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Abstract  

The last decades have witnessed a significant increase in Unmanned Aircraft Systems 

(UAS) of all shapes and sizes. UAS are finding many new applications in supporting several 

human activities, offering solutions to many dirty, dull, and dangerous missions, carried out 

by military and civilian users. Consequently, many industries are considering to employ 

UAS as a replacement of human driven applications. Currently, UAS perform several 

civilian missions, among them: traffic monitoring air pollution monitoring, precision 

agriculture, mapping, on-demand package delivery, inspection of infrastructure, and law 

enforcement. Recent acquisitions by Google, Facebook, and Amazon suggest there is keen 

interest in strategic positioning as this market, technology, and regulations mature.  

Today, limited access to the airspace is the principal barrier to the realization of the full 

potential that can be derived from UAS capabilities. The integration of UAS operations is 

one of the key challenges of the European and American programs Single European Sky 

ATM Research (SESAR) and Next Generation Air Transportation System (NextGen). 

These programs aim at increasing the airspace safety and efficiency as well as at improving 

the whole air traffic management system.  

Given the number and types of UAS operations envisioned, it is clear that the existing 

Air Traffic Management (ATM) system cannot cost-effectively scale to deliver services for 

UAS. The nature of most of these operations does not require direct interaction with the 

ATM system. Therefore, it is globally acknowledged the need to develop a parallel air traffic 

management system, named Unmanned Traffic Management or UTM system, separate 

from, but collaborative with the ATM system. 

In the United States, Federal Aviation Administration, NASA, other federal partner 

agencies and industry are collaboratively developing the UAS Traffic Management system. 

In Europe, gathering experts from aviation, research and academia, the Concept of 

Operation for EuRopean UTM Systems (CORUS) consortium is developing a concept of 
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operations for U-Space, the European system for management of UAS. The Civil Aviation 

Administration of China is defining the use of a civil UAS Operation Management System, 

while the Japanese UTM system is being built by the Japan UTM Consortium and a national 

project founded by New Energy and Industrial Technology Development. 

Several stakeholders are working in defining the best solutions to integrate UAS 

operations in the civil airspace. However, significant challenges must still be addressed. In 

this thesis, the main technical and operational issues, considered among the principal 

inhibitors to the integration and wide-spread acceptance of UAS, are analysed and two types 

of key enabling technologies for safe UAS operations are identified: 

• Technologies for autonomous navigation. Autonomous navigation of UAS is typically 

based on the integration of low-cost Global Navigation Satellite Systems (GNSS) and 

inertial sensors. However, traditional gyroscopes can be either too expensive or bulky, 

especially for small UAS applications. In recent years, the improvement of micro-

fabrication techniques has allowed the development of Micro Electro-Mechanical 

Systems inertial sensors, well-suited for UAS navigation due to their characteristics of 

low-cost, light-weight, and low power consumption. However, they suffer more than 

traditional inertial sensors for environment dependent errors. 

• Technologies for mission management. Novel solutions are needed to support the UTM 

system in monitoring and coordinating the operations of several small UAS, handling 

the diversity in UAS and payload types and assessing a broad range of mission 

conditions. 

The aim of this thesis is to support the safe integration of UAS operations, taking into 

account the user's requirements and flight regulations. To achieve this aim, two objectives 

are defined, i.e. improving the navigation performance of UAS by exploiting low-cost 

sensors and proposing novel methods to improve UAS mission management. 

A. Improving the navigation performance of UAS by exploiting low-cost sensors. 

Two approaches are proposed to improve dead-reckoning performance for handling 

intermittent GNSS coverage in the integrated navigation system:  
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• Thermal Compensated Zero Velocity Update (TCZUPT) filter. 

It is a novel method to estimate and correct MEMS gyros bias, which drifts with 

temperature with a strongly non-linear trend. While the traditional process is characterized 

by a cascading of two processing steps, i.e. thermal calibration by exploiting polynomial 

fitting and Zero Velocity Update (ZUPT) filter, the TCZUPT filter embeds the 

compensation of thermal effect on bias in the filter itself and uses Back-Propagation Neural 

Networks to build the calibration function. 

Experimental tests have been performed in the laboratory of G.M.A. S.r.l.TM company, 

by exploiting the Attitude and Heading Reference System (AHRS) Axitude AX1-[ ]TM in 

two conditions, i.e. 1) nominal condition, and 2) residual bias after rough initial alignment. 

Results show that the TCZUPT filter is faster in mapping significant bias variations and 

presents better performance in the overall testing period. Moreover, no calibration pre-

processing stage is required to keep measurement drift under control, improving the 

accuracy, reliability, and maintainability of the AHRS processing software. 

• Redundant configuration of inertial sensors. 

A calibration solution for consumer grade MEMS gyros, which exploits a redundant 

configuration of sensors, is proposed in this thesis. It is tested by exploiting the world’s 

densest sensor board, the SensorTileTM by STMicroelectronicsTM, in a cubic configuration. 

Results show that the redundancy of each axis in the navigation framework is efficiently 

improved, as well as the accuracy of the whole IMU. Indeed, it is able to make full use of 

the redundant observation data of sensors, by averaging multiple measurements about the 

same axis. The result is a partial self-calibration of typical inertial sensors biases, and a 

consequent reduction of the uncertainty in attitude determination. 

This activity is the object of the project named “POLYTILE: Self-Compensating IMU 

Exploiting Redundant Configuration on Regular POLYhedron of SensorTILEs” awarded 

for the Special Mention at the IEEE International Sensors and Measurement Systems 

Student Contest 2018, at Houston, TX, USA (14-17 May 2018). 
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B. Proposing novel methods to improve UAS mission management. 

Two solutions are proposed in this thesis to support the UTM system in monitoring and 

coordinating the operations of large-scale UAS missions, speeding up the flight 

authorization process and supporting the increasing level of autonomy in UAS operations: 

• Trajectory prediction for small UAS. 

A trajectory prediction tool for small UAS, based on Learning Vector Quantization 

(LVQ) Neural Networks, is proposed in this thesis. It is tested by flying the DJI Phantom 

4TM in waypoint mode. Telemetry data acquired in real-time are used to train and test the 

LVQ Neural Network. 

Results show that, by exploiting flight data collected when the Phantom 4TM executes a 

pre-assigned flight path, the tool is able to predict the time taken to fly generic trajectory 

elements. Moreover, being self-adaptive in constructing a mathematical model after several 

training and testing steps, LVQ Neural Networks allow creating different models for the 

myriad of different UAS types in several environmental conditions. 

• Standardized procedures for decision-making process. 

The thesis proposes a software tool, aimed at supporting standardized procedures for 

decision-making process to identify UAS types, payload, and prescriptions suitable for any 

type of missions that can be authorized standing flight regulations. The tool is developed in 

JAVA and is linked to an external eXtensible Markup Language database composed by 

several UAS and payload types, which can be stored on a different server and updated 

online, considering all new technologies that will be developed with time. 

The mission considered to test the tool is the aerial photography of a field, by using a 

multispectral camera to obtain information related to the productivity of the soil. By setting 

the mission requirements and the weather conditions in the user-input interface, the tool 

identifies the required and recommended on-board equipment and suggests off-the-shelf 

solutions to realize the customer needs, taking into account the current regulations. 

Moreover, by using a scoring system defined by the user, the tool classifies the available 

UAS/payload configurations, selecting the most suitable to the mission. 
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This activity has been carried out in collaboration with the Ecole de l’Air, France.  

The investigated technologies make great impact to enable large-scale UAS operations, 

particularly in view of the increasing number of small UAS applications. Indeed, they can 

be exploited for several enabling technologies, such as, a Mission Manager for UAS 

operations, Sense & Avoid systems, surveillance systems, and flight termination systems. 

The proposed solutions will be exploited in the Laboratory for Innovative Flight 

Technologies (LIFT), realized to support the increasing local request for professional 

activities carried out by exploiting small UAS. 

 

Keywords: Unmanned Aircraft Systems; Navigation; Mission Management. 
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Chapter 1 

Introduction 

1.1. Background to the research 

Since the beginning of the twentieth century, Unmanned Aerial Systems (UAS) have 

been encountered in an increasing number of applications (Kendoul 2012). They were 

developed to support several dull, dirty and dangerous missions, many driven by military 

needs (Francis 2016). Indeed, UAS offer a unique range of features, most notably ultra-long 

endurance and high-risk mission acceptance, which cannot be reasonably performed by 

manned aircraft (Degarmo 2004). Consequently, many industries are considering the 

opportunity to let UAS perform jobs traditionally done by humans, or never before done at 

all (Foina et al. 2015). These features, when coupled with advances in automation and 

sensor technologies, make a strong case for the rise of a robust civil, government, and 

commercial UAS market (Degarmo 2004). 

The last several decades have witnessed an even more explosive increase in unmanned 

aircraft of all shapes and sizes, including an increasingly large number intended for civil 

and commercial applications. These applications include aerial photography, precision 

agriculture, infrastructure inspection, construction, insurance investigation, film and 

entertainment, wildlife and resources management, climate monitoring and observation, 
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search and rescue, newsgathering, security, and geographical surveys, to name just a few 

(Austin 2010). 

Despite the potential of UAS across a range of economically beneficial and compelling 

applications, there are significant obstacles to their successful introduction and 

implementation. Today, limited access to the airspace is the principal barrier to the 

realization of the full economic potential that can be derived from UAS capabilities (Francis 

2016). 

To support the reduction of barriers that prevent unmanned aircraft from flying without 

the required waivers from the Federal Aviation Administration (FAA), the National 

Aeronautics and Space Administration (NASA) has investigated and integrated 

technologies, under the UAS Integration in the National Airspace System (NAS) Project 

(hereby known as UAS-NAS), which has been formulated to address the need for routine 

access to the global airspace for all classes of UAS (FAA 2013a). Moreover, a series of 

human in the loop simulations and flight test activities that integrate key concepts, 

technologies and/or procedures in a relevant air traffic environment has been conducted 

(Murphy et al. 2016b)(Murphy & Otto 2017)(NASA 2016). Human-in-the-loop real-time 

simulations have also been performed within the European project ERAINT, which is the 

acronym of Evaluation of the Remotely Piloted Air System (RPAS) - Air Traffic 

Management (ATM) Interaction in Non-Segregated Airspace (SESAR 2015). The work 

done within the above mentioned project is described in (Pastor et al. 2014). 

Significant challenges must still be addressed in order to enable UAS to reach their full 

potential, allowing a safe integration of UAS operations. This is one of the key objectives 

of the European and American programs Single European Sky ATM Research (SESAR) 

(SESAR 2012a) and Next Generation Air Transportation System (NextGen) (FAA 2013b). 

Safety is the overriding principle in performing this integration. In the near to mid-term, 

research will need to focus on technology and systems deemed necessary to integrate UAS 

operations (FAA 2013a), satisfying both the user's requirements and flight regulations. 

1.2. Key enabling technologies for UAS 

The integration of UAS will depend in large part on the ability to safely and effectively 

operate in varied environments and with varied tasking (Wheeler 2016). Current 

autonomous systems typically require external sensing or computation, such as a motion 
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capture system, Global Navigation Satellite System (GNSS) localization, prior map of the 

environment, or at least off-board sensor fusion and decision making. Other systems are 

affected by important limitations, due to highly structured environment, such as vertical 

walls, flat floors, and stationary scenes, and Size, Weight, and Power (SWaP) constraints 

(Wheeler 2016). Two key enabling technologies for safe UAS operations have been 

identified in this thesis: 

• Technologies for autonomous navigation; 

• Technologies for mission management. 

1.2.1.  Technologies for autonomous navigation 

A noted obstacle in reaching the navigation robustness necessary for the integration of 

UAS operations is the heavy reliance on GNSS. Indeed, GNSS loss, even for a brief period, 

often results in catastrophic failure. As a result, GNSS-degraded navigation has become a 

strong emphasis of research over the last decade (Vetrella et al. 2015b, 2016; Wheeler 

2016). 

Navigation performance and fault tolerance can be improved using inertial sensors for 

augmentation, combining measurement of both sensors typically through an extended 

Kalman Filter. In such integration, the GNSS derived positions and velocities update the 

inertial sensors, while the Inertial Navigation System (INS) is used for providing the high-

rate navigation information available also during GNSS signal outages (Groves 2013). 

Therefore, a robust output is requested for inertial sensors in case of temporary non-nominal 

operation of measurement systems in the Kalman Filter.  

Traditional gyroscopes, such as gimballed gyros, optic gyros and dynamically tuned 

gyros provide high-precision information for navigation and control systems, but they can 

be either too expensive or bulky, especially for small UAS applications. In recent years, the 

improvement of advanced micro-fabrication techniques has allowed the development of 

Micro Electro-Mechanical Systems (MEMS) inertial sensors (Barbour et al. 2011). Due to 

their characteristics of low-cost, light-weight, low power consumption, MEMS inertial 

sensors are well suited for UAS applications. However, they suffer more than traditional 

inertial sensors for environment dependent errors (Bhatt et al. 2012).  



4 
 

1.2.2.  Technologies for mission management  

In recent years, the commercial applications of small UAS are growing rapidly (FAA 

2018). The predicted volume of small UAS operations across both controlled and 

uncontrolled airspace could be on a scale comparable to that of present-day manned air 

traffic. The combined hobbyist and commercial fleet is projected to reach 3 to 6 million by 

2021, up from less than 1.5 million in 2016 (FAA 2018). Consequently, mission 

management solutions are needed to ensure safe and efficient UAS operations. 

It is envisioned that small UAS operations will be managed by a parallel air traffic 

system that would provide airspace services to participating UAS (Airbus 2018; Kopardekar 

et al. 2016). That system has been called Unmanned Traffic Management, or UTM. 

According to (Airbus 2018), it is “not a single, central system that mandates one way of 

operating for everything. Instead, it is a framework. It is a networked collection of services 

that join together and understand each other, based on common rules”. Several countries 

and trans-national bodies have already adopted this approach as the foundation for their own 

UTM implementations, described in (Airbus 2018). Each government has a slightly 

different view on how authority should be distributed.  

The most significant benefit of UTM is that it would not rely on as many unproven 

technologies as concepts that require the UAS itself to equip fully for safe operations in the 

existing airspace (Mueller 2016). However, novel solutions are needed to support the UTM 

system in monitoring and coordinating the operations of a large number of small UAS 

(Wargo et al. 2014), handling the diversity in UAS and payload types and assessing a broad 

range of mission conditions. 

1.3. Developed research solutions 

The aim of this thesis is to support the safe integration of UAS operations (FAA 2013a), 

taking into account both the user's requirements and flight regulations. To achieve this aim, 

two objectives have been defined: 

• Improving navigation performance of UAS by exploiting low-cost inertial sensors; 

• Proposing novel solutions to improve UAS mission management. 
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The developed research solutions, illustrated in Figure 1, make great impact to enable 

large-scale UAS operations, particularly in view of the increasing small UAS applications. 

These applications are affected by important limitations, due to SWaP constraints and their 

low-altitude operational environment, characterized by a variety of challenges to remote 

operations, such as people, personal property along UAS routes and other hazards. 

The proposed solutions can be exploited for several enabling technologies, among them:  

• A Mission Manager for UAS (Santamaria et al. 2009)(Royo et al. 2013) capable of 

identifying and assessing a broad range of mission-level conditions and then 

projecting an acceptable solution to execute successful outcomes throughout the 

mission timeline; 

• Sense & Avoid (SAA) systems that replace the fundamental manned aircraft 

capability of “see and avoid”. SAA represents one of the main roadblocks to the 

integration of UAS operations by aviation authorities around the world (Melega et 

al. 2015)(Fasano et al. 2016b). SAA systems should detect not only air traffic, but 

also obstacles, terrain elevation and weather conditions; 

• Improving UAS mission surveillance, which is a relevant technology to enable safe 

UAS application. For example, NASA has developed a prototype system that 

leverages the existing command and control link between the aircraft and ground 

control station, which includes periodic updates of the aircraft position, to provide 

the location of the aircraft to the national surveillance system, as well as provide the 

pilot with a display of aircraft in the vicinity of the unmanned aircraft (Murphy et al. 

2016a); 

• Flight termination systems, utilized as a last resort to bring down an UAS 

expeditiously in order to maintain some level of safety to the public or property 

(Santamaria et al. 2009)(Stansbury et al. 2009).  

Moreover, the investigated technologies can be exploited for novel applications in other 

research fields, such as autonomous cars or autonomous ships. 



6 
 

 

Figure 1. Flow-chart of the research carried out in this thesis. 

1.3.1.  Improving navigation performance of UAS by exploiting low-cost 

sensors 

Gyro and IMU accuracy can be classified into performance grades according to bias 

stability specifications (as explained in Chapter 4), with the lowest grade being used for 

consumer products, and the highest performing grade being used for mission critical 

strategic applications (KVH 2014). 

This thesis presents innovative solutions for improving the dead-reckoning performance 

of industrial and consumer grade MEMS inertial sensors (typically used for UAS 

navigation) for handling intermittent GNSS coverage in an integrated GNSS/MEMS-based 

inertial navigation solution (Gross et al. 2010b).  
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1.3.1.1.  Industrial grade MEMS gyros 

These sensors have significant limitations in terms of sensitivity to environmental 

conditions. Their output average value, i.e., sensor bias, drifts with temperature, with a 

strongly non-linear trend (Niu et al. 2013). The traditional approach to estimate and correct 

gyro bias is a cascading of polynomial thermal calibration and Kalman filtering (Groves 

2013). Consequently, it is time consuming and expensive. This aspect also reduces system 

accuracy, reliability, and maintainability. 

This thesis proposes an innovative method, named Thermal Compensated Zero Velocity 

Update or TCZUPT filter, that unifies in a single algorithm the two steps of the traditional 

approach, saving time and economic resources and simplifying the management of thermal 

correction process. In this innovative approach, the calibration transfer function is exploited 

within the Kalman filter, with the aim of embedding the compensation of thermal effect on 

bias in the filter itself. Moreover, Back-Propagation Neural Networks (BPNNs) are 

exploited to obtain the calibration transfer function, since they guarantee better performance 

on mapping the highly non-linear bias trend with temperature than traditional polynomial 

fitting. The proposed algorithms have been tested on the Attitude and Heading Reference 

System (AHRS) Axitude AX1-[ ]TM developed by the Italian company GMA S.r.l.TM. 

1.3.1.2.  Consumer grade MEMS gyros 

Last generation consumer grade MEMS inertial sensors have several distinctive features 

that make their use of interest also for professional navigation applications such as the ones 

related to attitude determination of advanced small UAS. Several advantages arise when 

using low-cost consumer grade MEMS gyros, such as reduced weight, compact 

configuration, low power consumption and easy integration with electronic boards (Barbour 

et al. 2011). Indeed, they are manufactured by using the same technology of micro-chips 

(Titterton & Weston 2004). Conversely, the overall error is more than an order of magnitude 

worse than industrial grade sensors, increasing the uncertainty in attitude determination. 

A high-performance and low-cost calibration solution for consumer grade MEMS gyros 

is proposed in this thesis by exploiting redundancy. Indeed, redundancy guarantees a partial 

self-calibration of typical inertial sensors biases, reducing the uncertainty in attitude 

determination. To test the proposed redundant configuration, the world’s densest sensor 
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board, SensorTileTM, by STMicroelectronicsTM has been adopted. In particular, a redundant 

IMU prototype, composed by a cubic configuration of SensorTilesTM has been developed. 

1.3.2.  Novel methods for UAS mission management 

1.3.2.1.  UAS trajectory prediction 

As explained above, future scenarios envisage the use of small UAS within intense 

traffic systems, with their operations managed by the UTM system. Thus, a trajectory 

prediction tool is needed to support UTM in predicting small UAS separation and collision 

threats within a safe time-frame. Trajectory predictions can also be exploited by the on-

board Sense & Avoid (SAA) system (Melega et al. 2014) and can support mutual tracking 

of UAS swarms by cooperative navigation systems (Leonard et al. 2012; Vetrella et al. 

2015a). The tool must be able to predict trajectories for several UAS types, in different 

weather and wind conditions. 

This thesis proposes a trajectory prediction tool for small UAS, based on the use of 

Artificial Neural Networks (ANNs). Being self-adaptive in constructing a mathematical 

model, ANNs can allow creating different models for the different UAS types, in several 

wind and weather conditions. ANNs can exploit flight data collected when the UAS 

executes a pre-assigned flight path to support trajectory prediction in standard traffic 

scenarios, by using an adaptive model learned during the network training. The algorithm 

has been tested on DJI Phantom 4TM flight data.  

1.3.2.2.  Standardized procedures for decision-making 

Due to the rapid growth in small UAS operations at low-altitude, the UTM system will 

have to manage numerous UAS operations in real-time. Furthermore, UAS/payload 

configurations must satisfy both the user's requirements and flight regulations. However, 

since the amount of available UAS platforms, payload configurations and requested 

missions is growing rapidly, misleading solutions can be derived without proper standard 

indications. This will also slow down the flight authorization process by the UTM system.  

The thesis proposes a software tool that aims at supporting standardized procedures for 

decision-making process in order to identify UAS types, payload, and prescriptions that are 

adequate for any type of missions that can be authorized standing flight regulations. The 
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tool is designed to be scalable, thus adapting to the UAS mutable scenarios, characterized 

by the continuous development of new technologies and the evolution of regulations.  

1.4. Summary of thesis chapters 

This thesis is organized into six chapters, starting with the introduction. Figure 2 

represents the overall configuration of the thesis. 

 

Figure 2. General organization of this thesis. 

Chapter 2 describes the state of the art of UAS, in terms of classification and main 

applications. It also presents the research challenges and the expected future applications. 

Chapter 3 investigates the current airspace integration approaches and points out the 

main technology limitations for safe UAS integration. It also presents an overview on the 

Unmanned Traffic Management system and its operational framework and identifies the 

enabling technologies for safe UAS integration. 

The developed research solutions are extensively described in Chapter 4 and 5, which 

are organized according to the following structure: 1) Problem definition; 2) System 

Architecture; 3) Testing; 4) Results. 

Finally, Chapter 6 presents the overall conclusions of this thesis.  
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Chapter 2 

Unmanned Aircraft Systems: State-of-

the-Art and Challenges 

2.1. General context about Unmanned Aircraft Systems 

Early unmanned aircraft were intended for military purposes, serving as aerial targets 

or actual weapons. However, they lacked the level of navigational precision necessary to 

reliably accomplish military objectives. The introduction of modern, compact, high-

performance computer technology made UAS became attractive enough to its user 

community to earn a permanent place in the defence inventory (Francis 2016). Examples of 

UAS currently used for military purposes are: Northrop Grumman RQ-4 Global Hawk 

(Figure 3), Northrop Grumman MQ-4C Triton (Figure 4) and the General Atomics MQ-9 

Reaper (sometimes called Predator B) (Figure 5). While Predator B is also known as a 

combat drone, since it can be used to deliver precision-guided munitions, the others are used 

for surveillance applications, loitering for long periods of time over suspected locations of 

possible targets.  
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Figure 3. Northrop Grumman RQ-4 Global Hawk. 

 

Figure 4. Northrop Grumman’s MQ-4C Triton. 

 

Figure 5. Predator B developed by General Atomics. 

The investments and the technological advances made by military organizations have 

generated a growing interest in their potential use for civil government, scientific research, 

and commercial applications (Degarmo 2004). The first highly visible civil applications of 

modern UAS were in the pursuit of scientific understanding. In the mid-to-late 1990s, 

NASA funded a number of then fledgling UAS developers to demonstrate very high altitude, 
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long-endurance civil UAS under its Environmental Research and Sensor Technology 

(ERAST) program. Aircraft such as Aurora Flight Sciences’ Pegasus and Aerovironment’s 

pioneering solar-powered HELIOS (Figure 6) were developed and flown as part of that 

effort. However, UAS application to non-military missions has risen dramatically in just the 

past few years. And, despite the success of several well-known military UAS models over 

the past two decades of conflicts, it is a new generation of platforms and technology that 

have captured the public’s attention and interest (Francis 2016).  

 

Figure 6. Aerovironment’s pioneering solar-powered HELIOS. 

The rapid increase in information technology over the last several decades, coupled with 

concomitant decreases in the size and cost of enabling electronics, would help usher in the 

era of affordable small-size UAS. Indeed, starting around 2010, there was a convergence of 

many technologies that made it feasible to design and produce small and very small UAS 

that could be sold in quantity at prices that were easily affordable by hobbyists or potential 

commercial users (Francis 2016). Multirotor, electric motor UAS, controlled by using 

economic remote control consoles or even by an App on a smartphone or tablet computer, 

became available on the consumer market. One of the most common multirotor UAS (DJI 

Phantom 4TM), with the remote controller is shown in Figure 7. The availability of these 

inexpensive, highly manoeuvrable, easy-to-fly platforms, capable of carrying high-

definition video cameras, and other sorts of sensors has resulted in an explosion of actual 

and proposed commercial applications (Gleason & Fahlstrom 2016).  
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Figure 7. Example of a multirotor UAS (DJI Phantom 4TM), with the remote controller. 

UAS are now being produced and deployed in many countries. The vast majority are 

small and very small UAS. An aerospace consulting firm predicted that UAS would be “the 

most dynamic growth sector of the world aerospace industry” (Thompson 2015). Figure 8 

displays the projected global UAS market in 2020, by area of application. “Commercial” 

and “Hobby” applications, put together, will reach the same market size, in billion of U.S. 

dollars, of the military UAS. Figure 9 illustrates the projected commercial UAS revenue 

worldwide from 2015 to 2025, which is expected to increase with an exponential rate. 

Finally, Figure 10 shows the main civilian UAS applications.  

 

Figure 8. Projected global UAS market in 2020, by area of application, in billion U.S. dollars (Fortune; 

Frost & Sullivan ID 431717). 

11,6

6,4

4,4

0 2 4 6 8 10 12 14

Military

Commercial

Hobby

Market size in billion U.S. dollars



14 
 

 

Figure 9. Projected commercial UAS revenue worldwide from 2015 to 2025, in million U.S. dollars 

(Tractica ID 607922).  

 

 

Figure 10. Top industries using UAS (BI Intelligence). 

 

452,43 587,15 791,76
1.110,59

1.587,02

2.367,22

3.611,2

5.334,68

7.584,59

10.107,55

12.647,2

0

2000

4000

6000

8000

10000

12000

14000

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

R
ev

en
u

e 
in

 m
il

li
o

n
 U

.S
. 

d
o

ll
a

rs



15 
 

2.2.  Classification 

UAS can be categorized in a variety of ways based on vehicle attributes including the 

type of aircraft (fixed wing or rotorcraft), weight, operating altitude, and range. The 

categorization system is an important step in UAS operations management and permits a 

proportional regulatory regime across the entire spectrum of UAS (Ministry of Defence & 

Military Aviation Authority 2016).  

The North Atlantic Treaty Organization (NATO) classification, which is based on 

Maximum Takeoff Weight (MTOW) and normal operating altitude, is generally used as the 

baseline for categorization. The NATO UAS Classification is shown in Figure 11 (Joint Air 

Power Competence Centre 2010). Categories start with weight classes. These weight classes 

are further divided on the basis of the operational altitude of the UAS. However, MTOW 

and altitude should not be considered the sole determinants of the final categorization of an 

UAS but also the aggravating and mitigating factors of its operation should be taken into 

account. Some of them are presented in Table 1 (Ministry of Defence & Military Aviation 

Authority 2016).  

 

Figure 11. NATO UAS Classification. 
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Table 1. Aggravating and mitigating factors (Ministry of Defence & Military Aviation Authority 2016). 

Mitigating Factors  Aggravating Factors 

Operation in Visual Line of Sight 
(VLOS) 

Extended range operation Beyond VLOS 
(BVLOS) 

Operation in segregated airspace Operation in non-segregated airspace 

Overflight of low population density 
Overflight of congested areas/high population 
density 

Flight termination system Weaponization 

Redundancy Failure mode – high Kinetic Energy 

Frangibility of UAS structure Complexity 

 

Furthermore, in order to harmonize the implementation of small UAS regulation across 

the European Union (EU), the European Aviation Safety Agency (EASA) has proposed its 

regulatory framework, known as EASA Opinion 01/18 (European Aviation Safety Agency 

2018), to the EU Commission. Indeed, small UAS are increasingly being used in the EU, 

but under a fragmented regulatory framework. 

Key to the EASA operation centric, proportionate, risk- and performance-based 

regulatory framework is the breaking down of UAS flights into three categories, i.e. open, 

specific, and certified, with different safety requirements, proportionate to the risk 

(European Aviation Safety Agency 2015a, 2015b): 

• ‘Open’ category is a category of UAS operation that, considering the risks involved, 

does not require a prior authorization by the competent authority nor a declaration 

by the UAS operator before the operation takes place; 

• ‘Specific’ category is a category of UAS operation that, considering the risks 

involved, requires an authorization by the competent authority before the operation 

takes place, except for certain standard scenarios where a declaration by the operator 

is sufficient or when the operator holds a light UAS operator certificate (LUC) with 

the appropriate privileges; 

• ‘Certified’ category is a category of UA operation that, considering the risks 

involved, requires the certification of the UAS, a licensed remote pilot and an 
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operator approved by the competent authority, in order to ensure an appropriate level 

of safety. 

The objective of the Opinion is to create a new regulatory framework that defines 

measures to mitigate the risk of operations in the:  

• ‘Open’ category, through a combination of limitations, operational rules, 

requirements for the competency of the remote pilot, as well as technical 

requirements for UAS; 

• ‘Specific’ category, through a system that includes a risk assessment being 

conducted by the UAS operator before starting an operation, or an operator 

complying with a standard scenario, or an operator holding a certificate with 

privileges. 

Of great concern to UAS operators is the EU requirement for UAS which are “able to 

transfer ‘80 J’ of terminal kinetic energy in an impact with a person” to be registered, other 

criteria notwithstanding. This is further defined as meaning the terminal velocity of the 

drone when falling from a height of 396ft (120m). 

2.3.  Missions  

Defining the missions for UAS is a non-trivial task because of their large diversity. 

There have been repeated efforts to come up with comprehensive lists of UAS missions, but 

all such lists tend to become out of date as new mission concepts continually arise 

(Fahlstrom & Gleason 2012). Two major divisions of missions for UAS are civilian and 

military, but there is significant overlap between these two in the area of reconnaissance and 

surveillance. These missions, often combined, are defined as follows (Gleason & Fahlstrom 

2016): 

• Reconnaissance: The activity to obtain by visual or other detection methods information 

about what is present or happening at some point or in some area; 

• Surveillance: The systematic observation of aerospace, surface or subsurface areas, 

places, persons or things by visual, aural, electronic, photographic, or other means. 
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The development of UAS has been led by the military and there are other areas along 

recognized as potential military missions that also have civilian equivalents. These include 

atmospheric sampling for radiation and/or chemical agents, providing relays for line-of-

sight communications system, and meteorological measurements. An area of interest to both 

the military and civilian sectors is to provide a high-altitude platform capable of lingering 

indefinitely over some point on the Earth. This platform can perform many of the functions 

of a satellite at lower cost and with the capability of landing for maintenance or upgrade and 

of being redeployed to serve a different part of the world (Gleason & Fahlstrom 2016). UAS 

can be also used to perform flight inspection, which is the task of validating the radio signal 

emitted by ground navigation aids (Barrado et al. 2013). 

Recently, public interest in social media coupled with the development of low-cost 

systems have put them in high demand for commercial and recreational uses. In a recent 

publication addressing the civil and commercial marketplace, the Association of Unmanned 

Vehicle Systems International (AUVSI) highlighted several applications (Francis 2016): 

• Package delivery; 

• Taking overhead picture of real estate for sale; 

• Inspections of inaccessible roofs (or bridges, towers, chimneys, power lines, steeples, 

trees, etc.) using a high-definition video camera that can be positioned a few feet from 

the area to be inspected and can adjust its point of view; 

• Surveying/inspecting fields of crops; 

• Spraying crops with pesticides; 

• Observing scenes of accidents, flooding, landslides, or other incidents; 

• Providing video feeds for “breaking news” reports; 

• Performing precision three-dimensional surveys using stereoscopic cameras and 

precision locating of the platform at low altitude over the area to be surveyed; 

• Delivery of supplies to remote areas; 

• Search for people missing in rough terrain; 

• Monitoring forest areas for wildfires; 

• Sensing of pollutants near their source; 

• Providing flexible and dynamic camera positioning for cinema and television video 

production; 
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• Law enforcement; 

• Weather monitoring. 

This array of applications has also been animated by the proliferation of very low cost, 

miniature commercial imaging sensors that have flooded the cell phone and tablet computer 

markets. The integration of sensors with other payload elements affords an opportunity for 

further expansion of missions and applications. As an example, the combination of 

multispectral imaging with real-time nutrient/pesticide dispensing can potentially take 

“precision agriculture” to another level. Similarly, real-time infrared imaging with 

concurrent fire suppressant application could greatly improve the ability to mitigate 

incipient wildfires. Although the remote sensing capability adds great value by itself, the 

ability to integrate it with a timely response/action mechanism greatly increases the utility 

of the resultant system (Francis 2016).   

2.4.  Research trends 

2.4.1.  Research challenges 

The levels of innovation and discovery that have led to recent growth in UAS 

capabilities are expected to continue. Several research challenges have been identified in 

(FAA 2013a; Francis 2016; Ishihara et al. 2016). 

A. Increasingly Autonomous Capability. 

The recent advance of modern computing power is opening the door to even higher 

levels of autonomous operation, where the human element is fully relieved of many minor 

decisions and becomes essentially supervisory in nature. However, much remains to be done 

in this domain. For example, many systems today limit UAS operations to one vehicle by 

one operator. Studies have been conducted to illustrate the possibility of managing multiple 

aircraft with a single human operator, if the level of supervisory interaction is high enough 

(Ruff et al. 2002). However, for the latter to occur, the level of autonomy must increase 

dramatically. 
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B. Cooperative Navigation.  

Cooperative Navigation can be exploited to improve the absolute navigation 

performance of formation flying UAS. This has been done in (Vetrella et al. 2016), where 

the authors presented the concept of improving the absolute navigation performance of a 

UAS (chief) by exploiting a formation of cooperative flying vehicles (one/more deputies). 

Specifically, the proposed navigation architecture combines differential GNSS and relative 

sensing by vision within an original sensor fusion scheme based on an Extended Kalman 

Filter (EKF).  

C. Sense and Avoid.  

One of the key requirements for enabling UAS operations is how to provide the UAS 

with a Sense and Avoid (SAA) capability, to replace the fundamental manned aircraft 

capability of “see and avoid”. SAA represents one of the main roadblocks to the integration 

of UAS operations by aviation authorities around the world. There will be fundamental 

differences between SAA for large UAS (operating in controlled airspace) and small UAS 

(operating at low altitudes in minimally or uncontrolled airspace). Large UAS will be 

required to deal with manned aircraft operating in the same airspace, as the main obstacle 

to avoid. Instead, though the UAS operations will vary widely by mission, many of them 

will require operating more closely to people and obstacles (for photography, inspections, 

etc.) than current aviation separation standards permit (Fasano et al. 2016b). 

D. Flight Termination System.  

It is an emergency component. In case of contingencies that interrupt the UAS flight, 

the Flight Termination System guarantees that the potential impact to the ground of the UAS 

will not fatally damage any person or infrastructure (Santamaria et al. 2009). 

E. Small Size/Scale.  

Small UAS have proliferated in military missions for over a decade and performed 

admirably in a variety of tactical roles. Recently, they have enabled for a variety of civil and 

commercial applications ranging from highway/bridge infrastructure inspection to precision 

agriculture. Even though smaller variants, so-called “micro air vehicles” have begun to 

appear in real operational roles, the further reduction of dimensions is another relevant 
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research trend. This reduction allows UAS operations in highly confined airspace. However, 

to reach this aim, it is necessary a further miniaturization of the on-board systems, e.g. 

navigation systems, payload, etc. 

F. Extreme Endurance.  

UAS capability to stay aloft for periods that well exceed normal crew limitations has 

been demonstrated to a large extent in current operational systems. 24-h endurance 

capabilities are commonplace for larger platforms and are rapidly becoming possible also 

for small UAS. However, designers are currently focused on week-long operation, with 

some experimental systems attempting even longer durations, to allow future missions, such 

as aerial cell-phone relay and Internet distribution platforms. Several research efforts have 

been made to tackle it. For example, the design and development of a hybrid fuel cell/battery 

propulsion system for a long endurance small UAS is described in (Savvaris et al. 2016). 

G. Novel Shapes and Configurations.  

The lack of need for a conventional cockpit can result in novel shapes and 

configurations more suitable to niche missions and unique flight environments. Designers 

have already provided numerous examples of unconventional configurations ill-suited to 

manned flight. For example, the design and system integration of a novel coaxial, flap 

actuated, spherical UAS for operations in complex environments, such as buildings, caves 

or tunnels is presented in (Malandrakis et al. 2016). The spherical design protects the inner 

components of the vehicle and allows the UAS to roll along the floor if the environment 

permits. 

H. Unconventional Launch and Recovery.  

Novel approaches for launching and recovering are increasing significantly, especially 

for smaller UAS. For example, assisted rail launch capability and net or tether recovery 

techniques are largely employed. Larger UAS may find similar opportunities as in the 

shipboard concept where a high performance, Unmanned Combat Aerial Vehicle (UCAV) 

is tube-launched like a cruise missile and later recovered shipside. Future novel launch and 

recovery techniques may well enable UAS operations in otherwise impractical civil and 

commercial environments as well. 
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I. Extreme Manoeuvring Capability.  

UAS are, in principal, capable of sustaining accelerations and forces limited only by 

structural considerations, operating well beyond the tolerance of any human pilot. However, 

the introduction of other new technologies, such as structural morphing capabilities is being 

investigated to increase manoeuver accelerations in future unmanned combat aircraft. 

2.4.2.  Future UAS applications 

As explained above, new capabilities that improve operational versatility seem to 

emerge on a regular basis. Consequently, there are major commercial development 

programs underway to implement at least the following missions (Francis 2016): 

• Search and rescue using a UAS that is capable of landing and carrying a person found 

(not a pilot) back to its base; 

• Long-endurance, high-altitude platforms for communication relays, serving as local 

area satellites for telephone or digital broadband services; 

• Applications in highly confined spaces, such as pipe interiors. Indeed, the reduction of 

dimensions is another relevant research trend. Currently, the smallest UAS variations, 

such as the Aerovironment Hummingbird (Figure 12) are still in the experimental stage. 

Its linear dimensions do not exceed 15 cm in any axis. With further miniaturization, 

they may even prove useful in internal bio-medical applications, exploring the internal 

of the human anatomy. 

• Self-piloted personal aircraft and on-demand air taxi service. However, this application 

is subject to public perceptions about the safety of small aircraft and autonomous flight 

operations.  

• Micro UAS Swarms. Micro UAS exhibit limitations due to their size. Their payload is 

usually only a few hundred grams allowing just light and compact sensors. Furthermore, 

they have a rather short endurance. Most of these limitations can be eased by employing 

teams or swarms of cooperating UAS (Leonard et al. 2012, 2014). Some complex 

monitoring and surveillance missions (Skinner et al. 2018) and remote sensing 

applications (Albani et al. 2017) can be implemented with groups of flying platforms. 

However, the use of multiple platforms simultaneously still needs investigation. For 

example, a visual-based approach that allows an UAS to detect and track a cooperative 
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flying vehicle autonomously using a monocular camera is presented in (Opromolla et 

al. 2018). 

 

Figure 12. Aerovironment Hummingbird. 
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Chapter 3 

Safe Airspace Access of UAS 

3.1.  Introduction   

Despite the potential of UAS across a range of economically beneficial and compelling 

applications, there are significant obstacles to their successful introduction and 

implementation. These include the lack of acceptable infrastructure to coordinate several 

different UAS operations, technical issues, institutional conservatism combined with legal 

issues, along with the concomitant consequences of negative public perceptions. The current 

operational approval process imposes limitations on UAS operations to ensure airspace 

safety while those issues are addressed (Francis 2016). 

The integration of UAS in the NAS was investigated in the past through the Access 

5 project run by NASA in collaboration with industry, FAA, and the United States 

Department of Defence, in order to introduce HALE remotely operated aircraft. Access 5 

started in May 2004 and was slated to run for five years. However, the project was 

terminated on February 28, 2006 after a reorganization of NASA's research program and 

(NASA 2006). 

Today, limited access to the airspace is still the principal barrier to the realization of the 

full economic potential that can be derived from UAS capabilities (Francis 2016). A 
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reference statement for integrated unmanned aircraft operations is that UAS shall not 

increase the current level of risk for other aircraft or compromise safety to people or property 

on the ground (Elias 2012). Therefore, significant challenges, technical and otherwise, must 

be addressed in a manner that will enable UAS of all types to reach their full potential. A 

safe integration of UAS operations is one of the key challenges of the European and 

American programs Single European Sky ATM Research (SESAR) (SESAR 2012a) and 

Next Generation Air Transportation System (NextGen) (FAA 2013b). 

3.2.  Airspace integration approaches    

Several approaches have been proposed to support the access of UAS to the airspace 

(Lacher et al. 2010; Mueller 2016). The most conservative approach consists in requiring 

UAS to meet all existing traditional aviation regulations, either through direct compliance 

or through alternative means if direct compliance is difficult. This approach has multiple 

benefits: UAS will operate in the airspace in a way that is indistinguishable from existing 

users. However, the drawbacks are significant too. The requirements for alternative means 

of compliance with all regulations are difficult to determine. Furthermore, complying with 

all existing regulations will likely be possible only by very large UAS capable of equipping 

with heavy, expensive and power-intensive sensors and processors (Mueller 2016). 

The disadvantages mentioned above may be avoided by building a parallel air traffic 

system that would provide airspace services to participating UAS. Many of the challenges 

in terms of separation assurance, contingency management, surveillance to traffic flow 

management and privacy concerns would be addressed by shifting responsibility from on-

board systems to a centralized command and control system. This traffic management 

system could allow many more UAS to operate in a wider variety of ways than would the 

first approach that required significant equipage on-board each aircraft (Mueller 2016). 

The separate traffic management system would differentiate the requirements for 

operating in airspace environments with different risk-based classifications. While at high 

altitude the specific characteristics of the overflown property are not important, small UAS 

operating at low-altitude will impact that property by supporting desired missions. 

Consequently, the low-altitude airspace will be classified in operating environments or 

zones, which would be defined by four risk-based criteria: population density, density of 

man-made structures, likelihood of encountering manned aircraft, and the number of 
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planned UAS operations. It is worth noting that these classes relate only to the services 

provided by the UTM system in existing Class G airspace (Atkins & Di Donato 2016). 

Another concept is the temporal and geographic airspace segregation. The low-altitude 

airspace could be set aside for UAS operations. Existing users of that airspace, such as 

helicopters, hang gliders, and powered parachutes, would either be forbidden from operating 

in the designated airspace or would have to comply with additional requirements to enter it. 

Segregation of airspace could simplify requirements for UAS to operate in those set-aside 

areas because the mix of users would be more homogeneous. 

However, the concept of airspace segregation has not received significant research 

attention for several reasons. One of the most relevant is that the aviation authorities, such 

as FAA, prefer to move from the current paradigm in which the air traffic system 

“accommodate” UAS to one in which UAS are “integrated” (FAA 2013a). Indeed, enabling 

a segregated airspace of this magnitude would be more akin to designing an entirely new 

type of airspace, which would entail a set of requirements potentially more complex than 

those required to integrate with existing airspace users. Moreover, a segregated airspace 

design would likely not be suitable for most proposed UAS operations (Mueller 2016). 

In conclusion, UAS have been proposed for use in a wide variety of areas, but the 

regulatory framework will be a major factor in determining whether the technological, 

economic and public policy hurdles will be low enough that UAS will be preferred over 

existing alternatives. The current adopted approach is that unmanned aircraft will share 

airspace with manned counterparts, configuring the airspace so that they can coexist. It is 

worth noting that access to airspace must be dependent on equipage and performance, not 

mission (Airbus 2018). 

3.3.  Unmanned Traffic Management system 

3.3.1.  Introduction  

Due to the number and variety of UAS operations envisioned, it is clear that the existing 

ATM system cannot cost-effectively scale to deliver services for all participating UAS. 

Furthermore, the nature of most of these operations does not require direct interaction with 

the ATM system. Therefore, it is globally acknowledged the need to develop a parallel air 

traffic management system that is separate from, but collaborative with the ATM system 
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(FAA 2018). That system is named Unmanned Traffic Management, or UTM (Airbus 

2018). 

In a scenario of rapid growing small UAS applications, the UTM system is envisioned 

to enable safe and efficient operations, by providing services such as airspace design, 

corridors, dynamic geofencing, severe weather and wind avoidance, congestion 

management, terrain avoidance, route planning and re-routing, separation management, 

sequencing and spacing, and contingency management (Ren et al. 2017). The most 

significant benefit of the UTM system is that it would not rely on as many technologies as 

concepts that require the UAS itself to equip fully for safe operation in the existing airspace. 

Standing on current guidelines, UTM will adopt the principle of distributed authority 

rather than relying on centralized control (Kopardekar et al. 2016). This opens up the system 

to more service providers. Decentralization privatizes the cost of serving and adapting to 

market needs, while government regulators remain key for ensuring that safety, access, and 

equity are maintained (Airbus 2018). 

Several countries and trans-national bodies have already adopted this overall approach 

as the foundation for their own UTM implementations (Airbus 2018): 

• In the United States, FAA, NASA, other federal partner agencies and industry are 

collaboratively developing the UAS Traffic Management system, which is a 

traffic management ecosystem for UAS operations that is separate but 

complementary to the FAA's Air Traffic Management (ATM) system (FAA 

2015). A detailed description on how the UTM would work, is detailed in (Prevot 

et al. 2016); 

• In Europe, gathering experts from aviation, research and academia, the Concept 

of Operation for EuRopean UTM Systems (CORUS) consortium is developing a 

concept of operations for U-Space, the European system for management of UAS; 

• The Civil Aviation Administration of China (CAAC) is defining the use of a civil 

UAS Operation Management System (UOMS) (CAAC 2018); 

• The Japanese UTM system is being built by the Japan UTM Consortium (JUTM) 

(METI 2017) and a national UTM project founded by New Energy and Industrial 

Technology Development (NEDO). 
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3.3.2.  Operational framework  

The UTM operational framework, shown in Figure 13, ensures the safe conduct of UAS 

operations through the issuance of performance authorizations that ensure operational and 

performance requirements are met, the sharing of flight intent and airspace constraint 

information among operators, and the use of services, technologies, and equipage to de-

conflict operations (FAA 2018). 

 

Figure 13. UTM operational framework. 

A. Performance authorization 

All BVLOS operators are required to obtain a performance authorization from the FAA 

prior to conducting a UTM operation. The FAA grants a performance authorization when a 

UAS operator’s proposed ground and air assets are sufficient to meet an established level of 

performance in the airspace in which they intend to operate (FAA 2018). 

B. Authentication 

Operators are required to certify, register, and obtain all appropriate authorizations and 

to demonstrate compliance with performance and capability requirements per regulatory 

policy prior to performing UTM operations. UTM expects an operator’s registration is valid 

and may audit should conditions warrant (FAA 2018). 

C. Operation planning 

Flight intent is submitted and shared among operators for situation awareness in the 

form of an operation plan, which is the equivalent of the flight plan for manned aircraft 

operations managed by ATM. The operation plan is developed prior to the operation and 
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should indicate the volume of airspace within which the operation is expected to occur, the 

times and locations of the key events associated with the operation, including launch, 

recovery, and any other information deemed important (e.g., segmentation of the operation 

trajectory by time) (FAA 2018). 

D. Constraint information & advisories 

Central to UTM is a shared situational awareness based on knowledge of all available 

constraint and advisory information in the UTM network. Advisories, weather information, 

other UTM participant observations, and a variety of other information may be made 

available through the UTM network and should be considered into the operator’s planning 

and execution to ensure safe conduct of UTM operations. Furthermore, UAS operators 

within UTM are responsible for identifying unexpected operational conditions or flight 

hazards that may affect their operations (FAA 2018). 

E. Separation 

Although UTM provides traffic management services, operators are ultimately 

responsible for maintaining separation from other aircraft, airspace, weather, terrain, and 

hazards, and avoiding unsafe conditions throughout their operations. The operator is 

responsible for remaining within the bounds of the assigned flight volume and tracking the 

aircraft location during all phases of flight with performance criteria appropriate for the 

operation performed. The operator also monitors for vehicle non-conformance or on-board 

equipment failures or degradation (e.g., lost link, engine failure). These monitoring 

functions can be incorporated into the UAS (vehicle and ground control equipment) such 

that the operator is alerted quickly and can take necessary corrective action. For situations 

where corrections cannot be made, operators are responsible for notifying affected airspace 

users (FAA 2018).  

3.3.3.  Enabling technologies  

Considering the UTM operational framework, novel solutions should be investigated 

to: 
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• Allow the requesting UAS operators to meet established performance levels in 

the airspace in which they intend to operate, in order to obtain the performance 

authorization by the authorization entity; 

• Assess a broad range of mission-level conditions, identifying a suitable 

UAS/payload configuration, by considering the mission requirements, flight 

regulations and operational environment. This simplifies the authentication 

process, helping operators to demonstrate compliance with performance and 

capability requirements; 

• Assess UAS operation plan feasibility. Operators are expected to submit 

operation  plans in four-dimensions, as a sequence of 4D waypoints (three 

spatial, one temporal) (SESAR 2012b). This is a topic investigated by many 

researchers (Amaro Carmona et al. 2015; Gardi et al. 2015; Mutuel et al. 2013). 

Given weather prediction, vehicle performance data, and 4D waypoint data, it 

is necessary to assess operation plan feasibility in a timely manner, by 

determining if at each waypoint arrival time a simulated trajectory is within a 

prescribed distance from the waypoint (Ishihara et al. 2016); 

• Allow to perform rigorous safety analyses of UAS operations in low-altitude 

airspace (Tyagi et al. 2017), aiding operators to identify unexpected operational 

conditions or flight hazards that may affect their operations. This will improve 

the shared situational awareness in the UTM system; 

• Aid UAS operators to maintain separation from other aircraft, airspace, weather, 

terrain, and hazards, and avoiding unsafe conditions throughout their operations. 

3.4.  Technology limitations for safe integration of UAS  

While UAS hold much promise, allowing routine and safe access of UAS to civil 

airspace involves several issues that touch on nearly every aspect of the aviation technical, 

operational, and legal system. Presented in (Degarmo 2004) is a framing of those issues 

organized into five major groupings: safety, security, air traffic, regulatory, and socio-

economic. 
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This research focuses on technical and operational issues, considered among the 

principal inhibitors to the integration and wide-spread acceptance of  UAS (Degarmo 2004). 

Chief among these are: 

• GNSS errors, i.e. sources of uncertainty and intentional hacking and signal jamming; 

• Need of collision avoidance, for air traffic and people and property on the ground; 

• Need of standards addressing UAS systems and operations. 

3.4.1.  GNSS errors 

A noted obstacle in reaching the navigation robustness necessary for the integration of 

UAS operations is the heavy reliance on GNSS (Wheeler 2016). A robust navigation 

solution cannot only depend on GNSS measurements due to varied sources of uncertainty 

(NovAtel 2018; Ochieng et al. 2003), extensively described in Section 3.4.1.1. Further, 

GNSS measurements may be unavailable when shadowed by buildings or foliage, and 

simply cannot be applied indoor. The most difficult situations will likely involve operations 

in urban canyons, where GNSS measurements are intermittent or unavailable (Francis 

2016). Additionally, GNSS signals could potentially be intentionally jammed or hacked 

resulting in a loss or hostile takeover of control (Elias 2012). 

3.4.1.1.  Sources of uncertainty 

A. Satellite clock errors. 

Although GNSS satellites use the most precise atomic clocks featuring nanosecond 

accuracy, the clock drift phenomena may cause minute inaccuracies, which can produce 

errors that affect positioning. The clock on the satellite is monitored by the GNSS ground 

control system and compared to the even more accurate clock used in the ground control 

system. In the downlink data, the satellite provides the user with an estimate of its clock 

offset. 

To obtain a more accurate position, the GNSS receiver needs to compensate for the 

clock error. One way of compensating for clock error is to download precise satellite clock 

information from a Spaced Based Augmentation System (SBAS) or Precise Point 

Positioning (PPP) service provider. The precise satellite clock information contains 
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corrections for the clock errors that were calculated by the SBAS or PPP system. Another 

way of compensating for clock error is to use a Differential GNSS or Real Time Kinematic 

(RTK) receiver configuration.  

B. Orbit errors. 

GNSS satellites travel in very precise, well known orbits. However, like the satellite 

clock, the orbits do vary a small amount and a small variation in the orbit results in a 

significant error in the position calculated. The GNSS ground control system continually 

monitors the satellite orbit. When the satellite orbit changes, the ground control system 

sends a correction to the satellites and the satellite ephemeris is updated. However, even 

with the corrections from the GNSS ground control system, there are still small errors in the 

orbit that can result in up to ±2.5 metres of position error. 

One way of compensating for satellite orbit errors is to download precise ephemeris 

information from an SBAS system or PPP service provider. Another way of compensating 

for satellite orbit errors is to use a Differential GNSS or RTK receiver configuration.  

C. Number of satellites.  

Few visible satellites increases sensitivity to timing errors.  

D. Dilution of precision (DOP). 

DOP error may be caused by the relative positions in three-dimensional space of the 

satellites used to calculate a position. In other words, visible satellites are poorly spaced.  

E. Ionospheric delay . 

The ionosphere is the layer of atmosphere between 80 km and 600 km above the Earth. 

This layer contains electrically charged particles called ions. These ions delay the satellite 

signals and can cause a significant amount of satellite position error (Typically ±5 metres, 

but can be more during periods of high ionospheric activity). Ionospheric delay varies with 

solar activity, time of year, season, time of day and location. This makes it very difficult to 

predict how much ionospheric delay is affecting the calculated position. It also varies based 

on the radio frequency of the signal passing through the ionosphere. 
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GNSS receivers that can receive more than one GNSS signal, L1 and L2 for example, 

can use this to their advantage. By comparing the measurements for L1 to the measurements 

for L2, the receiver can determine the amount of ionospheric delay and remove this error 

from the calculated position. For receivers that can only track a single GNSS frequency, 

ionospheric models are used to reduce ionospheric delay errors. Due to the varying nature 

of ionospheric delay, models are not as effective as using multiple frequencies at removing 

ionospheric delay. Ionospheric conditions are very similar within a local area, so the base 

station and rover receivers experience very similar delay. This allows Differential GNSS 

and RTK systems to compensate for ionospheric delay. 

F. Tropospheric delay. 

The troposphere is the layer of atmosphere closest to the surface of the Earth. Variations 

in tropospheric delay are caused by the changing humidity, temperature and atmospheric 

pressure in the troposphere. Since tropospheric conditions are very similar within a local 

area, the base station and rover receivers experience very similar tropospheric delay. This 

allows Differential GNSS and RTK systems to compensate for tropospheric delay. GNSS 

receivers can also use tropospheric models to estimate the amount of error caused by 

tropospheric delay. 

G. Multipath. 

Multipath interference can occur where the user equipment receives reflected signals 

from a given satellite in addition to the direct signals. For land applications, signals are 

generally reflected off the ground, buildings, or trees, while for aircraft and ships, reflections 

off the host-vehicle body are more common. Interference can also occur from diffracted 

signals. The reflected and diffracted signals are always delayed with respect to the direct 

signals and have a lower amplitude unless the direct signals are attenuated (e.g., by a 

building or foliage). Low-elevation-angle signals are usually subject to the greatest 

multipath interference. 

The simplest way to reduce multipath errors is to place the GNSS antenna in a location 

that is away from the reflective surface. When this is not feasible, the GNSS receiver and 

antenna must deal with the multipath signals. Long delay multipath errors are typically 

handled by the GNSS receiver, while short delay multipath errors are handled by the GNSS 
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antenna. Due to the additional technology required to deal with multipath signals, high-end 

GNSS receivers and antennas tend to be better at rejecting multipath errors. 

3.4.1.2.  Intentional hacking and signal jamming 

In addition to safety risks, the operation of civilian unmanned aircraft raises potential 

security risks, including the possibility that terrorists could use a drone to carry out an attack 

against a ground target. It is also possible that UAS themselves could be targeted by 

terrorists or cybercriminals seeking to tap into sensor data transmissions or could potentially 

be intentionally jammed or hacked resulting in a loss or hostile takeover of control (Elias 

2012).  

A remote hijacking of an unmanned aircraft by GNSS guidance signals has been 

demonstrated in (Humphreys 2012). It warned that advances in software-defined radio and 

the availability of GNSS signal simulators may provide average hackers with the capability 

to interfere with unmanned aircraft operations and recommended that non-recreational 

civilian unmanned aircraft weighing more than 18 pounds be required to have spoof-

resistant navigation systems. It concluded that the issue could be mitigated by using 

additional navigation systems that do not rely on GNSS, and/or by encrypting 

communications and telemetry signals. 

3.4.2.  Collision avoidance  

UAS operators do not have the capability to see the environment around the vehicle 

when flying Beyond Visual Line of Sight. Therefore, software architectures addressed to 

UAS should replace human perception and reaction, detecting not only air traffic, but also 

obstacles, terrain elevation and weather conditions (Melega et al. 2011)(Cuadrado et al. 

2013).  

3.4.2.1.  Air traffic 

The risk of collision between traditional airspace users and unmanned aircraft must be 

adequately mitigated before UAS can routinely utilize the national airspace system (Elias 

2012). Small UAS pose a particular challenge, because they operate at low altitudes. Many 

other aircraft operating at these altitudes do not use electronic transponders to broadcast 

their position and altitude, and in any case, many small UAS lack the ability to receive 
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transponder signals. The needed equipment is simply too large and heavy to install on many 

small UAS (U.S. Government Accountability Office 2012). Currently, these limitations 

substantially restrict small UAS operations to line-of-sight scenarios, where operators on 

the ground can provide the necessary capabilities to detect and avoid other air traffic (Elias 

2012). 

Part of the challenge is that existing technologies do not assure avoidance capabilities 

under all operational conditions, including autonomous UAS operations or in situations 

when UAS lose their command guidance links with ground control facilities. Standardized 

procedures for responding when UAS guidance has been lost are currently lacking, but will 

be needed to ensure that air traffic controllers and airspace managers can redirect nearby 

traffic and mitigate collision risks. In conclusion, no single technology is likely to address 

the complex sense and avoid requirements that are critical for unmanned aircraft integration 

(Elias 2012). 

3.4.2.2.  Risks to people and property on the ground 

Differently from larger UAS that must share the controlled airspace with manned 

aircraft, smaller UAS are pioneering access to a new region of airspace largely unfamiliar 

to both pilots and regulators. This low-altitude, obstacle rich environment, below 

approximately 150 m AGL, presents a variety of challenges to remote operations. These 

includes people, personal property along UAS routes and other hazards, including nearby 

trees, buildings, and other obstacles. Consequently, the increased risk of personal and 

material damage due to small UAS crashes, environmental impacts, annoyance, and loss of 

personal and property rights should also be evaluated and considered (Atkins & Di Donato 

2016). 

Thus far, unmanned aircraft testing and operational use have been conducted largely 

over sparsely populated areas. In the future, however, law enforcement and commercial 

users are expected to undertake flights over densely populated areas, a prospect which raises 

specific concerns over safety procedures (Elias 2012). The risk posed to people and property 

on the ground is a function of both crash likelihood and the potential consequences in terms 

of loss of life, injury, or property damage. A system safety analysis is performed in (Weibel 

& Hansman 2005) according to FAA system safety guidelines. While smaller UAS may be 

expected to crash more frequently, the potential for catastrophic consequences is less given 
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that these vehicles do not weigh enough or carry enough fuel to cause major damage on the 

ground. On the other hand, larger UAS, like the MQ-9 Reaper or the RQ-4 Global Hawk, 

can potentially cause as much damage as a mid- to large-sized corporate jet. 

3.4.3.  Standards addressing UAS systems and operations 

The wide variation in flight environments, missions, and UAS systems, the continuous 

development of new technologies and the evolution of regulations make the standardization 

of UAS/payload configurations and operational procedures a challenge (Degarmo 2004). 

Indeed, since the amount of available UAS platforms (especially small UAS), payload 

configurations and requested missions is growing rapidly, misleading UAS/payload 

solutions can be derived without proper standard indications. This will slow down the flight 

authorization process. Therefore, standards are intended to 1) ensure that the UAS systems 

and their operations achieve an acceptable level of safety for people and property in other 

aircraft and on the surface; 2) speed up the authorization process.   

There are currently no published standards specific to UAS systems and operations.   

Standards are a vital element in today’s high tech world and often form the basis for 

government regulation.  Many countries have begun moving toward the development of 

consensus standards as a basis for regulation as well as to facilitate market growth through 

the development of interchangeable formats and to ensure international harmonization.  

Furthermore, the inclusion of standards in regulations, if properly developed, has the benefit 

of allowing changes to be made without having to engage in the lengthy and costly process 

of creating a rule change.  As a result, standards can be changed and regulations made 

consistent with the change without having to modify regulatory wording (Degarmo 2004).  
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Chapter 4 

Solutions for Autonomous Navigation 

4.1. Overview on MEMS-based IMUs for UAS navigation 

4.1.1.  Introduction  

The main features of UAS are the need to exploit compact configurations for the 

onboard equipment and the capability to perform autonomous operations for a large part of 

a mission (Broggi et al. 2013). Figure 14 illustrates an example of UAS avionics architecture 

(RAMA UAV Control System 2009). It consists of the Airborne Part (AP) and the Ground 

Station (GS), comprised of a laptop computer and a Radio Control (RC) transmitter.  The 

airborne part of the system consists of several functional blocks, interconnected via 

the vehicle bus. Those blocks are the Navigation Unit (NU), Main Control Computer 

(MCC), Wireless Data Communication Unit (WDCU), two Wireless Control Units (WCU) 

(for redundancy) and the Servo Control Unit (SCU). The core member of the system is the 

MCC, where the control and communication algorithms run. The Navigation Unit includes 

the Inertial Measurement Unit (IMU), Three-Axis Magnetometer (TAM), Global 

Positioning System Receiver (GPS) and the Data Acquisition Module (DAM). All sensors 
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are connected to the DAM, the purpose of which is to synchronously sample all the data, 

pre-process it (filtering, unit conversion, etc.) and send it to other control system nodes. 

 

Figure 14. Example of UAS avionics architecture (RAMA UAV Control System 2009). 

The IMU, composed by triaxial sets of gyros and accelerometers, is a reference enabling 

technology for motion sensing that allows the above reported systems to attain the desired 

performance in terms of compactness and autonomy. The IMU has the advantage to perform 

localization, velocity, and attitude determination independently on the measurement of 

external force fields, e.g. magnetic and aerodynamic, and without any need of radio link or 

radar signal input. Therefore, it is the most robust and reliable source of reference for 

navigation. This condition is determined by their capability of estimating the first integral 

terms of rigid body motion, such as acceleration and attitude rate. Therefore, the processing 

scheme is derived from basic laws of Dynamics, which are more effective than the ones 

related to field of forces (Titterton & Weston 2004).  

Standing the above reported considerations, the requirements for IMUs to be installed 

onboard UAS are quite different from the ones peculiar to traditional systems. First, 

compactness is very important. It is related to the volume occupied by the units, but also to 

their mass and inertia. Moreover, power consumption is another important issue, since most 

systems are powered by batteries. Finally, the required economic resources to acquire and 
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maintain the units has to be limited in order to justify their installation onboard low-cost 

transportation platforms (Schmidt 2010). 

A typical solution to meet the aforementioned requirements is to use IMUs 

manufactured by exploiting Micro Electro-Mechanical Systems or MEMS inertial sensors 

(Barbour et al. 2011). The use of IMUs based on MEMS technology improves cost and size 

performance of more than one order of magnitude with respect to those achievable through 

Fiber Optic Gyros or FOG. This is the reason why significant effort has been lavished on 

developing MEMS-based IMUs that can be installed on last-generation transport platforms 

(Schmidt 2015). The advantage in adopting MEMS-based IMUs can be so relevant in some 

applications that they are used to retrofit traditional inertial units in already deployed 

transport systems (Ryan & Miller 2010; Schmidt 2010).  

4.1.2.  MEMS gyroscopes 

4.1.2.1  Introduction 

MEMS gyros are a micro-machined version of Coriolis Vibratory Gyros since they 

exploit Coriolis force effect to estimate inertial attitude rates (Titterton & Weston 2004). 

MEMS gyros can be quartz or silicon based in construction (KVH 2014) and they are 

manufactured by using the same technology of micro-chips. This peculiarity allows them to 

be more suitable than traditional sensors to meet compactness and low-power consumption 

requirements. Also, the specific manufacturing process can assure a valuable cost reduction 

in large scale applications (Sheng & Zhang 2015). 

They can be classified into a wide category of systems with different performance in 

terms of error characteristics, integrity, robustness to environmental solicitations, and 

reliability. For instance, among MEMS gyros there are large differences in terms of bias 

instability, random noise levels and scale factor error (KVH 2014). Therefore, the 

applications of interest can be also very different.  

4.1.2.2  Principle of operation 

MEMS gyroscopes use a vibrating mechanical element as a sensing element for 

detecting the angular rate. Their operation is based on the transfer of energy between two 

vibration modes caused by the acceleration of Coriolis (Passaro et al. 2017). It is worth 
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noting that they do not have rotating parts that require bearings and this allows an easy 

miniaturization. 

To better understand the concept, the structure of a z-axis MEMS gyroscope is shown 

in Figure 15. It has two perpendicular vibration directions, x-axis and y-axis, which 

correspond to drive mode and sense mode respectively. When the gyroscope is powered on, 

the mass block will vibrate harmonically in the x-axis direction due to the periodic 

electrostatic force. Given the angular velocity Ω along the z-axis, the mass will sense the 

Coriolis force in the y-axis direction. Therefore, the y-axis vibration (sense mode) is caused 

by the Coriolis force and the angular velocity Ω can be calculated through the mass 

displacement in the y-axis direction (Tang et al. 2014).  

 
Figure 15. Schematics of a z-axis MEMS gyroscope. 

According to the Newton’s second law of motion, the following equations describe the 

gyro’s vibration in the x-axis and y-axis directions: 

# �$ % &'(� & )(�* + ,- 

# �$ % &'.� & ).�* + /�.  (1)

where m is the mass, ci is the damping coefficient, ki is the stiffness of the elastic beams all 

in i-axis direction (i = x or y), fd is the electrostatic driving force and /�. is the Coriolis force. 

The drive mode is excited along x by applying a force fd, while the sense mode is excited 
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along y by the Coriolis force /�.. It is worth noting that the displacement along the sense 

axis is proportional only to the angular velocity Ω. Being 0( and 0.  the quality factors and �( and �. the resonance frequencies of the driving and sensing mode respectively, the 

displacement of the mass m along the sense axis y assumes the following expression 

(Passaro et al. 2017), (Maenaka et al. 1996): 

∆� % 2Ω /�.# 0(�(
1

45�(6 + �.676 + 8�(�.0. 96 (2)

4.1.2.3  Performance grades  

From the perspective of the navigation systems designer, the key performance 

parameters to define the gyro accuracy (or the error sources) are the following (Faruqi 

2016): 

• Bias, which is any non-zero sensor (rate) output when the input rate is zero; 

• Scale factor error that is due to manufacturing tolerances or ageing; 

• Nonlinearity between input and output; 

• Asymmetry of the scale factor that is generally a result of the electronics 

component mismatch; 

• Thermal and other spurious noise including “random walk” noise effects; 

• Scale factor dead-zone due to mechanical friction or lock-in for laser gyro; 

• Quantization error that is present in all devices with digital output. 

The largest errors are usually bias stability (measured in deg/hr or rad/hr), and scale-

factor stability (which is usually measured in parts per million (ppm) of the sensed inertial 

quantity). Figure 16 compares the bias and scale factor stability performance for traditional 

gyro technologies, such as mechanical, FOG, RLG and DTG, and MEMS gyros (revised 

version of the figure in (Schmidt 2010)). 
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Figure 16. Bias and scale factor stability performance for traditional gyro technologies, such as 

mechanical, FOG, RLG and DTG, and MEMS gyros (revised version of the figure in (Schmidt 2010)). 

Gyros accuracy can be divided into performance grades according to bias stability 

specifications, with the lowest grade being used for consumer products, and the highest 

performing grades being used for strategic applications (Table 2). The bias stability 

measurement indicates how stable the bias of a gyro is over a certain specified period. In 

general, a reduced bias stability means reduced error when integrating the gyro output over 

time. A gyro with reduced bias stability will lead to reduced errors in position estimates for 

an INS. As might be expected, the performance grade of a gyro or IMU also determines its 

comparative cost (KVH 2014). 

MEMS gyros have shown themselves to be an extreme enabling technology for new 

applications. Their small size, extreme ruggedness, and potential for very low-cost and 

weight means that numerous new applications have been, and will be, able to utilize inertial 

guidance systems. This was unthinkable before MEMS technology. MEMS gyros are 

expected to replace many of the current systems using traditional sensors (KVH 2014). 

However, MEMS are typically used in consumer to industrial grade applications (KVH 

2014). As shown in Figure 16, the low and medium performance range is dominated by 

MEMS gyros (Schmidt 2010). MEMS technology has struggled to reach tactical grade 

quality (Barbour 2010), and is only now reaching that performance.  
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Table 2. Gyro Grades Based on Bias Stability (KVH 2014). 

Performance Grade  Bias Stability  

Consumer  30-1000°/hr  

Industrial  1-30°/hr  

Tactical  0.1-30°/hr  

High-end Tactical  0.1-1°/hr  

Navigation  0.01-0.1°/hr  

Strategic 0.0001-0.01°/hr 

4.1.3.  MEMS accelerometers 

The basic principle of operation behind the MEMS accelerometer is the displacement 

of a small proof mass etched into the silicon surface of the integrated circuit and suspended 

by small beams. Consistent with Newton's second law of motion, as an acceleration is 

applied to the device, a force develops which displaces the mass. The support beams act as 

a spring, and the fluid trapped inside acts as a damper, resulting in a second order lumped 

physical system. This is the source of the limited operational bandwidth and non-uniform 

frequency response of accelerometers (Elwenspoek & Wiegerink 2012). 

MEMS accelerometers may be divided into two distinct classes, reflecting the manner 

in which acceleration applied to the case of the device is sensed (Titterton & Weston 2004): 

• The displacement of a proof mass supported by a hinge or flexure in the presence 

of an applied acceleration, that is, a mechanical sensor using silicon components. 

Sensors belonging to this class can provide acceleration measurements to an 

accuracy compatible with inertial (25 micro-g) or sub-inertial quality (l milli-g). 

• The change in frequency of a vibrating element caused by the change in tension 

in the element as a result of the mechanical loading that occurs when the element 

is subjected to acceleration. Sensors belonging to this class tend to have a 

potentially higher accuracy capability approaching 1 micro-g. 
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The current state of development is that the entire sensor may be constructed entirely 

from silicon, with the exception of the hermetically sealed case, which still tends to be 

metallic.  

4.1.4.  UAS navigation 

UAS navigation is typically based on the integration of low-cost MEMS-based IMUs 

with GNSS and magnetic sensors. Indeed, IMUs generate the output measurement, i.e. 

position, velocity, and attitude estimates by integrating accelerations and attitude rates. 

Therefore, they have two main limitations, i.e. they are not capable of estimating 

autonomous initial conditions of motion and they suffer from measurement error drift with 

time. For this reason, IMUs are always supported by aiding systems that are used to 

overcome the above mentioned limitations through the application of a proper data fusion 

framework (Groves 2013).  

4.1.4.1.  Magnetometer/INS integration 

Heading determination is one of the most important aspects of navigation solutions 

(Wahdan et al. 2014). Magnetometer is a low-cost sensor that does not suffer from 

mathematical integration errors and can provide an absolute heading from magnetic north 

by sensing the Earth’s magnetic field (Titterton & Weston 2004). 

As may be seen in Figure 17, the axis of the Earth’s magnetic field can be modelled as 

a simple bar magnet. This magnetic dipole has its field lines originating at a point near the 

south pole and terminating at a point near the north pole, but the field is skewed from true 

geodetic north by ~11.5 degrees. The Earth’s field lines enter the Earth at a considerable 

angle to the local horizontal plane, and this angle is called the magnetic angle of inclination 

(magnetic dip). In the United States and Europe this angle is around 70 degrees (Moir et al. 

2013). 

The components of the Earth’s magnetic field in the local horizontal plane are used to 

determine the compass heading with reference to the north magnetic pole. However, 

allowance must be made for the fact that the magnetic and geodetic poles do not coincide, 

and also for the fact that there are considerable variations in the Earth’s magnetic 

characteristics across the globe. These factors are measured and mapped across the globe 

such that the necessary corrections may be applied. The correction term is called angle of 
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declination (magnetic variation) and is a corrective angle to be added to/subtracted from the 

magnetic heading to give a true (geodetic) compass heading. Positive angular declinations 

represent easterly corrections, while negative angles represent westerly corrections. These 

corrections are measured, charted, and periodically updated (Moir et al. 2013). 

 

Figure 17. Earth’s magnetic field (revised version of the figure in (Moir et al. 2013)). 

The Earth’s magnetic field, H, is the vector sum of components hx, hy, hz measured in 

the orthogonal axis set shown in Figure 18, where the angles of inclination and declination 

are shown. The Heading : can be obtained from the two leveled horizontal magnetometer 

signals as (Wahdan et al. 2014): 

: % �;)<�= >ℎ.ℎ(@ A B (3)

where hx and hy are the two levelled measurements of the Earth’s magnetic field vector in 

the reference frame of the magnetometer (or the device comprising the magnetometer) and 

D is the declination angle that is function of latitude and altitude. 
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Figure 18. Earth’s magnetic field components (revised version of the figure in (Moir et al. 2013)). 

However, magnetic heading measurements are subject to errors induced by 

accelerations and local magnetic anomalies. A more stable heading can be obtained by the 

integration INS/magnetometer. In this integration, the inertial sensors smooth out 

magnetometer noise, while the magnetometer calibrates the inertial sensors drift. The 

integration is usually performed by using the Kalman Filter (Groves 2013). 

4.1.4.2.  GNSS/INS integration 

The need for accurate and reliable navigation, for long-range flights as well as for 

precision approach and landing systems has focused attention on the use of coupled or 

integrated GNSS/INS systems. This is particularly significant for MEMS inertial sensors, 

which, compared to higher-grade systems, can experience large errors over short time 

intervals. This is mainly due to large uncertainties in the sensor output.  INSs built on these 

sensors are vulnerable to nonlinear error behaviour, especially when the attitude errors 

become very large (Titterton & Weston 2004). 

The aviation community has long recognized that GNSS and INS provide 

complementary benefits. GNSS provides accurate positioning that does not degrade over 

time. INS provides autonomous, high frequency, low noise positioning that is not 

susceptible to interference or jamming (Manfred & Ryno 2008). An integrated GNSS/INS 

navigation system exploits the best characteristics of both systems. This integration allows 
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the estimation and correction of errors caused by the INS and assists navigation in cases of 

GNSS outages, data degradation, and jamming (Lee & O’Laughlin 2000; Niu et al. 2007). 

The integration provides the following advantages over the individual systems (Bhatti 

et al. 2007): 

• The integrated system is more accurate than the individual systems; 

• More trust can be placed on its output because of the redundancy provided by an 

additional navigation system; 

• The integrated output is provided at a higher rate than GNSS because of the higher 

data rate of INS; 

• The integrated system will be available even during GNSS outage. The time of 

availability of accurate navigation solution is limited by the quality of the INS. 

An extensive review of techniques based on the integration of low cost INSs and GNSS 

can be found in (Hasan et al. 2009). There are three basic types of GNSS/INS integration, 

loosely coupled, tightly coupled and or ultra-tightly coupled or deeply integrated.  

With a loosely coupled integration, a navigation processor inside the receiver calculates 

position and velocity using GNSS observables only. Subsequently, the GNSS output 

(position and velocity) are used to update the output of an INS utilizing a data fusion 

technique. In a loosely coupled system, shown in Figure 19, the receiver can be treated as a 

"black box". A disadvantage of this integration is that the data fusion heavily depends upon 

the GNSS solution. Hence, if the GNSS solution is not available (e.g., when less than four 

satellites are available) the integrated solution is no longer possible. In such a case, the 

performance of the integrated system is limited to its inertial coasting capability. The time 

for which a system can coast depends primarily on the quality of inertial sensors (Lee & 

Ericson 2004). 

The tightly coupled filter, instead, benefits from GNSS measurement updates even if 

there are less than four satellites available for a complete navigation solution. In this 

approach, raw output from the GNSS (pseudo-range, pseudo-range rate) are used in 

conjunction with the INS error model to estimate the navigation errors and the corrected 

states (i.e. position, velocity, acceleration, attitude, etc.) of the UAS. A disadvantage of this 

filter is that it responds more slowly to INS errors than the loosely coupled system (Gautier 

2003). Figure 20 shows a tightly coupled integration.  
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In the ultra-tight approach, integration occurs at the GNSS tracking loops which are 

controlled by the blended navigation filter (Pany & Eissfeller 2006). The GNSS receiver in 

this case is no longer an independent navigator since its operation is also partly dependent 

on INS information. The potential benefits of the deep integration are achieved at the 

expense of a significant increase in complexity, computational load, and tight time 

synchronization (Kim et al. 2003). Figure 21 shows an ultra-tightly coupled or deeply 

integrated GNSS/INS system. 

 

Figure 19. Loosely coupled GNSS/INS integration. 

 

Figure 20. Tightly coupled GNSS/INS integration. 
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Figure 21. Ultra-tightly coupled or deeply integrated GNSS/INS system. 

4.1.4.3.  Data fusion techniques 

A description of the different data fusion techniques is presented in (Fasano et al. 2011, 

2016a; Gross et al. 2010a; Jarrell et al. 2008). A comparative analysis of sensor fusion 

algorithms for UAS applications is presented in (Gross et al. 2012). Since the state of a 

system must be estimated from noisy sensor information, state estimator should be 

employed to fuse together data from different sensors to produce an accurate estimate of the 

true system state. When the system dynamics and observation models are linear, the state 

estimates may be computed using the Kalman Filter, extensively described in (Groves 

2013). 

The Kalman Filter is essentially based on two groups of equations: the “Time Update 

Equations” and “Measurement Update equations”, as reported in Figure 22 in discrete time 

form. The time update equations can be thought of as “predictor” equations, while the 

measurement update equations can be thought of as “corrector” equations (Jarrell et al. 

2008; Tirri 2014). In Figure 22, xDE is the state vector estimate, ΦEGH is the transition matrix, PE is the error covariance matrix, HE is the measurement matrix, QE is the system noise 

covariance matrix, RE is the measurement noise covariance matrix, KE is the Kalman gain 

matrix, �E is the measurement vector. The subscript k is commonly used to denote the 

iteration, whereas the symbols – and + respectively indicate the propagation stage and the 

correction stage.  
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It is, in general, based on a few assumptions: the system state evolves according to a 

known linear equation driven by a known input and an additive process noise, which is zero-

mean white (uncorrelated in time) with known covariance matrix QE. Moreover, 

measurements are a known function of the state with an additive measurement noise, which 

is again zero-mean white with known covariance RE. Required initial parameters are the 

initial state with its uncertainty (that is, its covariance). System and measurement noise are 

assumed to be uncorrelated. However, in most applications of interest the system dynamics 

and observation equations are nonlinear and suitable extensions to the Kalman filter have 

been sought (Ristic et al. 2004).   

 

 

Figure 22. Kalman filter scheme. 

In the core of navigation system development lies the problem of estimating the states 

of a non-linear dynamic system. When it comes to state estimation for nonlinear systems, 
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however, there is no single solution available that clearly outperforms all other strategies. 

The three main approaches are (Hasan et al. 2009): 

• The Linearized Kalman Filter (LKF) or the Extended Kalman Filter (EKF). The LKF 

can be applied if all sources of information are conveniently modelled by linear 

dynamical and measurement equations and the noise is modelled as Gaussian white 

noise. It can be demonstrated (Gelb 1974) that under the Gaussian assumption, the 

Kalman Filter is the minimum mean-square error state estimator. The EKF, instead, 

is a suboptimal technique that can be applied if some sources of information have a 

nonlinear dynamical model, but their behaviour can be adequately modelled through 

the linear term of Taylor series of process and measurement equations in the vicinity 

of a known solution. The noise must be modelled as Gaussian white noise. 

• Sampling-based filters, such as the Unscented Kalman Filter (UKF) and Monte 

Carlo Sequential Sampling. The UKF is also suboptimal and is used when the sole 

linear term in the Taylor series is not enough accurate to model process propagation. 

Monte Carlo Sequential Sampling techniques exploit Monte Carlo integration by 

removing any type of hypothesis on process model, measurement model, and the 

type of noise. The most common method is represented by Particle Filters (Tirri 

2014). In this case, a large set of samples of the Probability Density Function (PDF), 

i.e. the particles, are propagated by nonlinear update function. 

• Artificial Intelligence (AI)-based methods, such as Artificial Neural Networks 

(ANN) or Adaptive Neural Fuzzy Information System (ANFIS). In past few decades, 

neural network and fuzzy control have been widely used in many applications such 

as control, navigation systems and so on. It is known that the neural network has 

learning ability and is a good choice for modelling dynamic and complex process. 

On the other hand, the fuzzy control has an important feature where it is a very 

effective and practical approach to the modelling of nonlinear, time varying and 

complex systems by using a set of linguistic rules, which may come from a control 

engineer or an experienced operator for a particular system.  



52 
 

4.1.4.4.  Integrity monitoring 

Navigation applications require that the highest level of safety and other performance 

standards are satisfied. These standards are known as the Required Navigation Performance 

(RNP) parameters: accuracy, integrity, continuity, and availability, with integrity being the 

parameter directly linked to safety. Integrity is a measure of the trust that can be placed in 

the correctness of the information provided by a navigation system (Panagiotakopoulos et 

al. 2013). A navigation system is required to deliver an alert or a warning of any malfunction 

because of a set alert limit being exceeded, to users within a specified time-to-alert. Integrity 

risk is defined as the probability that the positioning error exceeds the alert limit and that 

the event is undetected (Panagiotakopoulos et al. 2013). 

The integrity monitoring of the GNSS/INS integrated system follows in the footsteps of 

the integrity monitoring of GNSS (Bhatti et al. 2007), extensively described in (Feng et al. 

2006; Ochieng et al. 2003; Sabatini et al. 2013a, 2013b, 2015). Integrity monitoring in the 

horizontal domain requires an alert to be raised whenever the horizontal position error is 

larger than the horizontal alert limit. Therefore, detection performance involves three basic 

parameters: test statistic, decision threshold, and Horizontal Protection Level (HPL). These 

parameters are described below (Feng et al. 2012; Lee & O’Laughlin 2000; 

Panagiotakopoulos et al. 2013): 

• Test Statistic vs. Decision Threshold. For a decision of whether to raise a flag or 

not to declare presence of a failure requires two quantities: a test statistic that is an 

observed quantity and decision threshold to compare the test statistic against. A 

test statistic is a value calculated from a sample of data. It is used to decide whether 

or not the null hypothesis should be rejected in a hypothesis test. A test statistic 

must be chosen such that it will summarize the information in the sample that is 

relevant to the hypothesis. The construction of a test statistic depends on the 

probability model (distribution) and the hypotheses under question. The decision 

threshold should be chosen on the basis of statistical characteristics of the test 

statistic so that a false integrity alert (alert that occurs in a fault-free condition) 

occurs no more than at some specified rate, which is typically 10-5/hr. 

• Horizontal Protection Level. The HPL is an upper bound that a horizontal position 

error shall not exceed without being detected. If it is exceeded, it shall be detected 
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with a 0.999 probability. In other words, a given integrity method must guarantee 

that a user position error, which is not a directly observable quantity, will be within 

the bound unless an integrity alert is raised. HPL is an important parameter that 

determines the availability of integrity function. That is, if HPL is less than the 

Horizontal Alert Limit (HAL) for a given phase of flight, integrity function is 

available, and vice versa.  

As described in the previous section, the loosely coupled system provides benefits in 

terms of the navigation performance over the individual systems. However, the integrity 

performance of the loosely coupled system is restrictive in nature due to the fact that GNSS 

measurements are not accessible. Hence, healthy GNSS measurements are not of any use in 

the situation when the navigation solution is corrupted by a faulty measurement. Therefore, 

to get real benefits in integrity monitoring, measurement domain coupling methods are 

recommended (Bhatti et al. 2007).  

Integrity monitoring methods for the tightly coupled system are based upon variations 

in the selection of test statistics, decision thresholds and horizontal protection limits. There 

are two main approaches normally employed to determine the test statistic (Bhatti et al. 

2007): 

• The use of the innovation of the Kalman filter (Diesel & King 1995; Nikiforov 

1995); 

• The use of the difference between the main filter solution and the sub-filter solution 

(Brenner 1995). 

The decision threshold against which the test statistic is compared is determined in one 

of two ways (Bhatti et al. 2007): 

• The threshold is a function of the standard deviation of the separation between the 

full solution and the sub-solutions, multiplied by a constant determined 

statistically. It is assumed that the test statistic is Gaussian in nature and hence the 

constant is calculated so that the given probability of false alert is not exceeded 

(Brenner 1995); 

• When the test statistic is a function of innovation that has multiple Gaussian 

distributed components, the threshold is chosen using the chi-square distribution. 
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The probability of false alert is used to arrive at the value of the threshold (Diesel 

& King 1995). 

The HPL can be determined either by using separation statistics between the full filter 

and sub-filters (Brenner 1995) or by fusing multiple terms. There are three major current 

integrity monitoring algorithms for integrated systems: 1) Multiple solution separation 

(MSS) method; 2) Autonomous integrity monitoring by extrapolation method (AIME); 3) 

Optimal fault detection. They are described in (Bhatti et al. 2007). 

An integrity monitoring method suggested for ultra-tightly coupled systems is the 

GNSS Inertial - RAIM (GI-RAIM) method (Gold & Brown 2004). It is based on the 

Bounded Probability of Missed Detection concept. Based on a pre-filter, it is anticipated 

that a certain satellite is faulty. By excluding this satellite, a position solution is computed. 

From the comparison of this solution with the full solution, the contribution of the faulty 

satellite to the radial position error is estimated with a high probability. The algorithm 

ensures that this fault characterization minimizes the missed detection risk. However, the 

condition is that a sufficient number of satellites is available in a good geometrical 

configuration. It is claimed that Horizontal and Vertical Alert Limit values close to 1 m can 

be achieved with this algorithm. But it should be noted here that this accuracy is achieved 

by using the GNSS carrier phase observable. The availability of the carrier phase solution 

is limited by the resolution of integer ambiguity, which is not always guaranteed. In the GI-

RAIM integrity monitoring, a pre-filter is used to flag the faulty GNSS signal. In this way, 

corrupt GNSS data are prevented from propagating back into the main navigation filter 

(Bhatti et al. 2007). 

4.2. Improving thermal compensation of MEMS gyro bias 

The IMU is the primary source of reference about attitude. Furthermore, its integration 

with a GNSS receiver-chip provides a navigation system that has several advantages over 

each individual system (Groves 2013). However, good bias correction performance is 

requested for gyros to have a robust output even in case of temporary non nominal operation 

of measurement systems in the Kalman Filter, such as GNSS, air data and magnetometers. 

 MEMS gyros have significant limitations in terms of sensitivity to environmental 

conditions. Their output average value, i.e., sensor bias, drifts with temperature, with a 
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strongly non-linear trend. Consequently, bias estimation and thermal compensation are 

critical operations that must be well accomplished to achieve the best navigation 

performance while using inertial units with MEMS gyros (Niu et al. 2013; Zhuang & El-

Sheimy 2016). 

4.2.1.  MEMS gyro bias temperature dependence model 

The effect of environmental temperature is one of the most critical error sources in 

MEMS gyroscopes (Niu et al. 2013). MEMS architecture is fabricated with silicon, which 

is a thermo-sensitive material. The modulus of elasticity has an approximate linear 

relationship with temperature (Tang et al. 2014).  

N % NO & P�NOQR & ROS (4) 

where E and E0 are the elasticity modulus at temperature T and T0 = 300 K and CE is the 

temperature coefficient of the silicon elasticity modulus. Since the MEMS gyros’ stiffness 

is proportional to the elasticity modulus, also the gyros’ stiffness has an approximate linear 

relationship with temperature: 

' % 'O& P�'OQR & ROS (5) 

where ' and 'O are the gyro’s stiffness at temperature T and T0. Therefore, temperature 

variation leads to the change of MEMS gyros’ stiffness, which causes the change of the 

resonance frequencies �( % T'( #⁄  and �. % T'. #⁄ . Since the relationship between the 

resonance frequencies �( and �. and temperature is strongly non-linear and the main reason 

for gyroscope zero bias is the offset of its natural frequency (Tang et al. 2014), bias has a 

non-linear dependence on temperature. Furthermore, a finite element model of MEMS 

gyroscope is presented in (Wang et al. 2014) to illustrate the mechanism of resonant 

frequency shift due to temperature change. It shows that drive resonant frequency descends 

more rapidly than the sense resonant frequency, which also presents fluctuations. This 

particular trend is also evident in (Xia et al. 2009). It is caused by the large thermal stress 

in the regions of drive spring beams while almost no thermal stress in the regions of sense 

spring beams (Wang et al. 2014). Therefore, temperature variation does not affect both 

modes the same amount. This determines a change of the frequency mistuning.  
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An additional part of the error observed is due to the sensitivity of the gyro's control 

electronics to temperature. MEMS gyroscopes are based on the Coriolis coupling effect, 

which transfers the energy from the drive mode to sense mode by inducing the Coriolis force 

in the sense direction (Cui et al. 2009). Since the Coriolis force is proportional to the external 

angular rate only on the premise of a non-varied velocity along the drive axis, it is 

fundamental for the gyro control circuits to maintain a constant amplitude of the drive 

vibration. A commonly used approach is utilizing Automatic Gain Control (AGC) (Cui et 

al. 2009). Experimental results presented in (Xia et al. 2009) and (Shcheglov et al. 2000) 

show a dependence of the AGC voltage on temperature, which induces drift in the drive 

amplitude. 

Finally, the influence of temperature on the package of MEMS devices is described in 

(Joo & Choa 2007). It generally consists of various materials that have different coefficients 

of thermal expansion. Therefore, temperature change will induce thermo-mechanical stress 

that could cause deformation of the MEMS structure, resulting in frequency change or 

breakage of the structure.  

4.2.2.  Traditional bias estimation and compensation process 

Because of the above reported discussion, thermal calibration is a critical activity that 

allows estimating three terms (Fontanella et al. 2018b): 

1. Bias thermal drift; 

2. Scale factor thermal drift; 

3. Thermal variation of random noise standard deviation. 

The most critical error component to be compensated in order to let MEMS gyros reach 

their best level of performance is the bias thermal drift. In case no information about sensor’s 

temperature is provided, bias drift can be modelled as a random term, which refers to the 

rate at which the error in an inertial sensor accumulates with time. However, knowing the 

sensor’s temperature, thermal drifts can be regarded as deterministic errors. The effect of 

thermal calibration on scale factor is less significant, according to typical sensor’s 

performance sheets. Regarding noise, estimating the standard deviation does not allow for 

immediate correction due to its intrinsic nondeterministic nature. However, the assessment 

of random noise standard deviation is an important information for estimating the process 
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covariance matrix of Extended Kalman Filters that are used to perform integrated navigation 

with aiding systems (Fontanella et al. 2016, 2018b). 

The traditional approach (IEEE Standards Board 2004) consists in performing thermal 

tests in a climatic chamber over the requested temperature intervals, in order to derive the 

calibration function that allows the correction of bias thermal drift. The chamber, indeed, 

allows for performing controlled thermal solicitations on the unit by assigning proper 

temperature profiles. Then, the calibration function is developed by adopting the polynomial 

fitting and, during the real-time operation of the unit, it is applied to correct the sensor output 

before any other processing step (Wang et al. 2010). A further reduction of bias can be 

realized by estimating its residual amount within a data fusion framework, such as an 

augmented state Kalman filter, in which bias is included as a state in addition to errors on 

attitude, position, and velocity (Savage 1998). In summary, the traditional approach to 

estimate gyro bias is a cascading of calibration and Kalman filtering (Groves 2013). 

However, it has two main limitations: 

1. The typical MEMS gyro bias trend model is strongly non-linear with added 

hysteresis (Xia et al. 2009), (Gulmammadov 2009). However, polynomials are not 

efficient to model these local changes of trend since they have fixed shapes as a 

function of their order; 

2. The overall process is time consuming and expensive. Indeed, it is a cascading of 

two algorithms, thermal calibration and Kalman filtering. This aspect also reduces 

system accuracy, reliability, and maintainability. 

4.2.2.1.  Thermal compensation through polynomial fitting 

The classical strategy adopted to develop the thermal model of MEMS gyro bias is the 

polynomial fitting. Once the order of the polynomial is selected, its coefficients can be 

derived by the Least Mean Squares (LMS) curve fitting, since it is simple and easy for 

constituting the temperature model of the sensor’s bias. Using a polynomial of order m to 

describe the approximate function (regression equation) between the experimental data, the 

following expression can be obtained (Xia et al. 2009): 
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VW % XW & Y �ZRWZ
[

Z\O  (6)

RW denotes the temperature, XW denotes the corresponding gyro output and VW denotes the 

error between the gyro output and the value calculated by the regression equation (i = 1, 2, 

…, n, where n is the number of samples of static AHRS data). According to the LMS theory, 

the square of VW should be set to the minimum to obtain the optimum value for the 

coefficients �Z   (Xia et al. 2009):  

]Q�O, �H, ⋯ , �[S % Y VW6 → minc
W\H   (7)

Even if this technique is a good compromise, non-negligible residuals can be 

determined for specific temperatures, because of the typical oscillatory shape of a 

polynomial curve. These residuals can determine large attitude errors when gyro 

measurements are integrated to perform navigation. 

4.2.2.2.  ZUPT filter 

Zero Velocity Update or ZUPT filter is a filter used to remove residual errors on 

navigation state terms and bias at startup for an IMU. It requires that the unit is held fixed 

with respect to the locally level frame for some minutes, since the assumption that the unit 

is stationary is the aiding information used by the Kalman filter, i.e., the filter measurement 

model. In stationary condition, any form of linear and angular rate, except the Earth rate, is 

considered as an error.  

The ZUPT filter is used to get accurate initial attitude and inertial sensor bias when 

tactical grade gyros are available, i.e., gyros that have a bias instability that is less than 1 

degree per hour (Titterton & Weston 2004). In the case non tactical grade gyros are installed 

in the IMU, the ZUPT filter is used to estimate just the bias. Indeed, gyro bias cannot be 

estimated just by averaging sensor output, since the size of averaging time window could 

not be coherent with thermal variations that induce bias drift. Since thermal variations 

depend on environmental conditions, nothing is known about their characteristic time. 

Moreover, when the unit is turned on in stationary condition, no information is provided 

about how long it is going to stay motionless. For this reason, the ZUPT filter has a 
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significant practical interest also for IMUs equipped with standard grade gyros, such as the 

Attitude and Heading Reference Systems or AHRS installed on aircraft (Sheng & Zhang 

2015) or the Land Navigators installed on ground vehicles (Wang et al. 2015).  

4.2.2.2.1. General description 

The standard ZUPT filter is accurately described in (Groves 2013). After a brief coarse 

alignment phase, the INS attitude and the Position, Velocity, Time (PVT) initial solution 

are “frozen”. Then the inertial navigation equations are numerically integrated. However, 

the upgraded attitude and PVT solution are different from their initial values. Since the host 

vehicle is at rest and non-rotating, these changes can be only due to uncompensated 

accelerometers and gyroscopes errors. Measurements of the difference between the INS 

output and the reference are input to a Kalman filter, which restores the initial conditions 

and estimates the accelerometer and gyro biases. Since ZUPT filter can be only applied 

when the host vehicle is stationary and non-rotating, it must last only few minutes. Figure 

23 shows the block diagram model. 

 

Figure 23. ZUPT filter block diagram model. 

The full 15-dimension augmented state error vector for the ZUPT filter is: 

d�Q<S % ed;⃗, dVg⃗ , h⃗, d,⃗, d�gg⃗ i
  (8)

where: 

• d;⃗ is the position error; 

• dVg⃗  is the velocity error; 

• h⃗ is the attitude error; 

• d,⃗ is the acceleration error; 
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• d�gg⃗  is the angular rate error 

The accelerometers error d,⃗ is: 

d,⃗ % g⃗ � +  j⃗� (9) 

where j⃗� is the accelerometer measurement noise, which is modeled as a zero-mean 

Gaussian noise, and g⃗ � % e�(, �., �ki is the accelerometer bias. In the standard ZUPT 

filter, the time model for the accelerometer bias is assumed as: 

g⃗ *�Q<S % j⃗l�Q<S (10) 

where j⃗l�Q<S is a zero-mean Gaussian noise.  

The gyroscopes error d�gg⃗  is: d�gg⃗ % g⃗ � + j⃗� (11) 

where j⃗�is the gyro measurement noise, which is modeled as a zero-mean Gaussian noise, 

and g⃗ � % e�(, �., �ki  is the gyro bias. In the standard ZUPT, the time model for the gyro 

bias is assumed as: 

g⃗ *�Q<S % j⃗l�Q<S (12) 

where j⃗l�Q<S is a zero-mean Gaussian noise.  

With the above definitions, the following time-continuous error model is derived: 

d�*Q<S % /Q<Sd�Q<S + mQ<SjQ<S (13) 

where jQ<Sis the process noise vector: 

jQ<S % ej⃗�Q<S, j⃗�Q<S, j⃗l�Q<S, j⃗l�Q<Si
 (14) 

F(t) is the time-dependent process transition matrix and G(t) is the process noise matrix, 

defined in (Groves 2013). The state space model for the error dynamic is non-linear since /Q<S and mQ<S contain time-variable component. Consequently, a linearized process is 

needed to apply the principle of Kalman filter without truly linear dynamics or sensors (Duc-

tan et al. 2011). Linearization is based on the small perturbations hypothesis. 
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The standard ZUPT works as follows. First of all, the inertial navigation equations are 

numerically integrated. To initialize: 

• the position vector is provided by an external reference device, like a GNSS receiver;  

• the velocity components are set to zero (the host vehicle is at rest); 

• roll and pitch angles are computed through a coarse levelling based on 

accelerometers output and the heading angle is provided by an external input; 

• inertial sensors bias are set to zero (because they are unknown). 

Then, in the prediction step, the state error vector and the covariance matrix Pk are 

propagated (Eq. (15) and (16)): 

d�nG % Φnd�nGH + jn (15) 

with: 

Φn ≈ p + /Q'RqSRq (16) 

where I is the 15x15 identity matrix, Ts is the sample period, jn is the discrete-time process 

noise.  

rnG % ΦnrnGHΦn
 + Γn (17) 

with: 

Γn % Qmn0nmn
SRq (18) 

where Ts is the sample period, mnis the process noise discretized matrix and 0n is the 12x12 

covariance matrix of the process noise, whose elements will be defined in the next section. 

Subsequently, the Kalman gain matrix can be evaluated: 

Kn % rnGtn
QtnrnGtn
 + unSGH (19) 

where tn is the 9x9 identity matrix and un is the measurement noise matrix. un is a 9x9 

diagonal matrix, whose elements reflects the uncertainty in the initial state vector evaluation.  

Hence the error covariance matrix can be updated according to: 

rn % Qp & vntnSrnG (20) 

and the state error vector can be updated as: 
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d�n % vnwn (21) 

where xn is the measurement innovation computed as the difference between the initial state 

vector and the current estimated state vector. Due to uncompensated inertial sensors bias, 

the updated system state is different from the previous one. Hence, every second a state 

correction is executed. The final step of the ZUPT is to update the state vector and estimate 

the inertial sensors bias.  

It is worth noting that the standard ZUPT filter needs calibrated gyro data as input. This 

is particularly important for MEMS gyros, which are characterized by high levels of noise 

and poor bias stability characteristics (Tang et al. 2014; Xia et al. 2009). The block diagram 

model is presented in Figure 24. In the ZUPT algorithm, the filtering step is preceded by 

thermal calibration of raw gyro data. 

 

Figure 24. Standard ZUPT filter: � is the accelerometer output, ���� is the raw gyro data, �����	��
�� 

is the calibrated gyro data and � and � are respectively the accelerometer and gyro bias. 

4.2.2.2.2. Determination of process noise terms 

To realize an accurate filter, it is necessary to correctly define the elements of the 

covariance matrix of the process noise 0n, which are defined as follows (Groves 2013): 

• 0nQ1,1S, 0nQ2,2S, 0nQ3,3S are related to the accelerometer measurement noise j�. 

0nQ1,1S % 0nQ2,2S % 0nQ3,3S % ����6  (22)

where ���� is the velocity random walk of the accelerometer measurement. 

• 0nQ4,4S, 0nQ5,5S, 0nQ6,6S are related to the gyro measurement noise j�. 

0nQ4,4S % 0nQ5,5S % 0nQ6,6S % ����6  (23)

where ����  is the angular random walk of the gyro measurement. 
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• 0nQ7,7S, 0nQ8,8S, 0nQ9,9S are related to the accelerometer bias jl�. 

0nQ7,7S % 0nQ8,8S % 0nQ9,9S % ��	�6  (24)

where ��	�   is the bias instability of the accelerometer measurement. 

• 0nQ10,10S, 0nQ11,11S, 0nQ12,12S are related to the gyro bias jl�. 

0nQ10,10S % 0nQ11,11S % 0nQ12,12S % ��	�6  (25)

where ��	� is the bias instability of the gyro measurement. 

Since 0n is a diagonal matrix, the off-diagonal elements are zero. The diagonal elements 

of 0n have been evaluated through the Allan Variance analysis (Gross et al. 2011). The 

Allan Variance is a simple and efficient method to characterize different stochastic 

processes and their coefficients, allowing estimation of the accidental component of errors 

that affect the signal (El-Diasty et al. 2007; Zhang et al. 2008). The characteristic Allan 

Variance curve can be obtained through some simple operations on the sensor output and 

further used to determine the type and magnitude of errors affecting the sensor data (IEEE 

Standards Coordinating Committee 27 on Time and Frequency 2009). If N is the number of 

samples from an inertial sensor with a sample time τ0, a group of ν data points can be created 

(with ν < N/2); each group member is called a cluster τ with size ντ0. If Ω (t) is the 

instantaneous output of the sensor, its integration (e.g., for the gyro output) is the angle θ (t) 

(de Pasquale & Somà 2010): 

�Q<S % � ΩQ<S�< (26)

The angle is measured at discrete times given by t = kτ0 (for k = 1, 2, 3, ..., N). By using the 

notation θ(t) = θ(kτ0) = θk, the average angle between the times kτ0 and (kτ0 + τ) is given by 

(de Pasquale & Somà 2010): 

�̅nQ�S % 1� � ΩQ<S�<,   � % x�On����
n��  (27)

The Allan Variance, estimated from a finite number of samples, is defined as follows (de 

Pasquale & Somà 2010): 
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�6Q�S % 12�6Q� & 2xS Y Q�n�6� & 2�n�� + �nS6�G6�
�\H  (28)

The most attractive feature of this method is the ability to define various error 

components by the slope of the root Allan Variance (i.e., the Allan deviation) plot. Typical 

errors affecting inertial sensors, which are detectable through the Allan Variance, are the 

quantization noise, angle random walk, correlated noise, sinusoidal noise, bias instability, 

rate random walk, and rate ramp. Correlated and sinusoidal noises have minor contributions 

to the total noise, and they appear only at long-time clusters. All the other errors are believed 

to have the most impact on MEMS sensors (Fong et al. 2008). 

4.2.3.  Contribution of this thesis 

This thesis proposes two innovative solutions to overcome the limitations of the 

traditional bias estimation and calibration approach. The first solution, proposed in Section 

4.2.3.1, consists in adopting Back-Propagation Neural Networks (BPNNs) to overcome the 

limitations of the traditional polynomial fitting in mapping the non-linear MEMS gyro bias 

trend with temperature (Fontanella et al. 2018b). Indeed, BPNNs guarantee better 

performance than the traditional fitting method (Fontanella et al. 2016, 2017a), since they 

are self-adaptive in constructing a mathematical model after several repetitive learning and 

testing phases. To compare the effectiveness of BPNNs and polynomial fitting, the effects 

of these two calibration methods on the determination of flight attitude will be considered 

in Section 4.2.5.  

The second solution is the innovative Thermal Compensated ZUPT (TCZUPT) filter 

that unifies the two steps of thermal compensation and filtering (Fontanella et al. 2018a). It 

is presented in Section 4.2.3.2. The calibration transfer function is exploited within the 

Kalman filter, with the aim of embedding the compensation of thermal effect on bias in the 

filter itself. Therefore, no calibration pre-processing stage is required. This allows the 

reduction of the computational burden of the IMU processing software and improves its 

accuracy, reliability, and maintainability. An important advantage over the traditional 

approach can be appreciated when the gyro bias is affected by hysteresis. As the traditional 

approach adopts the transfer function as a fixed reference, the presence of hysteresis causes 

an additive bias. On the contrary, the proposed approach exploits the derivative of the 
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calibration transfer function with temperature. This term tends to be constant on the different 

branches that form the hysteresis loop (Gulmammadov 2009). The comparative 

performance analysis of the ZUPT filter and the TCZUPT filter is presented in Section 4.2.6. 

4.2.3.1.  Bias drift modelling through Back-Propagation Neural Networks 

BPNNs are composed by multi-layers in the one-way transmission (Xia et al. 2009). 

Each layer consists of processing units, called neurons, which receive their input from units 

of the previous layer and send their output to units in the successive layer. BPNNs are 

composed by an input layer, that simply accepts the individual components of the input 

vector and distributes them, without modification, to all of the units of the second layer, a 

certain number of hidden layers, where data processing is performed, and an output layer 

that produces the network’s approximation of the correct output vector (Hecht-Nielsen 

1992). The errors of the units in the hidden layers are determined by back-propagating the 

errors of the units in the output layer. For this reason, the method is called back-propagation 

learning rule (Zhang et al. 2009). 

Through the application of BPNNs, it is possible to determine the corresponding 

relationship between the given input-output sample pairs, which is memorized as connecting 

weight values in the network. After being weighted and transformed by a transfer function, 

data are passed to units in the successive layer, if a threshold value is exceeded. The Sigmoid 

activation functions (tan-Sigmoid, log-Sigmoid and linear-Sigmoid) are usually adopted as 

transfer functions for hidden layers to introduce non-linearity in the model, whereas the 

linear function is regularly used as the transfer function for the output layer (Xia et al. 2009). 

BPNNs have several advantages (Fontanella et al. 2018b): 

• The local residuals can be reduced by properly increasing the number of neurons; 

• They have well defined training strategies that can be easily adapted to the bias 

thermal drift behaviour of all types of MEMS gyros; 

• They have the advantages of non-linear fitting, regardless of the mathematical model 

of the sensor and various non-linear factors (Xia et al. 2009);  

• The computational load of BPNN is fully compatible with the high rate processing 

of gyro output, if a limited number of neurons is adopted. 

The proposed tool has been developed by using the MATLABTM Neural Network 

toolbox. The tool helps to assess the best Neural Network structure that can model the bias 
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evolution versus temperature for each specific gyro. In fact, each gyro has its own bias drift 

with temperature, which is different from other gyros.  

Several algorithms can be used to train the network, but the Levenberg-Marquardt 

algorithm is the fastest (Wilamowski & Yu 2010). It is an iterative three-step process 

including training, validating, and testing. This algorithm needs to share the dataset among 

three different uniformly distributed subsets. In our application, 65% of samples are used 

for training, 20% of samples for validating and 15% of samples for testing. Figure 25 

presents the flow chart of the training process.  

 

Figure 25. Flow chart of the Back Propagation Neural Network training process. 

4.2.3.2.  Thermal Compensated ZUPT filter 

The TCZUPT filter has been developed to overcome the limitations of the traditional 

ZUPT filter. It needs raw gyro data as input by unifying the two steps of thermal calibration 

and filtering (Figure 26). 
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Figure 26. TCZUPT filter: a is the accelerometer output, ω�!� is the raw gyro data and b� and b� are 

respectively the accelerometer and gyro bias. 

The proposed method assumes a different bias drift model with respect to the standard 

ZUPT filter, in which it is modelled as a zero-mean Gaussian noise (Eq. (12)). In the 

TCZUPT filter, instead, it is modelled as the combination of two terms, i.e. a temperature 

dependent component and a stochastic component: 

 

g⃗ *�
����
Q<S % �g⃗ �QRQ<SS�< + j⃗′l�Q<S (29)

where j⃗′l�Q<S is the stochastic component, modelled as a zero-mean Gaussian noise 

(j⃗′l�Q<S � j⃗l�Q<S of Eq. (12)) and 
-lg⃗ �Q
Q�SS-�  is the temperature dependent component, 

defined as follows: �g⃗ �QRQ<SS�< % �g⃗ ��R ∙ �R�<  (30)

where 
�lg⃗ ��
  is the partial derivative of gyro bias with respect to temperature and 

-
-�  is the time 

derivative of temperature. These two terms can be obtained as follows: 

• BPNNs are used to estimate the derivative of gyro bias with respect to temperature. 

• The algorithm proposed in (Weiss, Neil A. 2001) is used to evaluate the time 

derivative of temperature data obtained by the temperature sensor inside the AHRS. 

In every time-point, it takes into account the time-history of the derivative. 

Therefore, in the TCZUPT filter, the gyro bias propagation in the prediction step is: 

�,nG % 5p�(� + /�,n ∙ Rq7 ∙ �,nGH + ��,n�<n ∙ Rq 
(31)
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where p�(� is the 3 × 3 identity matrix, /�,n is the 3 × 3 process transition matrix for gyro 

bias, Ts is the sample period, -l�,�-��  is the discrete-time derivative of gyro bias. In conclusion, 

the TCZUPT filter requires a simplified configuration with respect to the standard ZUPT 

filter, which needs two processing phases, one for thermal calibration and the other for 

filtering. 

4.2.4.  Experimental tests 

The standard and innovative methods have been tested on the Attitude and Heading 

Reference System or AHRS Axitude AX1-[ ]TM, developed by the italian Company GMA 

S.r.l.TM, which is depicted in Figure 27. This device is composed by the following sensors 

(GMA 2018): 

• Triaxial accelerometer sensor; 

• Triaxial gyroscope sensor; 

• Triaxial magnetometer sensor; 

• Temperature sensor. 

The adopted gyroscopes are the CRS05-02TM by Silicon SensingTM (Plymouth, UK) 

while the adopted accelerometers are the MS8010TM by ColybrisTM (Yverdon-les-Bains, 

Switzerland). In the standard ZUPT filter, the values in Table 3 and Table 4 have been used 

to define the elements of the covariance matrix of the process noise (Eq. (22)-(25)). In the 

TCZUPT filter, instead, a different value of the gyro bias instability ��	� has been used. 

Indeed, the TCZUPT filter receives as input raw gyro data, which have a higher bias 

instability than the calibrated data used in the standard ZUPT filter. The accelerometer and 

gyro error components for the TCZUPT filter are presented in Table 5 and Table 6. It is 

worth noting that the velocity random walk  ���� and accelerometer bias instability  ��	� 
are the same of the standard ZUPT filter, as well as the gyro angular random walk  ����.  

 
Figure 27. Axitude AX1-[ ]TM. 
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Table 3. Angular random walk ���� and gyro bias instability ��	�  (ZUPT filter). 

CRS05-02TM Gyro by Silicon SensingTM 

ARWσ  GBIσ  

3.18 degree/√h 1.5 × 10−4 degree/s 

 

Table 4. Velocity random walk ���� and accelerometer bias instability ��	� (ZUPT filter). 

MS8010TM Accelerometer by ColybrisTM 

VRWσ  ABIσ  

0.05 m/(s√h) 2 m/(sh) 

 

Table 5. Angular random walk  ���� and gyro bias instability  ��	�  (TCZUPT filter). 

CRS05-02TM Gyro by Silicon SensingTM 

ARWσ  
GBIσ  

3.18 degree/√h 5 × 10−4 degree/s 

 

Table 6. Velocity random walk  ���� and accelerometer bias instability  ��	�  (TCZUPT filter). 

MS8010TM Accelerometer by ColybrisTM 

VRWσ  ABIσ  

0.05 m/(s√h) 2 m/(sh) 

 

Two thermal tests have been performed to determine MEMS gyro bias under different 

temperature points. These tests have been carried out in the laboratory of the GMA S.r.l.TM, 

located in Giugliano in Campania (Italy). Figure 28 presents the setup equipment used to 

perform thermal tests: 

• A climatic chamber Heraus-HT7057, which has a nominal temperature range of -

70°C/+180°C; 

• A power supply for the AHRS (24-28 V); 
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• A personal computer with a RS-232 interface connected to the AHRS and the 

climatic chamber; 

• A software data logger that communicates with the AHRS through the serial 

interface 232, using a Baud Rate of 115200 bps; 

• Two external temperature sensors, one attached to the device, the other attached to 

the inner wall of the climatic chamber. These supplementary sensors are used to 

control temperature variations during the tests; 

• A data acquisition/switch unit connected to another PC to acquire measurements 

from the two supplementary sensors. 

The inertial unit is installed inside the climatic chamber in stationary conditions. This 

chamber allows for performing controlled thermal solicitations on the unit by assigning 

proper temperature profiles. Two thermal tests have been performed: 

• The first is a soak test, where gyro temperature varies from -20.53°C to 37.30°C, 

with steps of 5°C. In this test, the gyro temperature is continuously stabilized at 

certain temperature points (Niu et al. 2013). Figure 29 shows the output trend with 

temperature. 

• The second is a ramp test, where gyro temperature varies from 27.28°C to 34.08°C. 

In this test, the temperature of the thermal chamber is continuously linearly increased 

or decreased, without stabilizing the gyro temperature at certain temperature points 

(Niu et al. 2013). The ramp rate is 2°C per minute. These are typical operating 

conditions for the AHRS Axitude Ax1-[], which is generally used for aeronautical 

applications. Figure 30 shows the output trend with temperature, for the ramp test. 

The AHRS sensor data are transmitted as packages of data on a fixed binary format over 

a RS232 serial communication interface (GMA 2018). In this process, temperature is the 

reference environmental term considered. Temperature and static gyro output are measured 

in real-time to observe the bias drift phenomenon when temperature variations are 

commanded. It is worth noting that both data sets have been filtered by using the low-pass 

filter usually adopted in avionic certified AHRS versions to remove out of band noise. It is 

a second order linear filter with cutoff frequency of 30 Hz. Data obtained from the soak test 

(presented in Figure 29) are used to build MEMS gyro’s bias thermal model over a large 
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temperature range. Instead, data obtained from the ramp test (presented in Figure 30) are 

used to test the calibration algorithms in typical operating conditions. 

 

Figure 28. Setup equipment. 

 

Figure 29. Gyro output (�( , �. , �k) vs. temperature for the soak test. 
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Figure 30. Gyro output (�( , �. , �k) vs. temperature for the ramp test. 

4.2.5.  Comparison of polynomial and BPNNs thermal calibration 

4.2.5.1.  Polynomial order selection 

Polynomials of different degrees can be used to develop the bias drift model. However, 

it is necessary to perform a trade-off between processing loads and effects of residual errors 

in the system. Indeed, as the order of the polynomial increases, the accuracy of the 

estimation builds up. However, also the processing load will increase (Günhan & Ünsal 

2014).  

In our application, the polynomial order for which the performance parameter SrPF, 

defined in Eq. (32), reaches a minimum or when there is no significant decrease in its value 

with the increase of the polynomial order has been selected (Fontanella et al. 2017a). 

�;��Q#S % �;� Q#SH6 + ;� Q#S66 + ;� Q#S�6 (32)

where ;� Q#SH, ;� Q#S6 and ;� Q#S� are the residuals for the triaxial gyroscope sensor, 

for the generic mth polynomial order. The result of this analysis is presented in Figure 31. A 

2nd order polynomial can provide a satisfactory convergence effect while simultaneously 

speeding up the training procedure. 
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Figure 31. Polynomial fitting performance parameter SrPF vs. polynomial order. 

4.2.5.2.  BPNNs structure selection 

To select the most suitable Neural Network structure, it is necessary to consider the 

Kolmogorov theorem and the relevant discussion presented in (Hecht-Nielsen 1992). 

According to this theorem, any L2 function from [0,1]n to ℝm, where [0,1]n is the closed unit 

cube in a n-dimensional Euclidean space and ℝm is the m-dimensional Euclidean space, can 

be implemented to any desired degree of accuracy with a three layers BPNN. However, at 

least a four layers BPNN is needed in practical applications. The space L2 includes every 

typical function that can be experienced in practical problems. For example, it includes the 

continuous functions and all discontinuous functions that are piecewise continuous on a 

finite number of subsets of [0,1]n (Hecht-Nielsen 1992). 

In this particular application, a four layers BPNN has been adopted. The same number 

of processing neurons = has been selected for the hidden layers, since this is the minimum 

condition for proper use of the network. As for the polynomial order, the optimal number 

of hidden layer neurons has been chosen through considerations on the performance 

parameter SrNN, defined as: 

�;��Q=S % T;� Q=SH6 +  ;� Q=S66 + ;� Q=S�6  
(33)
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;� Q=SH, ;� Q=S6 and ;� Q=S� are the residuals for the triaxial gyroscope sensor, for a 

generic BPNN composed by two n-neurons hidden layers. Also in this case, the optimal 

number of neurons per hidden layer is that associated with the minimum value of �;�� or 

when no significant reduction is experienced for higher number of neurons (Fontanella et 

al. 2017a). The evolution of the performance parameter SrNN versus the number of the 

hidden layers neurons is shown in Figure 32. In our application, two hidden layers with two 

neurons each have been chosen, which can provide a satisfactory convergence effect while 

simultaneously speeding up the training procedure. 

 

Figure 32. Neural Network performance parameter SrNN vs. number of hidden layers neurons. 

The resulting configuration is shown in Figure 33 where Wi (i = 1, 2) are the weight 

values connecting the input layer and the first hidden layer, W’ij (i, j  = 1, 2) are the weight 

values connecting the first hidden layer and the second hidden layer, Vi (i = 1, 2) are the 

weight values connecting the second hidden layer and the output layer, bi,j (i = 1, 2; j = 1, 2) 

are the threshold values of the jth neuron of the ith hidden layer, ƒ is the transfer function tan-

Sigmoid and F is the transfer function linear-Sigmoid.  
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Figure 33. Structure of the BPNN adopted for bias drift modelling. 

4.2.5.3.  Effect of polynomial and BPNNs calibration on flight attitude 

The effect of thermal calibration performed by using polynomial fitting and BPNNs on 

the determination of flight attitude has been investigated. Results have been compared in 

correspondence with the temperature points where the difference between the bias drift 

models developed by using the polynomial fitting and BPNN is maximum and where it 

reaches its Root Mean Square (RMS) value. In the other cases, the two methods have similar 

performance. To identify these temperature points, the maximum and RMS values of the 

parameter ∆� (Eq. (34)) have been considered.  

∆� % ∑ T|£���Q¤S  & £���Q¤S|6 + |£���Q¤S  & £���Q¤S|6 + |£���Q¤S  & £��Q¤S|6cW\H  

 

 

 

(34) 

where �(��, �.�� and �k�� are the bias drift models developed by using BPNNs, for each 

axis, �(��, �.�� and �k�� are the bias drift models developed by using the polynomial 

fitting, for each axis, and n is the number of temperature samples. Figure 34 presents the 

trend of ∆� with temperature. Only temperature values from 27.28°C to 34.08°C (i.e., the 

range of testing data set) have been taken into account. From Figure 34, it is possible to 

notice that the ∆� parameter reaches the maximum value (∆���� % 1.83 x 10-4 rad/s) in 

correspondence with T = 27.78°C and the RMS value (∆���� % 1.07 x 10-4 rad/s) in 

correspondence with T = 32.60°C. 
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The aim of this comparison is to evaluate if the calibration based on BPNN determines 

an advantage in case the INS needs to integrate free-inertial equations when GNSS data is 

missing, and no aiding information can be provided. To this scope, the quaternion approach 

has been used; because of its simplicity, mathematical elegance, and lack of singularities, 

the quaternion representation is a very popular representation for encoding the attitude of a 

rigid body (Diebel 2006). It is based on Euler's rotational theorem, which states that the 

relative orientation of two coordinate systems can be described by only one rotation about 

a fixed axis (Wertz 1978). Therefore, the quaternion is defined by a rotational axis and a 

rotation angle (Wertz 1978). 

¥ % ¦¥�  ¥(  ¥.  ¥k§
 % ¨ )©  Q�2S
‖�⃗‖ ∙  ¤=Q�2S« (35)

where ‖�⃗‖ is the normalized rotational axis and � is the rotation angle. Figure 35 and Figure 

36 show the trend of the rotation angle � with temperature, whereas Table 7 and Table 8 

present the time in which the flight attitude accuracy meets the requirements imposed by 

(FAA 2012). Being <�� the time taken by using the BPNNs calibration and <�� the time 

taken by using the polynomial fitting calibration, Δt% is computed according to Eq. (36). 

Δt% % <�� & <��<�� ∗ 100 (36)

It is possible to notice that the application of BPNNs allows MEMS gyroscopes to increase 

the time in which the flight attitude accuracy meets the requirements imposed by (FAA 

2012). In conclusion, the application of the BPNNs allows MEMS gyroscopes to obtain an 

effective improvement in terms of stand-alone attitude determination accuracy to support 

longer GNSS signal outages. 
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Figure 34. Evolution of ∆� parameter versus temperature. 

 

Figure 35. Trend of the rotation angle θ with temperature (∆����). 

 

Table 7.  Time in which the flight attitude accuracy meets the imposed requirements (∆����). 

θ [rad] tNN [s] tPF [s] Δt% 

1.70 x 10-3  2.9 2.4 21.8 

3.50 x 10-3  5.9 4.6 25.80 

8.70 x 10-3 14.5 11.5 26.10 

1.75 x 10-2 29.4 23.0 27.38 
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Figure 36. Trend of the rotation angle θ with temperature (∆����). 

 

Table 8.  Time in which the flight attitude accuracy meets the imposed requirements (∆����). 

θ [rad] tNN [s] tPF [s] Δt% 

1.70 x 10-3  3.3 2.7 19.27 

3.50 x 10-3  6.7 5.4 22.02 

8.70 x 10-3 17.2 13.8 25.00 

1.75 x 10-2 34.9 28.2 23.76 

4.2.6.  TCZUPT filter implementation and testing 

4.2.6.1.  Derivation of thermal correction function 

In the TCZUPT filter, thermal calibration and filtering are simultaneously performed. 

Therefore, it needs raw gyro data as input. During the execution of the filtering process, 

BPNNs trained on the derivative of the training data set presented in Figure 29 is used to 

estimate the derivative with respect to temperature of the testing data set presented in Figure 

30. The performance parameter SrTCZUPT defined in Eq. (37) has been evaluated in order to 

select the most suitable number of hidden layer neurons.  

�;
����
Q�=S % T;� Q�=SH6 +  ;� Q�=S66 + ;� Q�=S�6  (37)

In Eq. (37) ;� Q�=SH, ;� Q�=S6 and ;� Q�=S� are the residuals for the triaxial 

gyroscope sensor, for a generic BPNN composed by two n-neurons hidden layers. Also in 

this case, the optimal number of neurons per hidden layer is that associated with the 
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minimum value of SrTCZUPT or when no significant reduction is experienced for higher 

number of neurons (Fontanella et al. 2017a). The evolution of the performance parameter 

SrTCZUPT versus the number of the hidden layers neurons is shown in Figure 37. Also for the 

TCZUPT algorithm, two hidden layers with two neurons each have been chosen, which can 

provide a satisfactory convergence effect while simultaneously speeding up the training 

procedure. However, it is worth noting that the order of magnitude of SrTCZUPT is 10-7 

rad/s°C, whereas it is 10-5 rad/s for SrNN defined in Eq. (33). 

 

Figure 37. Performance parameter SrTCZUPT vs. number of hidden layers neurons (TCZUPT filter). 

4.2.6.2.  ZUPT & TCZUPT: comparative performance analysis 

The input data of the standard ZUPT and TCZUPT filters are respectively shown in 

Figure 38 and Figure 39. To highlight the different trends of the two data sets, a second 

order low-pass filter with cutoff frequency of 1 Hz has been used to remove out of band 

noise in representing data. However, it is worth noting that the standard and innovative filter 

have been tested on data filtered by using the second order low-pass filter with cutoff 

frequency of 30 Hz, which is usually adopted in avionic certified AHRS versions. In both 

cases, before applying the filtering, the initial zeroing procedure has been performed in a 

time-frame of 60 seconds. 

In this application, the benchmark used to compare the standard ZUPT and TCZUPT 

filters performance is the moving average of raw and calibrated gyro data. This processing 

step returns an array of local mean values, where each mean is calculated over a sliding 
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window of 30 seconds across neighbouring elements of the input vector. Table 9 presents 

the mean of residuals of the moving averages, which can be considered an estimator of the 

true bias of the system, with an accuracy given by the corresponding residual. The level of 

residuals is adequate to justify their use as a reference benchmark for the filter.  

The standard ZUPT and TCZUPT filters have been tested on the two conditions listed 

below. Table 10 presents the RMS error of both methods in both the considered testing 

conditions. 

• Nominal condition. Figure 40, Figure 41 and Figure 42 present the comparison of the 

true bias of the system, computed by the moving averages and the bias estimated by the 

ZUPT and TCZUPT filters.  

• Residual bias after rough initial alignment of 15 degrees/h (Earth's rotation rate). Since 

the considered gyro is not tactical grade, this residual error is compatible with its 

performance. Figure 43, Figure 44 and Figure 45 present the comparison of the true 

bias of the system, estimated by the moving averages and the bias computed by the 

ZUPT and TCZUPT filters. 

Table 9. Mean value of residuals of the moving average. 

 Calibrated Gyro Data Non-Calibrated Gyro Data 

x 

y 

z 

1.68 x 10-06 rad/s 

2.98 x 10-06 rad/s 

3.43 x 10-06 rad/s 

9.53 x 10-06 rad/s 

6.80 x 10-06 rad/s 

1.03 x 10-05 rad/s 

 

Figure 38. Input data of the standard ZUPT filter. 
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Figure 39. Input data of the TCZUPT filter. 

 

Figure 40. Gyro bias (nominal condition, x-axis). 

 

Figure 41. Gyro bias (nominal condition, y-axis). 
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Figure 42. Gyro bias (nominal condition, z-axis). 

 

Figure 43. Gyro bias (residual error of 15 degrees/h, x-axis). 

 

Figure 44. Gyro bias (residual error of 15 degrees/h, y-axis). 
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Figure 45. Gyro bias (residual error of 15 degrees/h, z-axis). 

It is possible to notice that both in nominal conditions and in the case of a residual initial 

alignment error of 15 degrees/h the standard ZUPT and TCZUPT filters converge to the true 

bias of the system. The bias estimated by the standard ZUPT and TCZUPT filters 

respectively converge to the bias of calibrated gyro output and non-calibrated gyro output. 

However, in the case of a residual initial alignment error, the TCZUPT filter is faster (Figure 

40-Figure 45). Indeed, the TCZUPT filter is not based on direct correction of thermal bias 

(as the standard ZUPT filter), but on the estimation of the derivative of bias as a function of 

temperature. Therefore, it is faster in mapping significant bias variations. Table 11  presents 

the convergence time of the standard ZUPT and TCZUPT filters in case of residual error of 

15 degrees/h. A threshold of 1.00 × 10−05 rad/s has been considered in defining the 

convergence time. 

This is an important result for many applications that require a very fast ZUPT process, 

like missile systems. The TCZUPT filter also presents better performance in the overall 

interval. This result can be useful in the case of stationary condition for long timeframe, 

e.g., the aircraft in parking stall for a time longer than the usual in a sunny day. An important 

advantage of the proposed procedure is that only a single software component is needed to 

estimate the bias during real-time operation of the unit, i.e., the TCZUPT algorithm. This 

aspect will reduce the computational burden and improve the accuracy, reliability, and 

maintainability of the IMU processing software with respect to the standard process that 

requires that two different components must operate in cascading conditions, such as 

pointwise calibration software and standard ZUPT filter. 
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Table 10. RMS error of ZUPT and TCZUPT filters. 

Nominal Conditions 

 Standard ZUPT filter TCZUPT filter 

x 

y 

z 

4.15 x 10-05 rad/s 

7.48 x 10-05 rad/s 

6.07 x 10-05 rad/s 

5.33 x 10-05 rad/s 

2.97 x 10-05 rad/s 

3.30 x 10-05 rad/s 

Residual Error of 15 degrees/h 

 Standard ZUPT filter TCZUPT filter 

x 

y 

z 

3.98 x 10-05 rad/s 

9.72 x 10-05 rad/s 

8.17 x 10-05 rad/s 

4.13 x 10-05 rad/s 

3.88 x 10-05 rad/s 

3.01 x 10-05 rad/s 

 

Table 11. Convergence time of the ZUPT and TCZUPT filters in case of residual error of 15 degree/h. 

 Standard ZUPT Filter TCZUPT Filter 

x 140s 65s 

y 345s 127s 

z 85s 53s 

 

Finally, to assess the statistical significance of the variations between the results for the 

x, y, and z axes, the testing data set has been divided in 5 data sets corresponding to 5 min 

of acquisition. Then, the ZUPT and TCZUPT filters have been tested on these data sets. 

Table 12 shows the mean and standard deviation of the RMS error in nominal conditions, 

while Table 13 presents the mean and standard deviation of the RMS error in case of a 

residual initial alignment error of 15 degree/h. ZUPT and TCZUPT filters performance is 

slightly different for the three axes, since each gyro has different characteristics, even if all 

of the three gyros are of the same type. However, the small values of the standard deviation 

indicate that, for each axis, the performance of the ZUPT and TCZUPT filters is fairly stable. 
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Table 12. Mean and Standard Deviation of the RMS error (nominal conditions, 5 data sets). 

Standard ZUPT Filter 

Axis Mean Standard Deviation 

x 3.42 × 10−5 rad/s 0.77 × 10−5 rad/s 

y 3.58 × 10−5 rad/s 0.89 × 10−5 rad/s 

z 4.36 × 10−5 rad/s 0.82 × 10−5 rad/s 

TCZUPT Filter 

Axis Mean Standard Deviation 

x 4.70 × 10−5 rad/s 0.61 × 10−5 rad/s 

y 2.63 × 10−5 rad/s 0.65 × 10−5 rad/s 

z 3.89 × 10−5 rad/s 0.70 × 10−5 rad/s 

 

Table 13. Mean and Standard Deviation of the RMS error (residual error of 15 degree/h, 5 data sets). 

Standard ZUPT Filter 

Axis Mean Standard Deviation 

x 6.49 × 10−5 rad/s 0.92 × 10−5 rad/s 

y 8.88 × 10−5 rad/s 0.92 × 10−5 rad/s 

z 7.16 × 10−5 rad/s 0.79 × 10−5 rad/s 

TCZUPT Filter 

Axis Mean Standard Deviation 

x 3.81 × 10−5 rad/s 0.54 × 10−5 rad/s 

y 4.58 × 10−5 rad/s 0.84 × 10−5 rad/s 

z 3.36 × 10−5 rad/s 0.35 × 10−5 rad/s 

 

4.3. Improving consumer grade MEMS gyros performance by 

redundancy 

4.3.1.  Introduction 

Last generation consumer grade MEMS gyros have several distinctive features that 

make their use of interest also for professional navigation applications such as the ones 

related to attitude determination of advanced small UAS, such as reduced weight, compact 

configuration, low power consumption and easy integration with electronic boards. 

Conversely, the overall error is more than an order of magnitude worse than industrial grade 

sensors (Barbour et al. 2011). 
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However, recent advancements in electronics have reduced the weight, cost, and size of 

various sensors, thus allowing for multiple sensors to be integrated into many existing 

systems for various applications (Rhudy et al. 2012). By assembling a set of inertial sensors 

with a certain designed configuration, the redundancy of each axis in the navigation 

framework can be efficiently improved, as well as the accuracy of the whole IMU. Indeed, 

the IMU can make full use of the redundant observation data of these sensors, by averaging 

multiple measurements about the same axis (Cheng et al. 2014; Jafari 2015; Wander & 

Förstner 2013). 

This chapter proposes a high-performance and low-cost calibration solution for 

consumer grade MEMS gyros. It consists in adopting a redundant sensors configuration, i.e. 

a defined number of sensors placed on the faces of a regular polyhedron. This configuration 

guarantees a partial self-calibration of typical inertial sensors biases, reducing the 

uncertainty in attitude determination (Fontanella et al. 2018c).  

To test the proposed method, the world’s densest sensor board, which is the 

SensorTileTM, by ST MicroelectronicsTM has been adopted. SensorTileTM is a miniaturized 

tile-shaped development board that includes suitable sensors to remotely sense and measure 

motion, environmental and acoustical parameters. 

4.3.2.  Exploiting redundancy 

The adoption of redundant IMU geometries allows for reducing the level of gyros bias. 

Indeed, if a redundant configuration composed by N sensors is realized by placing them 

with fixed orientation with respect to the IMU internal reference system, the standard 

deviation of bias in the redundant configuration �l°,± can be derived as a function of the 

corresponding value for a single axis gyro �l² , as follows: 

�l°,± % �l²�∑ cos6 ¶W,Z�W\H·  (38)

where ¶W,Z is the angle between the i-th sensor axis and the j-th IMU axis. Eq. (38) assumes 

that angular rate measurement on each IMU axis is determined by averaging the projections 

of gyros measurements. Eq. (38) can be rewritten as follows: 
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�l°,± % '± ∙ �l² (39)

where the term '± (0 < '± < 1) represents the fraction of improvement obtained by 

performing redundant measurements. This term is given as follows: 

'± % 1
�∑ cos6 ¶W,Z�W\H·  (40)

The best solution to apply redundancy is to place the sensors on the faces of regular 

polyhedra, i.e. polyhedra that have all faces formed by the same regular polygon. They have 

the property that the directions that are orthogonal to each face are also uniformly distributed 

on a sphere. Thus, this configuration guarantees a three-dimensional space uniform error for 

any direction of IMU axis. Currently, regular polyhedra can be generated only for up to 20 

faces, i.e. the icosahedron. In addition, there is the tetrahedron with four faces, the cube with 

six faces, the octahedron with eight faces, and the dodecahedron with twelve faces. 

The simplest configuration to be realized as a prototype is the cubic one. Therefore, a 

cubic configuration of consumer grades MEMS inertial sensors has been realized and tested. 

To estimate the improvement determined by redundancy, a proper selection of IMU internal 

reference system must be performed. In the case of a cubic configuration, the selection is 

very simple, since the direction orthogonal to each couple of parallel faces can be selected. 

It is worth noting that the improvement of '± does not depend on the number of faces 

of the regular polyhedron, but on the total number of sensors installed. Considering the cubic 

configurations, the values of '± are determined as reported in Table 14. The values of '± 

are purely theoretical, since some misalignment must be accounted for. However, this can 

be reduced to a negligible term during calibration. 

Table 14. Fraction of gyro bias standard deviation for each redundant cubic configuration. 

Config. no. Gyros per face Total number of gyros ¸¹ 

1 0.5 (no redundancy) 3 1 

2 1.0 (two sensor per axis) 6 0.71 

3 1.5  (three sensors per axis) 9 0.58 

4 2.0 (four sensors per axis) 12 0.50 

5 3.0 (six sensors per axis) 18 0.41 
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4.3.3.  Reference hardware system 

The core of the redundant configuration is the world’s densest sensor board, the 

SensorTileTM (STMicroelectronics 2017), shown in Figure 46.a, which is an embedded 

platform designed, produced and sold by ST MicroelectronicsTM. This platform has been 

equipped with different sensors mandated to detect and measure movement, environmental 

and acoustic parameters. Furthermore, a suitable development kit, the STEVAL-

STLKT01V1TM, is available on the market, which includes a cradle expansion board (Figure 

46.b) to support both software and system architecture design and a compact cradle host for 

on-field testing and data acquisition.  

With regard to the SensorTileTM, it consists of a small board, whose dimensions are 13.5 

x 13.5 mm2 and, apart from a sensor that measures acoustic quantities, it includes the 

following components useful for navigation applications: 

• A 32-bits Cortex-M4 Arm-core processor by STMicroelectronicsTM, namely 

STM32L476. The ultra-low-power microcontroller is characterized by (i) 

maximum operating frequency of 80 MHz, (ii) up to 1 Mbyte flash program 

memory, (iii) 128 Kbyte data memory, and (iv) several internal peripherals 

including those implementing Serial Peripheral Interface (SPI) and Inter 

Integrated Circuit (I²C); 

• An inertial module, the LSM6DSMTM (also called iNemoTM). It integrates a 3D 

digital accelerometer and a 3D digital gyroscope operating at 0.65 mA in high-

performance mode and enabling always-on low-power. The LSM6DSMTM 

offers real, virtual and batch sensors with 4 Kbytes for dynamic data batching. 

The various sensing elements are manufactured using specialized 

micromachining processes, while the IC interfaces are developed using 

Complementary Metal Oxide Semiconductor (CMOS) technology that allows 

the design of a dedicated circuit which is trimmed to better match the 

characteristics of the sensing element. The LSM6DSMTM has a full-scale 

acceleration range of ±2/±4/±8/±16 g and an angular rate range of 

±125/±245/±500/±1000/±2000 dps, that with the 16-bit Analog-to-Digital 

Converter (ADC) assures resolutions as low as 0.061 mg/(Least Significant Bit, 

LSB) and 4.375 mdps/LSB. With regard to the error components, iNemoTM 



89 
 

specifications list (i) an acceleration and angular rate noise density respectively 

equal to 40µg/√t� and 3.8mdps/√t�  and (ii) a bias of ±40mg and ±3 dps for 

accelerometer and gyroscope, respectively. The LSM6DSMTM includes a 

dedicated configurable signal processing unit and a SPI (up to 10MHz) 

configurable for both gyroscope and accelerometer and is characterized by high 

robustness to mechanical shock; 

• The LSM303AGRTM (also called eCompassTM). It is an ultra-low-power high-

performance system with a 3D digital linear acceleration sensor and a 3D digital 

magnetic sensor. The device has linear acceleration full scales of 

±2g/±4g/±8g/±16g and a magnetic field dynamic range of ±50 gauss with a 

magnetic sensitivity equal to 1.5mgauss/LSB and bias equal to ±60 mgauss. 

The LSM303AGRTM includes an I²C serial bus interface that supports clock 

frequency from 100kHz to 3.4Mhzand an SPI serial standard operating up to 

10MHz. The system can be configured to generate an interrupt signal for 

freefall, motion detection and magnetic field detection; 

• A pressure sensor, namely LPS22HBTM. It is an ultra-compact piezoresistive 

absolute pressure sensor that works as a digital barometer, useful for altitude 

measurement. The device comprises a sensing element and an IC interface, 

which communicates through I²C or SPI from the sensing element to the 

application controller. It is guaranteed to operate over a temperature range from 

-40 °C to +85 °C and has a measurement interval between 260-1260 hPa; 

associated with a 24-bits ADC, the sensor exhibits a sensitivity equal to 4096 

LSB/hPa for pressure and 100 LSB/°C for temperature, while its RMS noise 

value is equal to 0.0075Pa. The package is holed to allow external pressure to 

reach the sensing element; 

• The BLUENRG-MSTM. It is a very low power Bluetooth Low Energy (BLE) 

single-mode network processor, compliant with Bluetooth specification v4.2. 

The BLUENRG-MSTM can act as master or slave. The entire Bluetooth low 

energy stack runs on the embedded ARM Cortex M0 core. The maximum peak 

current is only 8.2 mA at 0 dBm of output power. Ultra-low-power sleep modes 

and very short transition times allow very low average current consumption, 
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resulting in longer battery life. The BLUENRG-MSTM offers the option of 

interfacing with external microcontrollers using SPI transport layer.  

The SensorTileTM  has all the electronic components on the top side and small 

connectors on the bottom side to plug it into the cradle expansion board.  

  

a)                                                                               b) 

Figure 46. a) SensorTile board along with all integrated components, b) cradle expansion board. 

4.3.4.  System integration 

A redundant IMU prototype has been designed and realized by using six SensorTilesTM, 

in order to compensate typical inertial sensors biases and consequently reduce the 

uncertainty in attitude determination (Figure 47). Both hardware and software solutions and 

configurations are described in the following with specific regard to the required acquisition 

constraints, i.e. raw measurements of angular velocity, acceleration and magnetic field 

synchronized by the six SensorTilesTM every 10 ms.  

The six SensorTilesTM have been mounted on the cradle expansion board. The choice 

has been made for the offered opportunity of easily mounting the SensorTilesTM on the 

cradle board without welding. Moreover, a STM32F401RETM board has been used as 

concentrator, mandated to receive the raw sensors data and send them back to the computer 
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by means of a USB-emulated serial port with a 926100 bit/s baud-rate for successive off-

line data processing through the ZUPT filter, adopted to initialize the IMU output. 

 

 

Figure 47. Redundant IMU prototype designed and realized by using six SensorTilesTM. 

4.3.4.1.  Hardware configuration 

The communication between the six SensorTilesTM and the concentrator is achieved 

through wired connections exploiting the SPI protocol. The power supply for all sensor 

cards is always provided by the concentrator via physical connections. With regard to data 

transmission between SensorTilesTM and concentrator, the following connection lines are 

required (Figure 48): 

• Two lines for full-duplex data transmission Master Input/Slave Output (MISO) 

and Master Output/Slave Input (MOSI); 

• A serial clock line from master; 

• A selection line (the so-called Chip Select, CS) of the specific sensor board. 

The SPI protocol allows to reach transmission speeds up to 10 MHz. In this 

configuration, the transmission speed has been set to 1 MHz both between the individual 

sensors (iNemoTM and eCompassTM), on the SensorTilesTM and between the SensorTilesTM 
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and the concentrator to acquire data every 10 ms according to specific requests of the ZUPT 

filter, adopted to initialize the IMU output. A wired bus has therefore been built where the 

signals of MISO, MOSI, SCK, supply line and ground are connected among the boards. 

This way, SensorTilesTM have been all powered by the 5V concentrator, thus avoiding 

unwanted ground interferences. Moreover, SB12, SB13, SB14 and SB15 were contacted in 

order to use the output pins of the cradle expansion board evidenced in Figure 48. 

4.3.4.2.  Software implementation 

The Eclipse Integrated Development Environment for C/C++ Developers has been used 

to compile, program, and debug the microcontrollers of both the SensorTilesTM and the 

concentrator. To assure a reliable and fast data acquisition and transmission, a suitable code 

has been implemented. Raw data are transmitted via serial port to MatlabTM where the 

acquired and processed data have been made available thanks to an appropriate Graphical 

User Interface (GUI) (Figure 48). The measurement procedure enlists the following steps: 

1. A user-friendly MatlabTM GUI sends, through the USB-emulated serial port, an 

acquisition start signal to the concentrator, thanks to a virtual START button; 

2. To carry out data acquisition every 10 ms, a timer peripheral of the concentrator has 

been appropriately configured; 

3. For each sampling period, the concentrator sets the value of all CS line to 0 for about 

100 ms; the falling edge of CS line acts as trigger event for the SensorTilesTM, which 

communicate with the corresponding inertial sensors (both iNemoTM and 

eCompassTM) to retrieve the associated raw measures; 

4. Once expired the acquisition time of about 100 »s, the concentrator (acting as master 

for the SPI communication) selects by means of the signal of CS, active low, the 

microcontroller of one SensorTileTM (acting as slave); 

5. The microcontroller of the SensorTileTM becomes master and communicates with 

the iNemoTM and eCompassTM modules via internal SPI in order to gain the raw data 

from the corresponding registers; 

6. Received raw data are then sent from the SensorTileTM to the concentrator; 

7. Steps from 4 to 6 are repeated for each SensorTileTM in the redundant configuration; 

all the raw data are collected in a proper array for the successive transmissions; it is 
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worth noting that, to reduce the transmission time, an integer binary format 

(corresponding to the actual ADC output of the inertial sensors) has been adopted; 

8. Finally, raw data are transmitted from the concentrator to the computer using the 

MatlabTM algorithm that processes them by multiplying each data by its sensitivity 

to achieve the measures of the quantities of interest. 

 

 

Figure 48. System integration (Hardware & Software). 

4.3.5.  Relative alignment among MEMS gyros 

The relative alignment between the six MEMS gyros can be estimated by considering 

the transformation matrixes Pcl that describe the orientation of each sensor’s body frame in 

the navigation frame North-East-Down (NED) (Groves 2013; Sotak 2010). The 

transformation matrixes are defined by a sequence of three rotations of the planes eϕiH, eθi6, eψi� comprising Euler angles ϕ (roll), θ (pitch), ψ (yaw or heading) (Cai et al. 

2011). 

The Euler angles are three angles introduced by Euler to describe the orientation of a 

rigid body. Indeed, the relative orientation between any two Cartesian frames can be 

described by Euler angles. In the case of the transformation from the navigation frame NED 
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to the body frame,  the adopted Euler angles move the reference frame to the referred frame, 

following a Z-Y-X (or the so-called 3–2–1) rotation sequence (Cai et al. 2011): 

1. YAW ANGLE, denoted by ψ, is the angle from the XNED axis to the projected vector 

of the XBODY axis on the XNED - YNED plane. The right-handed rotation is about the 

ZNED axis. After this rotation, denoted by eψi� (Eq. (41)), the NED frame transfers 

to a once-rotated intermediate frame; 

2. PITCH ANGLE, denoted by θ, is the angle from the X’ axis of the once-rotated 

intermediate frame to the XBODY axis. The right-handed rotation is about the Y’ axis 

of the once-rotated intermediate frame. After this rotation, denoted by eθi6 (Eq. 

(42)), we have a twice-rotated intermediate frame whose X” axis coincides with the 

XBODY axis; 

3. ROLL ANGLE, denoted by ϕ, is the angle from the Y” axis (or Z” axis) of the twice 

rotated intermediate frame to that of the body frame. This right-handed rotation, 

denoted by eϕiH (Eq. (43)) is about the X” axis of the twice-rotated intermediate 

frame (or the XBODY axis). 

eψi� % ¿ )© ψ  ¤=ψ 0& ¤=ψ )© ψ 00 0 1À (41)

eθi6 % ¿)© θ 0 & ¤=θ0 1 0 ¤=θ 0 )© θ À (42)

 eϕiH % ¿1 0 00 )© ϕ  �=ϕ0 & �=ϕ )© ϕÀ (43)

For each sensor, the transformation matrix from the body frame to the navigation frame 

is obtained during the initialization process, by adopting the ZUPT filter. Once obtained the 

6 transformation matrixes from the sensors’ body frames to the navigation frame PlWc  (i 

=1,…,6)  and chosen a reference orientation that can be one of the sensors’ orientations (e.g. 

face 1 in Figure 49), it is possible to compute the transformation matrixes that define the 

relative orientation of each sensor with respect to the reference. Indeed, since the 
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transformation matrixes are orthogonal (Groves 2013; Sotak 2010), an inverse 

transformation from the navigation frame to the body frame can be calculated as follows: 

Pcl % ePlci
 (44)

By adopting Eq. (44): 

Pl±lW % PclW ∙ Pl±c % ePlWc i
 ∙ Pl±c  (45)

where Pl±c  is the transformation matrix from the reference frame to the navigation frame, PlWc  is the transformation matrix from the sensors’ body frames (i = 2,…,6) to the navigation 

frame and Pl±lW is the transformation matrix from the reference frame to the sensors’ body 

frames. 

 

 

Figure 49. Faces of a cubic configuration of MEMS inertial sensors. 

4.3.6.  Application and results 

The effect of self-calibration on the determination of flight attitude has been 

investigated. The triaxial gyro output for a single face of the cubic configuration is shown 

in Figure 50. Data have been acquired at a sampling frequency of 100 Hz, for 2 minutes. 

The aim of this test is to determine if the self-calibration due to redundancy provides an 

advantage in case the unit needs to integrate free-inertial equations when GNSS data is 

missing, and no aiding information can be provided. To this scope, the quaternion approach 

has been adopted (Savage 1998). Figure 51 compares the trend with time of rotation angles θ (see Eq. (35)), obtained 1) by integrating a single gyro output and 2) by adopting a cubic 
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sensors’ configuration. Table 15 presents the time in which the flight attitude accuracy meets 

the requirements imposed by (FAA 2012). Being tred the time taken by exploiting the 

redundant configuration and t the time taken by considering a single gyro output, Δt% is 

computed according to Eq. (46). 

Δt% % <±Á- & << ∗ 100 (46)

 

Figure 50. Triaxial MEMS gyro output. 

 

 

Figure 51. Trend of the rotation angle θ with time. 
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Table 15.  Time in which the flight attitude accuracy meets the imposed requirements. 

θ [rad] tred [s] t [s] Δt% 

1.70 x 10-3  1.80 1.43 25.87 

3.50 x 10-3  2.50 2.00 21.95 

8.70 x 10-3 4.00 2.80 44.96 

1.75 x 10-2 7.00 3.75 87.73 

 

In the absence of GNSS, the navigation system relies on dead reckoning navigation, so 

that accuracy tends to degrade in direct proportion to time and distance travelled (Barbour 

2010). Indeed. inertial sensors are dead-reckoning sensors (Titterton & Weston 2004), that 

is a measurement depends on the previous ones through integration. Therefore, 

measurement errors accumulate with time. However, redundancy guarantees the partial 

sensors’ bias self-calibration. Therefore, by exploiting a redundant configuration, the time 

in which the flight attitude accuracy meets the requirements imposed by (FAA 2012) can be 

significantly increased (Table 15). Moreover, the redundant configuration is more robust 

and a graceful degradation can be realized in case of single-sensor failure. 
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Chapter 5 

Solutions for Mission Management 

5.1. UAS Trajectory Prediction 

5.1.1.  Introduction 

In a scenario of rapid growing small UAS applications, a trajectory prediction tool is 

needed to allow the UTM system to predict separation and collision threats within a safe 

time-frame. However, the diverse vehicle types, configurations, operational objectives, 

range, and endurance pose significant challenges to the UTM system (Ishihara et al. 2016). 

Moreover, since they are light in weight, relatively slow, and operate at low altitudes (< 400 

ft. AGL), small UAS are most likely operating within the Atmospheric Boundary Layer 

(ABL) and are subjected to varying frequency of changes in environment within the ABL 

(Ren et al. 2017). 

The requirements for a trajectory prediction tool for small UAS are listed below 

(Castillo-Effen et al. 2017) (Ren et al. 2017) (D’Souza 2017) (Ishihara et al. 2016):  

• It should be generalized to accommodate multiple vehicle types and airspace 

environments (wind, terrain, etc.); 
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• Since trajectory predictions may feed real-time decision support tools, the 

predictions should be generated rapidly; 

• As more experimental validation data become available, it should be possible to 

increase the accuracy of the trajectory prediction tool; 

• Trajectory predictions should allow for adaptation to multiple uses. They may be 

used in conjunction with tools to determine potential risks, to protect other airspace 

users, or to take risk mitigation measures. 

Several recent studies have considered the trajectory prediction problem.  To address 

the need to develop methods that can rapidly integrate and regulate the diverse UAS 

trajectories entering the airspace, an algorithm utilizing a kinematic fixed-wing model is 

presented in (Ishihara et al. 2016). The algorithm was simulated with the UAS flying at 

constant altitude in a uniform wind field to achieve required arrival times. In (D’Souza et 

al. 2016; D’Souza 2017), a generalized six-degree-of-freedom (6DoF) multirotor trajectory 

model to identify vehicle performance in the presence of wind is described.  Moreover, 

ongoing work on developing a trajectory prediction model that uses kinematic equations of 

motion to determine future state of the UAS is presented in (Tyagi et al. 2017).  These 

equations use a pre-defined lookup table to estimate bounds on UAS performance under the 

given state. Finally, a framework for the development and validation of trajectory modelling 

and prediction methods for the diverse small UAS types under nominal environment and 

under a variety of realistic potential hazards, including adverse environmental conditions 

and vehicle and system failures, is presented in (Ren et al. 2017). 

A trajectory prediction tool for UAS, based on the use of Learning Vector Quantization 

(LVQ) Neural Networks (Fontanella et al. 2017b) is proposed in this chapter. LVQ Neural 

Networks, introduced by T. Kohonen (Kohonen 1989, 1990), are composed by a first 

competitive layer and a second linear layer. The linear layer transforms the competitive 

layer’s classes into target classifications defined by the user (Shen & Chen 2009). They can 

exploit flight data collected when the UAS executes a pre-assigned flight path to support 

trajectory prediction in standard traffic scenarios, by using an adaptive model learned during 

the network training.  
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5.1.2.  UAS trajectory model 

The model proposed in this thesis is based on the discretization of a generic trajectory 

in a certain number of elements. Figure 52 shows an example of such trajectory between an 

initial point A and a final point B, divided in 6 elements. Since UAS speed is approximately 

constant in straight elements, the trajectory has been discretized in elements with a not-null 

angle between two adjacent segments. This model can be used to predict the time taken by 

the UAS to fly through each element, which can be obtained by estimating the speed 

variation ∆VW:  
<W % Â Q|VWcW�| + ∆VWS⁄  (47) 

where |VWcW�| is the initial UAS speed in the element ¤, Â is the length of the element and <W 
is the time taken by the UAS to fly through the element ¤. 

 

Figure 52. Example of a generic UAS trajectory between the initial point A and the final point B. 

In the reported model, the two segments that compose each element have a fixed length. 

Thus, the shape of each element depends only on the angle between the two segments. Since 

trajectories are sensitive to wind, due to small UAS size and low operational altitude (Xue 

2017), wind data over the course of the operation plan should be integrated into the current 

framework. Therefore, the representative features of UAS trajectories are: 

1. The angle between the two segments that compose an element of trajectory (ÃS; 

2. The wind direction referred to the first segment (ÃÄS; 

3. The wind speed (|VÄ|S. 
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For each feature, a certain number of classes are considered as a trade-off between the 

required accuracy and the processing loads. If the number of classes increases, the accuracy 

of the model will improve, but the computational load will increase. Since future scenarios 

envisage the use of UAS within intense traffic systems, it will be essential to use tools able 

to predict trajectories rapidly (Ishihara et al. 2016). Furthermore, a discretization with more 

classes leads to an increase of the confusion between near classes. Therefore, it is better to 

realize a reliable and faster tool, even though less accurate, with a limited number of classes. 

It is also necessary to consider the symmetry of the problem. For example, the two 

conditions shown in Figure 53 have a symmetric combination of features. In the figure,  VWcW� 

is the initial UAS velocity, VÄ is the wind velocity, � and N are respectively the North and 

East directions. It is possible to notice a symmetry between the shape of the element (in 

terms of the angle between the two segments) and the wind direction. The symmetric 

combination of features can simplify the problem, reducing the number of classes. 

Therefore, the following classes have been considered: 

1. Four classes for the angle between the two segments that compose each trajectory 

element: 

Ã % e0,45, 90,135i��Å;��  (48)

2. Eight classes for the wind direction: 

ÃÄ % e0,45, 90,135,180,225,270,315i��Å;��  (49)

3. Four classes for the wind speed: 

|VÄ| % e2.5, 5, 7.5,10i #   (50)

The numeric values in Equations (48), (49) and (50) are the centres of the classes. It is 

worth noting that, for the symmetry of the problem, only four classes for the relative angle 

between the two segments that compose each trajectory element have been considered. 
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Figure 53. Symmetric combination of features. 

5.1.3.  Trajectory prediction through LVQ Neural Networks 

5.1.3.1.  LVQ Neural Networks general description 

This thesis proposes a tool that employs LVQ Neural Networks (Kohonen 1989, 1990) 

to predict the time taken by the UAS to fly through the elements in which the trajectory has 

been discretized. Learning Vector Quantization is an adaptive method for data classification 

(Melin et al. 2014) based on training data with the desired class information (Karayiannis 

1997). A comprehensive review of the most relevant supervised LVQ algorithms is 

presented in (Nova & Estévez 2013). 

The training procedure consists of two steps, a first stage of unsupervised learning for 

data clustering (Jang et al. 1997) and a second stage of supervised learning to obtain class-

labelled prototypes (classifiers) (Nova & Estévez 2013). During the first stage, the centres 

of the clusters (or weight vectors) are identified to represent the dataset without the class 

information (Melin et al. 2014). The number of clusters can be specified a priori, or by some 

clustering techniques capable of adaptively adding new clusters as needed (Melin et al. 

2014). After obtaining the clusters, their classes must be labelled by the voting method (a 

cluster is labelled as class k if most of the data within the cluster belonging to the class k) 

(Melin et al. 2014). This process is based on the general assumption that the input data that 

are similar, usually belong to the same class (Jang et al. 1997). During the second stage of 

supervised learning, the class information is used to refine the position of the centres of the 

clusters and thus minimize the number of misclassified cases (Melin et al. 2014).  
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From the structure perspective, the LVQ Neural Network is composed by three layers, 

such as an input layer, a competitive layer and an output layer (Shen & Chen 2009). In the 

network, the input layer and competitive layer are fully connected, since all the units in the 

input layer are connected to all the neurons in the competitive layer with connection weights, 

whereas the competitive layer and output layer are partly connected, since the components 

of the resultant vector are binary values 0 and 1 (Shen & Chen 2009). The training algorithm 

is summarized as follows:  

1. Initialize the centres of clusters (or weight vectors) (Shen & Chen 2009), (Melin et 

al. 2014); 

2. Label each cluster by the voting method (Melin et al. 2014); 

3. Select the winning neuron in the output array, for each input vector. Indeed, the 

output layer output only one neuron, which is called winner neuron. The winner 

neuron is selected as the neuron with the minimum distance between an input 

vector x and its connection weight vector w. The LVQ algorithm calculates directly 

the Euclidean distance (Melin et al. 2014): 

BQÇ, �S % TQÇH & �HS6 + ⋯ + QÇc & �cS6 (51)

The winner neuron is allowed to output “1” and other neurons are restrained to 

output “0” (Shen & Chen 2009); 

4. The centres of clusters are tuned to approximate the desired result. If x and w belong 

to the same class, w will move toward x, otherwise w will move away from x. In 

other words, if x and w belong to the same class, w will be updated by: ∆Ç % jQ� &ÇS otherwise, w will be updated by: ∆Ç % &jQ� & ÇS where j is the learning rate, 

a positive constant to be decremented in each iteration (Melin et al. 2014). 

It is worth noting that the training procedure described above should be performed only 

one time for each UAS. Then, the so trained LVQ Neural Network can be used to estimate 

the time taken by the UAS to fly any type of future trajectory by discretization in elementary 

parts, in several wind conditions. The main advantage of using LVQ Neural Networks is the 

possibility to create different models for the different UAS types, being the Neural Networks 
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self-adaptive in constructing a mathematical model, after several repetitive learning and 

testing phases. 

5.1.3.2.  LVQ Neural Networks for trajectory prediction 

LVQ Neural Networks for trajectory prediction have been built and trained by using the 

Matlab Neural Networks ToolboxTM. Figure 54 shows the Neural Network structure adopted 

in this application, whereas the training process is shown in Figure 55. The input layer has 

3 neurons, which correspond to the angle between the two segments that compose each 

trajectory element, the wind direction and the wind speed. The output is the UAS speed 

variation in the elements in which the trajectory has been discretized. By knowing the speed 

variation, it is possible to compute the time by Eq. (47). 

As explained above, the LVQ Neural Network has a first competitive layer and a second 

output (or linear) layer. The classes learned by the competitive layer are referred to 

as subclasses, whereas the classes learned by the output layer as target classes. Both the 

competitive and output layers have one neuron per (sub or target) class (Hagan et al. 1996). 

Thus, the competitive layer can learn up to S1 subclasses, where S1 is the number of 

competitive neurons. These, in turn, are combined by the output layer to form S2 target 

classes, where S2 is the number of output neurons. S1 should be always larger than S2 (Hagan 

et al. 1996).  

In this application, the number of classes in which the input parameters must be 

classified is the number of all the combinations between the input parameters that is 4 x 8 x 

4 = 128. Consequently, the output layer is composed by 128 neurons, whereas the 

competitive layer is composed by a multiple of the number of neurons in the output layer. 

In the reported model, a competitive layer composed by 128 x 2 = 256 neurons is used, as a 

trade-off between the computational burden and the prediction accuracy. Indeed, the larger 

the competitive layer, the more clusters the network can learn, and the more complex 

mapping of input to target classes can be made. However, the computational burden will 

increase (Hagan et al. 1996). 
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Figure 54. LVQ Neural Network structure adopted for trajectory prediction.  

 

Figure 55. LVQ Neural Network training process. 

5.1.4.  Experimental tests 

5.1.4.1.  Tests description 

The trajectory prediction tool has been tested on DJI Phantom 4TM flight data. The 

Phantom 4TM is shown in Figure 56, whereas Table 16 presents its characteristics (DJI 

2018). Several experimental tests have been performed by flying the Phantom 4TM in 
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waypoint mode. Waypoint navigation is defined as the process of automatically following 

a predetermined path defined by a set of geodetic coordinates (Bruch et al. 2002). In other 

words, once selected the waypoints, the speed and the altitude, the UAS flies automatically, 

covering all waypoints. The selected waypoints are shown in Figure 57, where VÄ is the 

wind velocity during the experimental tests and � and N are the North and East directions. 

 

Figure 56. DJI Phantom 4TM. 

Table 16. DJI Phantom 4TM specifications. 

Weight (Battery & Propellers Included) 1380 g 

Diagonal Size (Propellers Excluded) 350 mm 
Max Ascent Speed S-mode: 6 m/s 
Max Descent Speed S-mode: 4 m/s 
Max Speed S-mode: 20 m/s 
Max Tilt Angle S-mode: 42° 

A-mode: 35° 
P-mode: 15° 

Max Angular Speed S-mode: 200°/s 
A-mode: 150°/s 

Max Service Ceiling Above Sea Level 6000 m 
Max Wind Speed Resistance 10 m/s 
Max Flight Time Approx. 28 minutes 
Operating Temperature Range 0° to 40°C 
Satellite Positioning Systems GPS/GLONASS 
Hover Accuracy Range Vertical: 

±0.1 m (with Vision Positioning) 
±0.5 m (with GPS Positioning) 
Horizontal: 
±0.3 m (with Vision Positioning) 
±1.5 m (with GPS Positioning) 

The experimental tests have been performed by using the software UgCSTM of SPH 

EngineeringTM to guarantee a central management of the flight. First of all, missions have 
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been planned by using the UgCSTM Mission Editor (SPH Engineering 2018). The Mission 

Editor has also been used to flight and control missions in real-time. Finally, telemetry data 

acquired in real-time have been used to train and test the LVQ Neural Network in Figure 

54. As shown in Figure 57, two trajectories have been designed to test the proposed tool. 

They can be discretized in elements characterized by a different shape and wind direction. 

The UAS has flown both trajectories for 10 times. Flight data of the first 7 times have been 

used to train the Neural Network, whereas flight data of the last 3 times have been used to 

test the Neural Network.  

The UAS speed and altitude, selected by the remote controller, are respectively 3.33 

m/s and 12.00 m. However, the speed is not constant during flight tests. It changes due to 

different factors, among which the most relevant, identified in this thesis, are: the shape of 

the considered trajectory element, the wind direction and the wind speed. During the 

experimental tests, the wind velocity was 2.78 m/s in the North-North East direction. 

 

Figure 57. Selected waypoints. 

5.1.4.2.  LVQ Neural Networks training data 

The LVQ Neural Network has been trained on the four elements highlighted in Figure 

58, represented in the local projected coordinate system in Figure 59, Figure 60, Figure 61 

and Figure 62. In order to make the dimensions clearer, the difference with respect to the 
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minimum coordinate is represented in both directions. The elements are composed by two 

segments of a fixed length of 10 m, in order to simplify the Neural Network structure. 

Indeed, it is possible to use a variable length, but it must be considered as another input in 

the LVQ Neural Network structure.  

 

Figure 58. Trajectory elements used to train the LVQ Neural Network. 

 
Figure 59. 1st training element in the local projected coordinate system. 
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Figure 60. 2nd training element in the local projected coordinate system. 

 

 
Figure 61. 3rd training element in the local projected coordinate system. 
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Figure 62. 4th training element in the local projected coordinate system. 

The angle Ã between the two segments that compose each trajectory element can be 

computed in Eq. (52). 

)©  Ã % VH ∙ V6|VH| ∙ |V6| (52)

The scalar product VH ∙ V6 is computed as follows: 

VH ∙ V6 % VH� ∙ V6� + VH� ∙ V6� (53)

In Eq. (52) and (53), VH and V6 are the UAS velocity respectively in the first and second 

segment, VH�, VH� and V6�, V6� are the components of VH and V6 respectively in the North 

and East direction, |VH| and |V6| are the magnitudes of VH and V6 (Equation (54) and (55)). 

|VH| % �VH�6 + VH�6 (54)

|V6| % �V6�6 + V6�6 (55)

In the same way, the angle ÃÄ, which is the wind direction referred to the first segment, 

can be computed by Eq. (56). 
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)©  ÃÄ % VH ∙ V�|VH| ∙ |V�| (56)

The scalar product VH ∙ V� is computed as follows: 

VH ∙ V� % VH� ∙ V�� + VH� ∙ V��  (57)

In Eq. (56) and (57), VH is the UAS velocity in the first segment of the considered trajectory 

element, V� is the wind velocity, VH�, VH� and V��, V�� are the components in the North 

and East directions of VH and VÄ, |VH| and |V�| are the magnitudes of VH and VÄ (Eq. (54) 

and (58)).  

|V�| % �V��6 + V��6 (58)

The 1st training element (Figure 59) is characterized by: 

• Ã % 72°; 

• ÃÄ % 64°; 

• ∆V = 0.25 m/s. 

The 2nd training element (Figure 60) is characterized by: 

• Ã % 105°; 

• ÃÄ % 140°; 

• ∆V = 0.35 m/s. 

The 3rd training element (Figure 61) is characterized by: 

• Ã % 80°; 

• ÃÄ % 90°; 

• ∆V = 0.35 m/s. 

The 4th training element (Figure 62) is characterized by: 

• Ã % 130°; 

• ÃÄ % 170°; 

• ∆V = 0.40 m/s.  

The speed variation ∆V is computed by using telemetry data of the experimental tests. 
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5.1.5.  Tool application and results 

The LVQ Neural Network trained on the experimental data described above is used to 

predict the time taken by the UAS to fly through the elements highlighted in Figure 63. 

These two elements are represented in the local projected coordinate system in Figure 64 

and Figure 65. As explained above, the UAS has flown both trajectories shown in Figure 57 

for 10 times. Data of the first 7 flights have been used to train the Neural Network (by 

considering the elements highlighted in Figure 58), whereas data of the last 3 flights have 

been used to test the Neural Network (by considering the elements highlighted in Figure 

63). 

Table 17 shows the performance of the trajectory prediction tool, where: 

• <�� is the time predicted by the LVQ Neural Network; 

• <�Á�É is the real time taken by the UAS, computed by using telemetry data of the 

experimental tests; 

• �% is the percentage error, calculated as follows: 

�% % |<�� & <�Á�É|<�Á�É ∙ 100 (59) 

 

Figure 63. Trajectory elements used to test the LVQ Neural Network. 
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Figure 64. 1st testing element in the local projected coordinate system. 

 

Figure 65. 2nd testing element in the local projected coordinate system. 
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Table 17. Trajectory prediction tool performance. 

 ÊËË ÊÌÍÎÏ Í% 

1st element 27.27 s 

26.15 s 4.28 % 

26.28 s 3.77 % 

28.18 s 3.23 % 

2nd element 25.13 s 

25.67 s 2.10 % 

24.50 s 2.57 % 

26.00 s 3.35 % 

 

The time taken by the UAS to fly the same trajectory elements can be slightly different 

during the experimental tests, due to multiple environmental factors. However, the 

application of LVQ Neural Networks guarantees a prediction performance fully compatible 

with the intended applications of assessing UAS trajectory feasibility in a timely manner 

and aiding autonomous decision-making systems for UAS. It is also worth noting that the 

proposed tool allows creating different models for the myriad of different UAS types in 

several wind conditions, being the ANNs self-adaptive in constructing a mathematical 

model after several training and testing steps. 

5.2. Standardized Procedures for Decision-Making 

5.2.1.  Introduction 

Due to the rapid growth in small UAS operations at low-altitude, the UTM system will 

have to manage numerous operations in real-time. However, the diverse small UAS types, 

configurations, operational objectives, range, and endurance pose significant challenges for 

the UTM system that expects a certain type of behaviour. This diversity is primarily driven 

by the low-cost and rapid development cycle to conceptualize, test, and deploy a new system 

for a given application or market need (Ishihara et al. 2016; Paulson et al. 2017). 

Furthermore, UAS can be equipped with different types of payload, among them cameras 

and microphones are the most often used (Vergouw et al. 2016). This scenario is 
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characterized by the continuous development of new technologies (Doukhi et al. 2017; 

Kelner & Ziółkowski 2017). 

Technological advances in UAS research are fundamentally based on the need of 

satisfying the user's requirements and the flight regulations. Consequently, taking into 

account the large spectrum of potential applications and the relative user's requirements, it 

is worthwhile to try to develop a standardized approach for decision-making process to 

select optimal UAS / payload configurations that cover the maximum number of missions 

and the current and future flight regulations (ICAO 2013). 

This aim can be achieved by a software tool able to adapt to the UAS ever-changing 

scenario, characterized by a high tendency to automation, the continuous development of 

new technologies and the evolution of regulations (Fontanella et al. 2017d, 2017c). The 

proposed tool can improve both the efficiency and the safety in UAS operations, speed up 

the flight authorization process by the UTM system, and support the increasing level of 

autonomy in UAS operations. 

5.2.2.  Methodology 

5.2.2.1.   Tool description 

The tool is developed in JAVA in order to be compatible with all operating systems. It 

is linked to an external eXtensible Markup Language (XML) database composed by several 

UAS and payload types. The great advantage of the XML database is the possibility to 

organize large amount of data in a dataset easily usable by the tool. The XML database can 

be stored on a different server and updated online, considering all new technologies that will 

be developed with time. The tool processing logic, presented in Figure 66, can be 

synthetized by the following steps: 

1. The user can set the mission requirements and the weather conditions in the user-

input interface; 

2. The typical features for each considered mission are identified, through the missions 

vs. features compliance matrix presented in Section 5.2.2.2; 

3. Then, the equipment that should be required, or might be required for the features 

identified in the previous step, in terms of navigation systems, data links and systems 
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to ensure the situational awareness, is defined through the features vs. equipment 

compliance matrix presented in Section 5.2.2.3; 

4. Finally, the equipment that should be required, or might be required for each selected 

mission, in terms of navigation systems, data links and systems to ensure the 

situational awareness, is defined through the missions vs. equipment compliance 

matrix, obtained by the two previous steps and presented in Section 5.2.2.4; 

5. Once the above process is completed, the tool will suggest off-the-shelf solutions to 

realize the customer needs, in terms of hardware (e.g. UAS frame-structure and 

payload characteristics) and prescriptions (e.g. weight and cost), taking into account 

the current regulations. This function can be realized since the tool is linked to the 

XML database of existing subsystems. A requirements database is also included in 

the tool and can be updated by considering the evolution of regulations; 

6. In case multiple solutions are identified, a strategy to measure the level of suitability 

of each solution to the considered mission is included in the tool. By using a scoring 

system defined by the user in the input interface, the tool classifies the available 

UAS / payload configurations, selecting the most advantageous. 

 

Figure 66. Tool processing logic. 

5.2.2.2.   Missions vs. features 

The main problem which affects the technological development of UAS is certainly 

connected to the need of maintaining a high level of safety integrating UAS into the civil 

airspace. In Ref. (Amazon.com Inc. 2015), the UAS capabilities required to access to a 

specific airspace are catalogued in four classes: Basic, Good, Better and Best. However, 

these requirements need to be further analysed and widen also taking into account safety 
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and security boundary conditions arising from each possible application in which UAS can 

play a significant role (Degarmo 2004).  

In Table 18, the main considered applications and the features that characterize each of 

them are listed. The following applications have been chosen as representative for covering 

several commercial fields in which UAS are mainly used. Each of them can be considered 

as a synthesis of several others: 

• Packet delivery: e.g. goods, sanitary equipment, first aids; 

• Precision agriculture: e.g. crop monitoring, soil humidity, chemical and biological 

treatments; 

• Mapping: e.g. thematic and cartographic mapping, digital elevation model; 

• Surveillance: e.g. domestic perimeters; 

• Law enforcement: e.g. border patrolling, surveillance of hostile demonstrations; 

• Traffic monitoring: e.g. traffic flow management, monitor activities in the 

intersections; 

• Infrastructure inspection: e.g. pipelines, railways, bridges; 

• Aerial photo: e.g. filmography; 

• Communication relay: e.g. extended Ground Control Station (GCS)-to-UAS 

communication range, aerial internet; 

• Search and Rescue: e.g. natural disasters, victim detection. 

Regarding the possible operations, three cases have been considered: 

1. Visual Line of Sight (VLOS) in which the user keeps the UAS in visual-line-of-

sight at all times; 

2. Beyond Visual Line of Sight (BVLOS) in which the user does not keep the UAS 

in visual line of sight at all times, but a Line of Sight (LOS)  radio communication 

is still available between the Ground Control Station (GCS) and the UAS; 

3. Beyond Line of Sight (BLOS) in which both the LOS communication and the 

visual LOS are not available. Sometimes, it is referred as Beyond Radio Line of 

Sight (BRLOS). 

The mission profiles can be classified into three classes: 
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1. Point to Point (P2P), where the flight mission requires to reach a well identified 

destination; 

2. Hovering/Loitering, where the aircraft is limited to overfly a very small area; 

3. Area Coverage, where the application requires the aerial coverage of a large area. 

Table 18. Mission vs. features compliance matrix. 
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VLOS No Yes Yes Yes Yes No Yes Yes No Yes 

BVLOS Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

BLOS Yes No No No Yes Yes No No Yes Yes 

Mission 
Profile 

P
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overage 
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rea C
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overage 
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rea C

overage 

L
oiter 

A
rea C

overage/ 
 L
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P
2P

/L
oiter 

L
oiter 

A
rea C

overage 

Risk H L L to H L H H M L to H M M 

Interaction - 

Human 
H L L L L L L L to H L H 

Interaction - 
UAS 

H L L to M L H H L L H H 

Interaction - 

Manned 

Aircraft 

H L L L H M to H L L H H 

Landing 

Accuracy 
H L L L to M H H L to H L to M L H 

Range 
 

>5 km 

<1km  
to 

>5km 

1 km  
÷  

5 km 

1 km  
÷ 

 5 km 

<1km 
to 

>5km 

 
>5 km 

<1km 
to 

>5km 

1 km  
÷ 

5km 

<1km 
to 

>5km 

<1km 
to 

>5km 

Endurance H H L H H H H L H H 

Real-time 

Payload 

Data 

No No No Yes Yes Yes No Yes Yes Yes 

 

It is worth noting that these operational conditions are strictly related to the range, which 

is classified into three classes: <1km, 1 km ÷ 5 km and >5 km. The other features are 

classified into three levels: Low (L), Medium (M) and High (H). Range and endurance are 

strictly connected, although the coverage of large areas can be performed within a low range, 

but requires high endurance. The landing accuracy depends on how, where, and when the 

mission is performed, requiring a high accuracy in case of a small landing area such as goods 

distribution hubs or a moving vehicle, and low or medium accuracy when landing can be 
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performed in large areas such as in the case of precision agriculture or mapping, leaving to 

VLOS or GNSS the possibility of recovering the aerial platform. 

5.2.2.3.   Features vs. equipment 

For each feature, the equipment that should be required, or might be required is 

identified, in terms of navigation systems, data links and systems to ensure the situational 

awareness. The result of this analysis is the compliance matrix presented in Table 19. The 

C2 data link is considered always present. 

A. Navigation Systems. 

• For high values of maximum range and BLOS operations, high-performance navigation 

systems (such as high-performance or barometric altimeter and airspeed sensor) should 

be required;  

• High-performance navigation systems (such as advanced autopilot, advanced GNSS 

receiver and high-performance or barometric altimeter) should be required in case of 

medium and high risk missions. The use of redundant navigation units should be also 

required in high risk missions;  

• To reduce the risk related to UAS interaction with manned aircraft, an advanced 

autopilot, an advanced GNSS receiver, high-performance or barometric altimeter and a 

redundant configuration of navigation units should be required; 

• To reduce the risk related to the interaction with other UAS, an advanced autopilot, an 

advanced GNSS receiver and the barometric altimeter should be required. 

B. Data Link. 

• In case of BLOS operations, a communication network or SATCOM based link should 

be required; 

• A redundant C2 data link and an encrypted/protected C2 data link is associated to high 

risk level; 

• Payload data link is related to the necessity of real-time payload data, without a 

significant correlation with other aspects; 

• An encrypted/protected C2 data link can also reduce the risks related to UAS 

interaction with manned aircraft. 
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Table 19. Features vs. equipment compliance matrix (� - necessary; � - optional; no symbol indicates 
incompatibility). 
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Manual control �   � �  � � � � � �  � �  � � � 
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ADS-B  � � � � � � � � � � �  � � � � � � 

UAS Traffic 

monitoring system 
� � � � � � � � �  � �  � � � � � � 

Terrain Awareness and 

Warning System 

(TAWS) 

� � �  � � � �  � � �  � � � � � � 

Fixed obstacle sensors � � � � � � � � � � � �  � � � � � � 

Traffic Sensors � � � � � � � � �  � � � � � � � � � 

Autonomous Collision 

Avoidance 
� � � � � � � � �  � � � � � � � � � 

Remotely Operated 

Collision Avoidance 
� �  � � � � � �  � �  � � � � � � 

Ground Based Sense 

and Avoid 
� � � � � � � � �  � �  � � � � � � 

Autonomous Landing � � � � � � � � � � � �  � � � � � � 

Autonomous Takeoff � � � � � � � � � � � �  � � � � � � 

Lost Link Safety Mode � � � � � � � � � � � �  � � � � � � 

Contingency 

Management 
� � � � � � � � � � � �  � � � � � � 

Link to Traffic 

Infrastructure 
� � � � � � � � � � � �  � � � � � � 

C. Situational Awareness. 

• For high values of maximum range, BLOS operations and high risk level missions, 

several systems should be required, such as ADS-B (or ADS-B like),  Terrain 
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Awareness and Warning System (TAWS), fixed obstacle sensors, lost link safety mode, 

contingency management systems and collision avoidance systems.  

• Fixed obstacle sensors may reduce the risk related to UAS interaction with people, 

while ADS-B is the primary system associated with potential interaction with manned 

aircraft. 

5.2.2.4.   Missions vs. equipment 

Previous considerations regarding the features characterizing different mission types, 

and the link between technologies and mission features, can be synthesized linking missions 

and related equipment. This is done in Table 20. The table points out equipment, which 

should be required, or might be required, for the different mission types. Since each mission 

category may actually include different cases, e.g. in terms of range/endurance and 

operating scenarios (consider local vs. long range infrastructure inspection), considerations 

on required equipment actually combine different cases. However, the table is useful to 

summarize how different needs are related to technological requirements. 

Analysing the table, it is clear that packet delivery missions are among the ones that 

pose the most significant requirements regarding equipment, especially if carried out in 

urban environments. This derives from the fact that they couple different challenging 

aspects, such as long range, interaction with humans/UAS/manned traffic, flight in critical 

environments, end-to-end mission profile with possible landing in constrained areas, and 1-

to-N high level control concepts. These needs impact all navigation requirements, with 

particular emphasis on integrity, continuity and availability, besides accuracy. As in other 

cases, manual control does not represent a required technology, and can indeed be 

impractical in this mission scenario. On the other hand, it is likely that consumer grade 

avionics (e.g., including low-cost and low-performance inertial units) will not fulfil mission 

needs. This derives mainly from requirements in terms of integrity and robustness. As an 

example, protection against spoofing/jamming will be needed in critical environments. 

Also, redundancy of inertial units will increase reliability in high risk environments. The 

need to land in relatively unprepared areas is such that optical navigation techniques can 

represent a key concept to be applied. As regards data link, encryption, redundancy, and the 

capability to exploit existing communication networks are important features. Finally, in 

terms of situational awareness and decision making, UAS delivery is likely to require an 
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ample spectrum of capabilities and systems. It may be noticed that goods delivery in lower 

risk environments, outside manned/unmanned traffic routes, may represent an easier case 

thus being a good candidate for first routine operations. 

Technological needs of precision agriculture derive in part from the mission objectives. 

In particular, highly precise measurements or operations involving physical interaction with 

the crops, will likely require RTK enabled GNSS receivers and possibly high accuracy 

inertial systems. However, requirements in terms of navigation integrity and robustness with 

respect to GNSS dropouts and spoofing/jamming, and in terms of data link security, are 

significantly relaxed. At the same time, the operating environment has benign characteristics 

(low manned/unmanned traffic density) which reduces the need for autonomous situational 

awareness and decision making. Long range agriculture missions are likely to pose major 

requirements, while local operations will represent the easiest case. 

Mapping missions may ask for high accuracy navigation, however their local nature 

relaxes other requirements. This is similar to local surveillance missions, though security 

aspects and related technologies play a major role in the latter case.  

Law enforcement poses challenges in terms of situational awareness and decision 

making that are similar to packet delivery, due to the criticality of the operating 

environment. A difference is that take off and landing are likely to take place where the 

operator is, thus reducing the requested level of autonomy in these phases. 

Infrastructure related operations also comprise local (e.g., bridge inspection) and long 

range (e.g., railway inspection) operations. Longer range missions will ask for more 

advanced technologies in terms of autonomy, contingency management and interaction with 

manned/unmanned traffic.  

As regards aerial photography/cinematography, these missions have mostly a local 

nature which makes operations easier, though the operating environment (rural vs. urban) 

may pose significant safety and security requirements.  

Communication relay based on small UAS is likely to be needed in disaster scenarios, 

where additional risks could be accepted based on the situation of emergency. However, 

possibly high traffic density will require proper surveillance and decision making levels.  

Finally, search and rescue operations may pose challenges of different levels, depending 

on the environment where they are conducted.     
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Table 20. Missions vs. required equipment (� - necessary; � - optional; no symbol indicates 

incompatibility). 
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NAVIGATION                     

Manual control   � � � � � � �   � 

Autopilot with low level inertial unit  �  � � � � � � � 

Autopilot with advanced inertial unit � � �        

Standard GNSS receiver � � � � � � � � � � 

Differential GNSS receiver  � �    �    

RTK enabled GNSS receiver  � �    �    

Antispoofing GNSS receiver �   � � � �  �  

Optical Navigation Unit � �       � �   � 

High Performance Altimeter �  �  �      � 

Ultrasonic altimeter � � � � �   �    � 

Barometric altimeter � � � � � � � � � � 

Airspeed sensor � � � � � � � � � � 

Multiplation of navigation units �    � � � � � � � 

DATA LINK                     

C2 data link � � � � � � � � � � 

Redundant C2 data link �    � � � �   � � 

Encrypted/Protected C2 data link �  � � � � �  � � 

Payload data link  �  � � � � � � � 

BLOS C2 data link �  �     �    

Communication Network based C2 data link � � � � � � �  � � 

Situational awareness                     

Cooperative Collision Avoidance System � � � � � � � � � � 

TAWS � �   � � � � � � 

Fixed obstacle sensors � �  � � � � � � � 

Traffic Sensors �    � � � �  � � 

DECISION MAKING                     

Autonomous Collision Avoidance �  �  � � � � � � � 

Remotely Operated Collision Avoidance � �  � � � � � � � 

Ground Based Collision Avoidance �      � � �   � � 

Autonomous Landing � �   �   �  � 

Autonomous Takeoff � �   �   �  � 

Lost Link Safety Mode � � � � � � � � � � 

Contingency Management � � � � � � � � � � 

Link to Traffic Infrastructure �  � � � � � � � � � 
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5.2.3.  System architecture 

The tool architecture is presented in Figure 67, whereas Figure 68 illustrates the flow-

chart that summarizes how the tool works. The details about packages are reported in the 

following subsections: 

1. Reference packages (“Main” and “Data” packages); 

2. “Input/Output” package; 

3. “XML Data” package; 

4. “Test” package; 

5. “Scoring” package. 

5.2.3.1.   Reference packages 

• The “Main” package includes all the developed components; 

• The “Data” package contains the mission requirements and the weather 

conditions defined by the user in the user-input interface, the regulations 

database and the compliance matrixes defined in the previous sections. 

 

Figure 67. Tool Architecture. 
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Figure 68. Flow-chart of the tool. 

5.2.3.2.   “Input/Output” package 

The “Input/Output” package generates the user-input interface and the output interface. 

The user-input interface (Figure 69) has been designed to improve the usage of the tool by 

proposing an ergonomic interface, in which the user can choose the type of mission, set the 

mission requirements and the weather conditions, and check the current regulations and the 

XML database. The mission requirements include indications about the maximum range of 

the mission, flight altitude, payload characteristics and if a GNSS-based autopilot is 

required. The user can also select the weights of the scoring system that classifies the 

UAS/payload configurations that meet the mission requirements, in order to select the most 

advantageous.  
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Figure 69. Layout of the user-input interface. 

The output interface (Figure 70) presents: 

1. The equipment required to perform the mission, in terms of navigation systems, 

data links, and systems to ensure the situational awareness; 

2. The UAS and payload types that meet the mission requirements; 

3. The list of available UAS/payload configurations, classified by using the scoring 

system.  

 

Figure 70. Layout of the output interface. 
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5.2.3.3.   “XML Data” package 

The “XML Data” package is linked to the XML databases, which have been organized 

to contain large amount of data and to facilitate the access by the user. They have been 

structured according to the following criteria: the name of the producer, the name of the 

device, characteristics (weight, price, etc.). Having data with a fixed format makes the tool 

faster and more accurate. Table 21 presents the structure of the XML databases. In the 

current version of the tool, only different types of camera are considered, being the most 

commonly adopted payload. 

Table 21. Structure of the XML databases. 

UAS Camera 

Producer Producer 

     Name      Name 

         Cost          Cost 

         Wingspan          Type 

         Weight          Weight 

         Max Flight Time          Horizontal Field of View 

         Payload Capacity          Resolution Length 

         Max Speed          Resolution Width 

         Max Flying Altitude  

         Max Operating Range  

5.2.3.4.   “Test” package 

The “Test” package performs tests aimed to select the best UAS/payload solutions, 

comparing the UAS and payload characteristics (contained in the databases) with the 

mission requirements, the current regulations and the weather conditions.  

1. The first test compares the UAS maximum velocity with the wind speed. Indeed, 

to be able to fly and move in all directions, the relative velocity between the 

UAS and the wind must be positive (Figure 71). 
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Figure 71. Test to compare the UAS maximum velocity (VUAS) with the wind velocity (Vwind). 

2. The second test compares the UAS endurance with the maximum distance to be 

covered during the mission. It takes into account the extra energy or fuel 

consumption due to the wind. 

3. The third test compares the maximum altitude the UAS can reach during the 

flight with the altitude required to perform the mission. 

4. The last test compares the relative UAS velocity with respect to the wind with 

the maximum velocity required to perform the mission. 

Other tests are performed to check if the camera characteristics meet the requirements 

defined by the user (e.g. expected resolution, maximum size of the target). 

1. The first test compares the Horizontal Field of View (HFOV) of the different 

types of camera included in the database with the required HFOV, computed as 

follows: 

¶ % 2arctan Q Â2ℎS (60) 

where ¶ is the HFOV required to cover the size of the target, Â is the length of 

the target and ℎ is the maximum altitude authorized by the current regulations 

(Figure 72). 

 
Figure 72. Required HFOV. 
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2. The second test compares the desired ground resolution with the resolution of 

each camera included in the database at the maximum altitude allowed by the 

regulations.  

The final test is aimed to retain only the UAS types with a payload capacity higher than 

the payload weight. Figure 73 synthetizes the procedure developed for the testing phase. 

 

Figure 73. Flow-chart of the testing phase.  

5.2.3.5.  “Scoring” package 

The “Scoring” package automatically classifies the UAS/payload configurations that 

meet both the mission requirements and the current regulations, to select the most 

advantageous for the user. To each configuration, the tool assigns a score that depends on 

four parameters: the maximum endurance, the total weight and cost of the considered 

configuration and the angular resolution of the camera. The higher the score, the less the 

UAS/payload solution is close to the ideal configuration for the mission selected. 

For each parameter, the user can select two reference terms (Figure 74), i.e. the target 

value and the maximum (or minimum) acceptable value. Thus, it is possible to define three 

ranges of values: 

• Score = 0: the considered parameter meets the mission requirements; 

• Score = 1: the considered parameter no longer meets the mission requirements; 

• 0 < Score < 1: the considered parameter partially meets the mission requirements. 



130 
 

Finally, the tool assigns a weight to each score and then computes the weighted average. 

The weights can be defined by the user in the user-input interface.  

 
Figure 74. Scoring system transfer function. 

5.2.4.  Application and results 

Recently, the use of UAS equipped with small thermal, laser or spectral sensors has 

emerged as a promising alternative for assisting modelling, mapping and monitoring 

applications in rangelands, forests and agricultural environments (Salamí et al. 2014). 

Therefore, in this thesis, the mission considered to test the tool is the aerial photography of 

a field, by using a multispectral camera to obtain information (chlorophyll concentration, 

biomass monitoring) related to the productivity of the soil (Dickson et al. 2001; Navia et al. 

2016; Von Bueren & Yule 2012).  

As explained in the previous section, the user can set the mission requirements and the 

weather conditions in the user-input interface (Figure 75), check the current regulations and 

the XML database, by selecting respectively “Regulations” and “Open Database”, and 

define the weights of the scoring system, by selecting “Scoring System”. 

Table 22 and Table 23 respectively present the mission requirements and the target and 

maximum (or minimum) values to be used in the scoring system. The parameters correspond 

to a realistic mission carried out at home location of authors. The best UAS/payload 

combinations are listed by considering the cost as the most important parameter. 

The tool returns as output the equipment that should be required or might be required 

for the considered mission. The mandatory equipment is indicated with the “X” symbol in 

the output mask (Figure 76). All systems not indicated with “X” symbol can be considered 

as “suggested” rather than mandatory. Since the tool is linked to a database of existing 

subsystems, it also indicates the UAS and payload types that meet the mission requirements 

defined in the user-input interface. Finally, the tool classifies these solutions to find out the 

most advantageous. The 5 best UAS/payload configurations are listed in Table 24 . The total 
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score �)©;�
Ñ��É is calculated as reported in Eq. (61). Being a combination of the scores 

related to each parameter (range, weight, cost and endurance), �)©;�
Ñ��É can be higher 

than 1.  �)©;�
Ñ��É % �)©;���c�Á + 0.75 ∙ �)©;��ÁW�Ò� + 1.25 ∙ �)©;��Ñq� + �)©;��ÁqÑÉÓ�WÑc (61)

Table 22. Mission requirements (precision agriculture). 

Range 1500 m 

Resolution 0.05 m 

Image Size 70 x 70 m 

Altitude 50 m 

Imagery Type Multispectral 

Wind 5 m/s 

Rain No 

Order by Cost 

GNSS autopilot Yes 

 

Table 23. Target and maximum (or minimum) values for the scoring system (precision agriculture). 

Range 
Min: 1500 m 

Target: 5000 m 

Weight 
Target: 800 g 

Max: 1600 g 

Cost 
Target: 4000 $ 

Max: 7000 $ 

Angular Resolution 
Target: 0.01° 

Max: 0.06° 

 

Table 24. Best UAS/payload configurations (precision agriculture). 

UAS Camera ScoreTotal 

Phantom 4 Micro ADC 1.18 

Hexacopter Hawk Micro ADC 1.34 

Phantom 4 Snap ADC 1.56 

Based 1 Micro ADC 1.64 

Phantom 3 Micro ADC 1.65 
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Figure 75. User-input interface (precision agriculture). 

 

Figure 76. Output interface. 
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Chapter 6 

Conclusions and Future Developments 

The aim of this thesis was to support the safe integration of UAS operations, taking into 

account the user's requirements and flight regulations. The main technical and operational 

issues were identified, and two objectives were defined: 

A. Improving navigation performance of UAS by exploiting low-cost sensors. Two 

innovative calibration solutions were proposed to enhance the dead-reckoning 

performance of Micro Electro-Mechanical Systems inertial sensors for handling 

intermittent GNSS coverage in an integrated GNSS/MEMS-based inertial 

navigation solution; 

B. Proposing novel solutions for UAS mission management to support the Unmanned 

Traffic Management system in monitoring and coordinating the operations of a large 

number of UAS. 

The findings related to each objective are discussed in the following sections and some 

suggestions for further research are proposed. 
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6.1.  Improving navigation performance of UAS by exploiting 

low-cost sensors 

The thesis proposed two calibration methods for improving the dead-reckoning 

performance of MEMS gyros. The first one was the innovative Thermal Compensated Zero 

Velocity Update filter to estimate and compensate the inertial sensors bias. It is well-suitable 

for industrial grade gyros, which have significant limitations in terms of sensitivity to 

environmental conditions (Niu et al. 2013). The other method consisted in exploiting 

redundancy, which guaranteed a partial self-calibration of typical inertial sensors bias, 

reducing the uncertainty in attitude determination. It is well-suitable for consumer grades 

gyros, characterized by reduced weight, compact configuration, low power consumption 

and easy integration with electronic boards.  

6.1.1.  Thermal Compensated Zero Velocity Update filter 

The innovative Thermal Compensated Zero Velocity Update filter was proposed in this 

thesis to estimate and correct MEMS gyros bias, which drifts with temperature with a 

strongly non-linear trend (Niu et al. 2013). 

It was compared with the traditional method, characterized by a cascading of two 

processing steps. The first step consisted in performing tests in a climatic chamber over the 

requested temperature intervals, in order to derive the calibration function (by exploiting the 

polynomial fitting technique) to allow the correction of bias thermal drift during the real-

time operation of the unit (Wang et al. 2010). The second step consisted in a further 

reduction of bias that can be realized by estimating its residual amount by exploiting the 

Zero Velocity Update filter.  

The proposed Thermal Compensated Zero Velocity Update filter, instead, embedded 

the compensation of thermal effect on bias in the filter itself and used Back-Propagation 

Neural Networks to build the calibration function. 

The standard and innovative method were tested by exploiting the Attitude and Heading 

Reference System  Axitude AX1-[]TM experimental data, in two conditions, i.e. 1) nominal 

condition, and 2) residual bias after rough initial alignment of 15 degrees/h (Earth’s angular 
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rate) which was compatible with industrial grade gyros performance. The TCZUPT filter 

presented several advantages over the traditional method: 

1. No calibration pre-processing stage was required to keep measurement drift under 

control, reducing the computational burden of the IMU processing software and 

improving its accuracy, reliability, and maintainability; 

2. It accounted for the deterministic effect of temperature variations on bias drift, 

increasing the accuracy of bias estimation. In the standard ZUPT, instead, this effect 

was accounted by calibration processing and the residual uncertainty was included 

in the overall random uncertainty on bias determination; 

3. It exploited Back-Propagation Neural Networks, that, being self-adaptive in 

constructing a mathematical model after several repetitive learning and testing 

phases, guaranteed better performance on mapping the highly non-linear bias trend 

with temperature than traditional polynomial fitting; 

4. Since the TCZUPT filter was not based on direct correction of thermal bias (as the 

standard ZUPT filter), but on the estimation of the derivative of bias as a function 

of temperature: 

• It was faster in mapping significant bias variations. This is an important 

result for many applications that require a very fast ZUPT process, like 

missile systems; 

• The TCZUPT filter presented better performance in the overall testing 

period. This result can be useful in the case of stationary condition for long 

timeframe, e.g., the aircraft in parking stall for a time longer than the usual 

in a sunny day. 

6.1.2.  Redundant configuration of MEMS inertial sensors 

A high-performance and low-cost calibration solution for consumer grade MEMS gyros 

was proposed in this thesis. It exploited a redundant configuration of sensors. The proposed 

calibration solution was tested by exploiting the world’s densest sensor board, the 

SensorTileTM, by STMicroelectronicsTM. In particular, a redundant IMU prototype was 

designed and realized by using six SensorTilesTM in a cubic configuration. 

By assembling a set of inertial sensors with a certain designed configuration, the 

redundancy of each axis in the navigation framework was efficiently improved, as well as 
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the accuracy of the whole IMU. Indeed, the IMU was able to make full use of the redundant 

observation data of these sensors, by averaging multiple measurements about the same axis.  

Results showed that the adoption of a redundant IMU geometry allowed for a partial 

self-calibration of typical inertial sensors biases, reducing the uncertainty in attitude 

determination.  

6.2.  Novel solutions for UAS mission management 

This thesis proposed two solutions to support the Unmanned Traffic Management 

system in monitoring and coordinating the operations of a large number of UAS, speeding 

up the flight authorization process, and supporting the increasing level of autonomy in UAS 

operations. These solutions were developed by considering weight, size, power 

consumptions and economic limitations, and the diversity in UAS types, configurations and 

operational objectives. 

The first solution was a trajectory prediction tool, aimed at supporting the UTM system 

in predicting UAS separation and collision threats within a safe time-frame. The second 

solution was a JAVA tool, aimed at supporting standardized procedures for decision-making 

process in order to identify UAS types, payload, and prescriptions adequate for any type of 

missions that can be authorized standing flight regulations. 

6.2.1.  Trajectory prediction 

This thesis proposed a trajectory prediction tool for small UAS, based on Learning 

Vector Quantization Neural Networks. First of all, the trajectory model implemented in the 

LVQ Neural Network was described. It consisted in the discretization of a generic trajectory 

in a certain number of elements, characterized by three representative features: the angle 

between the two segments that compose each trajectory element, the wind direction and the 

wind speed. 

Subsequently, for each feature, a certain number of classes was selected as a trade-off 

between the required accuracy and the processing loads and by considering the symmetry 

of the problem. Finally, experimental tests were performed by flying the DJI Phantom 4TM 

in waypoint mode and telemetry data acquired in real-time were used to train and test the 

LVQ Neural Networks. 
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Results showed that, by exploiting flight data collected when the Phantom 4TM executed 

a pre-assigned flight path, the tool was able to predict the time taken to fly generic trajectory 

elements. Moreover, being self-adaptive in constructing a mathematical model after several 

training and testing steps, LVQ Neural Networks allow creating different models for the 

myriad of different UAS types in several environmental conditions. 

6.2.2.  Standardized procedures for decision-making 

The thesis proposed a software tool, aimed at supporting standardized procedures for 

decision-making process in order to identify UAS types, payload, and prescriptions suitable 

for any type of missions that can be authorized standing flight regulations. 

The tool was developed in JAVA and it was linked to an external eXtensible Markup 

Language database composed by several UAS and payload types, organized in a dataset 

easily usable by the tool. The XML database can be stored on a different server and updated 

online, considering all new technologies that will be developed with time, making the tool 

able to adapt to the UAS ever-changing scenario, characterized by a high tendency to 

automation, the continuous development of new technologies and the evolution of 

regulations.  

The mission considered to test the tool was the aerial photography of a field, by using a 

multispectral camera to obtain information (chlorophyll concentration, biomass monitoring) 

related to the productivity of the soil. By setting the mission requirements and the weather 

conditions in the user-input interface, the tool identified the required and recommended on-

board equipment and suggested off-the-shelf solutions to realize the customer needs, in 

terms of hardware (e.g. UAS frame-structure and payload characteristics) and prescriptions 

(e.g. weight and cost), taking into account the current regulations. Furthermore, by using a 

scoring system defined by the user in the input interface, the tool classified the available 

UAS / payload configurations, selecting the most suitable to the considered mission. 

6.3.  Future developments 

The findings of this thesis identify some potential areas of research to explore:  

• Investigating the TCZUPT filter performance when the gyro bias is affected by 

hysteresis. Indeed, the presence of hysteresis due to successive heating and 
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cooling cycles (Gulmammadov 2009) causes an additive bias. In other words, 

for each value of temperature the hysteresis branches have different offset but 

often almost identical derivative as a function of temperature. While the 

traditional ZUPT filter adopts the transfer function as a fixed reference, the 

TCZUPT filter exploits the derivative of the calibration transfer function with 

temperature, which tends to be constant on the different branches that form the 

hysteresis loop (Gulmammadov 2009). Therefore, while the standard ZUPT 

filter can correct only a branch of the hysteresis loop, the TCZUPT filter have 

the potential to correct all the branches of the hysteresis loop; 

• Exploiting a Kalman filter-based data fusion technique to integrate multiple 

measurements of the redundant IMU about the same axis. The Kalman filter can 

be performed by a concentrator (one of the six SensorTilesTM or an external 

microcontroller); 

• Exploiting deep learning for trajectory prediction. Indeed, compared to 

traditional machine learning, deep learning does not have a "plateau in 

performance" i.e. the more data they are given, the better it would perform 

(LeCun et al. 2015); 

• Exploiting the novel solutions for UAS mission management to:  

1. Support the future Mission Manager system for UAS (Royo et al. 2013) 

in assessing a broad range of mission-level conditions; 

2. Aid the on-board Sense & Avoid system (Fasano et al. 2016b) in defining 

the optimal avoidance manoeuvre, by exploiting future trajectories 

predictions of surrounding traffic; 

3. Support mutual tracking of UAS swarms by cooperative navigation 

systems (Leonard et al. 2012; Vetrella et al. 2015a); 

4. Improve UAS mission surveillance, which is a relevant technology to 

enable safe UAS application (FAA 2018); 

5. Support the flight termination system, utilized as a last resort to bring 

down an UAS expeditiously in order to maintain some level of safety to 

the public or property (Santamaria et al. 2009)(Stansbury et al. 2009).  
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6.4.  Publications and awards 

The following journal papers have been produced to support this research: 

• R. Fontanella, D. Accardo, R. Schiano Lo Moriello, L. Angrisani, D. De Simone, 

An Innovative Strategy for Accurate Thermal Compensation of Gyro Bias in 

Inertial Units by Exploiting a Novel Augmented Kalman Filter, Sensors (Basel, 

Switzerland), 2018, Vol. 18, n. 5, doi: 10.3390/s18051457. 

• R. Fontanella, D. Accardo, R. Schiano Lo Moriello, L. Angrisani, D. De Simone, 

MEMS Gyros Temperature Calibration through Artificial Neural Networks, 

Sensors and Actuators A: Physical, 2018, Vol. 279, pp. 553-565, doi: 

10.1016/j.sna.2018.04.008. 

In addition, the following conference proceedings have been produced: 

• R. Fontanella, G. de Alteriis, D. Accardo, R. Schiano Lo Moriello, L. Angrisani, 

Advanced Low-Cost Integrated Inertial Systems with Multiple Consumer Grade 

Sensors,  37th AIAA/IEEE Digital Avionics Systems Conference, DASC, London, 

UK, 2018. 

• R. Fontanella, F. Buonavolontà, R. Schiano Lo Moriello, D. Accardo, L. 

Angrisani,  Exploiting Low-Cost Compact Sensor Configurations Performance 

by Redundancy, AIAA Information Systems-AIAA Infotech, AIAA SciTech 

Forum,  Kissimmee, Florida, 2018, doi: 10.2514/6.2018-0194. 

• R. Fontanella, A. R. Vetrella, G. Fasano, D. Accardo,  A Solution for Trajectory 

Prediction of Small Unmanned Aircraft by Exploiting Artificial Neural 

Networks, RAeS Modelling and Simulation in Flight Simulation Conference, 

London, UK, 2017. 

• R. Fontanella, A. R. Vetrella, G. Fasano, D. Accardo, R. Schiano Lo Moriello, 

L. Angrisani, R. Girard, A Standardized Approach to Derive System 

Specifications for Drones Operating in the Future UTM Scenario, 5th IEEE 

International Conference on Models and Technologies for Intelligent 

Transportation Systems, MT-ITS, Naples, Italy, 2017, pp. 250-255, doi: 

10.1109/MTITS.2017.8005675. 
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• R. Fontanella, D. Accardo, E. Caricati, S. Cimmino, D. De Simone, Improving 

Inertial Attitude Measurement Performance by Exploiting MEMS Gyros and 

Neural Thermal Calibration, AIAA Information Systems-AIAA Infotech, AIAA 

SciTech Forum, Grapevine, Texas, 2017, doi: 10.2514/6.2017-1134. 

• R. Fontanella, A. R. Vetrella, G. Fasano, D. Accardo, R. Schiano Lo Moriello, 

L. Angrisani, Requirements, Platform Specifications, and System Architectures 

for Future Unmanned Traffic Management Systems, AIAA Information Systems-

AIAA Infotech, AIAA SciTech Forum, Grapevine, Texas, 2017, doi: 

10.2514/6.2017-0225. 

• R. Fontanella, D. Accardo, E. Caricati, S. Cimmino, D. De Simone, An 

Extensive Analysis for the Use of Back Propagation Neural Networks to Perform 

the Calibration of MEMS Gyro Bias Thermal Drift, IEEE/ION Position, 

Location and Navigation Symposium, PLANS, Savannah, Georgia, 2016, pp. 

672-680, doi: 10.1109/PLANS.2016.7479760. 

Finally, the author, member of the UNINA team, was awarded for the Special Mention 

at the IEEE International Sensors and Measurement Systems Student Contest, IEEE I2MTC 

2018, Houston, TX, USA, (14-17 May 2018) for the project named “POLYTILE: Self-

Compensating IMU Exploiting Redundant Configuration on Regular POLYhedron of 

SensorTILEs”. 
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