8 research outputs found

    Cyber LOPA: An Integrated Approach for the Design of Dependable and Secure Cyber Physical Systems

    Full text link
    Safety risk assessment is an essential process to ensure a dependable Cyber-Physical System (CPS) design. Traditional risk assessment considers only physical failures. For modern CPS, failures caused by cyber attacks are on the rise. The focus of latest research effort is on safety-security lifecycle integration and the expansion of modeling formalism for risk assessment to incorporate security failures. The interaction between safety and security and its impact on the overall system design, as well as the reliability loss resulting from ignoring security failures are some of the overlooked research questions. This paper addresses these research questions by presenting a new safety design method named Cyber Layer Of Protection Analysis (CLOPA) that extends existing LOPA framework to include failures caused by cyber attacks. The proposed method provides a rigorous mathematical formulation that expresses quantitatively the trade-off between designing a highly-reliable versus a highly-secure CPS. We further propose a co-design lifecycle process that integrates the safety and security risk assessment processes. We evaluate the proposed CLOPA approach and the integrated lifecycle on a practical case study of a process reactor controlled by an industrial control testbed, and provide a comparison between the proposed CLOPA and current LOPA risk assessment practice.Comment: Main Content: Title adjusted, Related work moved to end, added references, Sec IV (prev. sec V): expanded discussion, design and Alg. 1 updated | Sec V (prev. sec VI): Expanded discussion, Table V Expanded. Editorial: Fig 1 redrawn horiz., Eq (4)(5) math notation changed, same content. Eq (25) expanded, Page-wide eq. not ref as fig (shift by 1 of fig num), Fig 4 iterative design values show

    Integration of safety risk assessment techniques into requirement elicitation

    Get PDF
    Incomplete and incorrect requirements may cause the safety-related software systems to fail to achieve their safety goals. It is crucial to ensure software safety by identifying proper software safety requirements during the requirements elicitation activity. Practitioners apply various Safety Risk Assessment Techniques (SRATs) to identify, analyze and assess safety risk.Nevertheless, there is a lack of guidance on how appropriate SRATs and safety process can be integrated into requirements elicitation activity to bridge the gap between the safety and requirements engineering practices. In this research, we proposed an Integration Framework that integrates safety activities and techniques into existing requirements elicitation activity

    Internet of things security: A top-down survey

    Get PDF
    International audienceInternet of Things (IoT) is one of the promising technologies that has attracted a lot of attention in both industrial and academic fields these years. It aims to integrate seamlessly both physical and digital worlds in one single ecosystem that makes up a new intelligent era of Internet. This technology offers a huge business value for organizations and provides opportunities for many existing applications such as energy, healthcare and other sectors. However, as new emergent technology, IoT suffers from several security issues which are most challenging than those from other fields regarding its complex environment and resources-constrained IoT devices. A lot of researches have been initiated in order to provide efficient security solutions in IoT, particularly to address resources constraints and scalability issues. Furthermore, some technologies related to networking and cryptocurrency fields such as Software Defined Networking (SDN) and Blockchain are revolutionizing the world of the Internet of Things thanks to their efficiency and scalability. In this paper, we provide a comprehensive top down survey of the most recent proposed security and privacy solutions in IoT. We discuss particularly the benefits that new approaches such as blockchain and Software Defined Networking can bring to the security and the privacy in IoT in terms of flexibility and scalability. Finally, we give a general classification of existing solutions and comparison based on important parameters

    A Model-Driven Methodology for Critical Systems Engineering

    Get PDF
    Model-Driven Engineering (MDE) promises to enhance system development by reducing development time, and increasing productivity and quality. MDE is gaining popularity in several industry sectors, and is attractive also for critical systems where they can reduce efforts and costs for verification and validation (V&V), and can ease certification. This thesis proposes a novel model-driven life cycle that is tailored to the development of critical railway systems. It also integrates an original approach for model-driven system validation, based on a new model named Computation Independent Test model (CIT). Moreover, the process supports the Failure Modes and Effect Analysis (FMEA), with a novel approach to conduct Model-Driven FMEA, based on custom SysML Diagram, namely the FMEA Diagram, and Prolog. The approaches have been experimented in multiple real-world case studies, from railway and automative domains

    Hazard Relation Diagramme - Definition und Evaluation

    Get PDF
    Der Entwicklungsprozess sicherheitskritischer, software-intensiver eingebetteter Systeme wird im Besonderen durch die Notwendigkeit charakterisiert, zu einem frühestmöglichem Zeitpunkt im Rahmen des Safety Assessments sogenannte Hazards aufzudecken, welche im Betrieb zu Schaden in Form von Tod oder Verletzung von Menschen sowie zu Beschädigung oder Zerstörung externer Systeme führen können. Um die Sicherheit des Systems im Betrieb zu fördern, werden für jeden Hazard sogenannte Mitigationen entwickelt, welche durch hazard-mitigierende Anforderungen im Rahmen des Requirements Engineering dokumentiert werden. Hazard-mitigierende Anforderungen müssen in dem Sinne adäquat sein, dass sie zum einen die von Stakeholdern gewünschte Systemfunktionalität spezifizieren und zum anderen die Wahrscheinlichkeit von Schaden durch Hazards im Betrieb minimieren. Die Adäquatheit von hazard-mitigierenden Anforderungen wird im Entwicklungsprozess im Rahmen der Anforderungsvalidierung bestimmt. Die Validierung von hazard-mitigierenden Anforderungen wird allerdings dadurch erschwert, dass Hazards sowie Kontextinformationen über Hazards ein Arbeitsprodukt des Safety Assessments darstellen und die hazard-mitigierenden Anforderungen ein Arbeitsprodukt des Requirements Engineering sind. Diese beiden Arbeitsprodukte sind in der Regel nicht schlecht integriert, sodass den Stakeholdern bei der Validierung nicht alle Informationen zur Verfügung stehen, die zur Bestimmung der Adäquatheit der hazard-mitigierenden Anforderungen notwendig sind. In Folge könnte es dazu kommen, dass Inadäquatheit in hazard-mitigierenden Anforderungen nicht aufgedeckt wird und das System fälschlicherweise als ausreichend sicher betrachtet wird. Im Rahmen dieses Dissertationsvorhabens wurde ein Ansatz entwickelt, welcher Hazards, Kontextinformationen zu Hazards, hazard-mitigierende Anforderungen sowie die spezifischen Abhängigkeiten in einem graphischen Modell visualisiert und somit für die Validierung zugänglich macht. Zudem wird ein automatisierter Ansatz zur Generierung der graphischen Modelle vorgestellt und prototypisch implementiert. Darüber hinaus wird anhand von vier detaillierten empirischen Experimenten der Nutzen der graphischen Modelle für die Validierung hazard-mitigierender Anforderungen nachgewiesen. Die vorliegende Arbeit leistet somit einen Beitrag zur Integration der Arbeitsergebnisse des Safety Assessments und des Requirements Engineerings mit dem Ziel die Validierung der Adäquatheit hazard-mitigierender Anforderungen zu unterstützen.The development process of safety-critical, software-intensive embedded systems is characterized by the need to identify hazards during safety assessment in early stages of development. During operation, such hazards may lead to harm to come to humans and external systems in the form of death, injury, damage, or destruction, respectively. In order to improve the safety of the system during operation, mitigations are conceived for each hazard, and documented during requirements engineering by means of hazard-mitigating requirements. These hazard-mitigating requirements must be adequate in the sense that they must specify the functionality required by the stakeholders and must render the system sufficiently safe during operation with regard to the identified hazards. The adequacy of hazard-mitigating requirements is determined during requirements validation. Yet, the validation of the adequacy of hazard-mitigating requirements is burdened by the fact that hazards and contextual information about hazards are a work product of safety assessment and hazard-mitigating requirements are a work product of requirements engineering. These work products are poorly integrated such that the information needed to determine the adequacy of hazard-mitigating requirements are not available to stakeholders during validation. In consequence, there is the risk that inadequate hazard-mitigating requirements remain covert and the system is falsely considered sufficiently safe. In this dissertation, an approach was developed, which visualizes hazards, contextual information about hazards, hazard-mitigating requirements, as well as their specific dependencies in graphical models. The approach hence renders these information accessible to stakeholders during validation. In addition, an approach to create these graphical models was developed and prototypically implemented. Moreover, the benefits of using these graphical models during validation of hazard-mitigating requirements was investigated and established by means of four detailed empirical experiments. The dissertation at hand hence provides a contribution towards the integration of the work products of safety assessment and requirements engineering with the purpose to support the validation of the adequacy of hazard-mitigating requirements

    Modélisation conjointe de la sûreté et de la sécurité pour l’évaluation des risques dans les systèmes cyber-physiques

    Get PDF
    Cyber physical systems (CPS) denote systems that embed programmable components in order to control a physical process or infrastructure. CPS are henceforth widely used in different industries like energy, aeronautics, automotive, medical or chemical industry. Among the variety of existing CPS stand SCADA (Supervisory Control And Data Acquisition) systems that offer the necessary means to control and supervise critical infrastructures. Their failure or malfunction can engender adverse consequences on the system and its environment.SCADA systems used to be isolated and based on simple components and proprietary standards. They are nowadays increasingly integrating information and communication technologies (ICT) in order to facilitate supervision and control of the industrial process and to reduce exploitation costs. This trend induces more complexity in SCADA systems and exposes them to cyber-attacks that exploit vulnerabilities already existent in the ICT components. Such attacks can reach some critical components within the system and alter its functioning causing safety harms.We associate throughout this dissertation safety with accidental risks originating from the system and security with malicious risks with a focus on cyber-attacks. In this context of industrial systems supervised by new SCADA systems, safety and security requirements and risks converge and can have mutual interactions. A joint risk analysis covering both safety and security aspects would be necessary to identify these interactions and optimize the risk management.In this thesis, we give first a comprehensive survey of existing approaches considering both safety and security issues for industrial systems, and highlight their shortcomings according to the four following criteria that we believe essential for a good model-based approach: formal, automatic, qualitative and quantitative and robust (i.e. easily integrates changes on system into the model).Next, we propose a new model-based approach for a safety and security joint risk analysis: S-cube (SCADA Safety and Security modeling), that satisfies all the above criteria. The S-cube approach enables to formally model CPS and yields the associated qualitative and quantitative risk analysis. Thanks to graphical modeling, S-cube enables to input the system architecture and to easily consider different hypothesis about it. It enables next to automatically generate safety and security risk scenarios likely to happen on this architecture and that lead to a given undesirable event, with an estimation of their probabilities.The S-cube approach is based on a knowledge base that describes the typical components of industrial architectures encompassing information, process control and instrumentation levels. This knowledge base has been built upon a taxonomy of attacks and failure modes and a hierarchical top-down reasoning mechanism. It has been implemented using the Figaro modeling language and the associated tools. In order to build the model of a system, the user only has to describe graphically the physical and functional (in terms of software and data flows) architectures of the system. The association of the knowledge base and the system architecture produces a dynamic state based model: a Continuous Time Markov Chain. Because of the combinatorial explosion of the states, this CTMC cannot be exhaustively built, but it can be explored in two ways: by a search of sequences leading to an undesirable event, or by Monte Carlo simulation. This yields both qualitative and quantitative results.We finally illustrate the S-cube approach on a realistic case study: a pumped storage hydroelectric plant, in order to show its ability to yield a holistic analysis encompassing safety and security risks on such a system. We investigate the results obtained in order to identify potential safety and security interactions and give recommendations.Les Systèmes Cyber Physiques (CPS) intègrent des composants programmables afin de contrôler un processus physique. Ils sont désormais largement répandus dans différentes industries comme l’énergie, l’aéronautique, l’automobile ou l’industrie chimique. Parmi les différents CPS existants, les systèmes SCADA (Supervisory Control And Data Acquisition) permettent le contrôle et la supervision des installations industrielles critiques. Leur dysfonctionnement peut engendrer des impacts néfastes sur l’installation et son environnement.Les systèmes SCADA ont d’abord été isolés et basés sur des composants et standards propriétaires. Afin de faciliter la supervision du processus industriel et réduire les coûts, ils intègrent de plus en plus les technologies de communication et de l’information (TIC). Ceci les rend plus complexes et les expose à des cyber-attaques qui exploitent les vulnérabilités existantes des TIC. Ces attaques peuvent modifier le fonctionnement du système et nuire à sa sûreté.On associe dans la suite la sûreté aux risques de nature accidentelle provenant du système, et la sécurité aux risques d’origine malveillante et en particulier les cyber-attaques. Dans ce contexte où les infrastructures industrielles sont contrôlées par les nouveaux systèmes SCADA, les risques et les exigences liés à la sûreté et à la sécurité convergent et peuvent avoir des interactions mutuelles. Une analyse de risque qui couvre à la fois la sûreté et la sécurité est indispensable pour l’identification de ces interactions ce qui conditionne l’optimalité de la gestion de risque.Dans cette thèse, on donne d’abord un état de l’art complet des approches qui traitent la sûreté et la sécurité des systèmes industriels et on souligne leur carences par rapport aux quatre critères suivants qu’on juge nécessaires pour une bonne approche basée sur les modèles : formelle, automatique, qualitative et quantitative, et robuste (i.e. intègre facilement dans le modèle des variations d’hypothèses sur le système).On propose ensuite une nouvelle approche orientée modèle d’analyse conjointe de la sûreté et de la sécurité : S-cube (SCADA Safety and Security modeling), qui satisfait les critères ci-dessus. Elle permet une modélisation formelle des CPS et génère l’analyse de risque qualitative et quantitative associée. Grâce à une modélisation graphique de l’architecture du système, S-cube permet de prendre en compte différentes hypothèses et de générer automatiquement les scenarios de risque liés à la sûreté et à la sécurité qui amènent à un évènement indésirable donné, avec une estimation de leurs probabilités.L’approche S-cube est basée sur une base de connaissance (BDC) qui décrit les composants typiques des architectures industrielles incluant les systèmes d’information, le contrôle et la supervision, et l’instrumentation. Cette BDC a été conçue sur la base d’une taxonomie d’attaques et modes de défaillances et un mécanisme de raisonnement hiérarchique. Elle a été mise en œuvre à l’aide du langage de modélisation Figaro et ses outils associés. Afin de construire le modèle du système, l’utilisateur saisit graphiquement l’architecture physique et fonctionnelle (logiciels et flux de données) du système. L’association entre la BDC et ce modèle produit un modèle d’états dynamiques : une chaîne de Markov à temps continu. Pour limiter l’explosion combinatoire, cette chaîne n’est pas construite mais peut être explorée de deux façons : recherche de séquences amenant à un évènement indésirable ou simulation de Monte Carlo, ce qui génère des résultats qualitatifs et quantitatifs.On illustre enfin l’approche S-cube sur un cas d’étude réaliste : un système de stockage d’énergie par pompage, et on montre sa capacité à générer une analyse holistique couvrant les risques liés à la sûreté et à la sécurité. Les résultats sont ensuite analysés afin d’identifier les interactions potentielles entre sûreté et sécurité et de donner des recommandations
    corecore