bombardier’s optics for

timing the release of ordnance. With the use of gyroscopes for navigation firmly cemented from

the theatre of war, Inertial Navigation Systems (INS) have continued evolving to the present. In

addition to gyroscopes, accelerometers and GPS have been combined to create a robust system of

navigation.

1.3 Review of Literature

1.3.1 Redundant Systems

An electromechanical device will inevitably fail partially or completely at some point during its

life cycle. In the effort to preserve integrity and increase performance, it is necessary to incorporate

more than one type of inertial measurement sensor. Multiple sensors provides fault tolerance against

failures and also provides higher confidence in measurement. When utilizing lower quality low-cost

3



sensors, multiple sensors provide a backup source of data due to the redundancy.

There are several methods in which to configure a redundant navigation system. Generally

speaking, IMUs have three primary axes set orthogonal to each which represent the three dimensions.

Clustering several sensors together in an orthogonal or parallel manner with their primary axes

aligned is a basic configuration that lends itself readily to fault detection as the integration of the

signals together is straight forward. Clustering multiple sensors together with their principle axes

in a non-orthogonal or Skewed Redundant Inertial Measurement Unit (SRIMU) configuration can

increase the accuracy of the overall system [3].

Sukkarieh’s [4] continued work makes the case for redundant low cost inertial navigation systems

such that the civilian population can readily benefit from their implementation. His work showed

low cost sensors can be configured to provide fault detection and are suitable for unmanned aerial

vehicles and pertinent safety requirements. Guerrier [5] created a tool to help researchers and system

designers understand the number of sensors and their relationship to performance improvement. He

also created metrics demonstrating the number of sensors necessary for certain mission specifications

and the impact of sensor orientation on performance. Early work by Pejsa in 1974 [6] explored the

geometry involved in orienting sensors. His research postulated placing n number of sensors on

a cone with a half angle α where the uncertainty of the configuration is minimized. He further

determined the total number of sensors required for fault detection and isolation (FDI). A minimum

number of four sensors are required for fault detection and a minimum of five sensors are required

for fault isolation. Finally, Colomina [7] et. al used a redundant IMU configuration to enhance

precision in airborne applications. They explored using a SRIMU system to reduce uncertainty in

the quality of navigation parameters like heading and trajectory. Research shows redundant IMU

configurations have been leveraged for benefits in a broad swath of industries. Redundant systems

help improve accuracy [8], provide means for fault tolerance and fault detection [9].

1.3.2 Data Fusion and Filtering

Data that is measured by sensors are inherently clouded by noise, that is to say, they display a band

of measurements around the actual signal. Methods have been developed to reduce the uncertainty

around the measurement such that there is a higher confidence in the measured signal. Additionally,

methods are needed to combine data from multiple types of sensors.

Data fusion as defined by Bostrom, et. al [10] is the ”Information fusion is the study of efficient

methods for automatically or semi-automatically transforming information from different sources and
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different points in time into a representation that provides effective support for human or automated

decision making”. Fusing of information is important to create a complete understanding. There

can be more than one type of the same sensor such that there is a redundant source of a certain type

of information. Additionally multi-sensor configurations can be used with different sensors such as

GPS (global positioning system), gyroscope, accelerometer, etc. It is necessary to have a method

that takes the different values from the different types of sensors and combines them in a manner

that makes sense.

Generally, there are three categories which data fusion could be grouped in. The first is comple-

mentary which combines independent sensors which do not directly depend on each other but create

a whole picture. Second is competitive where independent sensors deliver measurements of the same

behavior, also called a redundant system. Lastly, cooperative where two independent sensors have

their measurements used to create new information that a single sensor could not do on its own [11].

Multi sensor configurations are becoming more prevalent in military and non-military applica-

tions. Hall and LLinas [12] made the case analogous to humans acquiring a more accurate assessment

of their surroundings based on multi sensory inputs so to other applications infer a more accurate

understanding of the surroundings and subsequently make better decisions based on the higher level

of information fused together. Additional work [13] showcases an important application for a UAV

tasked with monitoring wild fires. The GPS, inclinometer, and video camera must be fused together

to provide information regarding 3D mapping.

Whether working with single sensors, multiple sensors or multiple sensor types, there will be an

uncertainty based around the measurement. This is true for any measurement taken by a sensor.

Different techniques exist to help reduce the uncertainty around the signal. The techniques generally

depend on the nature of the data. For example, Kalman filtering is a method to help reduce random

process noise. There are however different types of Kalman filtering based on the behavior of the

signal. A system that behaves linearly can be addressed by the baseline Kalman filtering process.

Nonlinear system behavior can be filtered by the extended Kalman filter (EKF). Nonlinear function

filtration can be evaluated by the unscented Kalman filter (UKF).

Filtration and fusion are needed when working with a redundant system with multiple sensors.

If the sensors are of the same type, then the most simple case can be to filter and combine them

together for comparison. Different types of sensors can have their data combined to accomplish a

common goal [14].
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1.3.3 Low Cost Sensors

Inertial Navigation Systems (INS) are inherently prone to uncertainties because their signals are

either integrated or differentiated. Subsequently, they experience ’drift’. Drift refers to a signal

that indicates a change in motion when in reality the system being measured is physically at rest.

The range and sensitivity of a quality sensor are inversely proportional, as the range of the sensor

increases, the sensitivity of the sensor decreases. That is because there is a given bit depth which

describes resolution capable. If there is a wider range of values, that resolution is spread over a

wider range of numbers and the sensitivity is decreased. In commercial aviation which has high

fidelity standards handed out by the FAA [15], high precision IMUs are implemented which have

low drift and low noise. However they are significantly expensive. Conversely, in the hobby market,

with sensors often in the hundred dollar range, sensors are prone to high drift rates and noise.

Low cost sensors are desirable for products in mass markets states Gonzalez [16]. They can

be used for IoT (Internet of Things) and wearables for example. Low-cost sensors are also gaining

popularity in use in ground vehicles where an ultra low-cost IMU sensor was used satisfactorily with a

GNSS receiver for vehicle navigation. Due to the increasing performance capabilities of the low-cost

IMU sensors, these IMUs require consideration when designing system navigation instrumentation.

Low cost sensors are important for the use of unmanned aerial vehicles where weight and price

are important design criteria. With necessary implementation techniques and sensor algorithms, the

low-cost sensors can be used adequately to provide attitude estimation [17]. Low-cost sensors have

also been shown to be useful in guidance, navigation, and control for unmanned aerial vehicles. The

unmanned vehicle would be able to provide real time flight data that would be fed back into the

control loop to provide important information for the autonomous control system to operate. The

capability of low-cost sensors to provide adequate guidance, navigation, and control will provide an

avenue for an increase in civilian operation of autonomous unmanned aerial vehicles [18].

1.3.4 Attitude Representation

When recording attitude data in a Cartesian coordinate frame with Euler angles, gyroscopes are

susceptible to the phenomenon called gimble lock. Gimble lock happens when two rings of the

gyroscope line up in phase with each other and the number of dimensions recordable reduce from

three dimensions down to two dimensions. Using PQR notation (yaw, pitch, and roll), gimble lock

occurs when the pitch angle reaches ninety degrees. In the research performed, the UAV during flight

often completed full rotations over all three axes and would have experienced multiple instances of
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gimble lock.

An alternative method to record attitude data is to use quaternions. Hamilton, in 1843, developed

the concept of quadruplets such to describe three dimensional geometry in an analogous manner as

to that of couplets in complex numbers [19] [20]. Quaternions do not have areas that present

singularities and can therefore record any orientation of attitude without loss of data. Quaternions

are a way in which to describe space in four dimensions instead of three. When describing a rotation

in four dimensions, the axis the body rotates about is described as the three dimensional x, y, and

z vector that pierces the center of mass of an object that it is rotated about. The fourth term

describes the amount in radians by which the body rotates around the xyz vector. The vector

portion is referred to as the imaginary part and the real part is the rotation angle w.

1.4 Proposed Research

The research carried out determined the potential of low-cost sensors to provide critical backup

data to a primary motion capture data acquisition system and develop an implementation technique

to increase the dynamic range of the low-cost MEMS gyroscope. To create a backup source of

data, the IMUs were clustered in a skewed configuration to provide a source of fault tolerance by

having redundant sensors. The geometrical relationship of the Skewed Redundant IMU (SRIMU)

configuration was leveraged to develop a method that extended the dynamic range of the sensors.
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Chapter 2

Methodology

The rationale for the low-cost sensors chosen will be discussed and an overview of the time syn-

chronization between sensors will be given, followed by an explanation of the method developed

to extend the dynamic range of the sensors with lessons learned. The mathematical relationship

between the skewed reference frame and how that was leveraged to support the developed method

will be demonstrated. The design and implementation of a genetic algorithm for skew angle selection

will be discussed and the estimated recovery of saturated values will be postulated. The design of

the instrumentation of the payload for the original research effort will be shown as well as the in-

strumentation payload for the wind tunnel test. Finally the wind tunnel setup and test environment

will be explained.
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2.1 IMU Sensor Information

Figure 2.1: Sparkfun 9DOF Razor IMU. Source https://learn.sparkfun.com/tutorials/9dof-razor-
imu-m0-hookup-guide/all

The sensor selected for use was the Razor 9DOF IMU. It had an MPU-9250 IMU with acceleration

range of ±16 g and rotation rate range of ±2000 degrees per second. The system could record data

at a sampling rate of 100 Hz. The sensor board used an Atmel SAMD21 microprocessor.

There were several reasons the specific sensors chosen were low-cost off the shelf components

from Sparkfun. One of the reasons was based on familiarity with that platform. There was previous

work done documenting the capabilities of that specific sensor. Because it was known how to use

the features of the board there was not a need to learn a new software interface or develop a new

understand of the hardware.

A second reason for the specific sensor was based on the support for the IMU. The supplier

Sparkfun had a substantial amount of documentation illustrating how to implement and utilize the

features of the sensor board. There was also a substantial presence on forums that discussed trouble

shooting potential bugs that could be encountered.

Because there were four individual sensor boards, configuration of time synchronization was

a necessary feature of the system. The sensor boards could use i2c (inter-integrated circuit) and

SPI (Serial Peripheral Interface) communication protocols according to the sensor documentation.

SPI was the first method implemented, however it was discovered that there was not enough GPIO

(general purpose input/output) pins that was required for the hardware implementation. Connecting
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four boards using SPI wouldn’t work, which lead to implementing i2c. i2c required less wires as

compared to SPI during hardware implementation, however it was discovered that the MPU-9250

IMU chip and the SAMD-21 microprocessor used the i2c bus to send data back and forth which

rendered that method unusable. Finally a simple solution to use the analog pins on each board to

communicate was implemented. The IMU aligned with the body axis would send an analog signal

to the skewed IMUs to begin logging data. However the analog signal method did not completely

align the data and further time synchronization was needed in post processing.

2.2 Relative Motion

The limitations of the low-cost sensors meant the dynamic range of the MEMS gyroscope was

less than required. The flight vehicle was expected to experience rotation rates higher than the two

thousand degree per second sensor range. Due to the short comings, a method to extend the dynamic

range of the sensors was necessary. The original purpose of SRIMU systems provided redundancy

and increased precision through the relative difference in coordinate axes. The method developed

here involved leveraging that relative difference in coordinate axes to increase the dynamic range of

the MEMS gyroscopes.

The coordinate axes were labeled such that The body axes of the UAV was considered to be

the common reference frame. The body axis was described in three dimensions by the roll, pitch,

and yaw, corresponding to the x, y, and z respectively. Three additional IMU reference frames were

configured, each having their own orthogonal three dimensional axes. The IMUs configured together

were then skewed some angle in degrees with respect to the body axes.

A method was developed then to monitor the relative motion measured and tune it such that

the skewed IMUs could experience body axis rotation rates in an unsaturated condition. The goal

being, the skewed IMUs having the ability to record data during an instance when the IMU aligned

with the body axis would be in a saturated state. Therefore, the axes of the skewed IMUs would

see reduced angular roll rates as compared to what the body axis would actually be experiencing.

The MEMS gyroscopes were able to capture body axis rotation rates higher than the sensors

manufactured saturation limits through relative motion. The axes of a three dimensional reference

frame, or even more simply, a two dimensional reference frame, would observe some portion of

motion relative to that of another two dimensional reference plane that is not parallel to the first.

The concept can be visualized in Figure 2.2. With a pure rotation rate about the x1 axis, the

rotation rate experienced by x2 would be the cosine of the skew angle θ. Extending the notation to
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a three dimensional example, the rotation rates that acted on a common reference frame would be

experienced by the second reference frame as a function of the trigonometric relationship between

the two reference frames. The goal for the SRIMU system was for the skewed IMU sensors to be

able to experience data below the saturation limit while the body axes would otherwise be in a state

of saturation; experiencing rotation rates above the two thousand degree per second limit.

x1

y1

x2

y2

θ

Figure 2.2: Visualization of relative angular rotation as described through skew angle θ

The first attempt at reconstructing rotation rates was done converting from a single skewed

IMU to the body axis IMU. However during flight tests the skewed IMUs would experience partial

saturation with one or more axes unreadable. Therefore the partially saturated skewed IMUs needed

to be reconstructed before transformation to the body axis reference frame.

The first method attempted for taking a partially saturated skewed IMU and converting those

values to the body axis reference frame used a brute force guess and check method. When the

mathematical relationship was known and one or more unsaturated values of a skewed IMU were

known, potential body axes rotation rates were guessed and iterated over. The potential body axis

values were compared to real values by converting the guessed potential rotation rates from the body

axis reference frame to the skewed IMU. If the values matched the known recorded values from the

skewed IMU, then it would be known that the guessed body axis values were also the real rotation

rates of the body axis reference frame. For example, if IMU 1 was reporting two good values on the

x and y channel and one nonsensical value on the z channel, could the body axis rotation vector

iterate over the x, y, and z axes, such that searching for the set of body axes rotation rates, when

transformed back to IMU 1, would match the two known values and produce the third unknown value

on the z channel. Exhaustive efforts showed a brute force method was computationally impractical

as the processing time became unreasonable. Furthermore, the relationship between x, y, and z

channels were not unique. Meaning if two rotation rate channels were known, the third channel

11



could have more than one value that solved the equations. The total number of options that solved

the equations could reasonably be reduced by considering the most recent state of that saturated

value and eliminating nonsensical options. The second and final method that was used to transform

partially saturated skewed IMUs will be discussed in the next section where the mathematical

relationship describing the reference frame transformation was further explored.

2.3 Rotation Matrices

The relationship between the skewed IMUs was defined through coordinate transformations. To

navigate between skewed reference frames, rotational matrices were used to go between each coordi-

nate frame. Coordinate transformations done for practical implementation are more easily visualized

with Euler angles. Euler angles refer to a yawing orientation, a pitching orientation, and a rolling

orientation. Defining the principle axis as yaw for the z axis, pitch for the y axis, and roll for the

x axis relates the Euler angles to the axis of motion. The use of Euler angles enables an intuitive

understanding of the attitude change the body experiences.

Extending Figure 2.2, the components x1 and y1 of the coordinate system can be rotated into

another frame x2 and y2 by the rotation angle θ. The process can be applied to a three dimensional

component by increasing the rotation matrix to a 3x3 shown in equations 2.1, 2.2, and 2.3. The

result produced is the three component vector being rotated about one axis. In order to traverse the

solution space required by the skewed IMUs, the rotation matrix has to be applied three times. That

is to represent the three different changes in motion. First about the yaw axis, second about the

pitch axis, and finally about the roll axis. Done independently, the three movements can be linked

together by taking the result from the first rotation matrix and using that in the next rotation

matrix, etc. Or, all three rotation matrices can be multiplied together beforehand and the original

vector passed through the combined three dimensional rotation matrix shown by equation 2.4. In

either case, the order is paramount. Similar convention must be used throughout the process as

multiplying matrices are not communicative. The order used specifically for the research was to

rotate the vector first about the yaw axis, second about the pitch axis, and finally about the roll

axis. That order was used to go from the common body axis reference frame to the skewed IMU

reference frame. In order to reverse the process and go from the frame of reference of the skewed IMU

to the common body axis, the matrices had to be multiplied in reverse order. The transpose of the
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three dimensional rotational matrix begot the same outcome as reversing the order of multiplication.

Rzα =


cosα − sinα 0

sinα cosα 0

0 0 1

 (2.1)

Ryβ =


cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

 (2.2)

Rxγ =


1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 (2.3)

Rzyx =


cosα cosβ cosα sinβ sin γ − sinα cos cos γ cosα sinβ cos γ + sinα sin γ

sinα cosβ sinα sinβ sin γ + cosα cos cos γ sinα sinβ cos γ − cosα sin γ

− sinβ cosβ sin γ cosβ cos γ

 (2.4)


a11 a12 a13

a21 a22 a23

a31 a32 a33



Xba

Yba

Zba

 =


X1local

Y 1local

Z1local

 (2.5)


b11 b12 b13

b21 b22 b23

b31 b32 b33



Xba

Yba

Zba

 =


X2local

Y 2local

Z2local

 (2.6)


c11 c12 c13

c21 c22 c23

c31 c32 c33



Xba

Yba

Zba

 =


X3local

Y 3local

Z3local

 (2.7)

In order to extend the dynamic range of the MEMS gyroscope past the saturation limit, an

augmented rotation matrix method was developed. Previously the coordinate transformations were

done between a single IMU and the body reference frame shown in equations 2.5, 2.6, and 2.7.

However it was after attempting the saturated value recovery, explained in the prior section, that

the mathematical relationship was further leveraged to reconstruct saturated values. Even when
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a11Xba + a12Yba + a13Zba = X1local
a21Xba + a22Yba + a23Zba = Y 1local
a31Xba + a32Yba + a33Zba = Z1local
b11Xba + b12Yba + b13Zba = X2local
b21Xba + b22Yba + b23Zba = Y 2local
b31Xba + b32Yba + b33Zba = Z2local
c11Xba + c12Yba + c13Zba = X3local
c21Xba + c22Yba + c23Zba = Y 3local
c31Xba + c32Yba + c33Zba = Z3local

a21Xba + a22Yba + a23Zba = Y 1local

b31Xba + b32Yba + b33Zba = Z2local

c21Xba + c22Yba + c23Zba = Y 3local

a21Xba + a22Yba + a23Zba = Y 1local
b31Xba + b32Yba + b33Zba = Z2local
c21Xba + c22Yba + c23Zba = Y 3local

Augmented
Body Axes Data

Augmented Transformation Matrix

Figure 2.3: Augmented Matrix reconstruction for reference frame transformation

the skewed IMUs are partially saturated, the body axes rotation rates can be reconstructed. When

the flying vehicle enters a period of saturated rotation rates on the body axis, there should be

unsaturated values on the skewed IMUs. The aggregate system of equations for the three skewed

IMUs, which can be seen in Figure 2.3, need only three unsaturated channels from the total of nine

rotation rate channels. The IMUs from which the unsaturated values come from do not matter. For

example, The x channel for IMU 1, IMU 2, and IMU 3 could be used. Or the x channel from IMU

1, the y channel from IMU 2, and the z channel from IMU 3 could be used to create an augmented

rotation matrix. With the augmented rotation matrix, the data could then be converted back to

the body axis.

2.4 Genetic Algorithm Skew Angles

The angles between the skewed IMUs were the main factor in determining the ability of the system

to record data above the saturation limit of the common body axis IMU. Therefore, exploring the

combinations of offset angles for each yaw, pitch, and roll axis of each individual IMU was paramount.

The goal was to find a set of offset angles such that they maximized the probability of the skewed

IMU to record data that would otherwise be saturated on the principle body axes. As shown by the

rotation matrices 2.1, 2.2, and 2.3, the trigonometric components make the relationship inherently
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nonlinear. The solution space for the skew angles could therefore not be easily navigated.

In order to search the non-linear solution space of the skew angles, an evolutionary based search

algorithm was used. Specifically, MATLAB’s implementation of a genetic algorithm. In the research

performed, the genetic algorithm was applied as a single and multi-objective approach. The yaw,

pitch, and roll axes of each IMU were minimized as a function of the skew angles. The objective for

the research was to use each one of the skewed IMUs to increase the probability of capturing one of

the common body reference frame IMU’s yaw, pitch, or roll rates during an instance of saturated

data. That is to say, IMU 1 was tasked to back up the data on the yaw axis of the common reference

frame, IMU 2 was tasked to back up the data on the pitch axis of the common reference frame, and

finally IMU 3 was tasked to backup the data on the roll axis of the common reference frame IMU

aligned with the body axis.

The genetic algorithm was applied as a single objective cost function. The cost function for the

single objective case was to minimize the magnitude of the angular rotation rate of a single axes.

Recall, part of the method was to use a skewed IMU to backup a single channel on the body axes.

The cost function for the multi-objective algorithm was to minimize the magnitude of the angular

rotation rate vector for all three axes on the skewed IMUs. The solution for the multi-objective

case did not directly contribute to the skew angles that were determined. The purpose of using a

multi-objective case was to represent the total magnitude that the skewed IMU would experience

and to understand what the remaining two axes would experience when they were configured to

provide redundancy for a single body axis channel.

The single objective function case was used as the primary tool to explore the solution space.

The function was developed to mimic the real application of converting IMU data between reference

frames. The genetic algorithm used artificially created data made to represent the body axes. The

data created was random and uniformly distributed between the upper and lower bounds. The goal

was to achieve reconstructed rates approximately double the saturation limit of the sensor. The

artificial data was therefore bounded between negative four thousand and positive four thousand

degrees per second. That enforced fifty percent of the data to be at least partially saturated from

the perspective of the body axes. Prior to using a uniform distribution of random data, alternatively

constructed data was considered. The data the genetic algorithm was trained on would ultimately

determine the behavior of the skewed system during testing. If behavior of the flying body was well

known, then the artificially created data could emulate that. Tailoring the data could benefit the

system by being more capable for a certain scenario. For example, the created data could be modeled

with higher or lower limits if that is what the case was believed to be for the real flying vehicle.
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The data could also be structured in a Gaussian manner with a higher probability distribution

around the mean, which was zero degrees per second in the case of the research performed. It would

seem reasonable to postulate the flying vehicle behavior operates more frequently in the unsaturated

regime and the higher saturated values are less likely and therefore choose a Gaussian distribution for

the data created for the genetic algorithm. However using a uniformly distributed data set over the

given bounds was believed to make the skewed system more robust in reconstructing saturated values.

The nature of the flying vehicle was aerodynamically unstable therefore creating data uniformly was

believed to be the best option. By not manufacturing in potential biases, the system would be open

to random and unforeseen behavior by the flying vehicle. The artificial body axis data would then

be converted to a skewed IMU reference frame. The cost function would minimize the magnitude

of the x, y, or z channel while the genetic algorithm would search through the skew angle solution

space; zero to ninety degrees. The genetic algorithm would perform a specified number of iterations

and stop when the cost function improvement reduced.

To verify the plausibility of the designed offset angles that were selected from the results of

the genetic algorithm, a statistical inquiry was performed in order to ensure the skewed IMUs had

a statistically significant chance of recovering saturated data. Figure 2.4 shows the probability

of recovering a minimum of three channels on the skewed IMUs below the rotational rate of two

thousand degrees per second. The inquiry was done with the same style of random data used in

the genetic algorithm, random numbers between negative four thousand and positive four thousand

degrees per second.

Additional inquiry was done into the specifics of the saturated data. For example, the number

of instances of certain saturation cases were noted and compared against how many of those specific

cases were recoverable. When the body reference frame had one saturated value, those values were

compared to the total number of data points to determine the prevalence in the total set of data

points. The same was done for cases of two and three saturated values on the body reference frame

and noted how many times those cases occurred. The probability of recovery for that specific case

was then performed. Figure 2.5 shows the probability of recovering body reference frame data when

the specific cases of one, two, or three saturated values on the body reference frame occurred. Further

discussion on these results are in section 3.5 Discussion
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Figure 2.4: Monte Carlo simulation noting probability of recovering saturated rotation rates for the
selected set of skew angles.

The Monte Carlo simulation was performed with ten thousand samples per iteration. A total of

one hundred iterations were performed. For each sample, data was a random uniform distribution

between negative four thousand and positive four thousand degrees per second. Each sample rep-

resented a data capture event with x, y, and z channels. The artificial data created were from the

body axes perspective. The body reference frame data was transformed to each of the three skewed

IMU orientations using rotation matrices. The transformed data represented what the skewed IMUs

would be experiencing from their perspective and were noted as the ’reported’ data. The skewed

IMU data were modified to represent what the logged data would actually look like. That required

each value for a skewed IMU that was over the saturation limit was set to two thousand degrees per

second. The recovery rate was then calculated by examining each sample step. A minimum number

of three out of the nine channels were required to be unsaturated. With three unsaturated channels

per sample, the rotational matrix equations could be solved to complete the transformation. The

total number of recoverable instances per sample step was summed and divided by the total number

of samples to calculate the percent recovery per iteration. Figure 2.6 displays the flow process for

determining the possible recovery rate for the skewed configuration.
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Figure 2.5: Monte Carlo simulation noting probability of recovering saturated rotation rates for
cases of one saturated channel, two saturated channels, and three saturated channels on the body
axis
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Figure 2.6: Monte Carlo recovery rate process
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2.5 Flight Test Payload

The test bed for the skewed redundant IMU configuration for the physical flying vehicle was highly

constrained by the geometric and mass properties. Therefore the center of gravity and moments of

inertia were critical. Adding instrumentation to the flight vehicle had to be carefully considered. The

overall center of gravity for the flying vehicle (not shown) was noted and superposed to the internal

cavity with which the instrumentation payload would be placed. A cap on the flying vehicle was

removable and the IMU payload could be taken in and out. The structure of the holder was SLA 3D

printed and the density of the resin was taken into consideration in designing the payload structure

for center of gravity calculations. The outer dimensions of the sensor payload were bounded by

the inner dimensions of the flying vehicle. Figure 2.7 shows initial attempts to place IMU boards

inside the confined geometry of the holder. The holder had to be designed in two pieces due to the

manufacturing limits of the build volume of the 3D printer.

Figure 2.7: Initial effort to place skewed IMU platforms within internal geometry constraints

Figure 2.8 shows IMU sensor board inside the left portion of the holder. The right side of the

image is where the battery was stored and the indentations were used for indexing the payload. After

placement of the sensors, the center of gravity was significantly off from the target value. Weight

ballasts had to be designed in order to shift the center of gravity back towards the end of the holder

with the battery. The weight ballasts were fabricated from one eighth inch tungsten rods. Figure

2.9 shows the IMUs implemented in the 3D printed holder.
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Figure 2.8: Instrumentation payload showing tungsten ballasts and battery pack

Figure 2.9: Instrumentation payload with IMUs wired together and placed in the tail cone of the
flight vehicle
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2.6 Wind Tunnel Test Payload

The SparkFun Razor IMU was modeled as a solid part using a dial caliper with a precision of

plus/minus 0.001 inches as dictated by the uncertainty of the caliper. The holder for the four IMUs

were designed in the CAD software suite SolidWorks shown in Figure 2.10. The axes in SolidWorks

were corrected to represent the ‘right hand rule’ as that is the notation of the IMUs. The IMU

holder was designed as an assembly part that consisted of the IMUs and the holder structure that

would be manufactured. The IMU that was to be aligned with the body axes of the UAV was

placed in first, in continuity with the global coordinate system that was corrected as stated above.

Each subsequent IMU was placed into the CAD environment and had their local coordinate system

rotated as dictated by the skewed offset angles that were chosen and tabulated in section 3.1. The

local rotation of each IMU axis was important in that it had to match the sequence in how the

algorithm implemented the transformation mathematics. During the experiment, the rotations were

done in the ‘PQR’ sequence or the yaw, pitch, and roll sequence. Once all four IMUs were placed

into the assembly environment in CAD, the skewed IMUs were positioned precisely. Their location

was chosen to create a physical layout that was compact and practical. It was necessary to mind

the location of the on/off switch, power port, IO pins, and SD card so during implementation all

IMUs could easily be operated. In addition, the supporting structure was designed to hold each

IMU with as much rigidity as practical. Each IMU had four screw holes that were used to fasten

them down. Specifically, two diagonal holes were used as indexers and the remaining two diagonal

holes were used to screw down the IMU to the holder. The holder structure was designed so that the

indexing holes had material that extruded past that of the resting surface and protruded through

the indexing holes. As one would expect, the precision of the IMUs being aligned with the skew

angles that were designed was paramount. Later, a sensitivity analysis was performed in order to

understand the uncertainty introduced and how that manifested itself as the measured values passed

through the algorithm.
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(a) CAD model of IMU holder Assembly (b) 3d printed IMU holder assembly

Figure 2.10: IMU sensor holder

2.7 Vicon Motion Capture

The primary data acquisition system used was Vicon, a motion capture system with roots developed

in the medical field and popularized in computer animated graphics. Vicon also has a strong presence

in engineering applications. Vicon is an infrared camera system that provides motion tracking of

objects within its field of view. The camera sees infrared light reflected by markers placed on a

item of interest. Software is used to extend these capabilities into a meaningful application. The

location of a marker can be determined when the Vicon cameras are spatially known relative to each

other. When the Vicon system has knowledge of the camera locations relative to each other, it can

compare the location of a marker and reconstruct it in virtual space. The cameras and software are

calibrated by sweeping the test volume with an object with known geometrical properties between

markers. Figure 2.11 shows a calibration wand.
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Figure 2.11: Vicon motion capture calibration wand. Photo: WVU-AJ Research Project

The markers on the wand create orthogonal lines that are used to represent the x, y, and z axes

and the planes they create. Once all the Vicon cameras are calibrated relative to each other, a local

origin can be placed using the calibration wand which creates a coordinate reference frame within

the software. The calibration calculations are done within the software. The software suite used for

the research project was TRACKER which was created and maintained by Vicon. The next step

was to create a model of the test specimen. The TRACKER software determines the orientation and

subsequent behavior of an object by referencing the geometry of the model. The marker orientation

and placement must be known physically in order to return meaningful data from the software. For

example, when creating the model of the test specimen in the software, the markers were laid out to

make sure the markers created orthogonal axes in the software. Additionally, the IMU labeled as the

body axis IMU had to align with the axes created by the software in order to perform a comparison.

Marker placement was paramount in maintaining alignment between the physical test specimen and

the model in the software. It was necessary to ensure that the placement of subsequent markers

did not create similarly spaced distances between markers. Figure 2.12 below shows the Euclidean

distances between a proposed marker layout scheme and was used in Appendix A to show initial

hand calculations performed to create an optimal marker placement layout.
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Figure 2.12: Example design of reflective Vicon marker placement establishing Euclidean distance
between markers

The Vicon cameras were sensitive to the reflected infrared markers, so if an object utilized markers

in a symmetric pattern, the software wouldn’t be able to determine between the two possible mirror

reflections that would occur with a symmetric marker pattern. Figure 2.13 shows an isometric view

for the final configuration designed for marker placement. A fourth marker was placed underneath

and to the rear of the test payload. The marker spheres used were 10mm in diameter and had screw

threads to easily take on or off the test payload.
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Figure 2.13: Final reflective marker configuration designed for the wind tunnel instrumentation
payload
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2.8 Test Setup

(a) Wind tunnel arresting net (b) Wind tunnel motion capture perspective

Figure 2.14: Reedsville, WV. Wind tunnel test setup

The experiment performed here measured the ability of the sensor configuration to recover satu-

rated rotation rates before implementing the system in the flight test payload. The facility in which

the experiment took place was the WVU wind tunnel in Reedsville, WV. The wind tunnel was

approximately one hundred and twenty feet long. The cross section of the tunnel was approximately

sixteen feet high and sixteen feet wide. The tunnel was an open return style tunnel with a tractor

fan at the end of the tunnel. For the experiment performed, a model arrest system was constructed

near the beginning of the entrance of the tunnel with the mindset to launch projectiles from midway

or from farther down the tunnel. The arrest system was a net that was stretched across the cross

section. Approximately two feet from the bottom of the floor, the net was sloped such that models

would slide to the floor in a gentle manner so as to not damage the model that was launched. The

data acquisition system was set up in the control room which sat at approximately halfway down

the length of the tunnel.

The wind tunnel was set up for motion capture experiments with the Vicon cameras. The

cameras were attached to metal poles that traversed the length of the tunnel at the top of each

27



Figure 2.15: Wind tunnel instrumentation payload IMU holder wired for testing

wall. The motion capture cameras were spaced every six feet. The field of view was centered on the

intersection of the floor and wall opposite of the camera. That is to say, the cameras along the top

right of the tunnel looked at the bottom left of the tunnel. The intersection of cameras from the

left and right side created a dense interrogation volume in the wind tunnel test section. TRACKER

software was set to record at a sampling rate of one thousand hertz.

As an off the shelf component, the SparkFun Razor IMU was packaged as a plug-and-play sensor.

The board came preloaded with firmware to operate the IMU and documentation for customization.

Each IMU was configured to record accelerations, rotation rates, and the magnetometer was activated

as it was used as part of the onboard firmware to correct gyroscopic drift bias. The IMUs were set

to record data at their maximum sampling rate of one hundred hertz. The IMUs were synchronized

temporally by the body axis aligned IMU configured as the primary and the skewed IMUs configured

as replicates. Upon power being applied to the IMUs, a simple routine was activated that waited

a sufficient amount of time to ensure each IMU was initiated. After waiting that time period, the

master would send a start command to the slaves and which would start logging data.
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Once all systems were activated on the IMU, the motion capture system would be triggered from

the control room. The IMU holder with its payload of the skewed IMUs was launched down the

center of the wind tunnel into the arresting system. The goal for the experimental test was for the

IMU holder to enter a region where the rotational rates on the body axis were close to double the

saturation limit of the sensors. During that region, the body axis would be saturated on at least one

if not all channels. The motion capture would record the true rotational rates of the IMU holder

and would be used as verification against the recorded IMU data once it was passed through the

algorithm. Figure 2.16 displays the typical test environment.

Figure 2.16: Wind tunnel illustration visualizing the arresting system on the left hand side, the
motion capture cameras along the top, and a typical curved flight path of the test payload starting
from right to left.

2.9 Post-Processing Data

The data from the IMUs were stored onboard the sensors using a microSD card. The data from the

Vicon TRACKER software was taken from the wind tunnel instrumentation computer on a portable

USB drive. The data from the separate systems were loaded onto a computer for where all the post
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processing data reduction was done in MATLAB.

In order to combine signals from four separate sensors together, a Kalman filter was used. Because

a mathematical representation of the flight vehicle dynamics did not exist yet, recall the research

project was trying to recreate the aerodynamic coefficients that described the physics of the flight

vehicle, a simple method was used during the prediction step of the filter. Where normally a physics

based model of the system would beget a sufficiently accurate prediction into the future step, a

simple linear extrapolation into the future step was used for the prediction step of the filter. There

were instances where the filter obviously lagged behind the updated results when there were sudden

changes in motion, however the filter still performed sufficiently well.
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Chapter 3

Results

3.1 Genetic Algorithm

The genetic algorithm was used to extract skew angles that the IMU sensors were aligned with. Be-

cause a genetic algorithm is an optimization algorithm, there were multiple sets of angles that could

have performed similarly, however the values that were selected were what the genetic algorithm

converged upon and provided the best ability to extend the dynamic range of the sensors. Table 3.1

shows the skew angles calculated for each individual IMU by the genetic algorithm.

Table 3.1: IMU skew angles in degrees

θ P Q R
IMU 1 35 -30 -20
IMU 2 20 50 65
IMU 3 65 50 20

3.2 Sensitivity Analysis

A sensitivity analysis was performed to quantify the behavior of a unit measurement from input to

output of the transformation algorithm. The analysis was organized to reflect the behavior of each

individual rotational channel in an isolated manner as well as interaction between simultaneously

active rotational channels.

Tables 3.2 through 3.4 represent an input on either the x, y, or z channel respectfully. The input

was analyzed from the body reference frame to show how a single unit rotation would propagate

through the transformation matrices. As the rotation increases on the input, the subsequent values
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from the independent channels follows proportionally.

Table 3.2: X Axis Channel contribution

IMU

Axis
X Y Z

BA 1 0 0

IMU1 0.8138 0.2962 -0.5000

IMU2 0.2717 -0.5826 0.7660

IMU3 0.6040 -0.2198 0.7660

Table 3.3: Y Axis Channel contribution

IMU

Axis
X Y Z

BA 0 1 0

IMU1 -0.5497 0.6717 -0.4967

IMU2 0.9624 0.1597 -0.2198

IMU3 0.7969 0.1597 -0.5826

Table 3.4: Z Axis Channel contribution

IMU

Axis
X Y Z

BA 0 0 1

IMU1 0.1887 0.6791 0.7094

IMU2 0.0058 0.7969 0.6040

IMU3 0.0058 0.9624 0.2717

Tables 3.5 through 3.8 display results from the same process as described above. The four types

of interactive combinations possible are tabulated. As the input increases, the output as noted by

the IMUs increases proportional to the input.

32



Table 3.5: X & Y Axis Channel contribution

IMU
Axis

X Y Z

BA 1 1 0
IMU1 0.2641 0.9679 -0.9967
IMU2 1.2340 -0.4229 0.5462
IMU3 1.4010 -0.0602 0.1835

Table 3.6: Y & Z Axis Channel contribution

IMU
Axis

X Y Z

BA 0 1 1
IMU1 -0.3610 1.3507 0.2127
IMU2 0.9681 0.9566 0.3842
IMU3 0.8027 1.1221 -0.3109

Table 3.7: X & Z Axis Channel contribution

IMU
Axis

X Y Z

BA 1 0 1
IMU1 1.0025 0.9753 0.2094
IMU2 0.2774 0.2144 1.3701
IMU3 0.6098 0.7425 1.0377

Table 3.8: X, Y, & Z Axis Channel contribution

IMU
Axis

X Y Z

BA 1 1 1
IMU1 0.4528 1.6469 -0.2873
IMU2 1.2398 0.3741 1.1502
IMU3 1.4067 0.9022 0.4551

3.3 Uncertainty Analysis

The uncertainty over the experiment was considered with two separate cases. Sources of uncertainty

that influenced the experiment were found to be from the MPU-9250 sensor chip, and how the IMU

was spatially oriented from the 3D printed resin holder. During post processing, time dilation was

identified as well.

In the first case, an individual IMU would not be in a saturated state and would therefore be

capturing all three axes of rotation. Uncertainty would be present from the sensor and from the

skew angles from 3D printing. In the second case, an individual IMU wold be saturated on an axis

and the algorithm would use channels from different IMUs, their time dilation with respect to each
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other would cause uncertainty to arise.

Uncertainty analysis was performed using the method called adding in quadrature for more than

one variable. Equations 3.1 and 3.2 below show the method for multiplication and division for

relative uncertainty [21].

q =
x× ...× z
u× ...× w

(3.1)

δq

|q|
=

√(
δx

x

)2

+ ...+

(
δz

z

)2

+

(
δu

u

)2

+ ...+

(
δw

w

)2

(3.2)

For complicated expressions like trigonometric functions, the uncertainty can be propagated

by taking the difference of the minimum and maximum value. Take the arbitrary example of

q = cos θ ± δθ. It follows in equation 3.3 that the uncertainty can be found as shown.

|δq| = |cos(θ + δθ)− cos(θ − δθ)| (3.3)

The first source of uncertainty calculated was the discrepancy in the IMU offset angle. The

SLA printer, Formlabs 2 had a laser spot size of 140µm (≈0.006′′) and layer thickness capability of

25-300µm (≈0.001-0.012′′). The part was printed at 50 µm layer thickness. To make a conservative

calculation, 100µm or 0.004′′ layer thickness was used to calculate the skew angle uncertainty.

δθ = atand(
y

x
) (3.4)

δθ = atand(
0.008′′

1.0′′
) = 0.458◦ (3.5)

δθ = 0.5◦ (3.6)

Figure 3.1 below shows a 2D cartoon illustrating how uncertainty arises through the 3D printed

IMU holder. The horizontal line represents the intended posture of the IMU but due to the layer

resolution uncertainty there is a possibility of having an unintended angle.

The uncertainty propagation through the experiment can largely be captured through the equa-

tions of relative motion. The yaw, pitch, and roll rotation matrix 2.4 from page 13 can be decon-

structed into equations 3.7, 3.8, and 3.9 respectively.
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δ

δ
Intersection point

Figure 3.1: Cross section representation of 3D printed uncertainty due to layer thickness and the
maximum difference possible

cos(α) cos(β)Xba + (cos(α) sin(β) sin(γ)− sin(α) cos(γ))Yba

+ (cos(α) sin(β) cos(γ) + sin(α) sin(γ))Zba = Xlocal (3.7)

sin(α) cos(β))Xba + (sin(α) sin(β) sin(γ) + cos(α) cos(γ))Yba

+ (sin(α) sin(β) cos(γ)− cos(α) sin(γ))Zba = Ylocal (3.8)

− sinβXba + cosβ sin γYba + cosβ cos γZba = Zlocal (3.9)

Equation 3.9 will be used to demonstrate the calculation of the IMU holder contribution. In

the matrix form, these sine and cosine functions become constants seen on page 13. The relative

uncertainty was calculated using the skew angles from IMU 1 where α = 20, β = 30, γ = −35,

and δθ = 0.5 degrees. The relative uncertainty for the IMU value is ± 3%. The sine and cosine

coefficient uncertainty is found in the absolute form using equation 3.3 and then converted to relative

uncertainty.

− (0.5000± 0.0151)(Xba ± 3%) + (0.866± 0.0087)(−0.5736± 0.0143)(Yba ± 3%)

+ (0.866± 0.0087)(0.8192± 0.0100)(Zba ± 3%) = Zlocal (3.10)
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− (0.5000± 3%)(Xba ± 3%) + (0.866± 1%)(−0.5736± 3%)(Yba ± 3%)

+ (0.866± 1%)(0.8192± 1%)(Zba ± 3%) = Zlocal (3.11)

−0.5Xba ± 4%− 0.4967Yba ± 4% + 0.7094Zba ± 3% = Zlocal (3.12)

Considering the remaining cases, the aggregate uncertainty for each channel of an IMU was 4%.

Table 3.9: sine and cosine relative uncertainty

IMU 1 cos θ sin θ
α = 20 0.94±0.006 0.34±0.02
β = 30 0.87±0.009 0.50±0.02
γ = −35 0.82±0.01 -0.57±0.01

IMU 2 cos θ sin θ
α = −65 0.42±0.02 -0.91±0.007
β = −50 0.64±0.01 -0.77±0.01
γ = −20 0.94±0.006 -0.34±0.02

IMU 3 cos θ sin θ
α = −20 0.94±0.006 -0.34±0.02
β = −50 0.64±0.01 -0.77±0.01
γ = −65 0.42±0.02 -0.91±0.007

3.4 Flight Test

The data from each local IMU was recorded on board its own microSD card. The event data had to

be combined in post processing. When the IMU system was powered up, small discrepancies in boot

up time made the recordings start at different times. The data was realigned temporally by taking

the accelerometer data into the frequency domain with an FFT and comparing the power spectral

density such that the IMUs could be realigned based on the initial movement recorded. It can be

seen in figure 3.2 at the two second time stamp the four IMUs in alignment with their respective

initial peaks.

3.4.1 Run 1

Figure 3.3 shows each IMU and the data therein recorded. Each sub figure displays the raw data

and thus are the rotational rates from their own respective frames of reference. Note the relative
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Figure 3.2: Run 1: Frequency domain analysis for temporal alignment of sensors

differences between each IMU as they experience the same event but from a different vantage point

corresponding to their offset angles.

Observe run 1 operates below the gyroscope saturation limit for the duration of the experiment.

There are no losses of data on any IMU channel as would be expected. There is a small dropout of

data from Vicon at approximately 2.85 seconds before reestablishing visuals and hitting the arresting

net at 3.05 seconds.

The IMU KF signal can be seen trending with the Vicon signal in Figures 3.5, 3.6, and 3.7.
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(a) IMU: body axis (b) IMU: 1

(c) IMU: 2 (d) IMU: 3

Figure 3.3: Run 1: Relative IMU ROI data

(a) Values recorded by individual sensors (b) Values converted to common reference frame

Figure 3.4: Run 1: IMU data as recorded (a) and after conversion to common reference frame (b)
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Figure 3.5: Run 1: Rotation about the x axis

Figure 3.6: Run 1: Rotation about the y axis
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Figure 3.7: Run 1: Rotation about the z axis

Figure 3.8: Run 1: Converted IMU data and Kalman Filter data fit
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3.4.2 Run 2

Note the common initiation point in figure 3.9 which was used to align the measurements temporally.

Although the measurements start at the same time, it can be seen that there are varying degrees of

input. This was noted as an indicator for potentially poor sensor fusion.

The body axis measurements during run 2 were complete on the roll and pitch axis but the

yaw axis was saturated until the payload was stopped by the arresting net. The remaining IMU

sensors either had one channel saturated or a combination of multiple channels switching between

saturated and unsaturated. Figure 3.11 (b) shows the converted IMU 1 and IMU 2 having a small

portion of success with yaw recordings fluctuating around 2500 dps, approximately 500 dps above

the saturation limit of the sensor.

Figure 3.9: Run 2: Frequency domain analysis for temporal alignment of sensors
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(a) IMU: body axis (b) IMU: 1

(c) IMU: 2 (d) IMU: 3

Figure 3.10: Run 2: Relative IMU ROI data

(a) Values recorded by individual sensors (b) Values converted to common reference frame

Figure 3.11: Run 2: IMU data as recorded (a) and after conversion to common reference frame (b)
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Figure 3.12: Run 2: Rotation about the x axis

Figure 3.13: Run 2: Rotation about the y axis
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Figure 3.14: Run 2: Rotation about the z axis

Figure 3.15: Run 2: Converted IMU data and Kalman Filter data fit
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Figure 3.16: Run 2: Vicon and body axis roll
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3.4.3 Run 3

Run 3 as seen in figure 3.18 saturates on more than one channel. Figures 3.20, 3.21, and 3.22 also

show the roll axis and yaw axis being saturated for some or all of the test with data exceeding 3000

dps in some instances.

Figure 3.17: Run 3: Frequency domain analysis for temporal alignment of sensors
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(a) IMU: body axis (b) IMU: 1

(c) IMU: 2 (d) IMU: 3

Figure 3.18: Run 3: Relative IMU ROI data

(a) Values recorded by individual sensors (b) Values converted to common reference frame

Figure 3.19: Run 3: IMU data as recorded (a) and after conversion to common reference frame (b)
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Figure 3.20: Run 3: Rotation about the x axis

Figure 3.21: Run 3: Rotation about the y axis
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Figure 3.22: Run 3: Rotation about the z axis

Figure 3.23: Run 3: Converted IMU data and Kalman Filter data fit
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3.4.4 Run 4

Run 4 has two channels on the body axis and IMU 3 that are relatively benign with one channel

being saturated. Run 4 is similar to run 2 in that the channel that is saturated is experiencing

rotational rates around 2500 dps with moderate success in the converted rates reading around 2500

dps in figure 3.26 (b). The Kalman filter however does not perform well and does not present results

during the test which can be seen in Figures 3.27, 3.28, and 3.29).

Figure 3.24: Run 4: Frequency domain analysis for temporal alignment of sensors
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(a) IMU: body axis (b) IMU: 1

(c) IMU: 2 (d) IMU: 3

Figure 3.25: Run 3: ROI data

(a) Values recorded by individual sensors (b) Values converted to common reference frame

Figure 3.26: Run 4: IMU data as recorded (a) and after conversion to common reference frame (b)
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Figure 3.27: Run 4: Rotation about the x axis

Figure 3.28: Run 4: Rotation about the y axis
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Figure 3.29: Run 4: Rotation about the z axis

Figure 3.30: Run 4: Converted IMU data and Kalman Filter data fit
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3.4.5 Run 5

Run 5 has two channels saturated for various intervals for each IMU on the payload. The body axis

IMU captured the trend of the roll rate which can be further seen in figure 3.38. The converted

values shown in figure 3.33 have poor agreement with each other. The previous results can be seen

exacerbated in figures 3.34, 3.35, and 3.36 showing a poor filtered fit to the Vicon data.

Figure 3.31: Run 5: Frequency domain analysis for temporal alignment of sensors
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(a) IMU: body axis (b) IMU: 1

(c) IMU: 2 (d) IMU: 3

Figure 3.32: Run 5: Relative IMU ROI data

(a) Values recorded by individual sensors (b) Values converted to common reference frame

Figure 3.33: Run 5: IMU data as recorded (a) and after conversion to common reference frame (b)

55



Figure 3.34: Run 5: Rotation about the x axis

Figure 3.35: Run 5: Rotation about the y axis
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Figure 3.36: Run 5: Rotation about the z axis

Figure 3.37: Run 5: Converted IMU data and Kalman Filter data fit
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Figure 3.38: Run 5: Rotation about the x axis
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3.5 Discussion

Test runs two and four had skewed IMUs that experienced rotation rates in their local reference

frame that stayed at or around the saturation limit. These instances of a skewed IMU that had all

three axes unsaturated allowed for those rotation rates to be transformed back to the body axis.

Figures 3.11 and 3.26 both show their yaw axes with rotation rates above the two thousand degree

per second saturation limit. The rotation rates experienced by the body axis in both test runs were

approximately twenty-five hundred degrees per second, which the IMU aligned with the body axes

would not have been able to record by itself.

Test runs three and five had skewed IMUs that hard partially saturated values in their respective

reference frames during their flights. That meant their values couldn’t be transformed back to the

body axis using a single rotation matrix. In order to transform the data from the skewed IMUs in

these cases, the augmented rotation matrix had to be used. However Figures 3.23 and 3.37 show

that there were no saturated rotation rates that were recovered.

Test runs two and four had success in accomplishing the research goal but test runs three and

five did not. Test runs three and five required the use of the augmented rotation matrix which

took unsaturated rotation rates from more than one skewed IMU and attempted to transform them

back to the common body axis reference frame. The failure to utilize the augmented rotation

matrix successfully was believed to be in part from the relative shift in time between IMUs. When

taking unsaturated values from multiple skewed IMUs, the difference in time was introduced into

the mathematical relationship. For example, when using the augmented rotation matrix at time

2.25 seconds shown in figure 3.4, the wrong values were used as the difference in time can be seen.

The four IMU sensors were initially synchronized as substantiated in section 3.4 Flight Test.

Figure 3.16 shows the shift in time between signals over the duration of the flight test. Additionally,

it can be seen in Figure 3.24 that after initial synchronization that the magnitude of spikes of

acceleration occur at different times, indicating that the measurement of the same flight characteristic

took place at different times.

It was believed that the accelerations acting on the IMU sensor boards during flight was a po-

tential cause for the difference in timing that occurred. Research looking into this [22] substantiates

this as a possible cause. Initial calibration work with the sensor that took place in the lab did not

indicate this particular behavior. The sensors were inserted in the flight vehicle payload and placed

in a centrifuge to compare known rotation rates to the measured rates of the sensors. There were

biases present which matched with known biases from the sensor documentation. However there
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was not a temporal difference in sensor readings over the duration of the lab calibration. That lead

to the belief that the behavior noted during actual flight tests were caused by factors not seen in

calibration, in this case that could potentially be the accelerations that acted on the flight vehicle.

Future work with low cost sensors would benefit from characterizing the effect of accelerations and

shocks acting on the sensors by a dynamic calibration setup.

There are possible methods to account for the change in time if the discrepancies were caused by

external factors. There are sensors advertised as high shock resistant, which could provide resistance

to accelerations altering the crystal oscillators. There are also external hardware timing circuits that

could be applied. In the specific case of the research performed, their may be limited space to employ

additional hardware, however timing IC (integrated circuit) chips would be a possible solution. They

could provide an external and stable time stamp signal used to align data coming in from multiple

IMU sensors. Irregardless if the external timing chips cannot provide the exact sample rate required,

they would still provide a consistent signal which could be used to piece the separate IMU data back

together.

The individual sensors have relatively good performance shown in section 3.3 Uncertainty Anal-

ysis with ±4% relative uncertainty.However the largest additional source of uncertainty was from

the time dilation between IMU sensors. It was difficult to quantify in a rigorous manner how the

uncertainty propagated through the mathematical reference frame conversion. Because the rotation

rates were high at certain times, small differences in time made a significant difference in rotational

rates used to convert back to the common body axis reference frame.

Another point worth noting is the importance the skew angles played. The capability of the

system to take advantage of the relative difference in coordinate frames depended heavily on the

angles which described the skewed IMUs. The construction of the cost function used in the genetic

algorithm shaped the skew angles. The data created for the genetic algorithm allowed the skew

angles be tailored to get the most performance out of the skewed configuration. The Monte Carlo

simulation was run using the designed skew angles and predicted a high probability of recovery.

Considering all possible permutations of saturation showed a possible recovery rate approximately

94 % of the data in Figure 2.4. Further inquiry was done into the statistics and was shown in Figure

2.5. Of the total number of data points, 37 % of those had one saturated value on the body reference

frame. The recovery rate predicted for only cases having one saturated value was 98 %. Of the total

number of data points, 37 % had two saturated values on the body reference frame. Of those, 92 %

were predicted to be recovered. Finally, of the total number of data points, 12 % had all three values

saturated on the body reference frame. 85 % of those cases were technically recoverable. Although
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there was significant confidence predicted in recovering saturated rotation rates, the experiment did

not perform to the same level predicted.

Test run 5 is a good comparison to the predicated data because, as can be seen in Figures 3.27

and 3.35, they have approximately 50 % of their data above the saturation limit of the sensors. The

data created for the Monte Carlo simulation also had 50 % of the data beyond the saturation limit.

Despite the near similar behavior in experimental data and simulation data, the actual recovered

rotation rates were significantly lower. Considering all the data from the five test runs, approximately

35 % of the experimental data was above the saturation limit whereas the total simulated data

had 50 % above the saturation limit. Considering that more that half the experimental data was

below the saturation limit, it would have been expected to have a good performance in recovering

the saturated values, however, that was not the case. The discrepancy between simulation and

experiment was believed to be based on the reasons explained above with the time difference when

using the augmented rotation matrix and not necessarily the data the genetic algorithm was based on.

This belief was based on the mathematically rigorous formulation of reference frame transformation.

And was further shown in the additional inquiry into the Monte Carlo simulation data that showed

statistically the transformation mathematics does allow recovery of saturated values.

To the best of the author’s knowledge, previous work done with a multi sensor skewed configura-

tion revolved around increasing the performance of the sensor measurement in regards to uncertainty.

However, no work was found in the literature with a skewed system to leverage the relative difference

in coordinate frames to extend the dynamic range of the sensor it self. This is particularly useful

when utilizing low-cost sensors that may not have the capabilities required, and it is clear from the

results of the described efforts that the SRIMU can in fact increase the effective dynamic range of

single sensor.
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Chapter 4

Conclusions & Future Development

The results of the experiment were compared against the goals of providing critical backup data

and extending the dynamic range of a low cost MEMS gyroscope. There was success in extending

the dynamic range of the sensors in specific cases discussed in the prior section. However there

was not success in extending the dynamic range of the sensor when using the augmented rotation

matrix. Due to the partial success of recovering saturated rotation rates, there was not a significant

confidence for the system to provide critical backup data to the flight vehicle.

It was believed the inability of the augmented matrix to recover saturated rotation rates was due

to the discrepancy in time between IMUs which increased after initial synchronization. Therefore

it is recommended that future attempts to extend the dynamic range of a MEMS gyroscope in a

skewed redundant configuration focus on ensuring the synchronization between IMUs is accurate.

Additionally, it was believed the accelerations experienced during the test flights acted upon the

crystal oscillators, changing the timing of the sensors. In order to use the effort described in this

work more effectively, dynamic calibration exposing the sensors to high accelerations and shocks

should be performed to characterize and account for the effects experienced in this work. Using an

external timing source to synchronize the separate sensors would also help mitigate these effects.
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Appendix A

Hand Calculation for 2D platform. Markers were considered with their lines of symmetry and

potential areas to help add in an asymmetric marker location.

Figure 4.1: Hand drawn calculations for marker placement

65



Appendix B

Table noting distance between Vicon reflective markers to ensure no two distances were the same.

Figure 4.2: Euclidean distance calculation considering all permutations between reflective markers.
Measurements were in inches.
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Appendix C

IMU System of equations that are used to create an augmented rotation matrix.

a11Xba + a12Yba + a13Zba = X1local (4.1)

a21Xba + a22Yba + a23Zba = Y 1local (4.2)

a31Xba + a32Yba + a33Zba = Z1local (4.3)

b11Xba + b12Yba + b13Zba = X2local (4.4)

b21Xba + b22Yba + b23Zba = Y 2local (4.5)

b31Xba + b32Yba + b33Zba = Z2local (4.6)

c11Xba + c12Yba + c13Zba = X3local (4.7)

c21Xba + c22Yba + c23Zba = Y 3local (4.8)

c31Xba + c32Yba + c33Zba = Z3local (4.9)
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Appendix D

MATLAB code used to perform Monte Carlo Simulation.

clear all

close all

clc

warning(’off’)

load Sys_Eq.mat

szData = 1e5;

N = 1e2;

likelyhood = zeros(N,1);

threeSatrate = zeros(N,1);

twoSatrate = zeros(N,1);

oneSatrate = zeros(N,1);

satlim = 2000;

noSat=0;

oneSat=0;

twoSat=0;

threeSat=0;

noSatRecover=0;

oneSatRecover=0;

twoSatRecover=0;

threeSatRecover=0;
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tic

rng(1)

for k = 1:N

[BA,D1,D2,D3] = DataCreator(szData);

BAreported = BA;

D1reported = D1;

D2reported = D2;

D3reported = D3;

for i = 1:szData

for j = 1:4

if abs(BA(j,i))>2000

BAreported(j,i)=2000;

end

if abs(D1(j,i))>2000

D1reported(j,i)=2000;

end

if abs(D2(j,i))>2000

D2reported(j,i)=2000;

end

if abs(D3(j,i))>2000

D3reported(j,i)=2000;

end

end

end

TestData1 = [D1(2:4,:)’, D2(2:4,:)’, D3(2:4,:)’];

TestData1reported = [D1reported(2:4,:)’, D2reported(2:4,:)’,\\

D3reported(2:4,:)’];

BodyAxis = zeros(3,szData);

% IMU_Coef_1 goes from the BA to the IMU

% IMU_Coef_2 goes from the IMU to the BA

for i = 1:szData
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[row, col] = find(abs(TestData1reported(i,:))<2000,3);

if length(row)==3

A = [IMU_Coef_2(col(1),:);IMU_Coef_2(col(2),:);\\

IMU_Coef_2(col(3),:)];

V = [TestData1reported(i,col(1));TestData1reported(i,col(2));\\

TestData1reported(i,col(3))];

BodyAxis(:,i) = A\V;

else

BodyAxis(:,i) = NaN(3,1);

end

end

%look at BAreported column number, if row =

threeSatidx = find(sum(abs(BAreported([2:4],:))==2000)==3);

threeSatidxrecoverable = sum(sum((abs(TestData1reported(threeSatidx,:))\\

<2000),2)>=3);

threeSatrate(k) = threeSatidxrecoverable/length(threeSatidx);

twoSatidx = find(sum(abs(BAreported([2:4],:))==2000)==2);

twoSatidxrecoverable = sum(sum((abs(TestData1reported(twoSatidx,:))\\

<2000),2)>=3);

twoSatrate(k) = twoSatidxrecoverable/length(twoSatidx);

oneSatidx = find(sum(abs(BAreported([2:4],:))==2000)==1);

oneSatidxrecoverable = sum(sum((abs(TestData1reported(oneSatidx,:))\\

<2000),2)>=3);

oneSatrate(k) = oneSatidxrecoverable/length(oneSatidx);

likelyhood(k) = 1-sum(sum(isnan(BodyAxis)))/3/length(BodyAxis);

% monte carlo

end
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figure

plot(likelyhood,’*k’)

xlabel(’Iterations’)

ylabel(’Recovery Rate’)

title(’IMU Body Axis Recovery Sim’)

axis([0 N 0 1])

grid minor

toc

figure

hold on

plot(oneSatrate,’*k’)

plot(twoSatrate,’ok’)

plot(threeSatrate,’xk’)

xlabel(’Iterations’)

ylabel(’Recovery Rate’)

% title(’IMU Body Axis Recovery Sim’)

legend(’One Saturated Channel’,’Two Saturated

Channels’,’Three Saturated Channels’,’location’,’southeast’)

axis([0 N 0 1])

grid minor
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