
! via Claudio, 21- I-80125 Napoli - " [#39] (0)81 768 3813 - # [#39] (0)81 768 3816

 UNIVERSITA' DEGLI STUDI DI NAPOLI FEDERICO II
 Dottorato di Ricerca in Ingegneria Informatica ed Automatica

 A MODEL-DRIVEN METHODOLOGY
FOR CRITICAL SYSTEMS ENGINEERING

FABIO SCIPPACERCOLA

Tesi di Dottorato di Ricerca

(XXVIII Ciclo)

MARZO 2016

Il Tutore Il Coordinatore del Dottorato

Prof. Stefano Russo Prof. Francesco Garofalo

Dipartimento di Ingegneria Elettrica e Tecnologie dell’Informazione

Comunità Europea

Fondo Sociale Europeo A. D. MCCXXIV

A MODEL-DRIVEN METHODOLOGY

FOR CRITICAL SYSTEMS ENGINEERING

By

Fabio Scippacercola

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

“FEDERICO II” UNIVERSITY OF NAPLES

VIA CLAUDIO 21, 80125 – NAPOLI, ITALY

MARCH 2016

c© Copyright by Fabio Scippacercola, 2016

ii

Table of Contents

Table of Contents iii

List of Tables vi

List of Figures vii

Acronyms x

Introduction 1

1 Model-Driven Engineering 7

1.1 Basic Concepts and Definitions . 7

1.1.1 Model-Driven Architecture . 9

1.1.2 MDA Viewpoints and Views . 14

1.1.3 UML extensions of interest . 18

1.2 State of practice of MBE and MDE . 20

1.3 Benefits and Open Challenges . 23

2 Literature Review 26

2.1 Model-Driven Processes for Critical Systems 26

2.1.1 Research questions . 26

2.1.2 Search process . 27

2.1.3 Inclusion and exclusion criteria . 27

2.1.4 Paper classification . 28

2.1.5 Data collection . 28

2.2 Search results . 29

3 A Model-Driven Methodology for Critical Systems Engineering 42

3.1 Overview . 42

3.2 Roles and Responsibilities . 47

3.3 Model-Driven Development . 48

iii

3.3.1 System Requirements Specification 48

3.3.2 System Design . 50

3.3.3 Component Design . 52

3.3.4 Implementation . 53

3.3.5 Early Fault Detection Techniques in Development 54

3.4 Model-Driven Verification and Validation Design 54

3.4.1 Validation Design . 55

3.4.2 Integration Verification Design . 56

3.4.3 Component Verification Design . 58

3.4.4 Early Fault Detection Techniques in V&V Design 59

3.5 Model-Driven Verification and Validation Execution 60

3.5.1 Component Verification . 60

3.5.2 Integration Verification . 62

3.5.3 Validation . 63

3.6 Discussion . 64

4 Model-Driven In-the-Loop Testing 69

4.1 Introduction . 69

4.2 The Computational Independent Test Model 69

4.3 Discussion . 73

5 Model-Driven Failure Mode and Effects Analysis 74

5.1 Background . 74

5.2 Overview of Model-Driven FMEA . 76

5.3 System Modeling . 80

5.4 FMEA Modeling . 81

5.4.1 FMEA Profile: the SysML FMEA Diagram 83

5.4.2 MT2 transformation in Prolog . 86

5.5 Model Analysis . 87

5.6 An Eclipse-Based Support Tool . 88

5.7 Discussion . 89

6 Case study 1: Model-Driven Engineering of a Railway Interlocking Sys-

tem 93

6.1 The Prolan Block Case Study . 93

6.2 Experimentation . 96

6.2.1 System Requirements Specification 96

6.2.2 System Design . 103

6.2.3 Component Design . 105

6.2.4 Implementation . 108

6.2.5 Validation Design . 112

iv

6.2.6 Integration Verification Design . 112

6.2.7 Component Verification Design . 117

6.2.8 Model-Driven V&V Subprocess . 118

6.3 Discussion . 119

7 Case study 2: Model-Driven In-the-Loop Testing in Railway Domain 122

7.1 The Prolan Monitor Case Study . 122

7.2 Experimentation . 123

7.2.1 Model-driven development . 123

7.2.2 The Computational Independent Test Model 128

7.2.3 Model-in-the-loop testing . 133

7.2.4 Software- and Hardware-in-the-loop testing 136

7.3 Discussion . 138

8 Case study 3: Model-Driven FMEA in Automotive Domain 140

8.1 Experimentation . 140

8.1.1 System Modeling . 141

8.1.2 FMEA Modeling . 146

8.1.3 M2T trasformation . 148

8.1.4 Model Analysis . 150

8.2 Discussion . 157

Conclusion 159

Glossary 162

v

List of Tables

1.1 Common OMG standards in MDA. 14

1.2 An example on the MDA views. 16

2.1 The typologies adopted for classifying the studies. 30

2.2 Typologies of papers by Industry Domain. 33

6.1 Differences between the frameworks SXF and OXF. 110

7.1 CPT test categories. 134

7.2 Specification of the MIL test cases . 134

7.3 Configuration of the SUT for the experiments. 134

8.1 FMEA Worksheet for the Scheduler generated automatically by queries on

the knowledge base. 156

vi

List of Figures

1.1 The terminology adopted in the thesis. 8

1.2 Document-centric and Model-centric approaches. 8

1.3 The OMG Modeling infrastructure. 12

1.4 Services and computing environments defined by the MDA 13

1.5 The MDA Viewpoints. 17

1.6 The overlap between UML and SysML. 19

1.7 The integration of MDA and MDT proposed by Dai [17]. 20

2.1 Distribution of reviewed papers by Typology and Industry Domain. 31

2.2 Distribution of all reviewed studies by Industry Domain and Modeling Scope 33

3.1 EN 50128 Software Development Life cycle 43

3.2 The proposed model-driven V-Model life cycle 45

3.3 The three main abstractions exploited in the model-driven life cycle 45

3.4 The transformations of the BB-PIT. 57

4.1 The CIT and the PIM in configuration in-the-loop. 70

4.2 Back-to-back testing . 73

5.1 Overview of the proposed model-driven FMEA process 78

5.2 Integration of the FMEA approach in the proposed life cycle 79

5.3 Logical layout of a FMEA diagram. 84

5.4 An Eclipse-based architecture for model-driven FMEA approach. 89

5.5 SysML modeling with Papyrus. 90

6.1 A representation of the Prolan Block . 94

vii

6.2 Short railway blocks on the Toronto subway 95

6.3 CIM SysML Requirement Diagram showing system functional requirements. 98

6.4 CIM SysML BDD showing the PB within its environment. 99

6.5 CIM Use Case Diagram for the Prolan Block. 100

6.6 CIM SysML State Machine Diagram specifying the semaphore’s behavior. . 101

6.7 CIM SysML Activity Diagram specifying the use case Processing Status In-

formation. 102

6.8 High-level system architecture. 104

6.9 The PIM state diagram of the behavior of the TrackOccupancyDetector. . . 106

6.10 The IBM Rhapsody c© Panel diagram for the Prolan Block. 107

6.11 Specification of platform specific properties in IBM Rhapsody c©. 109

6.12 Fragment of the code automatically generated 111

6.13 A BB-PIT QML State Machine used for test case generation in Conformiq
TM

.115

6.14 A test case automatically generated from the BB-PIT by Conformiq
TM

. . . 116

6.15 The Traceability Matrix automatically generated by Conformiq
TM

. 116

6.16 The testing harness automatically generated by TestConductor for the Prolan-

BlockCoreLogic. 117

7.1 SysML Block Definition Diagram of the CIM of the PM 124

7.2 A UML Timing Diagram included in the CIM, representing the requirements

for the functionality of signal debouncing. 125

7.3 High level architecture of the Prolan Monitor. 126

7.4 UML Internal Structure Diagram of the PMRailwayObject 126

7.5 UML Behavioral State Machine of the PMDebouncer 127

7.6 Rhapsody Panel Diagram associated to the PIM. 128

7.7 The architecture of the CIT. 129

7.8 The internal design of the CITRailwayObject. 129

7.9 UML Activity diagram of the EventGenerator 131

7.10 UML Behavioral State Machine model of the SignalGenerator 132

7.11 Rhapsody Panel Diagram of the CITRailwayObject. 132

7.12 The CIT-PIM software adapter . 133

7.13 The configuration of the PM for MIL Testing. 135

viii

7.14 Screenshot of the MIL testing . 136

7.15 The configuration of the PM for HIL Testing. 137

8.1 Excerpt of Use Cases Diagram of EMC2 prototype. 142

8.2 Excerpt of SysML Requirements Diagram of EMC2. 143

8.3 SysML Internal Block Diagram of the EMC2 prototype. 143

8.4 Internal Block Diagram of the Safety-Critical RTOS Component. 144

8.5 Activity Diagram of the use case Perform eCall. 145

8.6 Use Cases for the SC-RTOS and Scheduler components. 146

8.7 FMEA Diagram for the EMC2 Scheduler component. 148

8.8 Fragment of the Prolog Knowledge Base relative to the Scheduler. 150

8.9 Fragment of the Prolog shared Knowledge Base defining predicates for model

analysis. 152

8.10 Results of the execution of the query 1 on the EMC2 knowledge base. . . . 153

8.11 Results of the execution of the query 2 on the EMC2 knowledge base. . . . 154

8.12 Results of the execution of the query 3 on the EMC2 knowledge base. . . . 155

ix

Acronyms

ALF OMG Action Language for UML.

BB-PIT Black Box Platform Independent Test Model, Sec. 3.4.2.

BB-PST Black Box Platform Specific Test Model, Sec. 3.5.2.

BDD SysML Block Definition Diagram.

BSP Board Support Package, Sec. 8.1.1.

CAN Controller Area Network (Bus).

CIM Computation Independent Model, Sec. 1.1.2.

CIT Computation Independent Test Model, Sec. 3.4.1.

CIV Computation Independent Viewpoint, Sec. 1.1.2.

CPT Category Partition Testing.

CUA Component Under Analysis, Sec. 5.4.1.

DSL Domain-Specific Language.

ETCS European Train Control System, Sec. 6.2.1.

FMEA Failure Mode and Effects Analysis, Sec. 5.1.

fUML OMG Semantics of a Foundational Subset for Executable UML Models.

GB-PIT Grey Box Platform Independent Test Model, Sec. 3.4.3.

HIL Hardware-in-the-loop.

HMI Human-Machine Interface, Sec. 6.2.1.

IBD SysML Internal Block Diagram.

IS Interlocking System, Sec. 6.2.1.

x

xi

KB Knowledge Base.

M2M Model-to-Model Transformation, Sec. 1.1.

M2T Model-to-Text Transformation, Sec. 1.1.

MBE Model-Based Engineering, Sec. 1.1.

MDA Model-Driven Architecture, Sec. 1.1.

MDD Model-Driven Development, Sec. 1.1.

MDE Model-Driven Engineering, Sec. 1.1.

MDT Model-Driven Testing, Sec. 1.1.

MIL Model-in-the-loop.

OMG Object Management Group.

OS Operating System.

OXF IBM Rhapsody Object Execution Framework, Sec. 6.2.4.

PB Prolan Block, Sec. 6.1.

PIM Platform Independent Model, Sec. 1.1.2.

PIT Platform Independent Test Model, Sec. 1.1.3.

PIV Platform Independent Viewpoint, Sec. 1.1.2.

PM Prolan Monitor, Sec. 7.1.

PSM Platform Specific Model, Sec. 1.1.2.

PST Platform Specific Test Model, Sec. 1.1.3.

PSV Platform Specific Viewpoint, Sec. 1.1.2.

RBC Radio Block Centre, Sec. 6.2.1.

RTOS Real-Time Operating System.

SDLC Software Development Life Cycle.

SEEA Software Error Effect Analysis, Sec. 5.2.

SIL Safety Integrity Level.

SPLC Software Product Life Cycle.

xii

SUT System Under Test.

SXF IBM Rhapsody Simple Execution Framework, Sec. 6.2.4.

SysML OMG Systems Modeling Language, Sec. 1.1.3.

UML OMG Unified Modeling Language.

UTP UML Testing Profile, Sec. 1.1.3.

V&V Verification and Validation.

WB-PST White Box Platform Specific Test Model, Sec. 3.5.1.

Introduction

Software engineering, as most of branches of engineering, has always evolved increasing the

level of abstractions. If we just look at one of the most peculiar and fascinating technology of

this discipline, the programming languages, we will note how the first abstractions, i.e. the

second generation languages – the assembly languages –, were born soon after programmers

had struggled with machine codes; then came the third generation programming languages,

that freed the programmers from low level details of the machine, and finally the fourth

generation languages, which added more facilities and masked recurrent problems such as

the representation of data and the interworking between heterogeneous systems. In this

perspective, Model-Driven Engineering (MDE) aims at raising the level of abstraction in

software design and verification [1], and promises to innovate the traditional methodologies

of software development.

Model-driven approaches focus on a model, i.e., on descriptions of a system that neglect

aspects that are not of interest at the current stage in a software process; the process ad-

vances transforming the model in documents, intermediate artifacts, or in the final product.

The result is that MDE is going to shift the traditional development paradigm, based on

different kinds of artifacts composed by domain experts in multiple formats, to a common

formalism – the model –, by which the artifacts are obtained through computer-assisted

transformations. This model-centric paradigm introduces several benefits into the process,

and leads to better productivity and quality of artifacts, shorter development time, and en-

hanced automation, which includes automatic code generation and support to the activities

1

Introduction 2

of verification and validation.

Due to these benefits, industry is increasing the adoption of MDE. This is shown by

recent industrial surveys, which investigated the adoption of MDE methodologies and tech-

nologies in practice [2, 3]. In particular, MDE is attractive for the development of critical

systems, since it can speed up the activities of Verification and Validation (V&V): model-

driven approaches are widely exploited in industry for the early verification of the systems,

through techniques such as model reviews, guideline checkers, Rapid Control Prototyping

and Model- and Software- in-the-Loop Tests. These techniques shift the cost of develop-

ment from the phases of V&V to the ones of requirement analysis and design, but lead to

benefits in terms of residual errors. Companies not performing model-in-the-loop testing

find almost 30% more errors during module test [4].

Incorporating model-driven techniques into a legacy well-proven development processes

is not simply a matter of placing models and transformations in traditional methodologies:

the activities have to be carefully redesigned to exploit the benefits of MDE, and the skills

and expertise of the engineers. Indeed, success stories on the adoption of MDE are reported

after long time of technological innovation, that required several pilot project experiments

and the rethinking of traditional activities, complemented by custom supporting tools.

Motorola could achieve an increase of quality and productivity (ranging from 1.2x to 8x)

and an approximately 33% reduction in the effort required to develop test cases, after

15 years of wide spectrum adoption of MDE [5, 6]; the recent case study [7] reports the

successful introduction of a MBE process after four years and three projects had been

defined and consolidated.

The problem of defining a model-driven life cycle is exacerbated in critical domains,

where the process has to comply to strict requirements to assure high level of quality of

the artifacts. In fact, in safety-critical domain, the efforts for verification and validation

account for the major part of the costs, while safety standards require accurate assessments

Introduction 3

of the system and prescribe qualified tools.

Past studies attempted to apply pre-existing processes to MDE, or to create new ones [8],

but these approaches cannot be proposed as a replacement of current industrial practices,

especially for the development of certified critical systems. There are still few model-driven

methodologies that cover the full system development life cycle, and that are suited to apply

MDE on a large scale, in processes shared among more partners.

Indeed, few previous approaches targeted to offer flexible and complete model-driven

life cycles that could be customized for industrial needs, and, in particular, designed for

critical domains, where is the demand to support a broad range of activities of V&V and

comply with standards and open technologies.

The need of a consolidated MDE methodology was also experienced personally by the

Ph.D. candidate, during twelve-months of industrial-academic partnership in which he was

involved: in the framework of the the European project “CErtification of CRItical Systems”

(CECRIS, [9]), the candidate participated to a transfer of knowledge of MDE technologies

in Prolan Co., a Hungarian company which develops certified products for safety critical

process control and rail signalling systems; during this activity, it emerged the lack of well-

defined processes for the development of a CENELEC SIL-4 safety critical signalling system

that was suited for the real industrial needs.

Thesis contribution

1. This thesis proposes a novel model-driven life cycle that is tailored to

the development of critical systems, and overcomes limitations of previous

approaches:

• It covers the full software life cycle and is suited to replace current industrial pro-

cesses, in particular for the development of products that undergo to CENELEC

50128 certification;

Introduction 4

• It supports several techniques of Verification and Validation in a conventional

V-Model, including techniques of early fault detection, and safety assessment;

• It benefits from OMG standards, adopting Model-Driven Architecture (MDA),

SysML, UML and Model-Driven Testing (MDT).

2. The methodology integrates an original approach for model-driven system

validation, based on a new model named Computation Independent Test

model (CIT), that is exploited to perform Model-, Software-, and Hardware- In-the-

loop testing.

3. Moreover, the process supports the Failure Modes and Effect Analysis

(FMEA), with a novel approach to conduct Model-Driven FMEA, based

on custom SysML Diagram, namely the FMEA Diagram, and Prolog..

Since the thesis benefits from the fruitful collaboration with industry, the approaches

have been experimented in multiple real-world case studies, from railway and

automative domains, offered by the industrial partners. Two case studies of CENELEC

50128 SIL-4 signalling systems have been provided by Prolan, whereas one automotive case

study has been provided by the Portuguese company Critical Software SA, that develops

safety-critical systems and provides consulting and expertise for the certification.

Finally, as an additional contribution of this thesis, the author aims at increasing the

knowledge on MDE success and failure factors, since more concrete industrial experiences

are necessary to get a clear comprehension of risks and benefits of MDE, especially for

critical systems [8].

The work includes material from the following research papers, already accepted or

published in peer-reviewed conferences:

• F. Scippacercola, R. Pietrantuono, S. Russo, A. Zentai, “Model-Driven Engineering of a
Railway Interlocking System”, In: Proc. of the 3rd International Conference on Model-
Driven Engineering and Software Development (MODELSWARD 2015). 2015, pp. 509-519.

Introduction 5

SCITEPRESS. ISBN: 978-989-758-083-3.

• F. Scippacercola, R. Pietrantuono, S. Russo, A. Zentai, “Model-in-the-loop Testing of a Rail-
way Interlocking System”, In: Model-Driven Engineering and Software Development. 2015,
Communications in Computer and Information Science (CCIS), vol. 580, pp. 375-389,
Springer International Publishing. DOI: 10.1007/978-3-319-27869-8; ISSN: 1865-0929; ISBN:
978-3-319-27868-1.

• F. Scippacercola, R. Pietrantuono, S. Russo, N. P. Silva, “SysML-based and Prolog-supported
FMEA”, In: Proc. of the 2015 IEEE International Symposium on Software Reliability Engi-
neering Workshops (ISSREW). 2015, pp. 174-181, IEEE. ISBN: 978-1-5090-0406-5.

• F. Scippacercola, R. Pietrantuono, S. Russo, A. Esper, N. Silva, “Integrating FMEA in a
Model-Driven Methodology”, accepted to the International Space Sysem Engineering Confer-
ence (DASIA). 2016.

The first study presents the proposed model-driven development life cycle (thesis con-

tribution 1), the second one focuses on the CIT and on the Model-in-the-loop extension

(thesis contribution 2), while the third and forth scientific papers introduce the model-

driven FMEA and FMEA Diagram (thesis contribution 3).

The dissertation is organized as follows:

Chapter 1 introduces the main concepts of Model-Driven Engineering and Model-Driven

Architecture, then presents a discussion on the current state of practice of model-based and

model-driven approaches.

Chapter 2 presents a systematic literature review on model-driven processes for critical

systems, and discusses the limitations of previous studies.

Chapter 3 introduces the novel model-driven methodology for critical systems engineering,

and discusses its benefits.

Chapter 4 presents details the Computation Independent Test Model, and the benefits

from environmental modeling in the software development life cycle.

Chapter 5 presents our proposal for a model-driven Failure Mode and Effects Analysis,

and the novel SysML FMEA Diagram.

Chapter 6 introduces our experience with the proposed development life cycle on a case

study on the Prolan Block, a safety-critical part of an interlocking system provided by

Introduction 6

Prolan.

Chapter 7 presents the Prolan Monitor, another safety-critical system provided by Prolan,

and the experience with the CIT and in-the-loop testing.

Chapter 8 discusses an automotive safety-critical system provided by Critical Software,

on which we performed a FMEA using the proposed approach.

Chapter 1

Model-Driven Engineering

1.1 Basic Concepts and Definitions

Since models have always been applied at different extents in many problems and activities,

there are many acronyms with fuzzy borders in the universe of software engineering. In this

thesis we refers to the terminology of [10].

When processes exploit models as support for their goals they are part of Model-Based

Engineering (MBE), and we call the activities document-centric, since models are only a

means to achieve the targets, but there is not particular emphasis on them. Therefore

MBE is the broadest term that cover all the methodologies and activities that employ

models (Fig. 1.1).

Model-Driven Engineering (MDE) focuses on the processes where models are key arti-

facts of the activities (model-centric). When we restrict to considering MDE for supporting

the development of systems, we can use the more specific term of Model-Driven Develop-

ment (MDD). One approach of MDD is the Model-Driven Architecture (MDA), proposed by

the Object Management Group (OMG) [11]. The Model-Driven Testing (MDT) is a theory

of software testing that introduces concepts enabling to transform models in test-cases in

order to support verification and validation activities. Even though MDT is not an OMG

standard, it uses an OMG’s standard profile, the UML Testing Profile (UTP).

7

Chapter 1. Model-Driven Engineering 8

MBE$
MDE$

MDD$

MDA$

Figure 1.1: The terminology adopted in the thesis.

MDE is founded on concepts of models and transformations: instead of producing (tex-

tual) documents as artifacts – requirements, design, code, test artifacts – engineers, in MDE,

focus on models as primary artifacts (Fig. 1.2).

Models are defined in (semi-)formal languages, that are typically machine-understandable

and drawn with the support of tools. Other artifacts are derived through defined transfor-

mations: Model-to-Model transformations (M2M), or Model-to-Text transformations (M2T)

from models to textual documents, source code or testing artifacts (such as test cases and

test scripts).

As argued by Kent [12], MDE approaches, in general, can identify different levels of

decomposition and can employ ad hoc or domain-specific languages for models and trans-

formations, whereas MDA is bound to OMG’s standards.

Document)Centric)Approach) Model)Centric)Approach)

Design)
Documents)

Source)
Code)

Design)
Documents)

Source)
Code)Model)

Transforma9on)

Figure 1.2: Document-centric and Model-centric approaches.

Chapter 1. Model-Driven Engineering 9

1.1.1 Model-Driven Architecture

The Object Management Group is an international trade association incorporated as a

nonprofit corporation in the United States, with affiliate organizations around the globe. In

the 90’s, OMG standardized the object request broker (ORB) and a suite of objet services.

This work was guided by the Object Management Architecture (OMA) that provides a

framework for distributed systems and by the Common ORB Architecture, or CORBA, a

part of that framework.

OMG first conceived MDA as a technology to overcome the interoperability problems of

applications partially addressed by CORBA [13]. Indeed, even if CORBA provided a good

solution for the interoperability of applications, it became clear how it is difficult for large

enterprises to standardize on different middleware platforms: enterprises have applications

on different middleware, that simply have to be integrated even though this process turned

out to be expensive and time-consuming. Furthermore, middleware systems continue to

evolve and even CORBA could not be a guarantee for next decades. Therefore, MDA

was proposed as a better way to reach portability, interoperability and reusability through

architectural separation of concerns, in the sight of OMG Vision, that postulates how the

myth of a standalone application or standard for developing software as well as for data

interchange died.

The recent 2.0 revision of guide of the standard [11] defines MDA as an approach for

deriving value from models and architecture in support of the full life cycle of physical,

organizational and I.T. systems. MDA became an approach to deal with complexity and

interdependence of complex systems to derive value from models and modeling by defining

the structure, semantics, and notations of models using industry standards. The value from

models is derived from [11]:

• Using Models as communication vehicles. MDA facilitates teams and communities

Chapter 1. Model-Driven Engineering 10

to come to a common understanding and/or consensus. MDA provides well defined

elements, foundation for models and libraries of common vocabularies, rules and pro-

cesses;

• Derivating artifacts via automated trasformation. The translation can be partial or

full and it reduces the time and cost for realizing a design and for changes and main-

tenance. Automated derivation involves a platform independent “source model” with

some parameters for how that source model is to be interpreted;

• Performing analysis on models. Models can be used subject of analysis, including

model validation, statistics and metrics;

• Simulating and executing the model. Models as data can drive simulation engines that

can assist in both analytics and execution of the designs captured in models;

• Deriving information from models. Well defined models can be used to derive informa-

tion (such as documentation, derived insights, process playbooks, etc.), new models

and other artifacts;

• Structuring Unstructured Information. MDA technologies provide a way to define

structured representation of these documents.

These values translate in flexibilities during whole development process, parts of these were

discussed in [13]:

Implementation new implementation infrastructure (the “hot new technology” effect)

can be integrated or targeted by existing designs.

Integration: since not only the implementation but the design exists at time of integration,

we can automate the production of data integration bridges and the connection to new

integration infrastructures.

Chapter 1. Model-Driven Engineering 11

Maintenance: the availability of the design in a machine-readable form gives developers

direct access to the specification of the system, making maintenance much simpler.

Testing and Simulation: since the developed models can be used to generate code, they

can equally be validated against requirements, tested against various infrastructures

and can used to directly simulate the behavior of the system being designed.

MDA focuses on intrinsic value of models to increase the abstraction level when devel-

oping software, software will be developed by modeling, and models will become code by

applying automatic transformations on models. Transformations are not different from lan-

guage compiler, but are more robust to the change of technologies, because will change the

transformation rules but will no change models.

In order to enable (automatic) transformations of models, it has been necessary to

introduce mechanisms to reason on modeling itself: this has been done introducing the

concept of meta-modeling, i.e., introducing models for modeling languages. These concepts

are commons to MDE, but MDA standardized the formalisms to use, so as to have four

layer of abstractions (Fig. 1.3):

M0 is the user data layer, it is the layer at lowest abstraction and the elements are concrete

objects of the problem domain.

M1 is the layer of modeling concepts. Here are the UML models of entities that abstract

the user data layer, like UML classes or association. At this level are models defined

by software engineers to define the requirements or architecture of the system.

M2 is UML Metamodel, i.e., M2 defines, through UML, the syntax of UML models in M1,

as well as their semantic. For instance, M2 will constraint you to do not use UML

links for connecting classes but UML objects. M1 models can be seen as instances of

concepts of M2 layer and, by M2, you can check consistence of your UML models.

Chapter 1. Model-Driven Engineering 12

Real world objects

M0

Model

M1

M2

M3

Metamodel

Meta-metamodel

H
ig

h
e
r

a
b

st
ra

ct
io

n

Pipe

+length:Real

Class Attribute

Class

«instanceOf»

«instanceOf»
«instanceOf»

«instanceOf»

«instanceOf»

«instanceOf»

Figure 1.3: The OMG Modeling infrastructure.

M3 is most abstract layer defined by OMG. At this level is Meta-Object Facility (MOF)

language. By MOF OMG can define syntax and semantic for meta-languages. In the

MDA, MOF enables to define transformation rules among different models (of M1

layers) that are compliant to different meta-models (of M2 layers).

Using its modeling infrastructure, OMG can define rules to transform models to models

(M2M) or model to text (M2T). With M2T transformation, MDE refers to that kind of

transformation that produces source code (or less structured documents) from models.

MDA also defines more standards that address the complete development life cycle, cov-

ering analysis and design, programming, testing, component assembly as well as deployment

and maintenance. One of the characteristics of UML is its capability to be easily extended

by mechanisms defined in the standard: by UML Profiles, Tagged Values and Constraints,

Chapter 1. Model-Driven Engineering 13

Model Driven Architecture ©2000 Object Management Group Page 10

Figure 3: MDA showing the Pervasive Services and specialized computing environments.

In Figure 3, we’ve shown the Pervasive Services as a ring around the outside of the diagram to
emphasize that they’re available to all applications, in all environments. True integration requires
a common model for directory services, events and signals, and security. By extending them to a
generalized model, implementable in the different environments and easily integrated, the Model
Driven Architecture becomes the basis of our goal of universal integration: the global information
appliance.

What You Can Do

Although much of the infrastructure for the MDA is in place or under construction, there is still a
lot to do.

If your company works at either the modeling or infrastructure level, you can have a voice in
defining the MDA – RFPs have been issued for UML 2.0, and all of the components of the BOI
except the first are still in their formative stages in the OMG adoption process. Of the mappings
to various middleware environments, only that to CORBA is even in progress – the rest exist only
as potential RFPs. UML models for the Pervasive Services have been neither constructed nor
adopted.

Figure 1.4: Pervasive services and specialized computing environments in the vision of the
MDA [14].

custom domain specific languages (DSLs) can be defined, reusing and extending the ele-

ments of the UML language.

OMG provided a full set of platform independent pervasive services (Fig. 1.4) that mod-

els can exploit. These cover functional and non-functional application requirements ranging

from persistence and event handling services to scalability solutions, security and fault tol-

erance services. Through these, MDA aims at reaching to goal of universal integration.

Some of these standards are presented in tab. 1.1. Regarding the inclusion of UML in the

standard, the recent revision of MDA, does not require to use UML, but only defined the

compliance with the Meta Object Facility (MOF) for the tool complianceMDA Compliant.

Finally, MDA models are defined as information selectively representing some aspect of

a system based on a specific set of concerns. The model is related to the system by an explicit

or implicit mapping [11]. Thus, models are often, and preferably, expressed graphically with

Chapter 1. Model-Driven Engineering 14

Acronym Standard Description

MOF Meta Object Facility Provides means for defining meta meta-languages.

UML Unified Modeling Language Defines a modeling and specification language.

OCL Object Constraint Language A declarative language for describing rules.

XMI XML Metadata Interchange A standard for exchanging metadata information.

CWM Common Warehouse Metamodel Defines specification for modeling metadata in data

warehouse.

QVT Query View Transform Standard set of languages for model transformation.

MOFM2T MOF Model-to-Text Transfor-

mation Language

Specification for a model transformation language (in

particular to text).

UTP UML Testing Profile UML Profile enabling to support V&V activities.

SPEM Software Process Engineering

Meta-model

UML Profile to support constructing process models.

Table 1.1: Common OMG standards in MDA.

drawings, but they can also be textual, even in a natural languages, but it can adopts several

notations and formats. For example a model of a software system could include a UML

class diagram, E/R (Entity-Relationship) diagrams, and images of the user interface, while

a model of a physical system could include a representation of the hardware and physical

environment, and a performance simulation.

1.1.2 MDA Viewpoints and Views

Model-Driven Architecture starts with the well-known and long-established idea of separat-

ing the specification of the operation of a system from the details on how that system uses

the capabilities of its platform. MDA enables to specify a system independently from the

platform that supports it, and to transform the system specification into one for a particular

platform.

A viewpoint specifies a reusable set of criteria for the construction, selection, and pre-

sentation of a portion of the information about a system, addressing particular stakeholder

Chapter 1. Model-Driven Engineering 15

concerns [11]; in other words, a viewpoint defines the abstractions to adopt to focus on

particular concerns within the system. A view is a representation of a particular system

that conforms to a viewpoint [11].

In MDA terms, abstraction eliminates certain elements from the defined scope and may

result in introducing a higher level viewpoint at the expense of removing detail. A more

abstract model encompasses a broader set of systems, whereas a less abstract model is more

specific to a single system or restricted set of systems. One important capability of MDA

is the automation that provides for the transformation between levels of abstraction by the

use of pattern.

MDA specifies three viewpoints, that offers levels of separation of concerns to realize

a system. The three viewpoints are the computation independent viewpoint (CIV), the

platform independent viewpoint (PIV) and a the platform specific viewpoint (PSV).

Computation Independent Viewpoint The computation independent viewpoint focuses

on the environment of the system, and the requirements for the system; the details of

the structure and processing of the system are hidden or as yet undetermined.

Platform Independent Viewpoint The platform independent viewpoint focuses on the

operation of a system while hiding the details necessary for a particular platform.

Platform Specific Viewpoint The platform specific viewpoint combines the platform

independent viewpoint with an additional focus on the detail of the use of a specific

platform by a system.

The recent version of MDA standard [11] reduces the emphasis on the CIV, and defines

a platform as a the set of resources on which a system is realized. This set of resources is

used to implement or support the system. For instance, a platform can be the organiza-

tional structure or a set of buildings and machines (in case of business or domain platform

Chapter 1. Model-Driven Engineering 16

View Textual Model

CIM Priority must be given to shipping the oldest articles.

PIM The Articles are ordered according to date for shipment.

PSM/OOD Articles are sorted for shipment() in increasing order, using their attribute date.

PSM/OOP Use quicksort() to sort Articles, using Articles. Date as sorting key, before passing

them to shipment().

Table 1.2: An example on the MDA views: CIM defines the requirements textually using a
vocabulary familiar to domain experts. PIM defines the operations that satisfy the require-
ment, while PSM refines the PIM adding the messages and the operations to invoke in a
Object-Oriented design and implementation.

types); or operating systems, programming libraries, and CPUs (when considering computer

hardware and software platform types).

A platform model also specifies requirements on the connection and use of parts of

the platform, and the connections of an application to the platform. Example: OMG has

specified a model of a portion of the CORBA platform in the UML profile for CORBA.

This profile provides a language to use when specifying CORBA systems. The stereotypes

of the profile can function as a set of markings. A generic platform model can amount to a

specification of a particular architectural style.

Considering the previous views, MDA defines the Computation independent Model (CIM),

the Platform Independent Model (PIM), and the Platform Specific Model (PSM). MDA re-

fines CIM in PIM and in PSM using model transformations during development process

(Fig. 1.5).

Computation independent Model (CIM)

A Computation Independent Model is a view of a system from the computation independent

viewpoint. CIM is at the highest level of abstraction; it neglects the processing and the

internal structure of the system and offers a model that is independent by computation

details.

Chapter 1. Model-Driven Engineering 17

CIM	
Requirement	 model:	
defines	 system	 in	 its	
environment	

PIM	
Analysis	 and	 design	 model:	
defines	 the	 system	
architecture	

PSM	
Realiza>on	 model:	 	
Defines	 how	 the	 system	 	
is	 built	

Problem	

Figure 1.5: The MDA Viewpoints.

CIM is also sometimes called a domain model, since it offers a vocabulary that is familiar

to the practitioners of the domain and is used for specification. Therefore, CIM plays an

important role in bridging the gap between those that are experts about the domain and

its requirements on the one hand, and those that are experts of the design and construction

of the artifacts that together satisfy the domain requirements, on the other.

Platform Independent Model (PIM)

A Platform Independent Model is a view of a system from the platform independent view-

point. PIM is a model that focuses on the operations of the system, but abstracts the

relations that concern a particular technology or execution platform, such as the hardware

interface, the programming language and the middleware. Since a PIM exhibits a specified

degree of platform independence so as to be suitable for use with a number of different

platforms of similar type.

Chapter 1. Model-Driven Engineering 18

Platform Specific Model (PSM)

A platform specific model is a view of a system from the platform specific viewpoint. A

PSM combines the specifications in the PIM with the details that specify how that system

uses a particular type of platform. It can be translated into code to provide a partial or

total implementation of the system.

1.1.3 UML extensions of interest

Other UML extensions of interest for the thesis are the OMG Systems Modeling Language

(SysML) and the UML Testing Profile (UTP), which has been proposed in the context of

Model-Driven Testing (MDT).

SysML is a general-purpose modeling language published by OMG [15] for system en-

gineering, that provides specific support for capturing functional and performance require-

ments, quantitative constraints, and information flows.

While UML is more software-centric, SysML supports the specification, analysis, design,

verification and validation of a wide range of complex systems, that include hardware, soft-

ware, processes, personal and facilities. SysML partially overlaps with UML 2.0 (Fig. 1.6),

it reuses a subset of UML 2 (namely, UML4SysML) but provides additional extensions

which have no counterparts in UML or which replace UML constructs as in form of an

UML Profile.

One of the main features of SysML is the definition of two new diagram types over UML:

Requirement Diagram and the Parametric Diagram. The first one can be used to model

system requirements and their relationships, whereas parametric diagrams can be used for

performance and quantitative analysis.

Model-Driven Testing is an MDE activity for V&V [16], it aims at exploiting model-

driven approaches also for testing, i.e., test infrastructure and test cases are generated

by transformation of models. To this end, an UML standard profile, the UML Testing

Chapter 1. Model-Driven Engineering 19

8!

Background: SysML!
!  SysML is a OMG’s modeling language that partially overlaps

with UML 2.0, but focuses on system engineering, providing
specific support for capturing functional and performance
requirements, quantitative constraints, and information flows. !

UML 2.0 SysML

Figure 1.6: The overlap between UML and SysML.

Profile (UTP), can be used to adapt UML as a test specification language: UTP offers the

elements to model test architecture, test behavior, test data and test time with UML; by

UTP model, test cases and test scripts are derived through transformations, using mapping

rules, for instance to Java (using JUnit framework) or TTCN-3. Test cases can be generated

automatically starting by behavioral diagrams, such as sequence diagrams, state machines

or activity diagrams.

The viewpoints of MDA have also been applied for MDT. The study [17] introduces

the concepts of Platform Independent Test Model (PIT) and Platform Specific Test Model

(PST) to separate the test aspects for the general business logic from the platform and

technology dependent features of the SUT: this enables to better reuse of testing artifacts

for the deployment on multiple target platforms. PIT an PST (skeletons) can be obtained

by transformations of PIM and PSM. Test code can be generated by transformation of PIT

and PST (Fig. 1.7).

The approach has been extended in [18] with the Computation Independent Test Model

(CIT): according to the author, the CIT derives from the CIM, and models test objectives

and test suite structures combined with overall test strategies used in a specific development

process.

Chapter 1. Model-Driven Engineering 20

Platform
independent
design model

(PIM)

Platform
specific

design model
(PSM)

System
Code

Platform
independent
test model

(PIT)

Platform
specific

test model
(PST)

Test
Code

transformation

transformation

transformation

transformation

transformation

transformation

transformation

refinement

refinement

Figure 1.7: The integration of MDA and MDT proposed by Dai [17].

1.2 State of practice of MBE and MDE

Several surveys analyzed the diffusion and the benefits of Model-Based and Model-Driven

technologies into industrial practices, after 30 years from the introduction of the first MD

tools on the market. However, these analyses are still not enough to get a complete picture

about the state of the MD practices. Indeed, an aspect that is often neglected by these

surveys is that the utilization of MD techniques is tight dependent on the domain considered

in the analysis, which influences the demands of the users as well as the stability of the

environment and the availability and maturity of the supporting tools. For instance, if

we consider the development of embedded systems, a stabler environment has eased the

diffusion of very complex MD tools such as Matlab Simulink or SCADE, that are always

evolving in complexity and functionalities since they were introduced on the market, more

than twenty and ten years ago. Differently, if we restrict to the general purpose market, the

model-driven tools are generally more limited in their scopes, and the unstable environment

Chapter 1. Model-Driven Engineering 21

requires that they evolve rapidly as new technologies emerge. This observation agrees with

the findings of past surveys: the results on the adoption of MB and MD in the industries

for the general market differ from the ones in the domain of the embedded system. Even

if MDE is always perceived beneficial, the benefits are not so evident like in the domain of

the embedded system industry.

MDE in the general industry seems no completely mature yet, and partially debated,

with no stable tools and many potentials of model-driven approaches to be exploited. Sum-

marizing multiple observations through surveys of past years in general industry, we can

conclude that:

• MDE is spreading with the time in industry, but it is still far to be pervasive. It

followed the concurrent evolution of the languages (such as UML) and of the tools:

in 2005 practitioners were using MBE for conceptual modeling [19], in 2008 models-

centric approaches were perceived better than code-centric ones in most of tasks [20],

in 2010 and 2011 MDE has been widely observed in diverse range of industry [21, 22,

23, 24, 25, 26, 27, 28], despite there are many problems and no general and common

consensus with these approaches;

• models are mainly used for design and documentation, while the benefits of advanced

techniques (such as code generation, test case generation, or model animation) are

lowly exploited: models are introduced mostly as an enabling technology inside the

process, to enable business that otherwise would not be possible [21, 22, 23];

• UML is gaining the market1, but the tools are no mature yet, they are considered one

of the biggest problem by the industry, that is worried by the easiness of their usage,

the vendor lock-in problem, and the interoperability [25, 26, 27, 28];

1It is worth to mention, that disagreeing from the previous surveys, the study [29] targeted the use of
UML in industry on fifty software designers and found that UML was not used at all or only selectively or
informally.

Chapter 1. Model-Driven Engineering 22

• MDE depends on the business domain and on organizational factors, it need changes

inside the personnel, the processes, and company practices: MDE demands for special

skills and changes in the importance of developers and software engineers, as retraining

software coders to think at a higher level of abstraction which can reveal a difficult

task. These aspects have not been well addressed by the MDE, and the current

approaches do not adequate to the people, but the people have to adapt to them.

A partially different scenario is observed in the domain of embedded systems, where we

can draw the following picture:

• model-based techniques are widely adopted (almost pervasive in automotive domain),

and models are used not only for informative and documentation purposes but they

were the key artifacts of the development processes [2, 3].

• the needs for introducing models was mainly for shorter development time, and to

improve reusability and quality, whereas less than the half had the need to introduce

models for exploit formal methods, or because they were required by the standards

[2, 3].

• the activities of verification and validation (V&V) had a huge impact by their adoption

in the automotive domain [4]: the industry were used to widely exploit model-driven

approaches for the early verification of the systems, by techniques such as model re-

views, guideline checkers, Rapid Control Prototyping (RCP) and Model- and Software-

in-the-Loop Tests, that lead to better quality, reduced development time, due to the

shifting of the costs to the phases of requirement analysis and design;

• according to [30] UML is not used widely, due to short lead-time for the software

development, or lack of understanding or knowledge of UML models, however this

survey, limited to MDE/MDA in Brazilian industry, does not agree with [2, 3] tar-

geting the European industries of embedded systems. These authors found that the

Chapter 1. Model-Driven Engineering 23

majority of survey participants were using Matlab/Simulink/Stateflow, followed by

Eclipse- based tools. The most used modeling languages were the OMGs ones (UML

and SysML);

• as for the general-market domain, in the top shortcomings identified there is in the

scarce interoperability and the usability issues of the tools, and the high (initial)

efforts to train the developers and to adopt these techniques [2, 3] .

Why was the diffusion of MB and MD techniques is different for the general market and

for the embedded systems? We claim that this is due to: (i) the different weight of the

activities in the development process (more on design and implementation for the general

market; and more on analysis and V&V for embedded systems); (ii) the parallel evolution

of the code-centric technologies that are available for the development, which raised even

more the level of abstraction during the design, and simplified the way the systems are

implemented. The hypothesis partially reflects the different focus on the adoption of models

in the two domains, since there is more emphasis on design and documentation in the general

market, and on the V&V techniques for the embedded systems.

1.3 Benefits and Open Challenges

The previous surveys identify the current state of the adoption of the model-driven ap-

proaches into the industry by collecting the opinions of the practitioners on the benefits

and drawbacks of model-based and model-driven techniques. However, besides these quan-

titative data, there is the need of empirical studies that analyze qualitatively and critically

the merits and faults of model-driven approaches. Indeed, the success or failing factors of

MDE are still unclear, and more research is needed [31].

A systematic review of empirical studies on MDE between the period 2000 to June 2007,

has been performed by Mohagheghi and Dehlen [8]. MDE can effectively reduce the cost

Chapter 1. Model-Driven Engineering 24

and development time, however it depends on the grade of adoption in the development

process: a success story is the one of Motorola [5, 6], that used MDE for more than 15 years

in a wide spectrum of activities, ranging from protocol implementations up to hand-held

devices or network controllers; they experienced an increase in quality and productivity

(ranging from 1.2x to 8x) and an approximately 33% reduction in the effort required to

develop test cases.

Motorola could achieve these results, only within a mature process that was supported

by own-made translators and tools for the model exploitation. Indeed, one common issue of

MDE is the absence of well-defined processes [8, 32, 33], as the application of MDE requires

changes in the activities, corporate culture and skills of the employees: many software

engineering methods are not fitted to use models as main artifacts, and the environments

seems not mature enough. Some previous studies attempted to apply pre-existing processes

to MDE, or to create own ones, but MDE shifts the importance of many activities to

(automatic) transformation rules, and change consolidated development process is not a

naive task. The study [7] reports a successful introduction of a MBE process after four

years and three projects had been defined and consolidated: there is the need to look

beyond the technical benefits of a particular approach to MDE and instead concentrate on

social and organizational issues [23].

Moreover, the process becomes a more difficult problem in safety-critical domain, where

compliance with certification standards poses additional requirements on the methodologies

for product life cycle. For these kind of systems, the major part of costs are for the activities

of verification and validation, so rigorous and well-assessed techniques have to be integrated

within the development process for the early detection of faults and to guarantee the quality

of the product. In addition, non-functional requirements, such as the safety, the reliability

and timing requirements, are a primary concern that have to take into account by these

processes: current MDE methodologies does not cope well stringent functional requirements

Chapter 1. Model-Driven Engineering 25

and qualities in current systems, i.e., the ability of these approaches to adapt to rapidly

changing hardware and implementation platforms that are highly complex [31].

Parallel to the challenge of the product life cycle, there is the open problem of the

supporting tools: they are not mature yet, and influence most of the adoption of MDE.

Moreover, the vendor lock-in problem is also perceived as a problem, and the companies

prefer to adopt open source solutions or to develop their own tools. Indeed, the tools are

not well usable, do not interoperate between themselves, do not keep in synchronization

the models at different level of abstractions, are not flexible to collaborative working, and

are not suited with the adoption of different models and modeling notations [31]. Thus,

model-driven processes have to careful consider the problem of defining the toolchain for

supporting the activities.

Chapter 2

Literature Review

2.1 Model-Driven Processes for Critical Systems

This chapter presents a systematic literature review performed with the goal of investi-

gating current methodologies for the engineering of critical systems. As suggested by the

studies on the use of MDE in practice, the process is an important aspect to be considered

when adopting model-driven approaches, since it influences on the effectiveness of these

techniques.

2.1.1 Research questions

The study has been undertaken as a systematic literature review based on the guidelines

as proposed by Kitchenham [34]. The focus of our review is on the proposed model-based

or model-driven methodologies for the life cycle of critical systems. The research questions

addressed by this study are:

RQ1. What is the focus of the studies on MBE/MDE for critical systems, and the relevance

of the development methodologies?

RQ2. What are the motivations that lead the research on MBE/MDE development method-

ologies for critical systems?

RQ3. How does this research benefit from models?

26

Chapter 2. Literature Review 27

RQ4. What are the current limitations of this research?

2.1.2 Search process

The search process was performed using the digital scientific catalog Elsevier Scopus [35],

looking for indexed studies in the database until 2016.

According to our focus, we wanted to select paper that cover model-driven processes

in safety- and mission- critical systems. Thus, the query retrieved scientific papers using

in the title, abstract or keywords the terms “model-based”, and “safety-critical system”,

including synonyms of both terms. We limited our analysis to the publications in the field

of Computer Science and Engineering:

TITLE−ABS−KEY

(

((” Model−based ” OR ”Model based ” or ”MBE”)

OR

(”MDE” OR ”Model−Driven ” OR ”Model dr iven ” OR ”MDA”))

AND

((” s a f e t y ” OR ” c r i t i c a l ” or ” s a f e t y c r i t i c a l ”

OR ” sa f e ty−c r i t i c a l ”

OR ” miss ion ” OR ” miss ion−c r i t i c a l ”)

PRE/0 (” system” OR ” systems ”

OR ”domain” OR ”domains”

OR ” a p p l i c a t i o n ” OR ” a p p l i c a t i o n s ”))

) AND PUBYEAR < 2016

2.1.3 Inclusion and exclusion criteria

Each study was selected manually by the author, based on the analysis of the title and of

the paper abstract. We excluded those studies whose focus is not about model-driven or

model-based approaches for the engineering of critical systems. In other words, we filtered

Chapter 2. Literature Review 28

out the papers not concerning the life cycle of software (and hardware) systems. Similarly,

we discarded retracted articles, and duplicates.

2.1.4 Paper classification

The scientific papers have been manually classified, according to their main contribution,

as reported in title and in the abstract. We adopted the following classification:

Typology We differentiated the studies by their main class of focus, according to the

categories listed in Tab. 2.1. Since this classification is not orthogonal, we preferred

that class more specific for the work. The typologies can be divided into two main

branches: Investigations and Contributions, the latter including Life Cycles, Non-

Functional Requirements and Infrastructure.

Modeling Scope We identified if the studies refer to Model-Based or Model-Driven ap-

proaches, and if they are based on OMG standards. We also classified the scientific

papers by Model-Based Testing or by Model-Driven Testing.

Industry Domain We assigned the studies to an industrial domain, according to their

scope, i.e., if they focus on one particular type of systems. The Industry domain

classes considered are: Aerospace, Automotive, Avionics, Embedded, General-Market

(such as, web applications), Railway, Others, and Unspecified.

2.1.5 Data collection

From each study, we extracted the following data:

• the title, authors, abstract, keywords, and publishing year;

• the source and document type (article, conference paper, etc.);

• the category of the main contribution;

Chapter 2. Literature Review 29

• the kind of techniques based on the models adopted by the study;

• the domain referred by the work.

2.2 Search results

The query provided 858 results: analyzing by authors and titles the results, 16 duplicates

were removed. Then, the remaining 842 results were analyzed manually by the author

according to the inclusion/exclusion criteria.

The filtering led to the selection of about 50% of the papers, i.e., 423 results were

later classified according to the typology categories listed in Table 2.1, as perceived by the

reviewer by the analysis of the title and of the abstract.

In order to answer to research questions RQ.2-RQ.4, we reviewed again the studies

belonging to the classes of Development Methodologies, Survey, Literature Review and

Experiences, selecting and analyzing the relevant ones by the analysis of the full paper.

However, we excluded eleven papers by this analysis: the studies written by the author of

this thesis, and the papers whose full text could not be retrieved. We could not access to

the studies available on SAE International [36], InderScience [37] or AHS [38].

RQ1. What is the focus of the studies on MBE/MDE for critical systems, and
the relevance of the development methodologies?

Sorting the typologies of papers by number of studies, the top five typologies (that account

for the 51.1% of all the works) are Verification and Validation (15.1%), Safety (12.1%),

Development Methodologies (9.2%), Design and Implementation (8.0%), Security (6.6%).

The data are tabulated (Tab. 2.1) and represented graphically (Fig. 2.1). These results show

how the activities of V&V, Safety and Development Methodologies have deserved primary

focus by previous research.

Chapter 2. Literature Review 30

Typology Description Size %

In
v
e
st

ig
a
ti

o
n Survey Investigation conducted by interviews. 2 0,5

Literature Review Investigation conducted by analyzing scien-
tific literature.

17 4,0

Empirical Study Investigation conducted by experiments. 20 4,7
Practical Experience Report on experiences. 22 5,2

L
if

e
c
y
c
le

Dev. Methodologies Contribution regarding MB, MD methodolo-
gies or on the development process.

39 9,2

Requirements Contribution regarding requirements analy-
sis or management, or validation at early
stage.

10 2,4

Design and Impl. Contribution limited to the design or imple-
mentation of the product.

34 8,0

V&V Contribution regarding activities of Verifica-
tion and Validation.

64 15,1

Certification Contribution focused on easing or supporting
the certification.

21 5,0

Maintenance Contribution on the maintenance or post-
deploy activities.

11 2,6

Documentation Contribution for the documentation of the
system.

3 0,7

N
o
n

F
u
n

c
ti

o
n

a
l

NF Dependability Contribution for the dependability of the sys-
tem.

13 3,1

NF Security Contribution for the safety of the system. 28 6,6
NF Traceability Contribution on improving the (model)

traceability.
4 0,9

NF Time Contribution for performance or timing is-
sues in real-time systems.

8 1,9

NF Safety Contribution on the safety requirements of
the systems.

51 12,1

Others Contribution not falling in one of the previ-
ous NF typologies.

16 3,8

In
fr

a
st

ru
c
tu

re

Transformation Contribution on model transformation rules. 20 4,7
Tools Contribution on tools for model-based envi-

ronment.
16 3,8

Languages Contribution on languages for modeling. 9 2,1
Others Contribution on supporting environments

or specific features for the development or
V&V.

15 3,5

Table 2.1: The typologies adopted for classifying the studies.

Chapter 2. Literature Review 31

0	

10	

20	

30	

40	

50	

60	

70	

V&
V	

NF
	 -‐	 S
afe
ty	

De
v.	
Me
tho
do
log
ies
	

De
sig
n	 a
nd
	 Im
ple
me
nta
Do
n	

NF
	 -‐	 S
ec
uri
ty	

Ex
pe
rie
nc
e	

Ce
rD
fic
aD
on
	

Em
pir
ica
l	 S
tud
y	

Tra
ns
for
ma
Do
n	

NF
	 -‐	 O
the
r	

Lit
era
tur
e	 R
ev
iew

	
To
ols
	

Inf
ras
tru
ctu
re	
-‐	 O
the
r	

NF
	 -‐	 D
ep
en
da
bil
ity
	

Ma
int
ain
an
ce
	

Re
qu
ire
me
nts
	

La
ng
ua
ge
s	

NF
	 -‐	 T
im
e	

NF
	 -‐	 T
rac
ea
bil
ity
	

Do
cu
me
nta
Do
n	

Su
rve
y	

Others	

Aerospace	

General	

Embedded	

Railway	

Avionics	

AutomoDve	

Unspecified	

Figure 2.1: Distribution of reviewed papers by Typology and Industry Domain.

By analyzing the industry domains (Tab. 2.2, Fig. 2.2), we can find some interesting

points:

• most of papers added contributions considering Embedded and Automotive domains,

followed by Avionics and Railway. This is consistent with the fields where MBE

techniques are more spread in practice;

• the papers in the class of Security only considered the General Market Industry: this

can suggest that security concerns are scarcely addressed in other industrial domains;

• the model transformations have been discussed mainly for domain of embedded sys-

tems;

• the studies on the certification encompass all the domains excluding Embedded and

General Market domain. This result is consistent with the domains where certification

is pursued.

Chapter 2. Literature Review 32

Fig. 2.2 also depicts the Modeling Scope of reviewed studies. Model-Based approaches

are more common than model-driven approaches (MBE and MBE (OMG), total 58%, vs.

MDE and MDE (OMG), total 30%). OMG standards were adopted by the 13% of the

studies. This can be symptom that OMG standards or the OMG supporting tools are not

mature yet to be object of more attention by research.

Restricting to the class of studies in Development Methodologies (Fig. 2.3), we observe

that they used, as industry domains, Embedded and Automotive Systems, followed by

Railway and General Systems, in line with the union of all the classes. However, these

studies increase the focus on MDE (MDE and MDE (OMG) 59% vs. MBE and MBE

(OMG) 41%) and on OMG standards (24%). Thus more efforts have been spent for model-

driven methodologies and compliance with OMG standards.

In this category, the studies can be divided in two branches, according to their objective:

in the first branch there are the studies that focused on defining the abstractions and trans-

formations between the models to design, develop and assess the software system. Instead,

the second branch includes the studies that proposed software/system life cycle method-

ologies (exploiting model-based or model-driven approaches). For instance, MDA belongs

to the first branch, since it describes a framework of abstractions and transformations for

software development. In order to be applied concretely, MDA should be mapped on a

complete life cycle process, such as the waterfall model, or the V-model.

Chapter 2. Literature Review 33

Typology Unspec. Automotive Avionics Railway Embedded General Aerospace Others Total

V&V 40 5 2 4 9 2 1 1 64
NF - Safety 43 4 1 2 1 0 0 0 51
Dev. Method. 12 7 2 4 7 4 3 0 39
Design and Impl. 20 2 5 0 5 2 0 0 34
NF - Security 21 0 0 0 0 7 0 0 28
Experience 4 2 3 4 3 0 6 0 22
Certification 14 1 2 2 0 0 1 1 21
Empirical Study 10 1 5 1 1 0 2 0 20
Transformation 10 1 1 2 6 0 0 0 20
NF - Other 10 2 0 0 3 1 0 0 16
Literature Review 9 2 1 0 2 2 1 0 17
Tools 13 1 0 0 2 0 0 0 16
Infrastr. - Other 11 1 0 0 3 0 0 0 15
NF - Depend. 10 0 1 1 1 0 0 0 13
Maintenance 9 1 0 0 0 0 1 0 11
Requirements 8 1 0 0 1 0 0 0 10
Languages 7 1 1 0 0 0 0 0 9
NF - Time 4 0 0 0 3 0 0 1 8
NF - Traceability 4 0 0 0 0 0 0 0 4
Documentation 2 0 0 0 0 0 1 0 3
Survey 1 0 0 0 1 0 0 0 2

Total 262 32 24 20 48 18 16 3 423

Table 2.2: Typologies of papers by Industry Domain.

Unspecified	
62%	

Automo3ve	
7%	

Avionics	
6%	

Railway	
5%	

Embedded	
11%	

General	
4%	

Aerospace	
4%	

Others	
1%	

Industry	 Domain	 -‐	 All	 Typologies	

(a)

Model-‐
Based	

Engineering	
51%	

MBE	 (OMG)	
7%	

Model-‐
Driven	

Engineering	
24%	

MDE	 (OMG)	
6%	 Model-‐Based	

Tes>ng	
10%	

Model-‐Driven	
Tes>ng	
2%	

Modeling	 Scope	 -‐	 All	 Typologies	

(b)

Figure 2.2: Distribution of all reviewed studies by Industry Domain (a) and by Modeling
Scope (b).

Chapter 2. Literature Review 34

Unspecified	
31%	

Automo3ve	
18%	

Avionics	
5%	

Railway	
10%	

Embedded	
18%	

General	
10%	

Aerospace	
8%	

Others	
0%	

Industry	 Domain	
Development	 Methodologies	 Typology	

(a)

Model-‐
Based	

Engineering	
38%	

MBE	 (OMG)	
3%	

Model-‐
Driven	

Engineering	
38%	

MDE	 (OMG)	
21%	

Modeling	 Scope	 	
Development	 Methodologies	 Typology	

(b)

Figure 2.3: Distribution of studies in class Development Methodologies by Industry Domain
(a) and by Modeling Scope (b).

RQ2. What are the motivations that lead the research on MBE/MDE develop-
ment methodologies for critical systems?

Hereafter, we restrict to Development Methodologies (39 papers). We can cluster previous

research on Development Methodologies into the following classes:

1. studies that targeted to use models as enabling factors for activities not currently

performed in the process (such as model checking or requirement validation);

2. works which aim at getting the benefits offered by models for activities generally per-

formed with low assistance (e.g., implementation or automatic test case generation);

3. contributions that ease the procedures related to the certification of critical systems

(for instance, using requirement traceability or safety report generation).

Indeed, considering particular enabling factors, new design and development method-

ologies have been proposed to introduce more rigor in the design [39, 40], to extend MDA

Chapter 2. Literature Review 35

with regards to real-time systems [41], to better support the reuse [42], or to take safety

into account [43, 44].

Similarly, several methodologies tried to integrate different models and tools to aug-

ment the benefits of model-based approaches [45, 46, 47, 48]. Also, we found applications of

model-driven methodologies for particular purposes, such as to enable model-driven hard-

ware [49] and hardware-software generation [50], for Autonomic Network Design [51], to

integrate stakeholder quality requirements on dependable systems’ information sharing mid-

dleware [52], or to introduce a new component-based method for developing masking fault-

tolerant systems [53].

Many development methodologies have also been proposed to introduce additional ac-

tivities of verification and validation, particularly relevant in critical domain. For instance,

to enable the assessment of functional and RAMS (Reliability Availability Maintainability

Safety) requirements, validation and model-checking [54], or requirement validation [55, 56].

The support of traditional activities, such as code generation or automatic test case

generation, also accounts for several works that want to reduce cost and time or improve

the quality of the development [40, 57, 42, 58, 59, 60, 61].

Other studies present model-based and model-driven methodologies for the develop-

ment of certified systems for safety-critical products. In this case, the methodologies have

to comply to the requirements prescribed by the standards and must consider particular

requirements in the system life cycle.

Grant elaborates in [62] a model-driven software development methodology based on

UML and compliant with RCTA DO-178C specification for airborne software systems.

In railway domain, the standard CENELEC EN50128 defines a V-Model software de-

velopment life cycle: a model-based process compliant with this standard and based on

SCADE environment is proposed in [43], whereas [32] discusses a life cycle derived from the

OpRail project, that includes UML and model-based techniques during the development

Chapter 2. Literature Review 36

and V&V. Also [63] present a methodology based on Simulink adopted for the development

of a SIL-4 safety-critical railway product.

Another methodology based on a V-Model and compliant to the MIL-STD-498 is pro-

posed in [60].

RQ3. How does this research benefit from models?

The research on MBE/MDE dev. methodologies for critical systems essentially benefits

from models:

1. to utilize the higher level of abstraction and the automation offered by the models for

supporting design, implementation and reuse;

2. to introduce formal methods for supporting V&V activities, such as automatic test

case generation, timing analysis, model checking, formal proof, and validation of for-

mal requirements;

3. to model particular concepts (for safety or certification) in order to trace and con-

trol elements along whole product Life Cycle, enabling to perform assessments or

reporting.

Models have been used in several ways by researchers. The first group tend to exploit

available tools, thus they focus on integrating models and languages. Indeed, for critical

systems, there is the demand for mature and stable tools: past studies adopted SCADE [43],

Matlab/Simulink [45, 55, 56, 63], or IBM Rhapsody [60, 32], or custom solutions, including

the adoption of SPIN model checker [59] and OpenModelica [64].

In the first group we cite the study in [45] that proposes a methodology to integrate

application models (such as Simulink and Lustre) with architecture models (AADL), in

order to analyze functional model and assess the architecture; and the ones in [46, 47] which

discuss a framework for the seamless integration of special purpose software and hardware

Chapter 2. Literature Review 37

development tools in one holistic tool-chain, enabling to adapt the model with the most

proper tools during the life cycle. In the same group there is the ASSERT process [39],

which proposes a methodology composed by a modeling phase, a model transformation and

verification phase (that verifies the feasibility of the system), and one of automatic code

generation: it adopts multiple notations according to four views of the model (ANS.1, SDL

and SCADE and AADL).

The second group of studies use less formal models, such as requirements in natural

language or UML 2.0, and discuss different approaches to get the benefits of automation.

Part of these studies introduced language dialects, or domain-specific languages (including

profiled UML/SySML), to combine the semi-formal language with the benefits of a formal

specification. It is worth to note that OMG defined recently new standards to make UML

2.0 formal and to ease the model specification by textual representation: the Semantics of

a Foundational Subset for Executable UML Models (fUML) [65], and the Action Language

For UML (ALF) [66]. However, these standards seem to have not been exploited yet for

critical systems.

Informal requirements have been addressed by [55], using specifications based on Simulink

models: the author presents its approach to complete the Twin Peaks process adopted at

NASA formal requirements specification and automated test generation, using Simulink/-

Matlab development environment; to the same end, Z notation has been adopted by avionic

company Rockwell Collins [56] in a sort of model-driven waterfall model for embedded sys-

tem controllers, that integrate several support tools for automatic code generation (Mat-

lab/Simulink) and for the activities of V&V (SCADE and Reactis). Z notation has been also

adopted by [62] to enrich the semantic of a set of UML models which are produced through

a series of iterative refinements and transformational processes. Safety requirements have

also been assessed in a inspired ISO-26262 process by mapping SysML/UML elements to

models in Modelica language and performing simulation [64].

Chapter 2. Literature Review 38

The authors of [58] propose an iterative refinement process augmented with different

validation and verification methods to finally generate a correct Java implementation from

(Abstract) State Machines: along the process simulation, model review and model checking

activities are performed on the model. The study [59] provides a tool-chain for software

development integrated with advanced techniques of V&V, such as model-checking and

model-based testing for state based event driven systems described with UML 2.0 state-

charts whose semantic was completely specified by the authors in a MDA framework. A

methodology with contracts is described in [40] based on a meta-model named Common

System Meta-model (CSM) which features concepts to support component-based design,

and to specify formal and non-formal requirements, supporting whole product life cycle.

An approach focusing on formal methods and based on transformations for model-driven

analysis and model-driven testing to assess functional and RAMS (Reliability Availability

Maintainability Safety) requirements is presented in [54]: it exploits domain-independent

(MARTE-DAM and UTP) and domain-specific languages, to generate formal models, such

as Generalized Stochastic Petri Nets. Specialized profiles to exploit UML has been also used

in [42], that adopt xUML profile in order to offer an execution semantic to PIM models and

to ensure that verification begins in the modeling phase.

The study in [60] proposes to use UML models together with the UTP profile for a

Model-Driven Testing methodology, for V&V and better reuse of testing artifacts.

Models have also been exploited for Safety: the authors of [43], propose a methodology

based on SCADE Suite integrating a Safety-Process: a model-based validation approach

of safety requirements is performed using a safety model in series with a function model

that checks the system output; the CORAS project [44] describes a framework that tracks

the evolution of the correlation between risk management and viewpoint oriented modeling

throughout the life cycle, for model-based risk management of security critical systems

adapted with a Rational Unified Process for development.

Chapter 2. Literature Review 39

Model-driven approaches are also being used for generating software-hardware, through

transformation of models in hardware description languages (e.g., VHDL): the MADES ap-

proach [50] offers a process based on MARTE and SysML to model-driven generate hardware

and software for embedded systems, including techniques of verification and traceability.

RQ4. What are the current limitations of this research?

There are still few model-driven methodologies that cover the full software development

life cycle, and that are suited to be replace current industrial practices and organizations,

especially where certification is pursued and processes must comply with standards.

Indeed, to effectively apply model-driven approaches on a large scale (and hopefully

shared among more partners), it is necessary to define strict processes that prescribe the

activities and the artifacts to be produced, as well as the methods to evaluate the quality of

the output. The most of past studies limited to describe the workflow of their approaches,

neglecting the problem of integrating them within industrial product life cycle processes:

only the 30% of the studies in the class of development methodologies discussed their ap-

proaches within life cycle processes.

However, proposing a methodology inclusive of the whole product life cycle does not

mean to prescribe fixed processes: the idea of exploiting one formalism, or monolithic

processes suited for all industry needs, is not realistic. We believe that the observations made

in the seminal work of Brooks in 1986 [67] can be extended to Model-Driven Engineering:

MDE is a sort of one of the silver bullets analyzed by the author, since it really can address

the essential difficulties of building software systems. Indeed, MDE effectively masks the

essential complexity of software and it offers powerful forms of graphic representations of

the software (i.e., MDE tackles the essential difficulties of the complexity and invisibility

of software). Moreover, MDE automates the artifacts (and code) generation, which is one

of the promising features discussed skeptically by Brooks. MDE provides these benefits

Chapter 2. Literature Review 40

because of the formalisms that exploits, which can hide (and not remove!) part of the

essential difficulties through the specific abstractions and notations introduced to face the

problem. However, no one model can deal with all the systems: according to the specific

instance of the problems, one formalism can result more suited than others.

Therefore, model-driven life cycle methodologies should be open not only to multiple

formalisms and tools – and be flexible to their seamless usage – but should also be open to

a broad range of activities that a company can choose to use, to skip, or to perform in a

manual way, according to its needs and business. For instance, one of the most emphasized

benefits, the automatic code generation, can be refused if it translates in additional costs for

the certification: the study [24] reports a case study about an increase of eight times for the

costs for certification because of the lack of readability and inefficiency of code generated;

this, in turn, does not mean that a company cannot benefit from model-driven approaches

to support other parts of product life cycle.

The approaches [45, 46, 47, 48] moves in this way, trying to better integrate multiple for-

malisms in MDE, but they lack of a flexible methodology that focuses on the organizational

factor.

Indeed, another limitation that has been observed, is that the methodologies are gen-

erally too tied to the technology: tools have to support the process, and they should not

force the activities. In addition, a company should not rely on the long-term support of the

tools that has adopted in own business, and standard languages and open source solutions

should be preferred.

By analysis of the full texts we found that around the 2/3 of the studies uses an open

language at least for a part of the methodology, i.e., OMG standards, AADL, or Modelica

Language [64]. Even if these values are encouraging, all new methodologies should dedicate

more focus on open languages, standards and interoperability.

Similarly, MDE should take serious concern of all the forms of verification and validation,

Chapter 2. Literature Review 41

especially for development of critical systems; we believe that as for the implementation as

for the V&V there is too much expectation on a push-button solution: even if model-

checking and formal proof are of utmost importance for the verification, they should not

be the main objective of a new methodology, but they should consider a broader set of

techniques of V&V, such as equivalence partitioning, boundary value analysis, interface

testing, simulation, or model-in-the-loop tests, which we did not find integrated in one

methodology for critical systems.

This consideration also applies when considering certification. Indeed, for the produc-

tion of a safety critical system, such as a SIL-4 system as prescribed by railway standard

CENELEC 50128, it is generally possible to customize the development process with a

subset of techniques of verification and validation selected among multiple alternatives:

model-checking can figure among these options, but a company could prefer to adopt a

cheaper or a more easy-to-perform solution. Therefore, a methodology that integrates a

wide range of techniques of V&V increases its usefulness and interest on the market.

Summarizing the previous discussion, we can state that:

1. there are still few methodologies that cover full software development life cycle and

are flexible but complete to replace current industrial processes, especially for the

development of certified systems;

2. there is the need of methodologies that do not limit to one particular formalism or

tool, but be open to different models and standards, focusing on the activities, rather

than on the technologies;

3. a wide range of V&V activities, even if exploited in current model-driven practices,

have not been offered integrated within methodologies. This limits the flexibility of

the model-driven processes for industrial needs, even in critical domains.

We found that our observations regarding the limitations of the model-driven engineering

for critical systems are in line with the analysis in [33].

Chapter 3

A Model-Driven Methodology for
Critical Systems Engineering

3.1 Overview

In this chapter we present a novel model-driven software development life cycle for criti-

cal systems based on the V-model suggested by the CENELEC EN 50128 (Fig. 3.1), the

European standard for software for railway applications. The activities of the CENELEC

V-Model process can be grouped in those concerning development, that are on the left side

of the ‘V’, and those focusing on verification and validation (V&V), that are on the opposite

side. The activities of V&V require planning stages that are performed before their actual

execution: these planning stages are carried out during design in Fig. 3.1.

Besides the V-Model, CENELEC EN 50128 also prescribes requirements on the artifacts

produced at each stage, on the activities to be performed, as well as on the people that

have to execute the tasks. For instance, if we consider the highest integrity level (SIL-4),

distinct people have to test, verify and validate the product, in order to cross-check their

work. The phases adjacent to the ‘V’, the Software Planning and Software Assessment, aim

at tuning and assessing the activities of the life cycle, defining the tasks to be performed

during the process and checking that the product and all artifacts satisfy the requirements

and comply with the standard.

42

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 43

Figure 3.1: EN 50128 Software Development Life cycle

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 44

We focused on the core phases of the CENELEC V-Model, on those phases that lie on

the ‘V’ and range from the System Development Phase to the Software Validation Phase

(Fig. 3.1), i,e., on the Software Development Life Cycle (SDLC). This core can easily be

integrated in all current industrial processes which comply with CENELEC EN 50128.

The life cycle that we propose is shown in Fig. 3.2: it is divided into a left, central,

and right parts. The activities on the left are of forward engineering (i.e., system analysis,

design and implementation), the phases in the center are of V&V planning, while on the

right side there are the activities of V&V planning execution. Our process integrates in a

novel way three different abstractions along the vertical and horizontal progressions of the

phases (Fig. 3.3):

1. the abstractions of the Model-Driven Architecture (i.e., the Computation Indepen-

dent, Platform Independent and Platform Specific Viewpoints, see Sec. 1.1.2), that

have been adopted for the development, i.e., for the phases on the left side of the ‘V’;

2. the abstractions of a Model-Driven Testing Methodology based again on MDA view-

points, which have been used for the V&V planning and execution, where we define

first a Platform Independent Test Model and then a Platform Specific Test Model,

moving from the central to the right side of the ‘V’;

3. the abstractions implicit to the CENELEC V-Model, i.e., the different focuses at sys-

tem level, integration-level and component-level, that in a novel way we have combined

with the design and V&V viewpoints, for each level of the ‘V’.

Indeed, the CENELEC V-Model life cycle adopts implicitly different viewpoints on the

system for each level of the ‘V’: the top level focuses on the system as a whole, the level

below uses a viewpoint on the system architecture, then it considers the components and

their internal design; finally, the lowest level of the ‘V’ sees source code details. These

abstractions are used on the both sides of the V-Model, for development and V&V.

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 45

CIT CIM
 (SysML)

PIM
(SysML/UML)

PIM
 (UML)

PSM
(UML)

White box
PST

(UML/UTP)

Black box
PST

(UML/UTP)

Validation
Model

Black box
PIT

(UML/UTP)

Grey box
PIT

(UML/UTP)

Model&Driven,Development, Model&Driven,V&V,

Early,detec6on,of,faults,

Sys. Req. Spec.
,

System Design,

Component Design,

Validation Design,

Integr. Ver. Design,

Comp. Ver. Design,

Implementation,

Comp. Verif.,

Integration Verif.,

Validation,

Figure 3.2: The proposed model-driven V-Model life cycle. Boxes show the phases, the
models produced, and the formalisms used. The arrows represent dependency between ar-
tifacts. The Component Design has a dependency with the Component Verification Design
if it exploits the test model to early detect faults.

Model&Driven,Development,

2.#MDT#Abstrac.ons#

CIM
 (SysML)

Sys. Req. Spec.
,

PIM
(SysML/UML)

System Design,

PIM
 (UML)

Component Design,

CIT

Validation Design,

Black box
PIT

(UML/UTP)

Integr. Ver. Design,

Grey box
PIT

(UML/UTP)

Comp. Ver. Design,

PSM
(UML)

Implementation,

White box
PST

(UML/UTP)

Comp. Verif.,

Black box
PST

(UML/UTP)

Integration Verif.,

Validation
Model

Validation,

Model&Driven,V&V,

1.
#M

DA
#A
bs
tr
ac
.o

ns
#

3.
#V
4M

od
el
#A
bs
tr
ac
.o

ns
#

Integra.on#
Level#

System#
Level#

Component#
Level#

PlaBorm#
Independent#

Computa.on#
Independent#

PlaBorm#
Specific#

PlaBorm#
Independent#

Test#

PlaBorm#
Specific#
Test#

Code#
Level#

Figure 3.3: The three main abstractions exploited in the proposed model-driven life cy-
cle. Black arrows represent dependency between artifacts. Yellows arrows represents the
abstractions adopted and follow their progressions.

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 46

The process starts with System Requirements Specification, by defining the system en-

vironment and software requirements. Then, System Design and Component Design are

carried out. The former defines a high level system architecture, identifying the hardware-

software interface, and the components interfaces. Requirements are then allocated to com-

ponents, and the Designer specifies their responsibilities and expected interactions. Finally,

in Component Design the Designer completes the components with the internal design, and

the Implementation concludes the development. For the forward engineering, we define

a Computation Independent Model (CIM), a Platform Independent Model (PIM) and a

Platform Specific Model (PSM), following the MDA principles.

The V&V planning activities have been isolated in the phases at the center of the V-

Model, in Validation Design, Integration Verification Design, and Component Verification

Design. These phases are followed by the ones of V&V execution that are performed on

the right side of the ‘V’, i.e., Validation, Integration Verification and Component Verifi-

cation. For instance, Validation Design produces the Overall Software Test Specification

after system requirements have been specified by System Requirement Specification. Then,

the actual activity of validation, is performed in Validation. at the end of the ‘V’, after

Integration Verification, to assess the product conformance to requirements.

For the phases of V&V, we propose a model-driven methodology based on the MDA

abstractions: the planning phases use Platform Independent Test Models, whereas the

execution phases build Platform Specific Test Models. In fact, the V&V execution phases on

the right side of the ‘V’ benefit from the availability of the implementation, that constraint

the technological platform.

Using this methodology we improve the reuse of artifacts of design and V&V, supporting

most of activities of the life cycle with model-driven approaches and making the process

high suitable for different industrial needs; indeed, the three abstractions act like three

degrees of freedom during the process and enhance the reuse at different extents.

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 47

The methodology is not tied to a particular formalism, but we propose to adopt OMG

standards, i.e., SysML and UML, to be open to multiple tools and promote the interop-

erability of the models. It is worth to note that custom profiles can be introduced in the

process to potentiate the automatic generation of artifacts throughout the whole SDLC,

thus reducing the manual efforts.

We defined our process taking as reference the railway standard CENELEC EN 50128

standard, that will be considered throughout the following of this chapter. Since CENELEC

is a standard for safety-critical systems, our process is a good candidate to be adopted also

in other domains under other standards.

3.2 Roles and Responsibilities

The activities of our life cycle are assigned to a limited number of roles, that comply with

the CENELEC EN 50128 standard. We identified the following role and responsibilities:

Requirement Manager is responsible for specifying the software requirements. (S)he

shall be competent in requirements engineering and be experienced in application’s

domain (as well as in safety attributes);

Designer transforms software requirements into a solution, defining the system architec-

ture and developing component specifications. (S)he has be competent in engineering

of the application area, and safety design principles;

Implementer transforms design solutions into data, source code or other representations

to create the product software artifacts. (S)he has to be competent in engineering of

the application area and implementation languages and supporting tools;

Tester develops the test specifications, and handles the test implementation and execution.

(S)he has to be competent in the domain where testing is carried out;

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 48

Integrator manages the integration process using the software baselines, developing the

integration test specification. (S)he has to be competent in the domain where com-

ponent integration is carried out;

To all of these roles it is required skills with modeling, and experience with model-driven

engineering, as well as with the adopted formalisms and tools.

3.3 Model-Driven Development

For the forward engineering, we exploit the abstractions of Model-Driven Architecture in-

tegrated with the abstractions of the CENELEC V-Model. The integration of both ab-

stractions leads to split the Platform Independent Viewpoint into two Viewpoints, a PIV

at integration level, and a PIV at component level; therefore, from the two PIV we design

two different Platform Independent Models (Fig. 3.3).

3.3.1 System Requirements Specification

Phase System Requirements Specification.

Goal Define the system and software requirements specification.

Main Role Requirement Manager.

Input The specification of the system to realize with a high level description

of the system architecture and safety requirements, as well as the plan

of the safety plan.

Model Computation Independent Model (CIM).

Viewpoint Computation Independent at System Level.

Diagrams Requirement Diagram, Use Case Diagram, Block Definition Dia-

gram, and behavioral diagrams, such as State Machine Diagram,

Sequence Diagram, Activity Diagram, and Timing Diagram.

Output Model CIM modeling software requirements and their relations.

M2T Output CIM – Software Requirements Specification.

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 49

System Requirements Specification targets to define the system and the specification

of software requirements. According to CENELEC, Requirement Manager executes the

activities in this phase.

In a model-driven fashion, the Requirement Manager aims at defining a Computation

Independent Model starting from a high level specification of the system to realize, that is

the input of the process. According to the CENELEC standard, this phase also receives, as

input, a high level description of safety requirements as well as a high level plan of the safety

plan. If safety requirements are also modeled in the CIM, they can be object of automatic

analysis in the further stages of the development.

The CIM is essential to model the system requirements, and the relations between them,

such as the dependencies and containment relationships. We suggest to define the CIM

using SysML, because it turns out particularly suited in this phase due to the Requirement

diagram, the Use Case Diagram, and the Block Definition Diagram.

Requirement Diagram is one of the improvements over UML offered by SysML. It can

be used to display textual requirements, and to represent the relationships between them,

such as containment, derive requirement and copy. Requirement Diagram can also be used

to model the relationships between requirements and the other model elements, that can

satisfy requirements, verify and refine them.

UML Use Case Diagram models the use cases of the system and the actor. The use

cases are specifications of set of actions performed by the system, that yields observable

results of interest for actor or system stakeholders. They are generally associated with the

main functionalities offered by the system. The actors are roles of users or external systems

that interact with the subject (i.e., the system).

Block Definition Diagram is similar to the Class Diagram of UML, but display elements

that are not of software domain, thus can reveal more suited than UML for modeling of

hardware and software systems.

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 50

As an example, a CIM can be composed by a requirement diagram to model the system

requirements; by an Use Case Diagram to represent the functionalities and the entities that

interact with the system; and by a Block Definition Diagram, to represent the relations

(such as information flows) between the system and the other entities, as well as between

couples of external actors.

The CIM constitutes one of the output of the phase. Through a transformation it should

be possible to derive from the CIM the Software Requirements Specification document.

3.3.2 System Design

Phase System Design.

Goal To develop a software architecture that achieves the requirements of the

software.

Main Role Designer.

Input CIM modeling software requirements and their relations.

Model Platform Independent Model (PIM).

Viewpoint Platform Independent at Integration Level.

Diagrams Mainly Structural diagrams: Component Diagram, Class Diagram, (Pro-

tocol) State Machine Diagram.

Output Model PIM modeling software architecture, components’ interfaces and their

relations.

M2T Output PIM – Software Architecture Specification, Software Design Specification,

Software Interface Specification.

The System Design phase receives as input the CIM from System Requirements Specifi-

cation, and the Software Designer targets to refine this model into a Platform Independent

Model that defines the software architecture, and the interfaces between the components,

and between the components and the overall software. The architecture is specified by

the means of structural diagrams, such as Component and Class Diagrams. System re-

quirements are assigned to the system components, and the model keeps record of the

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 51

traceability.

In addition, the Designer has to model the interfaces between the hardware and the

software. Since the viewpoint is platform independent, these interfaces should abstract

away as much as possible from one particular technological platform.

PIM describes, for each component, its requirements, interfaces, and, when necessary, its

expected protocol, i.e., the expected I/O relations at components’ interfaces. The protocol

can be modeled with behavioral diagrams. In particular, UML offers to this end the Protocol

State Machines which models the expected I/O relations of an element without specifying

how it realizes the behavior.

At this stage, from the CIM it should be possible to partially derive several artifacts

required by the CENELEC standard, in particular: the Software Architecture Specifica-

tion, the Software Design Specification and the Software Interface Specification document.

Among other requirements, the Software Architecture Specification document identifies all

software components and, for all of them, the subset of requirements that they cover, as

well as if they are new or exiting, their safety integrity level, and if they have been previ-

ously validated. The Software Design Specification document mainly addresses the software

components and relates them with the architecture, specifies their interfaces with the en-

vironment and with other software components, as well as their data structure and main

algorithms. Finally, the main concern of the Software Interface Specification document is

to specify the required sequences of input and output as well as their valid range of values

(that shall be the basis to build the test cases).

Of course, the previous artifacts can be used in the following platform independent

activities (such as for the generation of abstract test cases during the platform independent

V&V), but it may be requested to adapt these artifacts for a specific platform (as well as

all the artifacts derived by these ones) for certification.

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 52

3.3.3 Component Design

Phase Component Design.

Goal To develop a component design that meets the software design specifica-

tion.

Main Role Designer.

Input PIM modeling software architecture, components’ interfaces and their

relations.

Model Platform Independent Model (PIM).

Viewpoint Platform Independent at Component Level.

Diagrams Mainly Behavioral diagrams: (Behavioral) State Machine Diagram, Se-

quence Diagrams, Activity Diagrams.

Output Model PIM modeling also components’ internal design, and behavior.

M2T Output PIM – Software Component Design Specification.

During Component Design the Designer refines the PIM, to specify the internal design

of the components. The Designer identifies all lowest software units, that has to fully detail

with the input and output of the interfaces, specifying their algorithms and data structure.

To this end, the Designer can use Internal Structure Diagrams, to specify the internal design

of each component; and Behavioral State Machines, or Activity Diagrams to complement

the structural description with the behavior.

At this stage the PIM is complete, and offers a complete structural and behavioral

description of the system. Depending on the formalism adopted during development, the

PIM can be also runnable and object of simulation.

The enriched model can be translated into the a Software Component Design Specifica-

tion, according to the CENELEC terminology.

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 53

3.3.4 Implementation

Phase Implementation.

Goal To produce software that is correct and verifiable.

Main Role Implementer.

Input PIM modeling components’ internal design, their relations and behavior.

Model Platform Specific Model (PSM).

Viewpoint Platform Specific at Code Level.

Diagrams Mainly Behavioral Diagrams.

Output Model PSM modeling all software details specific for the platform including the

code level.

M2T Output PSM – Software Source Code and Supporting Documentation.

Implementation phase deals with the production of software that is analyzable, testable,

verifiable and maintainable. Before implementing the code, following a model-driven ap-

proach, the PIM is refined into one or more Platform Specific Models, each one bound to a

target platform. A PSM adds low level details to the PIM which concern the implementa-

tion. For instance, a PSM can adapt the generic types of the variables with the actual ones

provided by a particular programming language, or can bind the data and function calls to

the specific interfaces offered by a middleware or by the OS that have been chosen for the

instantiation of the PIM.

If we consider UML, at this phase the specification of a component’s behavior could

require the annotation of the model with the syntax of a programming language (e.g.,

C/C++ or ADA).

The PSM(s) can be at various degree of automation translated into code. to provide a

partial or a total implementation of the system. When automatic translators are employed,

the settings of the code generators have to be intended as part of the PSM.

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 54

3.3.5 Early Fault Detection Techniques in Development

Before the implementation phase, in Component Design phase the PIM already offers a

behavior-complete view of the system at component level, thus it can be object of simulation

or animation. Model animation can be used in the process as a form of early fault detection:

animated behavioral diagrams (such as state machines or activity diagrams) support the

engineer in assessing the quality and correctness of the design.

However, depending on the actual formalism adopted, it could be difficult to build a

runnable PIM without completing the specification with a programming language. These

extra annotations can be reused for a PSM, or only be used for making a system prototype.

Considering OMG standards, we can also employ the Action Language for UML (ALF) [66],

that enables to complete the model specification with a textual representation not bound

to a particular programming language.

Techniques of prototyping/animation during modeling are also recommended by the

CENELEC standard.

3.4 Model-Driven Verification and Validation Design

For the activities of V&V, we designed our process based on UML and UTP profile, in order

to adopt OMG standards also for the Test Models. However, depending on system’s domain

and on the particular kind of verification to perform, domain-specific languages could be

easier to employ for these activities.

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 55

3.4.1 Validation Design

Phase Validation Design.

Goal To analyze the actors’ behavior to design validation tests.

Main Role Tester.

Input CIM modeling software requirements and their relations.

Model Computation Independent Test Model (CIT).

Viewpoint Platform Independent Test at System Level.

Diagrams Structural and behavioral diagrams of the system environment.

Output Model CIT offering a model of the environment and expected system interaction.

M2T Output CIT – Overall Software Test Specification.

The activities in Validation Design focus is on the actors, rather than on the system,

and the goal of the phase is to design overall system (validation) tests.

Here, the Tester models the behavior of the actors and of the environment in the Compu-

tation Independent Test Model (CIT), starting from the requirements modeled in the CIM.

It uses behavioral diagrams, such as Sequence Diagrams, or State Machines Diagrams, or

Activity Diagram, to model the expected interactions and behavior of system actors.

CIT is exploited to analyze the actors’ behavior, and to design validation tests, e.g.,

in form of UTP sequence diagrams, that model the actors’ interactions with the system.

For instance, considering a railway interlocking system, a CIT could model the behavior of

trains and station operators, based on the historical/expected interactions they exchange

with the system.

Moreover, since CIT interfaces are the complement of those of the system, if the Tester

creates a runnable model, then in-the-loop tests can be performed on the system during

next phases. By simulation of the CIT, it could be also possible to derive automatically

validation tests, based on the modeled operational profile.

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 56

By model-to-text transformation of the CIT, the Overall Software Test Specification

document can be partially derived. According to CENELEC EN 50128, this artifact identi-

fies for each required system function test cases to be performed on the completed software.

3.4.2 Integration Verification Design

Phase Integration Verification Design.

Goal To design integration tests to show that components behave correctly

integrated together.

Main Role Integrator.

Input PIM modeling software architecture, components’ interfaces and their

relations. CIT offering a model of the environment and expected system

interaction.

Model Black Box Platform Independent Model (BB-PIT).

Viewpoint Platform Independent Test at Integration Level.

Diagrams Static diagrams and behavioral diagrams for the test harness and test

case specification.

Output Model BB-PIT modeling the testing infrastructure and the integration level test

cases.

M2T Output BB-PIT – Software Integration Test Specification.

In Integration Verification Design, the Integrator has to design integration tests to show

that components behave correctly when integrated together. To this end, (s)he defines a

model of the expected behavior of the system’s components, which is independent from their

inner design. Indeed, at this stage the viewpoint is at Integration Level, and the internal

architecture of the components was not modeled in the input model, i.e., in the PIM at

Integration level. Therefore, we refer to the model defined during this phase as Black Box

Platform Independent Test Model (BB-PIT).

BB-PIT provides static and dynamic views of the system’s components, and it is used to

support functional testing in the unit/integration/system verification (Fig. 3.4). The static

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 57

BB"PIT&
& Sta$c&descrip$on&&

of&the&Components&

Dynamic&descrip$on&&
of&the&Components&

Test&Harness&
(stubs,&drivers,&…)&

Test&suites,&&
Test&cases&

Behavioral&diagrams&
(Components’&behavior)&

UTP&Sequence&Diagrams&
(Test&Cases)& M2T &

M2T &

M2M&

Figure 3.4: The transformations of the BB-PIT.

description supports the generation of test harness, such as stubs and drivers for unit and

integration testing. The dynamic description is composed by:

• UTP Sequence Diagrams, by these diagrams is possible to generate test suites or test

cases;

• other behavioral diagrams, such as Behavioral State Machines or Activity Diagrams,

defined starting by requirements assigned to each component in the PIM model. By

these diagrams through transformations, it is possibile to derive the additional test

cases (i.e., UTP Sequence Diagrams).

Differently from design model, the BB-PIT can model the behavior of one component

with more than one state machines. In fact, the purpose of behavior modeling is differ-

ent between the PIM and the BB-PIT: the PIM specifies how to build the system, and

represents the specification that an actual implementation must comply with; a BB-PIT

describes the expected behavior in a way to verify its correspondence between requirements

and implementation (e.g., by using the BB-PIT for test case generation, the description

represents the specification that test cases must comply with). Since test suites can be

composed by grouping test cases derived by several state machines, test cases can be gener-

ated by multiple (and easier) state machines which focus on different subsets of component

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 58

functionalities.

By the BB-PIT, a preliminary Software Integration Test Specification document is deriv-

able using using a model-to-text transformation. Depending on the particular platform

specific transformations of the PIM, this document can be refined with additional details

during Integration Verification.

It is finally worth noting that, since BB-PIT derives from requirements and is barely

influenced by design details, it can support validation too.

3.4.3 Component Verification Design

Phase Component Verification Design.

Goal Design tests to confirm that components perform their intended functions.

Main Role Tester.

Input PIM modeling components’ internal design, their relations and behavior.

BB-PIT modeling the testing infrastructure and the integration level test

cases. CIT offering a model of the environment and expected system

interaction.

Model Grey Box Platform Independent Model (GB-PIT).

Viewpoint Platform Independent Test at Component Level.

Diagrams Behavioral diagrams for the test case specification.

Output Model GB-PIT modeling the testing harness and component test cases.

M2T Output GB-PIT – Software Component Test Specification.

Component Verification Design targets to design tests to confirm that components per-

form their intended functions, checking how they interact to perform the function. Another

activity of this phase is to confirm that all parts of the system are tested.

Following a model-driven approach, the Tester refines the BB-PIT defining the Grey Box

Platform Independent Test Model (GB-PIT). The GB-PIT starts from the functional black

box tests defined by the BB-PIT and refines the model, exploiting the PIM at Component

Design level, which offers an internal view of the system. Similarly to BB-PIT, also the

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 59

GB-PIT uses mainly behavioral diagrams, for test case generation and specification.

Following this flow, engineers focus on a functional V&V modeling (at unit/integra-

tion/system level) in the Integration Verification Design (e.g., in a bottom up testing

approach during integration testing), and then move to functional and structural V&V

modeling in this phase.

Using a model-to-text transformation, by the GB-PIT it should be possibile to derive a

Software Component Test Specification document that defines the tests to show that each

component performs its intended functions and the degree of test coverage (of the model

elements) reached and required. This document has to be refined with in Component

Verification, considering a specific target code.

3.4.4 Early Fault Detection Techniques in V&V Design

When the activities of V&V design are completed, we reach a stage where a PIM and

the CIT are available, and abstract test cases have been defined in the GB-PIT. Multiple

techniques of early fault detection can be used depending on the details of the models

(Fig. 3.2):

1. the test cases defined in the PIT can be executed on the PIM, to perform a preliminary

verification of the design model;

2. if the PIT is runnable, the environment model defined in the CIT can used to perform

model-in-the-loop testing;

3. if CIT and PIM models can be subject of model checking, in the model-in-the-loop

configuration we can assess the absence of any undesired condition in operation.

The early detection of faults in the requirements or in the design model leads to a

reduction of overall costs of development. The study in [4] reports that companies not

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 60

performing the model-in-the-loop testing were finding almost 30% more errors in module

test, where their correction is more expensive.

3.5 Model-Driven Verification and Validation Execution

The activities of V&V execution, i.e., the ones on the right side of the V-Model, refine the

models created by the Design phases, adapting them to the specific platforms on which the

software has been implemented.

3.5.1 Component Verification

Phase Component Verification.

Goal To assess the correctness of system components.

Main Role Tester.

Input Software Source Code and Supporting Documentation. GB-PIT modeling

the testing infrastructure and the component test cases. PSM modeling

all software details specific for the platform to code level.

Model White Box Platform Specific Test Model (WB-PST).

Viewpoint Platform Specific Test at Component Level.

Diagrams Refinement of behavioral diagrams UTP Profiled and of the model.

Output Model WB-PST defining the component test cases adapted for the specific plat-

form.

M2T Output WB-PST – Software Specific Component Test Specification, Test Source

Code (Test Harness, Test Cases, etc.), Software Component Test Report.

Component Verification aims at assessing the correctness of system components. In a

model-driven approach, before performing the actual verification, the Tester focuses on a

model.

Indeed, the Tester refines the GB-PIT with additional details that derive from the target

platform considered for PSM and implementation. This can lead to define new test cases or

to adapt for a specific platform the abstract test cases and behavior of GB-PIT. Considering

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 61

the level code awareness of this model and the component level viewpoint, we named it as

White Box Platform Specific Model (WB-PST).

For instance, the WB-PST can calculate now the test coverage on the basis of the final

system code. Together with the model, also previous artifacts can now be refined at this

stage: the Software Component Test Specification generated by the GB-PIT can be refined

in the Software Specific Component Test Specification that includes details deriving by the

implementation.

It worths to notice that the WB-PST shall not be conceived to assist only testing, but

the model can be exploited to support any kind of verification. As an example, a WB-PST

can derive consistent and efficient code review plans by considering the component software

metrics and implementation details.

By the WB-PST it is possibile to apply model-to-text transformation to obtain Test

Source Code, e.g., the JUnit/TTCN-3 Test Harness with test cases. After the execution of

the test cases, a Software Component Test Report can be generated, that includes the test

results and the achieved degree of coverage.

The separation between PITs and PSTs raises another discussion: in order to perform

testing on the actual implementation, a SUT Adapter is generally needed as part of the

testing harness. A SUT Adapter can translate high level interactions to low level messages

which are actually exchanged with the SUT. As we have seen, the refinement PIT-PST

enriches the model with additional tests and details, that derive by the platform. Depending

on the SUT, we can include into this definition also the transformation of a generic SUT

Adapter (defined in the PIT) to a specific one in the PST.

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 62

3.5.2 Integration Verification

Phase Integration Verification.

Goal To assess the correctness of the interactions of system components.

Main Role Integrator.

Input Software Source Code and Supporting Documentation. BB-PIT model-

ing the testing infrastructure and the integration level test cases. PSM

modeling all software details specific for the platform to code level.

Model Black box Platform Specific Test Model (BB-PST).

Viewpoint Platform Specific Test at Integration Level.

Diagrams Refinement of behavioral diagrams UTP Profiled and of the model.

Output Model BB-PST modeling integration level test cases with platform specific de-

tails.

M2T Output Software Specific Integration Test Specification, Software Integration Test

Report.

Integration Verification phase targets to perform integration test and verify the inter-

actions among the components, when integrated together. Here, the Integrator refines the

BB-PIT model, defining the Black Box Platform Specific Test Model (BB-PST). Similarly

to the WB-PST, the BB-PST can exploit platform specific details to complete the integra-

tion test specification of the BB-PIT. Therefore, the BB-PST refines the existing model and

can add new behavioral diagrams (UTP Profiled) to define test cases.

For instance, the BB-PST can be exploited to perform interface testing, a technique that

is highly recommend by CENELEC EN 50128: interface testing is executed knowing the

actual domain of all interface variables, and selecting particular input to assess the behavior

of the (integrated) components (e.g., at their normal, boundary, or invalid values).

By the BB-PST it is possible to generate integration test cases, that are executed on

the implementation. In addition, by model-to-text transformation it is also possible to

derive a Software Specific Integration Test Specification document (that complements the

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 63

Software Integration Test Specification document with the new information of the PST) and

a Software Integration Test Report, which describes the results of the integration testing.

3.5.3 Validation

Phase Validation.

Goal To assess that the system meets its system and software requirements.

Main Role Tester.

Input Software Source Code and Supporting Documentation. CIT offering a

model of the environment and expected system interaction.

Model Validation Model.

Viewpoint Platform Specific Test at System Level.

Diagrams Structural diagrams for modeling the adapters for the software and hard-

ware specific interfaces.

Output Model Validation Model with CIT in-the-loop configurations.

M2T Output Overall Software Test Report, Software Validation Report.

In Validation phase, the Tester has to assess that system and software requirements are

met. Therefore, (s)he executes the overall system tests defined in the CIT. Moreover, if

the CIT is executable, the Tester can put the CIT and the software in-a-loop, to perform

software-in-the-loop and hardware-in-the-loop testing.

SIL and HIL testing can be used for validation testing, since the CIT is a model of

the environment (i.e., of the system’s actors); as well as for performance testing, such as

stress and load testing, by generating representative operational profile for the system. It is

worth to note that performance testing is highly recommended by the CENELEC EN 50128

standard for the verification of SIL-4 systems.

At this stage it is possible to partially generate the Overall Software Test Report and

Software Validation Report with the results of testing on the system.

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 64

3.6 Discussion

In this chapter we have presented a novel model-driven software development life cycle suited

for critical systems. The methodology is in agree with the requirements of CENELEC

EN 50128 standard; it uses a compliant V-Model with the required activities and roles,

enabling to partially generate several artifacts prescribed by the standard. The process

supports many V&V techniques mandatory or highly recommended for the certification of

SIL-4 products, and guarantees the independence of models used for design and V&V, as

required by EN 50128

The process combines three levels of abstractions in the ‘V’, derived by MDA, MDT and

CENELEC V-Model. The V-Model abstractions have been originally integrated with the

MDA viewpoints of development and V&V phases, to design or assess particular aspects of

the system:

• at System Level, the design focuses on system’s requirements and actors, while the

V&V phases focus on the environment and on the system validation tests;

• at Integration Level, the design phase models the system architecture (i.e., the com-

ponents and their interfaces), and the V&V activities focus on functional testing, since

the viewpoint offers a black box view of components;

• at Component Level, the development completes the design with the internal details

of the components, and the V&V concentrate on structural testing.

Using these abstractions, the engineers benefit from the different viewpoints of model to

better focus on the relevant aspects of the system during the various phases of development

and V&V.

We proposed to use OMG standards for development and V&V; this enable to employ

commercial and open source tools to support the process, and increases the interoperability

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 65

of the models. However, a certification standard can limit the tools that can be used in

the process, since the qualification can request tool developed with the same rigor as the

software under development itself. In particular, CENELEC EN 50128 defines three classes

of tools for the compliance:

T1 are tools that generate no output that can directly or indirectly contribute to the

executable code (including data) of the software;

T2 are tools that supports test or verification of the design or executable code, where errors

in the tool can fail to reveal defects but cannot directly create errors in the executable

software;

T3 are tools that generate output which can directly or indirectly contribute to the exe-

cutable code (including data) of the safety related systems.

Tools in class T3 need strong evidence of their quality, based on strict validation process, or

on other arguments, such as a suitable combination of history of successful use (as in [63]).

Tools in class T2 require less efforts: if we consider a tool of automatic test case generation,

a manual review of the test suites can be enough to detect and recover the malfunctioning of

a test generator. Therefore, depending on the specific needs and availability of supporting

tools, other formalisms can selected in our process, as long as they do not interfere with the

viewpoints uses for each phase.

The process does not natively support model checking or formal proof during software

requirements specification, design and implementation, but these techniques could be in-

troduced in the process adopting other formalisms. Even if these techniques can be highly

recommended by the standards they can generally be replaced by other alternatives. For

instance, to certify a EN 50128 SIL-4 product, formal methods are not mandatory, and mod-

eling approaches can be preferred to the former for software design and implementation,

and V&V. As an example, an approved combination of activities for verification and testing

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 66

is dynamic analysis and testing, traceability, test coverage for code, functional testing and

static analysis (or software error and effect analysis).

Thus, considering the tool qualification and task selection, model-driven methodologies

for safety-critical system should not fix the techniques to use in the process, but they

should support a wide range of different tasks and verification approaches, in order to be

flexible and customizable according to the company’s needs: depending on the product

under development, code generation techniques or model-checking could be not convenient

for high safety-critical systems, whereas other techniques can turn out more cost-effective.

The proposed life cycle supports a wide range of V&V activities, through the multiple

abstractions used for modeling. Indeed, the methodology natively supports techniques of

functional testing, structural testing, interface testing, validation testing, system simula-

tion/animation, model-/software-/hardware- in-the-loop-testing, load, and stress testing.

Most of these techniques are mandatory or highly recommended by CENELEC EN 50128.

Moreover, we support approaches of early fault detection during the development,

through animation/simulation; and during the V&V design phases, by executing test cases

on the PIM or performing model-in-the-loop testing or other forms of assessments. In par-

ticular, model-in-the-loop tests seem particularly effective to reduce costs of development,

since companies not performing such testing were finding almost 30% more errors in module

test [4].

Considering the scientific literature, other authors proposed model-driven V-Model life

cycles in agree with CENELEC EN 50128 [7, 32, 43], however our methodology possesses

particular peculiarities that distinguish our proposal from past studies: in particular, none

of these previous studies used the abstractions that we have proposed, which support a

broad ranges of V&V activities.

The experience of introducing formal model-based design and code generation in the

development process of a railway signaling manufacturer is reported in [7]. The authors

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 67

propose a V-based development model that split into two verification branches, one for

the activities performed on the models, and other one for the tasks concerning source

code and system. Differently from our proposal, their process is tightly integrated with

Simulink/Stateflow platform, and is not based on the MDA and MDT viewpoints; thus

their methodology is more rigid (for the supporting tools and prescribed activities) and

limit the reuse on multiple target platforms.

In [43] the authors essentially propose a model-based SDLC bound on SCADE, and

integrating in the ‘V’ additional safety-oriented activities exploiting the models. They

also introduce a verification model, however this is not conceived to perform in-the-loop or

performance testing.

The study in [32] performs a deep analysis on the methodological aspects of supporting

a certification-oriented process with UML and model-driven tools. They introduce as refer-

ence a CENELEC EN 50128 V-Model process and discussed the benefits and drawbacks of

using UML in the process throughout the life cycle. Their discussion involves much of the

support that we exploit in our process, but they mainly analyze the use of UML in the life

cycle, without proposing one particular model-driven SDLC: they conclude that no mature

and consistent methodology has been found yet, despite UML can improve the development

of safety-critical systems in practice today.

Considering the abstractions that we adopted in our process, a study is presented in [68],

which integrates MDA and MDT OMG approaches in a V-Model process based on MIL-

STD-498. However, they did not consider the CENELEC V-Model abstractions, and sup-

ported less activities of V&V.

Summarizing, we can state that our life cycle addresses the limitation of the previous

research (Sec. 2.2):

1. our model-driven process originally exploits three different kinds of abstractions to

support the software development life cycle, it is based on the safety-critical standard

Chapter 3. A Model-Driven Methodology for Critical Systems Engineering 68

CENELEC EN 50128 and aims at being suited to be integrated into current industrial

practices for the development of high critical certified systems;

2. we conceived our life cycle to adopt OMG standards, in order to be supported by

commercial or open source compliant tools; however, the process is not tied to one

specific technology, and it can be easily adapted to other formalisms and supporting

tools, that can work with the key viewpoints of the methodology;

3. the process exploits MDA viewpoints to enhance the reuse of all project artifacts, and

integrates a wide range of V&V activities, through the multiple abstractions used for

modeling. This enables the industries to adapt the process to their needs, choosing the

most cost-effective combination of alternatives for the engineering of critical system.

Chapter 4

Model-Driven In-the-Loop Testing

4.1 Introduction

In this chapter, we focus on the topmost part of the proposed life cycle, and we detail

how our methodology exploits model-driven techniques to define an environmental model

during the phase of Validation Design, and describe the particular benefits that this model

can provide to the product life cycle.

4.2 The Computational Independent Test Model

The goal of the Validation Design phase (Sec. 3.4.1) is to analyze the actors’ behavior to

design validation test. To this end the Tester models the Computation Independent Test

Model (CIT) that, by means of behavioral diagrams (e.g., Sequence, State Machine or Ac-

tivity diagrams), specifies the expected behavior of the environment when interacting with

the system. As for the other Test Models, such as the BB-PIT (Sec. 3.4.2), these behavioral

diagrams can be used to derive validation test cases, e.g., in form of UTP sequence diagrams

(see Fig. 3.4), which are executed during the Validation stage during validation testing.

We highlight that the definition of CIT also appears in previous studies. Indeed, the

authors in [18] define the CIT as a model derived from the CIM, which contains test ob-

jectives and test structures from the business objectives with overall test strategies used in

69

Chapter 4. Model-Driven In-the-Loop Testing 70

a specific development process. However, our definition is different from their one, since

we use the CIT as a model for the actual design of validation tests that abstract from the

computation details of the system under analysis (SUT).

Besides to develop validation tests for the SUT, we also propose to develop the CIT

as an executable model of the environment, i.e., the CIT becomes a symmetric SUT, with

an interface that is the complement of the one of the PIM. This peculiarity enables to be

introduce multiple forms of V&V during the product life cycle, which are discussed in the

following.

Model-in-the-loop testing

Since the CIT has an interface complementary to the one of the PIM, we can put the two

models in-a-loop, as shown in Fig. 4.1, and the CIT can be used to perform model-in-the-

loop test (since it is runnable), enabling to:

• validate the system against its expected interactions with external actors;

• create a simulated environment to reason about the operational aspects of the system

in its environment (also through model animation).

Model-in-the-loop (MIL) testing can be executed as soon as the PIM is available, i.e.,

during the Component Design. Therefore, the CIT enables to a form of early fault detection

PIM
(System)

CIT
(Environment)

Input Output

Figure 4.1: The CIT and the PIM in configuration in-the-loop.

Chapter 4. Model-Driven In-the-Loop Testing 71

during the development (Fig. 3.2).

In particular, if the Tester can use additional/external sources to model the actors’

behavior (such as domain knowledge or historical data), then the CIT can also identify

missed or wrong software requirements, by assessing the actual behavior of the system in a

simulated environment. The CIT becomes in this way a mean for cross-checking the input

requirements, as specified in the CIM. For instance, considering the railway domain, a CIT

could model the behavior of the trains according to the signals provided on the railway by

the signalling system: the correct interlocking can be verified by the simulations performed

through in-the-loop tests.

The CIT has an interface symmetric to the PIT: when the PIM is refined in a PSM,

the interfaces of the two models do not match anymore. In order to execute MIL tests we

propose to develop a software adapter, to convert the interface of the PIM with the one of

the PSM. Exploiting adapters, the Tester can perform MIL tests also on PSMs.

Software- and Hardware-in-the-loop Testing

The idea of using an adapter for linking the CIT with a PSM, can be applied also for the

system implementation: when a system implementation is available, the Tester can build

an adapter to allow the CIT to interact with the actual SUT.

This solution allows to perform Software- and Hardware-in-the-loop Testing on the SUT.

Performance Testing

CIT also enables to performance testing, a technique generally adopted during the develop-

ment of critical systems, and recommended by the certification standards. Indeed, since the

CIT models the actors’ behavior, it can be used to generate system inputs representative of

the operational profile. Parametrizing the number of agents (i.e., the number of instances

of the actors) we can perform load and stress testing.

For instance, if we consider a mission critical web service, a CIT can model the typical

Chapter 4. Model-Driven In-the-Loop Testing 72

sequences of requests that the clients perform on the SUT. Instantiating multiple models

of the clients, we can assess the response time, and other performance metrics of the PIM,

while it is subject to multiple concurrent requests.

Model-checking

Depending on the particular formalism adopted for modeling, we can also introduce tech-

niques of model-checking on the in-the-loop model : indeed the Tester can assess the absence

of any undesired condition during the system operation, through the analysis of the combi-

nation of states of the PIM and of the CIT together.

Back-to-back testing

A particular case is when the CIT coincide with the PIM, i.e., when the PIM itself possess

symmetric interfaces: for instance, this happens with peer-to-peer systems, i.e., when the

system communicates with other instances of itself, behaving as client and as server at the

same time. For this kind of system, it is possible to instantiate two PIMs, and to put

in-a-loop each other, in order to perform back-to-back testing.

For instance, the Inter-Vessel Traffic System Exchange Format (IVEF) service is a com-

mon framework for the exchange of maritime information between shore-based e-Navigation

systems. These systems connect each other in order to exchange data about the vessels,

behaving as server for other IVEF clients, and acting as client to get information from other

IVEF servers. By linking crossed the interfaces of two IVEFs, we can execute back-to-back

testing (Fig. 4.2).

Chapter 4. Model-Driven In-the-Loop Testing 73

instance_1:IVEF_System1

client:IVEF_Client1

IVEF_Interface

clientPort

server:IVEF_Server1

IVEF_Interface

serverPort

IVEF_Interface

clientPort

IVEF_Interface

serverPort

clientPort

IVEF_Interface

serverPort

IVEF_Interface

IVEF_Interface

clientPort

IVEF_Interface

serverPort

instance_2:IVEF_System1

server:IVEF_Server1

IVEF_Interface

serverPort

client:IVEF_Client1

IVEF_Interface

clientPort

IVEF_Interface

clientPort

IVEF_Interface

serverPort

IVEF_Interface

serverPort

IVEF_Interface

clientPortclientPort

IVEF_Interface

serverPort

IVEF_Interface

Figure 4.2: Back-to-back testing

4.3 Discussion

We have presented in detail the benefits of the CIT: it offers an executable model of the

environment, which captures the behavior of the system’s context and possesses interfaces

complementary to those of the SUT.

CIT turns out to be useful to create an environment-aware specification of the system,

supporting the definition of a validation test plan, and to set-up a framework to perform

model-, software- and hardware-in-the-loop tests.

These kinds of tests enable to detect design flaws at early stages of the development

life cycle, shifting the cost of the development from the phases of V&V to the ones of

requirement analysis and design, where is cheaper to correct the faults; and leading to

benefits in terms of residual errors. The survey [4] reports that companies not performing

MIL testing were finding almost 30% more errors in module test, where their correction is

more expensive.

Thus, through the integration of the CIT within the proposed life cycle, we increase the

ranges of techniques of V&V supported by the methodology, making it more flexible to the

multiple industrial needs for the development and assessment of critical systems.

Chapter 5

Model-Driven Failure Mode and
Effects Analysis

5.1 Background

Failure Mode and Effects Analysis (FMEA) is an engineering technique for evaluating the

effects of potential failure modes of parts of a system1. In the critical systems domain, it

is widely used to systematically identify the potential failures of components and analyze

their effects on the system, which could adversely affect its overall reliability or safety.

The analysis considers the system decomposition down to basic components: each com-

ponent is analyzed, identifying all its potential failure modes; for each mode, the propagation

of the effects up to the system as a whole is studied. For quantitative analysis, e.g., for reli-

ability assessment, FMEA includes estimates of quantitative parameters, such as expected

failure rates. Failure modes and rates may derive from components’ technical specifications,

historical data, or further appropriate information, such as handbooks of reliability predic-

tion models. Finally, an evaluation of severity and/or probability of failure modes provides

a prioritized list for corrective actions and design improvements.

Conceptually, FMEA can be performed using different criteria for the system decompo-

sition. It can adopt: (i) a functional approach, when a functional FMEA is performed on

1Parts may be for instance subsystems, assemblies, components, functions. Here, we will generically refer
to them as components.

74

Chapter 5. Model-Driven Failure Mode and Effects Analysis 75

the functions and focuses on ways in which functional objectives of a system go unsatisfied

or are erroneous; (ii) a structural approach, when a FMEA is performed on the system

architecture and focuses on the failure modes of the components; (iii) a hybrid approach,

when a mix of the previous approaches is used, and the analysis moves from the system’s

components to their functions or vice-versa.

The main artifact used in FMEA is a worksheet, providing guidance for conducting a

structured analysis, for checking consistency, and for documentation. A worksheet should

report the following minimal information for every failure mode of a component:

• Failure mode;

• Component-level effects resulting from failure;

• System-level effects resulting from failure;

• Failure mode causal factors;

• Recommendations.

Different worksheet types lead to a different amount and type of information to be

derived from the analysis. The specific form to adopt depends on the customer, the system

safety working group, the safety manager, the reliability group, or the reliability/safety

analyst.

Nowadays, several ad hoc tools are available on the market. They provide guidance, help

to reduce mistakes, and offer useful features, e.g. for consistency checking, traceability and

documentation. However, their support for the analysis is limited, and particular tasks are

not performed, e.g., analysis of faults propagation among components and the effectiveness

of fault barriers on the system safety.

Indeed, FMEA is still a systematic reasoning, time-consuming technique, generally per-

formed manually, by analyzing the system’s components and writing the worksheet tables:

Chapter 5. Model-Driven Failure Mode and Effects Analysis 76

1. the support provided by tools is limited to specific tasks and more complex tasks, such

as the analysis of the effects of multiple failures are often neglected by the analyst;

2. the needed knowledge to perform FMEA is typically spread in many design documents,

in different formats, that depend on multiple teams. This problem is exacerbated when

FMEA is outsourced to external companies;

3. the reuse of FMEA artifact is very low, since the information is not managed and

engineered;

4. there is no standard methodology that prescribes how to perform FMEA that is shared

among multiple teams and companies.

This lack of support, along with the increasing complexity of systems, leads either to

expensive and error-prone (manual) analyses or to approximate results. Therefore, per-

forming FMEA is still is a repetitive and time consuming task and there is the demand for

new approaches and tools to improve and support the analysis.

Indeed, FMEA is particularly relevant for the development of critical systems, since it

can be used for risk and hazard analysis, as well as it can used for evaluating the quality

of the system architecture. For instance, the standard CENELEC EN 50128 highly recom-

mend2 the Software Error Effect Analysis (SEEA) for SIL-3 and SIL-4 systems, to assess

the software architecture, as well as a technique of verification: according to EN 50128

terminology, SEEA is a form of FMEA analysis conducted on the software.

5.2 Overview of Model-Driven FMEA

In this chapter we present a model-driven approach for FMEA that can extend the software

development life cycle for critical systems presented in Chap. 3 to integrate FMEA analysis

2According to the standard the requirements can be mandatory, highly recommended, recommended,
indifferent, or not recommended.

Chapter 5. Model-Driven Failure Mode and Effects Analysis 77

of software systems among the techniques of validation and verification supported by the

methodology.

The proposed model-driven FMEA approach adopts SysML, and uses the model for

enabling formal knowledge representation, thus automated reasoning on propagation of

(single or multiple) failures on their interferences and their effects. The approach eases the

FMEA tasks in that it supports reasoning in the same conceptual framework of a model-

driven design methodology, favoring communication among the designer and the analyst,

early exploitation of design artifacts for FMEA, and automating inductive reasoning steps

about fault propagation under single as well as multiple failures.

The process is outlined in Fig. 5.1. It is divided in three phases, System Modeling,

FMEA Modeling and Model Analysis:

System Modeling System Modeling targets to formalize in a model the knowledge of the

system required as input for a FMEA analysis. To this end the Designer uses a SysML

model to specify functional and non-functional system requirements, the system ar-

chitecture, the system components, and their interfaces, assigned requirements and

behavior at the required level of abstraction for the scope of the FMEA analysis;

FMEA Modeling. This phase aims at enriching design model with FMEA-oriented infor-

mation exploitable for automatic FMEA analysis. Using a FMEA Profile, the FMEA

Analysts conducts a model-centric FMEA and refines the SysML Design Model with

failure modes, internal faults, failure propagation, and other information. The model

is then transformed into a Prolog Knowledge Base (KB) of the System, that can

related to KBs of common domain libraries or past projects. The KB enables to

automatic FMEA analyses and to the reuse of shared knowledge;

Model Analysis. During Model Analysis the FMEA Analyst uses the Prolog Knowledge

Base of the system to perform the actual FMEA analysis, by making queries on the

Chapter 5. Model-Driven Failure Mode and Effects Analysis 78

Design Model
 (SysML)

System Modeling!

FMEA Model
 (SysML/FMEA P.)

FMEA Modeling!

Knowledge
Base

 (Prolog)

Model Analysis!

FMEA%
Analyst%

Designer%
Shared/Common!
Prolog!!
Knowledge!Bases!

FMEA!Worksheets!

Prolog!!
Knowledge!Base!
of!the!System!

Input%

Input%

Output%

Output%

Figure 5.1: Overview of the proposed model-driven FMEA process. Boxes show the phases,
the models produced, and the formalisms used. Dashed lines indicate the roles of the per-
sonnel, black filled arrows represent dependency between artifacts, blue arrows the artifacts
in input or output.

model. The results are then used to derive FMEA output and worksheets by model-

to-text transformations.

Our approach aims at being highly integrable and tightly coupled with model-driven

product and software development life cycles: it exploits SysML to support FMEA analyses

of any kind of system, including hardware, software systems or systems of systems; more-

over, it is conceived to benefit from the availability of system models derived from design

activities.

Considering the integration with the software development life cycle proposed in Chap. 3,

the design models built during the development subprocess of the ‘V’ satisfy the output

criteria of the FMEA System Modeling phase, therefore they can be directly reused as

input for FMEA Modeling phase (Fig. 5.2). Indeed, the PIMs and the PSM specify the

system design as defined by the Designer since System Design phase (Sec. 3.3.3), and include

the specification of the system requirements modeled by the Requirement Manager during

Chapter 5. Model-Driven Failure Mode and Effects Analysis 79

Model&Driven,Development,

CIM
 (SysML)

Sys. Req. Spec.
,

PIM
(SysML/UML)

System Design,

PIM
 (UML)

Component Design,

PSM
(UML)

Implementation,

Requirement**
Manager*

Designer*

Design Model
 (SysML)

System Modeling,

FMEA Model
 (SysML/FMEA P.)

FMEA Modeling,

Knowledge
Base

 (Prolog)

Model Analysis,

Early*
detec5on**
of*faults*

Phase*
Skipped*

*

FMEA*
Analyst*

Model?Driven*FMEA*

Figure 5.2: Integration of the FMEA approach in the life cycle proposed in Chap. 3. Filled
arrows represent dependency between artifacts, dashed lines indicate the roles of the per-
sonnel. Depending on the scope of the analysis, FMEA Modeling starts from the proper
design model (i.e., from PIM at integration or component level, or from the PSM).

the phase of System Requirement Specification (Sec. 3.3.1). Depending on the scope of

FMEA Analysis, FMEA Modeling phase starts from the design model at the proper level

of abstraction, i.e., from the PIM at integration level, component level or from the PSM.

The integration of the Model-Driven FMEA approach with the development life cycle

creates a feedback for the Designer on the quality of the system architecture, enabling to

an early detection of faults in the system architecture (Fig. 5.2).

The details of System Modeling, FMEA Modeling and Model Analysis phases are detailed

in the following.

Chapter 5. Model-Driven Failure Mode and Effects Analysis 80

5.3 System Modeling

Phase System Modeling.

Goal To formalize in a model the knowledge of the system required as input

for a FMEA analysis, according to its scope.

Main Role Designer.

Input Any source of information by which understand the system requirements,

system architecture and safety requirements, systems components, their

interfaces, structure and behavior. The inputs have to be selected ac-

cording to the scope of the FMEA analysis.

Model Design Model.

Viewpoint Dependent on the scope of FMEA.

Diagrams SysML Requirement Diagram, Use Case Diagram, Block Definition Di-

agram, and behavioral diagrams, such as State Machine Diagram, Se-

quence Diagram, Activity Diagram, and Timing Diagram.

Output Model Design Model with information required as input for a FMEA analysis.

M2T Output –

System modeling aims at collecting all information preliminary to a FMEA analysis in a

model that formalizes the knowledge of the system required as input for a FMEA analysis.

The viewpoint of this model is strictly dependent on the scope of the FMEA worksheets

that are requested as output of the process, but at least identifies the system architecture

and specifies the requirements.

The SysML Design Model is built by the Designer, which specifies the system require-

ments, the system architecture, the components, their interfaces, assigned requirements and

their internal structure and behavior at the proper level of abstraction. System require-

ments are specified by means of Use Cases and Requirement Diagrams; the designer has to

carefully model the relations among the requirements, such as dependencies and contain-

ments. The system architecture is represented mainly with Block Definition Diagrams and

Chapter 5. Model-Driven Failure Mode and Effects Analysis 81

Internal Block Diagrams, and the model has to specify how requirements are allocated to

the components. Finally, operational aspects are specified with SysML behavioral diagrams,

e.g., Activity diagrams.

We opt for SysML as the approach is meant to be integrated into standard-based model-

driven development processes, where such models are already provided by design engineers;

In such cases, System Modeling stage can also be skipped, and the design models can be

used directly for the next phase (Fig. 5.2).

Indeed, the usage of the Design Model fosters communication between the Designer and

the FMEA analysts with a common and standard language, and allows to model compo-

nent failure behaviors in an incremental way, as low-level system design proceeds. Also, it

integrates FMEA at process level, in a model-driven development life cycle.

When performing FMEA for software systems the approach is suited to use a mixed

UML/SysML model.

5.4 FMEA Modeling

Phase FMEA Modeling.

Goal To enrich design model with FMEA-oriented information exploitable for

automatic FMEA analysis.

Main Role FMEA Engineer.

Input Design Model with information required as input for a FMEA analysis.

Shared Prolog Knowledge Bases.

Model FMEA Model.

Viewpoint Oriented by the scope of FMEA.

Diagrams SysML Use Cases, SysML FMEA Diagrams.

Output Model FMEA Model exploitable for automatic FMEA analysis.

M2T Output FMEA Model – Prolog Knowledge Base of the system.

FMEA Modeling is executed by FMEA Analyst, that refines the Design Model with

Chapter 5. Model-Driven Failure Mode and Effects Analysis 82

the FMEA-oriented information required for automatic FMEA analysis of the model. This

activity reduces to perform a sort of model-centric FMEA on the model, since the analyst

has to analyze the model and identify the components’ failure modes, internal fault, failure

propagation logic and so forth.

For supporting the analyst in this activity, we propose an original approach that exploits

our custom defined SysML FMEA Diagrams, that are provided by a custom SysML Profiles

including FMEA-oriented modeling elements. FMEA Diagrams are presented in detail in

the next section.

To enrich the model with FMEA-oriented information, the FMEA Analysis performs

the following tasks for each system component, with a bottom-up approach:

1. identifies its functionalities with a FMEA viewpoint, i.e., at the desired level of abstrac-

tion for the scope of FMEA analysis. The functionalities are derivable by behavioral

diagrams and components’ requirements, as specified in the design model;

2. models these functionalities by means of a use cases (having as subject the compo-

nent), and identifies the requirements that these functionalities cover, associating the

requirements with the component’s use cases;

3. specifies the FMEA-oriented information (failure modes, internal faults, etc.) for the

component on the basis its functionalities, developing one (or more) FMEA Diagram.

Steps (1) and (2) can reuse information passed by the Designer in the model. Indeed,

these tasks could be already be performed during the development life cycle of critical

systems, to enforce the traceability of requirements.

For the step (3), the FMEA Analyst can proceed in two iterations. In the first one,

(s)he creates one FMEA Diagram for each component and identifies the component failure

modes, internal fault and failure effects. The second round starts after all components

failure modes have been specified, and the engineer re-examines all diagrams and completes

Chapter 5. Model-Driven Failure Mode and Effects Analysis 83

the model with the remaining FMEA-oriented details (e.g., the activation conditions of the

failures). This two-round method eases the bottom-up enrichment of the model through

FMEA Diagrams.

The scope of the FMEA analysis influences the level of abstraction of the identified

functionalities. Indeed, the components’ failure modes turn out to be the deviations from

the expected behavior of the component functionalities. For instance, considering a software

component, FMEA can be performed at high level on the component’s functionalities, or

at low level observing the lines of code that implement the component.

Once the FMEA Analysts has augmented models with the FMEA-oriented information,

the model can be model-to-text transformed into a Prolog Knowledge Base.

5.4.1 FMEA Profile: the SysML FMEA Diagram

Differently from past proposals, our approach for enriching the model with FMEA-oriented

information supports the reasoning of the FMEA Analyst on design model, to analyze –

by means of the model itself as primary source of knowledge – the failure modes, their

propagation and the effects. In other words, the actual activity of conducting a FMEA

analysis in a traditional document-centric FMEA process translates into the model-centric

activity of refining the design model with FMEA-oriented information.

To support the FMEA-oriented modeling, we propose a structured approach that is

driven by new custom defined SysML Diagrams, the FMEA Diagrams:

The FMEA Diagram is a SysML structural diagram, that offers a synoptical view

of the functionalities, internal faults, failure modes, requirements and structural

dependencies of one component – the Component Under Analysis (CUA) – that

is the object of the analysis.

A FMEA diagram is split in five logical sections (Fig. 5.3). The diagram places the

Component Under Analysis and its failure modes in the middle, using the graphical notation

Chapter 5. Model-Driven Failure Mode and Effects Analysis 84

of Use Cases. Then, the diagram groups the events that are involved in the activation

conditions of the failure modes (i.e., the causes), and the requirements and functionalities

that are affected by the failure modes (i.e., the effects): the causes are shown in the left

and lower sides of the diagram, whereas the effects appear in the two parts on the right.

The failure modes involving the CUA may be activated by interactions among its inter-

nal faults and external failures that propagated from components connected to the CUA.

Therefore, the left side the Diagram shows the failure modes of the components connected to

the CUA, these elements are inferred from structural relations of the design model; whereas,

the lower side represent the CUA’s internal faults, that are modeled by the analyst as be-

haviors.

The activation conditions of a failure mode are modeled by the FMEA Analyst associ-

ating the external failures and internal faults – which appear, respectively, on the left and

lower side of the FMEA Diagram – with a CUA’s failure mode, and specifying the logical

condition that activate the failure. Additional information can be added to the diagram,

such as the probability and severity of the events.

The right side of the Diagram shows the effects of a failure, namely, which use cases are

Component((
Under(Analysis((CUA)(Failure(Modes(

of(components(
connected(
to(CUA(

CUA((
Use(Cases(

CUA((
Requirements(

CUA(Internal(Faults((

Failure(
Modes(

CAUSES&

CA
U
SE
S&

Figure 5.3: Logical layout of a FMEA diagram.

Chapter 5. Model-Driven Failure Mode and Effects Analysis 85

affected by the failure mode and which requirements, among those allocated to the CUA,

are violated by the failure. Therefore, the top right part of the diagram repeat the CUA’s

functionalities as Use Cases (as modeled by the FMEA Analysts in the previous step), while

the lower right part recalls the requirements assigned to the CUA. By linking the failure

modes with the CUA’s Use Cases and CUA’s requirements, the FMEA Analyst defines the

effects of the failures.

Summarizing the tasks to build a FMEA diagram, the FMEA Analyst:

1. places the CUA at the centre of the diagram and specifies its failure modes on the

basis of the Use Cases on the right side, that model the CUA functionalities defined in

the previous step. To reduce the complexity of a FMEA diagram in case of too many

failures modes, the analyst can group failure modes into subsets and use multiple

diagrams;

2. defines the internal faults of the CUA, as one or more behaviors, adding them in the

lower part of the diagram;

3. models the activation conditions of the failure modes, linking, by associations, external

failures and internal faults with the failure modes, and specifying logical conditions,

probability and severity;

4. models the effects of a failure, linking, by relations, the failure modes with use cases

and requirements that have been assigned to the CUA, as listed in the right side of

the diagram.

FMEA Diagrams and FMEA-oriented modeling elements are defined in a custom SysML

Profile (FMEA Profile). Besides the definition of the semantic and properties of the elements

used for FMEA Modeling, the extensions enable to link the components with information

already available in form of facts and rules in shared Prolog Knowledge Base (e.g., domain

libraries or past projects knowledge bases), to promote the reuse.

Chapter 5. Model-Driven Failure Mode and Effects Analysis 86

5.4.2 MT2 transformation in Prolog

FMEA Modeling ends with the model-to-text transformation of the FMEA-oriented SysML

model into a Prolog Knowledge Base (KB). The translation consists in the conversion of

the FMEA-oriented information specified by means of the FMEA Profile into facts and

predicates in Prolog language.

The FMEA Profile empowers the automatic transformation rules, and enables to link the

model elements with additional knowledge bases to support the reuse of domain concepts

or of knowledge from past projects.

A Prolog Knowledge Base contains relations, defined by means principally of Horn

clauses3. These clauses, at the basis of Prolog language, are suited to be employed for the

analysis of single and multiple failures. Indeed, the FMEA-oriented information added in

the model in the previous steps can be represented as sets of Horn clauses.

For instance, let us consider a simple alarm system: the system is connected to an

external power source, and possesses a backup battery that can mask short electric outages.

A failure in the system occurs when there is no electric energy, and the backup battery is

low: therefore, one failure mode of the alarm system is system stops to work when there is

an electric outage and the battery is low. Considering the three events:

p = ”Electric outage”,

q = ”Low backup battery”,

t = ”System stops to work”,

then, the failure mode can be formalized by the following Horn clause:

¬p ∨ ¬q ∨ t ⇐⇒ (p ∧ q)⇒ t

Other alternatives have been considered for enhancing the reuse by means of system

3A Horn clause is a clause (i.e., an expression formed by the disjunction of a finite collection of literals)
with at most one positive (i.e., non-negated) literal. A Horn clause with no negative literals is sometimes
called as fact, otherwise as rules. A Prolog Knowledge Base consists of more set of rules, that are named
Prolog predicates.

Chapter 5. Model-Driven Failure Mode and Effects Analysis 87

KB, including ontologies4. However, Prolog has an easier syntax and reveals suited for our

purposes without burden the engineers with more complex formalisms. Prolog replicates the

inductive-deductive mindset of the FMEA Analyst: rules and predicates follow an inductive

process, whereas queries use deductive algorithms.

5.5 Model Analysis

Phase Model Analysis.

Goal Perform actual FMEA on the system and generate results.

Main Role FMEA Analyst.

Input Prolog Knowledge Base of the system.

Model Knowledge Base.

Viewpoint Rules and predicates on the failure logic of the system.

Diagrams –

Output Model –

M2T Output KB – FMEA results and worksheets.

During Model Analysis, the FMEA Analyst uses Prolog to make queries on the system

knowledge base produced in the previous phase. The queries translate into the execution

of the actual FMEA analysis by the Prolog inference engine. Indeed, Prolog discovers

information on the KB, especially knowledge that is hard to extract by a manual or a pure

model-based analysis. For instance, the inference engine enables:

• to follow the propagation of failures inside the system;

• to identify root causes of a component’s failure;

• to compute failures derived from multiple errors;

• to study the effectiveness of fault tolerance mechanisms.

4An ontology is an explicit specification of a conceptualization. That is, an ontology is a description
(like a formal specification of a program) of the concepts and relationships that can exist for an agent or a
community of agents [gruber1993ontology].

Chapter 5. Model-Driven Failure Mode and Effects Analysis 88

To mask the complexity of writing the queries in Prolog, the most common queries

performed during a FMEA analysis can be offered as push-button analyses. When needed,

more complex queries can be performed directly in Prolog.

By the execution of the queries, it is possible to derive results and write FMEA work-

sheets. Moreover, for queries like the analysis of propagation of failures, it is possible to

represent the result graphically directly on the model.

5.6 An Eclipse-Based Support Tool

We designed the architecture of an open source environment that supports the approach

(Fig. 5.4). To benefits from the Eclipse Foundation’s infrastructure for developing model-

driven engineering tools, our solution is a based on an Eclipse plug-in [69], the FMEA

plug-in. FMEA plug-in enables the interworking between:

Papyrus an Eclipse plug-in [70] that provides an integrated environment for editing models

in SysML and UML 2. It offers advanced support for UML profiles, and enables to

create editors for Domain Specific Languages;

SWI-Prolog an efficient C implementation of Prolog [71], that offers a rich set of applica-

tion interface libraries.

By this solution, the Designer can use Papyrus for modeling the System Model, and

then the FMEA Analyst can refine it with the FMEA-oriented information, using a specific

FMEA profile (Fig. 5.5).

FMEA plug-in keeps synchronized the model elements with their description in the

knowledge base, and enables the Analyst to query the model. The results of the query can

finally be used for the automated generation of FMEA documents (worksheets or documen-

tation).

Chapter 5. Model-Driven Failure Mode and Effects Analysis 89

5.7 Discussion

In this chapter we have presented a model-driven approach for FMEA that can extend the

support provided by the V-Model life cycle to this additional form of verification and safety

assessment. The key concepts at the basis on our approach are:

Process Integration we aim at integrating FMEA into product development life cycles,

using a model-centric/model-driven approach to reduce time and effort for the anal-

ysis, and to enable to early exploit FMEA artifacts into the process;

FMEA-oriented Modeling we adopt SysML and propose to extend the model with a

FMEA profile to specify FMEA-oriented information, as OMG standards are increas-

ingly being used for critical systems in industries and compatible within our V-Model

methodology (Chap. 3). Moreover, the profile originally offers a new custom SysML

FMEA Diagram to support the Analyst in modeling the FMEA-oriented information

with a specialized synoptical view on the elements needed to conduct the analysis;

Prolog-based Analysis we use Prolog to analyze the knowledge base derived by the

define

query

uses

produce

FMEA
results

FMEA4
Plug7in

Papyrus

Prolog
Knowledge4 Base

uses

Figure 5.4: An Eclipse-based architecture for model-driven FMEA approach.

Chapter 5. Model-Driven Failure Mode and Effects Analysis 90

Figure 5.5: SysML modeling with Papyrus.

FMEA-oriented model, which can be algorithmically generated through a M2T trans-

formation; queries expressible in the form of Horn clauses are performed on the KB,

replicating the typical inductive-deductive mindset of the FMEA Analyst. The KB is

also meant to act as shared repository of knowledge about components’ failure modes,

so as to favour reuse across multiple projects in an organization.

The integration of the FMEA analysis in a model-driven development life cycle based

on SysML provides several benefits:

• it bridges the gap between the Designer and the FMEA analyst, getting their views

closer to each other: indeed, the FMEA Analyst can reason in the same conceptual

framework of the design models to analyze threats to non-functional requirements;

Chapter 5. Model-Driven Failure Mode and Effects Analysis 91

• a relevant initial effort of FMEA is saved. FMEA is typically performed by a RAMS5

team, who receives the input documentation (requirements, design) and needs to

extract the system components and their functionalities and interactions, normally

through the creation of diagrams. A great advantage is that the RAMS team may

receive all this ready information as an input.

• the support for automation provided by model-driven techniques and tools can sig-

nificantly reduce the effort and cost of FMEA; the worksheet and other artifacts may

be derived through model transformations.

• since the integration is based on standard languages and defines the model-centric

activities and the information to add to the model, it reduces the fragmentation on

how FMEA is performed by different teams;

• it favors better consideration of RAMS requirements in the first stages, by allowing

early feedback from the FMEA team, and enabling to an early verification and valida-

tion of the design. Such process-level improvements reduce the risk of major redesign

due to threats to RAMS requirements.

These advantages are clearly inter-related, and the relative importance depend on the

context. For instance, when FMEA is outsourced to independent companies, early FMEA

feedback may be of greater interest for the outsourcing organization than easing the task

of the outsourced team.

The idea of deriving FMEA artifacts from SysML models is not new. Hecht et al.

showed how to automatically generate the worksheet from SyML BDDs, IBDs and STDs

(State Transition Diagrams) [72], through an intermediate transformation into an AltaRica

state machine model. Before them, David et al. derived FMEA from IBDs, SDs (Sequence

Diagrams) and the AltaRica language [73], while Xiang et al. from IBDs and the algebraic

5Acronym for Reliability, Availability, Maintainability and Safety.

Chapter 5. Model-Driven Failure Mode and Effects Analysis 92

specification language Maude [74]. Less emphasis has been put at the process level, namely

on how FMEA can be integrated in a model-driven methodology.

Our approach differs from past proposals in that SysML models are transformed into a

Prolog knowledge base. Moreover, we concerned specifically with the problem of supporting

the FMEA engineer in reasoning on design models to analyze failure modes, propagation

and effects, proposing a structured approach driven by FMEA Diagrams.

This idea of representing failure modes by the means of extensions of use cases in FMEA

Diagrams has some similarities with misuse cases [75], which have been proposed as a means

to analyze security threats and applied for safety analysis [76, 77]. The difference is that

we are modeling directly the failure modes of a component in relation to the use cases it

is involved in, rather than the sequence of actions that the component can perform, whose

failure modes can cause harm to some stakeholder. As for use cases, their exploitation for

guiding FMEA has been initially proposed by Allenby et al. [78]. We leverage the possibility

to derive some failure modes by translating the use cases for the CUA considering common

deviations from the expected service (e.g. in content and/or timing).

The idea of the exploiting a knowledge base to promote reuse is present in some past

studies: [79, 80] used external repository or meta-model as external KB; other studies

adopted custom profiles [73], or ontologies [81] for automatic FMEA generation, or knowl-

edge modeling [82]. Our external KB in Prolog aims at promoting the reuse and supporting

FMEA by formal queries, without burdening engineers with formalisms, like ontologies,

they may be less familiar with.

The use of Prolog for supporting FMEA is envisaged in very few works, but with no

link to system design models. In [83], authors report an application of Prolog III for an

FMEA case study. In [84] the author proposes, as future work, to exploit pattern analysis

in Prolog to develop automated ways to apply model annotations for FMEA.

Chapter 6

Case study 1: Model-Driven
Engineering of a Railway
Interlocking System

6.1 The Prolan Block Case Study

In this chapter we present an experience report developed in the industrial-academic collab-

oration within the framework of the European project “CErtification of CRItical Systems”

(CECRIS, [9]). In the context of CECRIS, the candidate participated to a transfer of

knowledge of model-driven technologies in Prolan Co., an Hungarian company manufactur-

ing certified products for safety critical process control and rail signalling systems.

By the collaboration, it emerged how small and medium size enterprises like Prolan are

interested in model-driven technologies but that there are barriers to their introduction, for

the deep changes that these require into the organization and in the current industrial prac-

tices. Indeed, the adoption of MDE needs that Prolan carefully rethinks and redesigns its

current product development life cycle, that currently complies with the railway standards

CENELEC EN 50126, EN 50128 and EN 50129: no proven-in-use model-driven life cycle

for this domain is available and supported by long-term evidence.

Therefore, to gain additional experience on the application of model-driven approaches

industry, we set up a pilot project in the company to evaluate the proposed V-Model software

93

Case study 1: Model-Driven Engineering of a Interlocking System 94

development life cycle (Chap. 3) and the supporting tools with respect to a real industrial

context.

As case study, we selected a subset of requirements for the Prolan Block (PB), a safety-

critical system for railway interlocking system that must be CENELEC EN 50126, EN 50128

and EN 50129 SIL-4 certified.

The system is deployed alongside railway segments, which are named blocks. Each block

is equipped with a PB, with sensors for detecting incoming and outgoing trains (these

sensors are the axle counters), and with semaphores1 that are part of the signalling system.

The PB manages the block (Fig. 6.1), receiving data from sensors, and properly setting the

semaphores according to its internal state.

The interlocking is realized by the overall distributed system that consists of interacting

PBs, which must ensure that no collision will happen on the railway, directing the train

1in railway domain semaphores can use optical or mechanical systems to signal. In the following we
consider optical semaphores, whose aspects are dependent on the configurations of its lamps.

11!

Prolan Block!

!  In the Pilot Project we considered
the Prolan Block (PB) that is a
safety-critical interlocking system
under development by Prolan Co.,  
a Hungarian company
manufacturing safety critical process
control and rail signaling systems. !

!  The PB is a distributed system that
manages the interlocking system of
a railway segment (block).!

!  The interlocking is set according to
the status of the sensors (Axle
Counters), and to the data
exchanged with other PBs and
stations.!

Interlocking
System

Axle
Counter
Sensors

Prolan
Block

Prolan Block

Prolan
Block

Network

Figure 6.1: A high-level representation of the Prolan Block and its operating environment.

Case study 1: Model-Driven Engineering of a Interlocking System 95

Figure 6.2: Short railway blocks on the Toronto Transit Commission subway system. Copy-
right Kevin Hadley licensed under CC BY-SA 3.0.

movements by proper sequences of signals. For instance, Figure 6.2 shows the proper

sequence of semaphore aspects on short blocks of a segment of the subway of Toronto:

according to the specific regulations, the yellow lamps can indicate that the next block’s

semaphore is red because there is an obstacle (e.g., a train) in the block after the next (e.g.,

there is a train two semaphores ahead).

Case study 1: Model-Driven Engineering of a Interlocking System 96

6.2 Experimentation

In this section, we report our experience in using the proposed V-Model life cycle for the

development and assessment of the Prolan Block.

6.2.1 System Requirements Specification

CIT CIM
 (SysML)

PIM
(SysML/UML)

PIM
 (UML)

PSM
(UML)

White box
PST

(UML/UTP)

Black box
PST

(UML/UTP)

Validation
Model

Black box
PIT

(UML/UTP)

Grey box
PIT

(UML/UTP)

Model*Driven*Development* Model*Driven*V&V*

Early*detec1on*of*faults*

Sys. Req. Spec.
*

System Design*

Component Design*

Validation Design*

Integr. Ver. Design*

Comp. Ver. Design*

Implementation*

Comp. Verif.*

Integration Verif.*

Validation*

In System Requirements Specification, we develop a CIM that

models the system’s context (i.e., its environment) and the

system requirements. In the case of Prolan most of require-

ments derives from railway standards and regulations.

As modeling tool Prolan adopted No Magic Magic-

Draw [85], mainly for licensing reasons, since they already

had bought one license and had little experience with the tool.

Since we use SysML for the CIM, we modeled the system requirements using SysML Re-

quirement diagrams, and the context, using SysML Block Definition Diagrams (Fig. 6.4).

Requirement Diagrams resulted useful to describe functional and non-functional require-

ments and to define relationships among them, such as the ones of containment and refine-

ment: requirements were groped in hierarchies, and non functional requirements have been

isolated and emphasized.

We used the context BDD diagram to show the relations among the system and the

actors, i.e., the environment, as well as the flows (of data, matter or energy) at the system

interface. The BDD in figure 6.4 represents how the temperature and the external electro-

magnetic waves have to be considered during system design for safety concerns; moreover,

the same diagram includes the actors, i.e., the RBC (Radio Block Centre, a radio signaling

system defined by the European Train Control System), the track occupancy detectors (such

as the axle counters), the interlocking systems alongside the railway, and a human-machine

interface for locally controlling the PB.

Case study 1: Model-Driven Engineering of a Interlocking System 97

Then, actors have been associated with the Prolan Block use cases (Fig. 6.5), to show

in which system functionalities they are involved. For instance, the RBC interacts with the

system to provide block information, while the track occupancy detectors take part in the

reception of block occupancy information.

Functional requirements and use cases were detailed using behavioral diagrams. The

diagram in figure 6.6 specifies the requirements on the aspects of the semaphore’s lamps,

by means of a state machine. Activity digram in figure 6.7 details the activities to be

performed for processing the block status information. The use of behavioral diagrams for

the requirements specification were perceived to be particularly useful by the requirement

engineer for specifying the operational requirements.

In total, the CIM has been modeled using:

• 6 SysML Requirement diagrams;

• 12 SysML Block Definition diagrams;

• 41 Use Cases diagrams;

• 6 State Machines diagrams;

• 29 Activity diagrams;

• 33 Sequence diagrams.

C
a
se

stu
d

y
1:

M
o
d

el-D
riven

E
n

gin
eerin

g
of

a
In

terlo
ck

in
g

S
y
stem

9
8

MagicDraw, 1-1 /Users/nonplay/Documents/Dropbox/Prolan Work/Shared Andras_Fabio/Models/Prolan Block/ProlanTerkoz_translated.mdzip Functional Requirements - Summary 16-lug-2014 17.56.18

Functional Requirements - SummaryFunctional Requirements[Package] req []

«requirement»
Receive status information from

neighbours (with timeout)

«requirement»
Communication with the track

occupancy detector

«requirement»
Supporting Change of direction

in the case of free block

«requirement»
Warning signal of the PB unit's

disorder

«requirement»
Switch-on state is consistent

with environment

«requirement»
Stop state if block is occupied

«requirement»
Receiving BS Stop! from the

HMI and Ack

«requirement»
Communication with the Prolan

Block devices

«requirement»
Return after unexpected

shutdown

«requirement»
The PB unit cannot perform

unsafe signal

«requirement»
Signal error detection

«requirement»
Managing other incoming

information

«requirement»
Correct initialization

«requirement»
Warning signal of the

disordered devices connected
to the PB unit's

«requirement»
External communication

«requirement»
Signal state control

«requirement»
Communication with RBC

«requirement»
When the Block is Disabled the

train should be notified
slow-down in advance

«requirement»
Providing direction information

to the initialization unit

«requirement»
Communication with the

neighboring stations

«requirement»
Receiving Axlecounter reset

from the station and ack

«requirement»
Detect track occupancy detector

failure

«requirement»
Detecting failure of neighboring

PB unit

«requirement»
Send status information to PB

unit

«requirement»
Communication with the
traditional block device

«requirement»
Only the more solicitous aspect

can be displayed on disabled
signal

«requirement»
Send status information to

station

«requirement»
Sending out VBS stop or VBS

clear message

«requirement»
Speed information from the

block

«requirement»
Illegal state-transient is not

allowed

«requirement»
Trigger-based information

receiption

«requirement»
Train Collision Avoidance
System (TCAS) - Head-on

Collision

«requirement»
Detecting RBC disordered state

«requirement»
Receiving axle-counter reset

from the HMI and Ack

«requirement»
Create and send status
information cyclically

«requirement»
Receiving BS Stop! From the

station and ack

«requirement»
Send status information to user

interface

«requirement»
Train Collision Avoidance
System (TCAS) - Headway

Conflict

«requirement»
Detect Block occupancy

«requirement»
Rejecting the direction change

because of occupied/disordered
block

«requirement»
Communication with HMI

Figure 6.3: CIM SysML Requirement Diagram showing system functional requirements.

C
a
se

stu
d

y
1:

M
o
d

el-D
riven

E
n

gin
eerin

g
of

a
In

terlo
ck

in
g

S
y
stem

9
9

MagicDraw, 1-1 /Users/nonplay/Documents/Dropbox/Prolan Work/Shared Andras_Fabio/Models/Prolan Block/ProlanTerkoz_translated.mdzip PB with context messages - ETCS + traditional - variation 15-ott-2014 23.19.36

PB with context messages - ETCS + traditional - variatione- ETCS + conventional IS case #2[Package] bdd []

«external»
Blocksignal + ETS (Electronic Train Stop)

«doc»
«system»

PB System

«external»
Station Interlocking System

«external»
Conventional IS

«external»
Electronic Human-Machine Interface

«external»
Track occupancy detectors

«external»
Alcatel Human-Machine Interface

«external»
Relay-based Interlocking System

«external»
Elektra IS (Interlocking System)

«external»
Domino55 Interlocking System

«external»
Domino70 Interlocking System

«external»
Siemens Interlocking System

«external»
Control Board with LEDs

«external»
Electronic Control Board

«external»
Elektra IS HMI

Temperature Electromagnetic
waves

«block»
PB HMI

«external»
AzLM axle counter

«external»
Axle Counter

«external»
RBC

«external»
Trackcircuit

«external»
Blocksignal

«external»
Elektra 1 IS

«external»
Elektra 2 IS

«comment»
Ez igazából a sínáramkör
(EVM annak a jeleit veszi) -
azonos-e a foglaltságérzékelő
sínáramkörrel?

Ack from RBC,
RBC disorder

VBS states
0..1

*

Signal state

1

*

Block state,
Axle counter reset ack (block)

Axle counter reset (block)
*

1

Direction change information,
Status information,

PB disorder,
PB error,

Signal error state,
Signal failure state,

RBC disorder,
BS Stop! ack,

Axle counter reset ack (block)

BS Stop!,
Direction change information,

Axle counter reset (block)

2

*

Change of direction ACK,
Direction change information,

Status information,
PB disorder,

PB error,
Signal error state,
Signal failure state,

RBC disorder,
BS Stop! ack,

Axle counter reset ack (block)

Axle counter reset (block),
BS Stop!

1..2

*

Figure 6.4: CIM SysML BDD showing the PB within its environment.

C
a
se

stu
d

y
1:

M
o
d

el-D
riven

E
n

gin
eerin

g
of

a
In

terlo
ck

in
g

S
y
stem

1
0
0

MagicDraw, 1-1 /Users/nonplay/Documents/Dropbox/Prolan Work/Shared Andras_Fabio/Models/Prolan Block/ProlanTerkoz_translated.mdzip PB unit's use cases 21-ott-2014 15.55.51

PB unit's use cases PB unit's use cases[Package] uc []

«external»
Track occupancy detectors

Receiving Section occupancy
information

«activity»
Providing block information

«external»
Station Interlocking System

Receiving IS
(Interlocking

system) commands

Query diagnostical data

Monitoring the
system-state

Providing block
information

Displaying of the
PB (Prolan Block)

status

Reset track
occupancy
detectors

System startup

«block»
PB HMI

Operator

«external»
RBC

BB receiving control
commandsorReceive
SzakaszfoglaltságStatus SetsVTJ status
determinationSend VTJ stateReceive
Receipt

Axle counter reset ack (block)Axle counter reset (block)

Ack from RBC
VBS clear,
VBS stop,
VBS fault

PB error,
PB disorder,

Change of direction ACK,
BS Stop! ack,
RBC disorder,

Block state

Axle counter reset (block)

BS Stop!

«include»«include»

Figure 6.5: CIM Use Case Diagram for the Prolan Block.

Case study 1: Model-Driven Engineering of a Interlocking System 101

MagicDraw, 1-1 /Users/nonplay/Documents/Dropbox/Prolan Work/Shared Andras_Fabio/Models/Prolan Block/ProlanTerkoz.mdzip Next is a 3-aspect signal 19-ago-2014 13.10.23

Next is a 3-aspect signal Next is a 3-aspect signal[State Machine] stm []

YellowGreen

Red

According to the direction

Dark

On-state

OFF-state

switch off

switch off

change of direction

Block is freeBlock is occupied

Next signal is yellow

Block is occupied

change of direction
switch off

change of direction

switch offswitch on

switch off
change of direction

change of direction

switch off

switch on

switch on

Figure 6.6: CIM SysML State Machine Diagram specifying the semaphore’s behavior.

Case study 1: Model-Driven Engineering of a Interlocking System 102

MagicDraw, 1-1 /Users/nonplay/Documents/Dropbox/Prolan Work/Modelli SysML/ProlanTerkoz.mdzip UC09-E - activity 8-apr-2014 18.08.29

UC09-E - activity UC09-E - activity[Activity] act []

Identifying the
self-state :

Determinating state

Reading B3-B4 state
information

Shut-down

Neighbour failure :
UC54-E - activity

B2-3 Reading Status
information

Identifying the
self-state :

Determinating state

Send status
information : UC10-E -

activity

Send status
information : UC10-E -

activity

No direction : UC54-E -
activity

Read B1-B2 state
information

at (10s)

Is the
B3-4's
state a

disorder?

Change of
direction?

B1-B2 has
fault state?

Other

B2-->B3B #3 --> B #2

No No

YesYes

Figure 6.7: CIM SysML Activity Diagram specifying the use case Processing Status Infor-
mation.

Case study 1: Model-Driven Engineering of a Interlocking System 103

6.2.2 System Design

CIT CIM
 (SysML)

PIM
(SysML/UML)

PIM
 (UML)

PSM
(UML)

White box
PST

(UML/UTP)

Black box
PST

(UML/UTP)

Validation
Model

Black box
PIT

(UML/UTP)

Grey box
PIT

(UML/UTP)

Model*Driven*Development* Model*Driven*V&V*

Early*detec1on*of*faults*

Sys. Req. Spec.
*

System Design*

Component Design*

Validation Design*

Integr. Ver. Design*

Comp. Ver. Design*

Implementation*

Comp. Verif.*

Integration Verif.*

Validation*

The System Design phase defines the high-level architecture

of the system, refining the CIM into the PIM with viewpoint

at integration level. The architecture was specified by means

of UML structural diagrams, namely by component diagrams,

and class diagrams, using again MagicDraw.

We identified five components, depicted into the object

diagram in figure 6.8:

1. the TrackOccupancyDetector,

2. the NetworkCommunicator,

3. the ISController,

4. the HMIController, and

5. the ProlanBlockCoreLogic.

The first four components have been designed to mask the complexity of interacting

with hardware, by offering high-level interfaces, instead of low-level and device-dependent

interfaces. The most of the interlocking logic lies into the ProlanBlockCoreLogic.

The TrackOccupancyDetector interacts with the axle counters and converts low level

I/O (like axle-in detected) in high-level domain specific events, such as “train entered in the

block” or “train has left the block”. It also handles device failures, notifying with special

events the occurrence of exceptional conditions.

ISController has the responsibilities of managing the interactions with the semaphore: it

sets its aspect when requested by the ProlanBlockCoreLogic, and copes with device failures

(such as, the burnout of lamps).

Case study 1: Model-Driven Engineering of a Interlocking System 104

PBObjects

:ProlanBlockCoreLogic1

HMIControllerReq

IHMIControllerListener IHMIController

IConventionalISListener

IConventionalISController

ConvISReq

ITrackOccupanyListener

ITrackOccupancyDetector

TrackOccReq

INetworkManagerListener

INetworkManager

NetworkPortReq

IHMIControllerIHMIControllerListener

HMIControllerReq

ConvISReq

IConventionalISController

IConventionalISListener

ITrackOccupanyListener

ITrackOccupancyDetector

TrackOccReq

INetworkManager

NetworkPortReq

INetworkManagerListener

:TrackOccupancyDetector1
ITrackOccupancyDetector

ITrackOccupanyListener

TrackOccPro

ITrackOccupancyDetector

TrackOccPro

ITrackOccupanyListener

:ISController1IConventionalISController

IConventionalISListener

ConvISPro

IConventionalISController

ConvISPro

IConventionalISListener

:NetworkCommunicator1

INetworkManager

INetworkManagerListener

NetworkPortPro

INetworkManager

INetworkManagerListener

NetworkPortPro

:HMIController1

IHMIController

IHMIControllerListener

HMIControllerPro

IHMIController

IHMIControllerListener

HMIControllerPro

Figure 6.8: High-level system architecture.

NetworkCommunicator is in charge to send and receive messages on the network, from

and to the adjacent PBs, while the HMIController manages the human-machine interface.

Finally, the ProlanBlockCoreLogic implements the logic for properly set the interlocking

systems connected to the PB, according to its internal status and collaborating with the

other components.

The PIM also assigns requirements to components (to support requirement traceability)

and specifies the components’ interfaces, and the behavior, i.e., the expected I/O at the

boundaries.

The components’ interfaces were defined using standard and platform-independent UML

syntax, to abstract away from platform-specific details at this stage. Therefore we followed

Case study 1: Model-Driven Engineering of a Interlocking System 105

guidelines such as:

• the services of any middleware or library shall be defined in terms of abstract inter-

faces;

• the datatypes of the variables shall be independent of a specific programming language.

6.2.3 Component Design

CIT CIM
 (SysML)

PIM
(SysML/UML)

PIM
 (UML)

PSM
(UML)

White box
PST

(UML/UTP)

Black box
PST

(UML/UTP)

Validation
Model

Black box
PIT

(UML/UTP)

Grey box
PIT

(UML/UTP)

Model*Driven*Development* Model*Driven*V&V*

Early*detec1on*of*faults*

Sys. Req. Spec.
*

System Design*

Component Design*

Validation Design*

Integr. Ver. Design*

Comp. Ver. Design*

Implementation*

Comp. Verif.*

Integration Verif.*

Validation*

In Component Design we enriched the PIM with the internal

design of the components.

The PIM was defined using IBM Rhapsody Developer [86]

(hereinafter: Rhapsody), and we continued to follow guide-

lines to keep the model as much as possible platform-

independent. Indeed, the tool does not offer a clear separation

between a platform-independent and a platform-specific model. For instance, for specifying

the behavior of the state machines, we avoided to insert C++ code, and preferred to adopt

the UML compliant syntax of send signal action and receive signal action. Furthermore, we

adopted Rhapsody datatypes in lieu of target language datatypes when declaring variables,

and their actual type is handled by the code generator.

At this stage we completed the behavioral and internal description of the component,

using UML Behavioral State Machines. The PIM state machine diagram for the TrackOc-

cupancyDetector is shown in Fig. 6.9: the component counts the axles detected in the block,

incrementing the counter when one axle is detected entering the block, and decrementing

the counter when one axle is detected exiting the block; if the counter is not zero, then a

train must be crossing the block. The component also detects anomalous conditions, such

as when the counter does not sum to zero, or when a train takes extraordinary time to leave

the block.

The PIM turned out to be almost completely defined, and only few parts could not be

Case study 1: Model-Driven Engineering of a Interlocking System 106

TrackOccupancyDetectorSM

ZeroSum

count = 0
NoZeroSum

axleInEvt/count = count + 1

axleOutEvt[count > 1]/count = count - 1

Failed

PBFailureEvt("TrackDetectors") to TrackOccPro

axleOutEvt/count = count - 1

trainInBlockEvt to TrackOccPro
axleInEvt/count = count + 1

trainOutBlockEvt to TrackOccPro

axleOutEvt[count == 1]/count = count - 1

TRACK_OCCUPANCY_TM

trackOccupancyDetectorResetEvt

Figure 6.9: The PIM state diagram of the behavior of the TrackOccupancyDetector.

specified in a platform-independent style. If supported by the tool, we can define these

detail with ALF (Action Language for Foundational UML), or otherwise in pseudo-code.

However, since ALF is a recent feature of Rhapsody, in practice we needed to complete the

behavior of the component with prototypes of the actual code in C++, in order to exploit

the model animation in Rhapsody.

Indeed, Prolan was interested in assessing the model simulation/animation feature of the

model-driven life cycle as a technique of early fault detection. Rhapsody does not actually

simulate the PIM, but animates it, i.e., it generates an instrumented implementation of the

model that enables to track the program execution. This is a feature that Prolan engineers

found useful and valuable for having an immediate feedback on the program behaviour.

More in detail, by means of the Rhapsody Panel Diagrams, we created an user interface

bound to the model, which allowed to send events to the model at runtime and observe its

execution (Fig. 6.10). Of course, the execution can be also followed on behavioral diagrams,

Case study 1: Model-Driven Engineering of a Interlocking System 107

Panel Diagram

RED

YELLOW

GREEN

Red Light Failed

Yellow Light Failed

Green Light Failed

Push

Red Light Failure

Push

Yellow Light Failure

Push

Green Light Failure

ProlanBlock in SafeState

Axles Counted

Push

AxleIn Event

Push

AxleOut Event

Push

NextPBYellowState

Push

NextPBRedState

Push

NextPBGreenState

Figure 6.10: The IBM Rhapsody c© Panel diagram for the Prolan Block.

e.g., state machines or sequence diagrams.

By model animation, engineers are allowed to run test cases on a prototypal/interme-

diate PSM, observing the effects on the model and enabling an early detection of design

faults.

Case study 1: Model-Driven Engineering of a Interlocking System 108

6.2.4 Implementation

CIT CIM
 (SysML)

PIM
(SysML/UML)

PIM
 (UML)

PSM
(UML)

White box
PST

(UML/UTP)

Black box
PST

(UML/UTP)

Validation
Model

Black box
PIT

(UML/UTP)

Grey box
PIT

(UML/UTP)

Model*Driven*Development* Model*Driven*V&V*

Early*detec1on*of*faults*

Sys. Req. Spec.
*

System Design*

Component Design*

Validation Design*

Integr. Ver. Design*

Comp. Ver. Design*

Implementation*

Comp. Verif.*

Integration Verif.*

Validation*

In Implementation, we bind the PIM to the target platforms,

adding low level details concerning the implementation. For

instance, a PSM defines the mapping between the generic

datatype with the actual ones offered by a specific program-

ming language, and binds data and function calls to the in-

terfaces of middleware or library chosen for the instantiation.

The PSM can be translated into the final target code to provide a partial or full implemen-

tation of the system.

Using IBM Rhapsody, Prolan had to set several tagged values and tool-dependent pa-

rameters to enrich the PIM with information platform-specific (Fig. 6.11). For instance,

they include how to realize the association (e.g., the datatypes of the collections of elements)

and the time resolution for the scheduler of the state machines’ event queues. These param-

eters are used by Rhapsody for the automatic translation of PSM into code. Considering

the deployment of the PB on Prosigma, the Prolan SIL-4 target platform, we had to specify

that the generated code cannot use dynamic memory and that the variables have to be

initialized at runtime, due to the lack of memory isolation on Prosigma.

Then, the Implementer adds platform specific code in the PSM. However, since it is

not efficient to write source code directly in the model, the Implementer can exploit code

round-trip features of most of modern MDE tools, to update the source code keeping the

model synchronized:

1. by automatic code generation, packages, code skeletons, makefiles and other artifacts

are automatically model-to-text produced;

2. the Implementer fills the code skeletons with platform-specific details using the sup-

port of modern development environments (such as Eclipse);

Case study 1: Model-Driven Engineering of a Interlocking System 109

Figure 6.11: Specification of platform specific properties in IBM Rhapsody c©.

3. by code round-trip, the model is automatically augmented with the information writ-

ten manually by the Implementer in the source code.

The translator can be chosen according to source code requirements, and it incldues the

supporting execution framework into the source code. For instance, Rhapsody offers two

C/C++ frameworks: IBM Rhapsody Object Execution Framework (OXF), and IBM Rhap-

sody Simple Execution Framework (SXF) (Tab. 6.1). The latter is dedicated to embedded

systems and safety-related development: qualification kits support the certification of the

automatic generated code for several standard (including ISO 26262, EN 50128 and recently

DO-178B).

The translation of the PSM in C++ source code generates around 7.5 thousands of lines

of code for a platform using a conventional OS, 7.3 thousands for target platform using a

commercial Real Time Operating System (VxWorks), and 5.9 thousands C lines of code

for an embedded systems not using an OS. For the last code generation we used the SXF

framework. The code is readable, understandable, and almost ready for the deployment:

figure 6.12 shows an excerpt of the automatically generated code for the state machine of

Case study 1: Model-Driven Engineering of a Interlocking System 110

IBM Rhapsody Simple Execution
Framework (SXF)

IBM Rhapsody Object Execution
Framework (OXF)

Static architecture Dynamic allocation

MISRA C++ 2008 compliant with modeling
checks

Not validated for MISRA

No animation/tracing Animation/Tracing

Only Real Time mode Real Time/Simulated Time modes

No containers (can be added) Containers

Static memory manager (only BaseNum-
berOfInstances)

Static memory manager

Flat statecharts Flat or reusable statecharts

No Multi-core, No Interfaces, No ports. Multi-core, Interface-based, With Ports.

Table 6.1: Differences between the frameworks SXF and OXF.

the TrackOccupancyDetector, in particular the reception of the event axleOutEvent in the

state NoZeroSum (Fig. 6.9).

Case study 1: Model-Driven Engineering of a Interlocking System 111

IOxfReactive::TakeEventStatus

TrackOccupancyDetectorController::NoZeroSum_handleEvent() {

IOxfReactive::TakeEventStatus res = eventNotConsumed;

if(IS_EVENT_TYPE_OF(OMTimeoutEventId)) {

if(getCurrentEvent() == rootState_timeout) {

// ...

}

} else if(IS_EVENT_TYPE_OF(axleOutEvt_ProlanBlockPkg_id)) {

//## transition 3

if(count > 1) {

NOTIFY_TRANSITION_STARTED("3");

cancel(rootState_timeout);

NOTIFY_STATE_EXITED("ROOT.NoZeroSum");

//#[transition 3

count = count - 1;

//#]

NOTIFY_STATE_ENTERED("ROOT.NoZeroSum");

rootState_subState = NoZeroSum;

rootState_active = NoZeroSum;

rootState_timeout =

scheduleTimeout(TRACK_OCCUPANCY_TM, "ROOT.NoZeroSum");

NOTIFY_TRANSITION_TERMINATED("3");

res = eventConsumed;

} else {

//## transition 4

if(count == 1) {

// ...

}

}

} else if(IS_EVENT_TYPE_OF(axleInEvt_ProlanBlockPkg_id)) {

//...

}

return res;

}

Figure 6.12: Fragment of the code automatically generated for the state NoZeroSum of the
state machine shown in Fig. 6.9 (OXF Framework). In particular, the code focuses on the
reception of the event axleOutEvt.

Case study 1: Model-Driven Engineering of a Interlocking System 112

6.2.5 Validation Design

CIT CIM
 (SysML)

PIM
(SysML/UML)

PIM
 (UML)

PSM
(UML)

White box
PST

(UML/UTP)

Black box
PST

(UML/UTP)

Validation
Model

Black box
PIT

(UML/UTP)

Grey box
PIT

(UML/UTP)

Model*Driven*Development* Model*Driven*V&V*

Early*detec1on*of*faults*

Sys. Req. Spec.
*

System Design*

Component Design*

Validation Design*

Integr. Ver. Design*

Comp. Ver. Design*

Implementation*

Comp. Verif.*

Integration Verif.*

Validation*

Validation Design exploits the CIM to define the CIT. Con-

sidering Fig. 6.4, the CIT can focus on modeling the behavior

of Station Interlocking Systems, of the track occupancy de-

tectors, of the RBC and conventional IS to generate concrete

operational profiles.

Linking the CIT in an in-the-loop configuration with the

system, it enables to validate the system against its expected usage by external actors,

and to create a simulated environment in which engineers can assess the system’s behavior.

Moreover, the operational profile derivable from the CIT can be used to performance (and

stress) testing.

Prolan decided to does not build a CIT model for the Prolan Block, and the benefits of

CIT modeling have been assessed on another system, the Prolan Monitor, that is discussed

in the next chapter (Chap. 7).

6.2.6 Integration Verification Design

CIT CIM
 (SysML)

PIM
(SysML/UML)

PIM
 (UML)

PSM
(UML)

White box
PST

(UML/UTP)

Black box
PST

(UML/UTP)

Validation
Model

Black box
PIT

(UML/UTP)

Grey box
PIT

(UML/UTP)

Model*Driven*Development* Model*Driven*V&V*

Early*detec1on*of*faults*

Sys. Req. Spec.
*

System Design*

Component Design*

Validation Design*

Integr. Ver. Design*

Comp. Ver. Design*

Implementation*

Comp. Verif.*

Integration Verif.*

Validation*

In Integration Verification Design phase we develop the BB-

PIT to model the expected behavior of the system’s compo-

nents, independently from their inner design.

The BB-PIT provides structural and behavioral views of

the system’s components: structural views supports the gen-

eration of the testing infrastructure, whereas dynamic descrip-

tion supports functional V&V techniques.

Test cases can be added to the model using UML-UTP Sequence, Activity or State

Machine diagrams. The graphical representation of the model is less error-prone than

the textual specification of the test cases, and, by model-to-text transformations, we can

Case study 1: Model-Driven Engineering of a Interlocking System 113

translate the test cases to multiple target testing platforms (such as TTCN-3 and JUnit),

enhancing readability, reusability, and maintainability.

To support functional testing, we enriched the BB-PIT with the behavioral description

of each component, modeling them by state machines. The state machines have been then

exploited to automatically generate test cases, adopting as test adequacy criteria, as the

coverage of structural elements of the model (e.g., full coverage of the states and of the

transitions).

In this phase we adopted Conformiq Designer
TM

[87] (from here onward: Conformiq)

that enabled us to generate automatically test cases for the BB-PIT. However, since the

tool is not fully UML compliant, we had to specify the components’ behavior in QML, the

specific language used by Conformiq: it is based on a subset of UML State Machines with

a Java-like action language (Fig. 6.13).

Using Conformiq, we also generated test cases with an adequacy criterion based on

requirement coverage: by means of QML annotations on model transitions or events, we

could relate the coverage of the model elements with the requirements, thus Conformiq

could compute the coverage of the test cases in front of the system requirements.

During the pilot project, we generated 21 test cases for the ProlanBlockCoreLogic,

achieving full coverage of requirements, as well as of all states and transitions. As out-

put, Conformiq provided us with the test cases sequence diagrams (Fig. 6.14), that we

could export in several target languages2, such as JUnit and TTCN-3; and the traceabil-

ity matrix (Fig. 6.15) that correlates the test cases with the features they cover (states,

transitions or requirements).

Regarding the exploitation of the BB-PIT structural description, Conformiq automati-

cally generates the test harness, and the Implementer only has to code the SUT adapter, to

let the testing framework interact with the system. However Rhapsody also offers a plug-in,

2Even though Conformiq can be extended with plug-ins for test scripts generation, at time we were able
to import the test cases in Rhapsody only manually.

Case study 1: Model-Driven Engineering of a Interlocking System 114

namely the Rhapsody TestConductor Add On [88], for generating automatically the testing

harness (including the drivers and stubs, Fig. 6.16), starting by the model design diagrams.

Within TestConductor the test cases are directly executed in Rhapsody, and it is possible

to observe their effect, following the behavior of an instrumented SUT by means of sequence

diagrams. ATG produced around 3.5 thousands of lines of code to provide the system with

the testing harness.

C
a
se

stu
d

y
1:

M
o
d

el-D
riven

E
n

gin
eerin

g
of

a
In

terlo
ck

in
g

S
y
stem

1
1
5

Figure 6.13: A BB-PIT QML State Machine used for test case generation in Conformiq
TM

.

Case study 1: Model-Driven Engineering of a Interlocking System 116

Figure 6.14: A test case automatically generated from the BB-PIT by Conformiq
TM

.

Figure 6.15: The Traceability Matrix automatically generated by Conformiq
TM

.

Case study 1: Model-Driven Engineering of a Interlocking System 117

TCon_ProlanBlockCoreLogic
«TestC ontext»

itsProlanBlockCoreLogic:ProlanBlockCoreLogic
1 «SUT»

HMIControllerReqConvISReqTrackOccReqNetworkPortReq

itsTC_at_NetworkPortReq_of_ProlanBlockCoreLogic:TC_at_NetworkPortReq_of_ProlanBlockCoreLogic
1 «TestC omponentInstance,TestC omponent»

NetworkPortReq

itsTC_at_TrackOccReq_of_ProlanBlockCoreLogic:TC_at_TrackOccReq_of_ProlanBlockCoreLogic
1 «TestC omponentInstance,TestC omponent»

TrackOccReq

itsTC_at_ConvISReq_of_ProlanBlockCoreLogic:TC_at_ConvISReq_of_ProlanBlockCoreLogic
1 «TestC omponentInstance,TestC omponent»

ConvISReq

itsTC_at_HMIControllerReq_of_ProlanBlockCoreLogic:TC_at_HMIControllerReq_of_ProlanBlockCoreLogic
1 «TestC omponentInstance,TestC omponent»

HMIControllerReq

HMIControllerReqConvISReqTrackOccReqNetworkPortReq

NetworkPortReq TrackOccReq ConvISReq
HMIControllerReq

Figure 6.16: The testing harness automatically generated by TestConductor for the Prolan-
BlockCoreLogic.

6.2.7 Component Verification Design

CIT CIM
 (SysML)

PIM
(SysML/UML)

PIM
 (UML)

PSM
(UML)

White box
PST

(UML/UTP)

Black box
PST

(UML/UTP)

Validation
Model

Black box
PIT

(UML/UTP)

Grey box
PIT

(UML/UTP)

Model*Driven*Development* Model*Driven*V&V*

Early*detec1on*of*faults*

Sys. Req. Spec.
*

System Design*

Component Design*

Validation Design*

Integr. Ver. Design*

Comp. Ver. Design*

Implementation*

Comp. Verif.*

Integration Verif.*

Validation*

Component Verification Design refines the BB-PIT defining

a GB-PIT, that benefits from the PIM at component level

viewpoint, which offers a gray box view of the system. The

GB-PIT enables additional verification techniques that can

exploit structural features for assessing correctness.

In the Pilot Project, we exploited the GB-PIT to generate

structural test cases to cover the design model. To this aim, we used a Rhapsody plug-in,

the Automatic Test Generator (ATG) [89], to automatically generate additional test cases.

Case study 1: Model-Driven Engineering of a Interlocking System 118

ATG generated ten test cases for the ProlanBlockCoreLogic, modeled as Rhapsody UTP

Sequence Diagrams3. By these test cases we achieved a 91% coverage of PIM structural

model features, with 19/21 states and 22/24 transitions covered. However, we were not able

to configure the ATG to reach the full model coverage: the few elements not covered are

related to a branch for timeout exception handling, and the generator did not find a proper

input to trigger the timeout event. Thus, we covered the remaining model elements with

one manually-written test case.

6.2.8 Model-Driven V&V Subprocess

CIT CIM
 (SysML)

PIM
(SysML/UML)

PIM
 (UML)

PSM
(UML)

White box
PST

(UML/UTP)

Black box
PST

(UML/UTP)

Validation
Model

Black box
PIT

(UML/UTP)

Grey box
PIT

(UML/UTP)

Model*Driven*Development* Model*Driven*V&V*

Early*detec1on*of*faults*

Sys. Req. Spec.
*

System Design*

Component Design*

Validation Design*

Integr. Ver. Design*

Comp. Ver. Design*

Implementation*

Comp. Verif.*

Integration Verif.*

Validation*

The V&V activities of the right side of V-Model refine the

PITs considering new details deriving from the target plat-

form, from the code implementation, and from the PSM, and

actual perform the V&V activities on the system implemen-

tation.

In the pilot project, we limited to investigate on the auto-

matic support for generating test cases using adequacy criteria on the source code, instead

of on the model.

We found that the ATG enabled also to generate test cases based on the source code

coverage, using adequacy criteria based on the statement and the MC/DC coverage. How-

ever, although this feature offers a form of automation for the white box testing, it turned

out to be not satisfying in our case, since we were able to cover only 2/9 MC/DC test

obligation by automatic test generation. This calls for better solutions for supporting white

box test by means of model-driven approaches.

Finally, by M2T transformation, it is possible to derive from Rhapsody detailed test

case reports.

3Rhapsody UTP is an IBM Profile based on UTP

Case study 1: Model-Driven Engineering of a Interlocking System 119

6.3 Discussion

In this pilot project, we assessed the feasibility, the advantages, and the drawbacks of

the proposed model-driven software development life cycle for the development of a real

industrial interlocking system that must be CENELEC EN 50126, EN 50128 and EN 50129

SIL-4 certified

The proposed process led to an improvement in the development and testing practices.

Requirements engineers found the usage of model-driven approach important to produce

better specifications, and to detect more incongruences and missing specifications, than us-

ing the previous document-centric process. Same feeling had the system and test designers,

who, exploiting models, built quickly prototypes and test models, and benefits from the tool

utilities, such as the model animation, to cross-check their design. A gain of productivity

and quality was also perceived in testing, because of the automatic generation of testing

plans and test cases, and because of a more structured testing design process, that better

exploits the interplay between developer and tester views.

Regarding the implementation, the benefits were not immediately evident, since the

certification for railway standards limits the advantages of code generation. Therefore,

Prolan is still undecided if the efforts for certifying automatically generated code is worth

the costs for code development. On the other hand, we recognized MDE fruitful for the new

capabilities that models introduce in the overall development process, and for the better

quality of produced artifacts. The automatic generation of the code shall not be considered

as a crucial factor to adopt model-driven approaches. Similar results were observed in [24],

where code generation was not the key factor that justified the introduction of MDE.

Indeed, model-driven approaches enable engineers to work on a more abstract level than

the document-centric approaches, focusing on the problem and leaving other artifacts to

be derived through transformations. Models enable to introduce new techniques in the

Case study 1: Model-Driven Engineering of a Interlocking System 120

development, such as simulation (model animation) and early fault detection, as well as

in V&V activities, e.g., automatic test case generation and model checking. Furthermore,

requirements between the model’s elements and the artifacts were traced accurately, easing

the generation of traceability reports useful for the certification.

However, despite these advantages, the industrial adoption of model-driven approaches

present a number of still open issues, that we experienced in our pilot project. We proposed a

general framework for a model-driven ‘V’ process based on MDA and MDT. Our experience

shows that each activity must be adapted to the industrial context, and to its domain-

specific needs; there is no instantiation that can fit all domains and applications. This is

also due to the limited support provided by tools, which can adopt DSLs and do not provide

full compatibility and transformations with other languages. For instance, in the activity of

Integration Verification Design we needed to use QML to automatize the generation of test

cases using Conformiq. Analogously, Markov chain models could be suited for modeling

the CIT, without burden the modelers with more complex formalisms. Another example

is provided by temporal logic formula, which could complement the CIM specification to

introduce particular model checking techniques. Anyway, UML 2.0 turned out to be suited

for our purposes, despite we needed to exploit advanced features of the language (such as

the Connection Points in the State Machines) that are often unknown to less experienced

modelers or to engineers using previous versions of UML.

Three commercial technologies have been adopted in this study as support tools for the

defined process. We experienced little integrations among the tools, and not full compliance

with OMG’s standards. Import and export of models among the tools led to several prob-

lems, including the lack of support for keeping the models consistent in the various tools.

Keeping consistency manually should be avoided as it is error-prone. Moreover, since the

adopted tools are closed source and uncertified, their adoption in safety-critical contexts

can pose problems, if products must undergo certification. Therefore, we still noticed an

Case study 1: Model-Driven Engineering of a Interlocking System 121

immaturity of software for MDE: there is a need of better integration among tools, and

more flexibility is required to support a wider range of activities. MDE tools should not

limit the activities of engineers, but should support and adapt to them. It is interesting

to note how similar issues were identified in [Staron:MDD] and they are still open after

about eight years.

Besides tools interoperability and integration, other big issues to face concern skills

and organization: MDE innovation requires engineers with new skills and strong model-

ing abilities, and companies have to consider re-organizing their structure to better fit the

deep changes brought by model-driven approaches. Indeed, the management is required to

re-arrange the forces inside the company in order to adapt consolidated practices to the

transformation. The importance of developers and testers will change, and analogously the

roles assigned to requirements engineers and designers will become more relevant. These

variations impact deeply on human-organizational factors; they translate in a severe man-

agerial issue that must be coped with in industries.

Overall, our development life cycle turned out to be able to support, in a CENELEC

EN 50128 V-Model, a broad range of engineering development and verification activities,

enabling to detecting faults at an early stage of development, and exploiting the automa-

tion offered by multiple support tools. These benefits come from the multiple and novel

viewpoints exploited by the methodology alongside the software life cycle, that favor a

well-defined exploitation of the models used in the V&V activities.

Our experience showed how MDE is a mature technology that can provide fruitful

results, not limited to code generation. However, we still experienced open challenges that

must be properly addressed when integrating these approaches into the development process,

involving the supporting tools, and current team skills and organization. Nevertheless, the

experience demonstrated that the life cycle is suited to be gracefully introduced into current

industrial processes, for its high flexibility to tools, activities and industrial practices.

Chapter 7

Case study 2: Model-Driven
In-the-Loop Testing in Railway
Domain

7.1 The Prolan Monitor Case Study

In our previous case study, we experimented the proposed model-driven development life

cycle (Chap. 3) for the development of the Prolan Block (PB), a railway interlocking system

under development by Prolan. In this chapter we focus on the environment modeling,

considering the Prolan Monitor (PM), another part of the interlocking system, which must

be CENELEC EN 50126, EN 50128 and EN 50129 SIL-4 certified. The PB shares with the

PM the same hardware and middleware platform (Prosigma), which is the basis of the next

generation of the company’s products: according to the CENELEC terminology, Prosigma

is a generic product, the PB and the PM are generic applications, and their installations

are specific applications.

Similarly to the Prolan Block, the PM is deployed alongside railway segments, named

blocks. The purpose of the PM is to send to modern interlocking systems that communicate

status signals, generated by legacy interlocking systems physically connected to the PM,

via protocols based on IP networks (such as via X.25 over TCP/IP).

In particular, the elements monitored by PM are named railway objects: to a railway

122

Chapter 7. Case study 2: Model-Driven In-the-Loop Testing in Railway Domain 123

object is associated one bit of information coded by one couple of valent and antivalent

physical signal values. The PM transmits the binary information associated to a railway

object to other devices, and detects invalid states when the couples of electric signals are

not consistent.

Indeed, since the physical inputs of PM are physical signals that derive from mechanical

switches, they can suffer of special unstable states during which the signals quickly alternate

in their value for a transient time, called bounce time: the PM has to properly filter bouncing

signals separating transient noise from invalid inputs.

7.2 Experimentation

In this section, we report our experience in showing the benefits of environment model-

ing, i.e., the benefits derived from the CIT, by performing an early validation test of the

PIM model through Model-in-the-loop tests (Fig. 4.1), focused on assessing the debouncing

functionality.

7.2.1 Model-driven development

We followed the development subprocess of the proposed life cycle (Chap. 3) to build an

implementation of the Prolan Monitor. Therefore, we executed the phases of System Re-

quirements Specification, System Design, Component Design and Implementation.

System Requirement Specification

In the System Requirements Specification, we define a CIM using SysML, that focuses on

the requirements and on the context of the PM. The CIM developed for the PM includes:

27 Activity Diagrams, 4 Block Definition Diagrams, 5 Internal Block Diagrams, 1 Package

Diagram, 9 Sequence Diagrams, 7 State Machine Diagrams, and 1 Timing Diagram.

The environment of the PM is shown in the BDD diagram in Fig. 7.1: the PM receives

as inputs the signals sent by the (legacy) interlocking system, and communicates with a

Chapter 7. Case study 2: Model-Driven In-the-Loop Testing in Railway Domain 124

MagicDraw, 1-1 /Users/nonplay/Documents/Dropbox/Prolan Work/Modelli e Artefatti ProlanBlock/ProlanMonitor_CIT/ProlanMonitor.mdzip System context 20-mag-2015 21.33.33

1- System context System contextpackage []

«system»
PM

Diagnostic expert

«External block»
InterlockingSystem

«External block»
Power supply

«External block»
Device

Temperature
Humidity

X25 messageX25 message e

1

PM

Block direction,
Block signal stop

1

PMInterlockingSystem

*

Error signal

*dsz

PM

PM

tápellátás

Figure 7.1: A SysML Block Definition Diagram of the CIM, showing the PM in its context.

remote device using X.25 messages.

The timing diagram in Fig. 7.2 specifies the functionality of signal filtering. The

PM must sample the input with a period Tsample; since the input can suffer from tran-

sient states, a filtering solution must be implemented. By the valent and antivalent sig-

nals, two debounced signals are derived, which filter out the input variations shorter than

messageF ilterT ime; then, the invalid values of the couple of debounced signals (i.e., (0, 0)

and (1, 1)) are masked if they last less than maxTransientTime. The railway objects assume

invalid state if the signals bounce more than maxBouncingTime or if the transient state

lasts more than maxTransientTime.

System Design

In the System Design phase, the PIM was modeled, by defining the high level architecture of

the system, including components’ interfaces and their specification. In this pilot project,

we design the PM system as composed of two instances of PMRailwayObjects, each of

those in charge of managing a couple of input binary signals assigned to a physical railway

Chapter 7. Case study 2: Model-Driven In-the-Loop Testing in Railway Domain 125

Figure 7.2: A UML Timing Diagram included in the CIM, representing the requirements
for the functionality of signal debouncing.

object (fig. 7.3). In order to be platform-independent, the logic for accessing the hardware

resources is masked by the PMInterface, required by the PMSystem.

Component Design

In the Component Design phase, the PIM is refined with the system internal design. The

PMRailwayObject consists of one Sampler, two PMDebouncers and one PMInputFilter

(Fig. 7.4). The sampler reads from the input channels and notifies the new values to

the two PMDebouncers, that filter the bounces of the valent and antivalent signals. Finally,

Chapter 7. Case study 2: Model-Driven In-the-Loop Testing in Railway Domain 126

PMSystem PMRailwayObject

1 2

PM_Interfaces::PMInterface

«Interface»

1

Figure 7.3: High level architecture of the Prolan Monitor.

PMRailwayObject

valentSignal:PMDebouncer1

isValentSignal:boolean

lastNotifiedSignalState:ThreeState

MAX_BOUNCING_TIME_MSEC:long=S...

MESSAGE_FILTER_TIME_MSEC:int=S...

value:boolean

changeValue(newValue:boolean):void

inputChangedEvent()

inputStabilizedEvent()

notifySignalState(newSignalState:Thr...

PMDebouncer(_valentSignal:boolean,...

antivalentSignal:PMDebouncer1

isValentSignal:boolean

lastNotifiedSignalState:ThreeState

MAX_BOUNCING_TIME_MSEC:long=Sampler.S...

MESSAGE_FILTER_TIME_MSEC:int=Sampler.S...

value:boolean

changeValue(newValue:boolean):void

inputChangedEvent()

inputStabilizedEvent()

notifySignalState(newSignalState:ThreeState)...

PMDebouncer(_valentSignal:boolean,_value:b...

inputFilter:PMInputFilter1

antivalentInput:ThreeState=ThreeState.PASS...

lastSentValue:int=0

MAX_TRANSIENT_TIME_MSEC:long=1000

state:ThreeState=ThreeState.PASSIVE

valentInput:ThreeState=ThreeState.PASSIVE

changeSignalEvent(newSignal:ThreeState,isV...

inputChangedEvent()

updateState(newSignal:ThreeState,isValent:b...

1 1

itsPMInputFilter

1

1
itsPMInputFilter

sampler:Sampler1

channel[2]:boolean={false,Wfal...

SAMPLING_MSEC:int=32*3

sample():void

1

1 itsValentSignal

1 1

itsAntivalentSignal

PM_Interfaces::PMInterface

«Interface»

ThreeState
«Enum»

Figure 7.4: The UML Internal Structure Diagram of the PMRailwayObject, defined in the
PIM during Component Design.

the PMDebouncers propagate the signals to the PMInputFilter that filters out transient

invalid states, as specified in Fig. 7.2.

At this stage, we also define the behavior of the components, by using UML State

Machines or Activity Diagrams. The state machine in Fig. 7.5 models the behavior of the

PMDebouncers as a two-orthogonal composite state: the state machine in the left monitors

Chapter 7. Case study 2: Model-Driven In-the-Loop Testing in Railway Domain 127

if the input is stable and sends inputStabilizedEvents to the region in the right. The latter

determines if the input is bouncing for a time longer than the maximum allowed.

The PIM is defined using IBM Rhapsody Developer (hereinafter: Rhapsody) [86], fol-

lowing guidelines to let the model be platform-independent. As for the case study of the

Prolan Monitor, we avoided to insert target source code, and we preferred to define the be-

havior using UML. However, the tool partially constrained us to use the target programming

language (i.e., Java) to specify the low-level components’ behavior.

As the derived model is executable, it can be animated to observe the running program

and the system’s interactions. This is a feature that we exploited to get an immediate

feedback on program behaviour. Moreover, we can easily create a prototype of user interface

for interacting with the model: by means of the Rhapsody Panel Diagrams, we can set the

inputs and observe the system output (Fig. 7.6).

CIT

Running

InputChanged

MESSAGE_FILTER_TIME_MSEC

inputChangedEvent

InputStabilized

/PMDebouncer.this.gen(newDinputStabilizedEvent())

StableState

ifD(valueD==Dtr...

BouncingFilter

Invalid

notifySignalState(Thr...

inputStabilizedEventinputChangedEvent

MAX_BOUNCING_TIME_MSEC

MESSAGE_FILTER_TIME_MSEC

MAX_BOUNCING_TIME_MSEC

Figure 7.5: The UML Behavioral State Machine of the class PMDebouncer, defined in the
PIM during Component Design.

Chapter 7. Case study 2: Model-Driven In-the-Loop Testing in Railway Domain 128

Software Relay - 1st Railway Object

Valent'Signal Antivalent'Signal

Prolan Monitor Status

2

Railway'Object1'Status

Software Relay - 2nd Railway Object

Valent'Signal Antivalent'Signal

Prolan Monitor Status

1

Railway'Object'2'Status

Figure 7.6: Rhapsody Panel Diagram associated to the PIM.

Implementation

In Implementation we define the PSM. Since we are using Rhapsody, this translates in

setting several tagged values and tool-dependent parameters to enrich the PIM; then, the

additional information is exploited for translating the model into code. The automatic

translation generated around 4.3 thousands of lines of Java code; the source code is readable,

understandable and ready to run.

7.2.2 The Computational Independent Test Model

The Validation Design phase aims at creating an executable model of the environment. Since

we focused on assessing the debouncing features of the PM, our architecture of the CIT

model is formed by two CITRailwayObjects: each CITRailwayObject controls the couple of

logical signals associated with the binary information that they encapsulate; from the CIT

point of view, the PM is an actor (Fig. 7.7).

The CITRailwayObjects are modeled as composed of one SignalGenerator and one

EventGenerator (Fig. 7.8): the EventGenerator determines the next output to be trig-

gered, as specified by a user-defined operational profile. The EventGenerator generates the

following events:

Chapter 7. Case study 2: Model-Driven In-the-Loop Testing in Railway Domain 129

CIT

Valent and antivalent signals

PM

railwayObject_0:CITRailwayObject1

enabled:boolean=false

railwayObjectID:int=91

CITRailwayObject(railwayObjectID:int)

«flow»

railwayObject_1:CITRailwayObject1

enabled:boolean=false

railwayObjectID:int=91

CITRailwayObject(railwayObjectID:int)

«flow»

CIT

Figure 7.7: The architecture of the CIT.

CITRailwayObject

itsSignalGenerator:SignalGenerator1

changeOutputEvent(transientState:boolean,transient...

getCurrentState():ThreeState

transientCompletedEvent()

itsEventGenerator:EventGenerator1

transientDuration:int=250

transientState:int

waitingTime:long=1100

generatorResetEvent()

transientCompletedEvent()

PM_Interfaces::PM_CIM_Interface

«Interface»

1

ThreeState

«Enum»

SignalGeneratorControlInterface

«Interface»

Figure 7.8: The internal design of the CITRailwayObject.

Chapter 7. Case study 2: Model-Driven In-the-Loop Testing in Railway Domain 130

NoAction: the output is not altered in the next event generation loop;

ChangeStableState: the railway object switches between valid stable states;

CreateSpike: the output moves to an invalid state and then back to the previous stable

state in order to simulate a transient in the electric signals;

Fail: the railway object moves to an invalid state and then fails.

According to the events sent by the EventGenerator, the SignalGenerator properly sets

the couple of output signals and manages the duration of the transients. The behavior of

the EventGenerator is modeled by an activity diagram (Fig. 7.9), while the behavior of

the SignalGenerator by a state machine (Fig. 7.10): the SignalGenerator can generate sets

of valid or invalid signals; when a changeOutputEvent is triggered by the EventGenerator,

it evolves to the next stable state passing through invalid signals (i.e., (1, 1) or (0, 0)) for

a time equals to transientDuration. Then, if the CITRailwayObject is not failed, the

SignalGenerator notifies the EventGenerator that the next stable state has been reached,

and it starts to wait for the next event.

A panel diagram allows to interact with the CIT (Fig. 7.11): it offers a couple of knobs

to set the period of event generation as well as the duration of transient states, and shows

the output generated by the railway object.

Chapter 7. Case study 2: Model-Driven In-the-Loop Testing in Railway Domain 131

System.err.println("Generator started!");

Init_Generator

waitingTime

generateNextWaitingTime()

Generate_Next_Waiting_Time

chooseNextEvent()

Choose_Next_Event

[nextEvent == 0]

ThreeState newState =

(getItsSignalGenerator().getCurrentState() ==

ThreeState.PASSIVE ? ThreeState.ACTIVE :

ThreeState.PASSIVE);

getItsSignalGenerator().gen(new

changeOutputEvent(randomFlip(), transientDuration,

newState));

Change_Stable_State

[nextEvent == 1]

getItsSignalGenerator().gen(new

changeOutputEvent(randomFlip(), transientDuration,

getItsSignalGenerator().getCurrentState()));

Create_Spikes_In_Output

[nextEvent == 2]

getItsSignalGenerator().gen(new

changeOutputEvent(randomFlip(), transientDuration,

ThreeState.INVALID));

failed = true;

Fail_On_Invalid_Output

[nextEvent == 3]

getItsSignalGenerator().gen(new

changeOutputEvent(randomFlip(),

transientDuration,

(randomFlip() ? ThreeState.ACTIVE :

ThreeState.PASSIVE)));

failed = false;

Reset_Action

generatorResetEvent

transientCompletedEvent

isEnabled[else]

[getItsCITRailwayObject().getEnabled() == true]

Figure 7.9: The UML Activity diagram that models the EventGenerator, defined in the
CIT during Validation Design.

Chapter 7. Case study 2: Model-Driven In-the-Loop Testing in Railway Domain 132

InvalidSignals

Invalid_1

setOutput(true, true)

Invalid_2

setOutput(false,false)

[transientState == true]

[else]

ValidSignals

State_A

setOutput(false,true)

State_B

setOutput(true, false)

[state == ThreeState.PASSIVE]

[state == ThreeState.ACTIVE]

changeOutputEvent/

transientState = params.transientState;

transientDuration = params.transientDuration;

state = params.newState;

transientDuration

[state != ThreeState.INVALID]

transientCompletedEvent to itsEventGenerator

changeOutputEvent[state == ThreeState.INVALID

 && params.newState != ThreeState.INVALID]/

transientState = params.transientState;

transientDuration = params.transientDuration;

state = params.newState;

Figure 7.10: The UML Behavioral State Machine model of the SignalGenerator, defined in
the CIT during Validation Design.

Figure 7.11: Rhapsody Panel Diagram of the CITRailwayObject.

Chapter 7. Case study 2: Model-Driven In-the-Loop Testing in Railway Domain 133

7.2.3 Model-in-the-loop testing

We integrate the CIT and the PIM in order to perform the Model-in-the-loop testing. Since

their interfaces are complementary, we link the two models by an adapter that simulates a

physical relay, the VirtualRelay (Fig. 7.12): the CIT sends commands to switch the virtual

relays, while the PIM reads their status.

Once the CIT and the PIM are linked (Fig. 7.13), we can execute the whole model and

examine its evolution by means of the output console and of the panel diagrams, as shown

in Fig. 7.14.

To assess the fulfillment of the requirements for the functionality of signal filtering, we

have designed a test plan to assess if the events received by the External Device are the

expected ones, according to the behavior of the Interlocking System and of the input signals

(Figs. 7.1, 7.2). We apply category partition testing (CPT) on the CIT’s interface (Table

7.1), deriving six test case obligations: in this type of testing, categories are configurations

of the environment (i.e., of the CIT) that lead to the generation of different sequences of

effective stimuli to the SUT. The test case specification is summarized in Tables 7.2 and

7.3. As test oracle, we implemented a script to analyze the execution traces of the actors

and of the PIM in order to detect any undesired behavior.

To execute the tests, the code of the model (in configuration in-the-loop) is generated

without the instrumentation needed for animating the model in Rhapsody, so as to avoid

VirtualRelay

PM_Interfaces::PMInterface

«Interface»

PM_Interfaces::PM_CIM_Interface

«Interface»

Figure 7.12: The software adapter linking the interfaces required by the CIT and the PIM.

Chapter 7. Case study 2: Model-Driven In-the-Loop Testing in Railway Domain 134

Parameter Categories Constraints Test case ID

Input domain
(1.1) Valid values and invalid transients TC1-4
(1.2) Valid and invalid values [ERROR] TC5

Input frequency
(2.1) Low frequency TC1-2, TC4-6
(2.2) High frequency [SINGLE] TC3

Duration
of tran-
sients

(3.1) Undetectable by the SUT [SINGLE] TC3, TC6
(3.2) Detectable by the SUT TC1-2, TC5
(3.3) Erroneous for the SUT [ERROR] TC4

Signal
fluctuations

(4.1) Low probability TC1, TC3-6
(4.2) High probability [SINGLE] TC2

Table 7.1: CPT test categories.

TC ID Categories Event Generation Transient Probability
covered Period Duration of Fluctuations

TC1 1.1, 2.1, 3.2, 4.1 2.5 s 100 ms 1%

TC2 1.1, 2.1, 3.2, 4.2 2.5 s 100 ms 40%

TC3 1.1, 2.2, 3.2, 4.1 65 ms 10 ms 1%

TC4 1.1, 2.1, 3.3, 4.1 2.5 s 5,000 ms 1%

TC5 1.2, 2.1, 3.2, 4.1 2.5 s 100 ms 1%

TC6 1.1, 2.1, 3.1, 4.1 2.5 s 10 ms 1%

Table 7.2: Specification of the MIL test cases. All test cases except TC5 send to the SUT
valid input values ((1, 0) and (0, 1)) and invalid transient values ((0, 0) and (1, 1)).

Parameter Value

Tsample 35 ms

messageFilterTime 3 ∗ Tsample = 105 ms

maxBouncingTime 5 ∗ Tsample = 175 ms

maxTransientTime 1,000 ms

Time tick 5 ms

Execution time 300 s

Table 7.3: Configuration of the SUT for the experiments.

Chapter 7. Case study 2: Model-Driven In-the-Loop Testing in Railway Domain 135

PIM
(System)

CIT
(Environment)

Input Output

We are working to provide a
model of train drivers, of
station’s managers and of
incoming train traffic.
By analyzing all the evolutions
of the PIM and the CIT we can
assess that the train drivers are
able to correctly handle trains
by interacting with the system.

VirtualRelay

PM_Interfaces::PMInterface

«Interface»

PM_Interfaces::PM_CIM_Interface

«Interface»

CIT$Panel$Diagram$

PIM$Panel$Diagram$
CIT0PIM$$
Adapter$

Figure 7.13: The configuration of the PM for MIL Testing.

slowing down the execution. Since the tests TC3 and TC6 require a time granularity of

10 ms, we tuned the time tick to 5 ms: this parameter specifies the time resolution to be

used to poll the time events of the state machines and of the activities. By analyzing the

execution traces during testing, we assured that the hardware was adequate to meet the

timing constraints on the event queues’ schedulers.

Note that, as the events are sent to a running software system, we are actually performing

a form of Software in-the-loop testing. However, tests are not executed on the final software

code, but on the instantiation of the PIM generated by Rhapsody that we are adopting for

animation and testing purposes.

Chapter 7. Case study 2: Model-Driven In-the-Loop Testing in Railway Domain 136

Figure 7.14: A screenshot of Rhapsody showing two panel diagrams and an output console:
the panel diagram on the left is linked with the PIM, whereas the panel diagram on the
right is connected to the CIT. In Model in-the-loop configuration, both are linked through
the VirtualRelay, and are part of the animation that produces output in the console.

7.2.4 Software- and Hardware-in-the-loop testing

To use the CIT for Software- and Hardware in-the-loop testing, we only need to change the

adapter in figure 7.12, with another adapter that forwards the events to the actual SUT.

Specifically, to run Hardware-in-the-loop tests in our case study, we replace the Vir-

tualRelay with an interface that sends the events to a physical relay card connected to

Prosigma.

The HIL configuration is shown in Figure 7.15:

1. the CIT is connected to a relay card through an Ethernet interface. Interacting with

the interface, the CIT controls the relays, thus the input signals for the PM;

2. the relay card is physically connected to Prosigma, that is the target hardware on

which the Prolan Monitor runs. The PM reads the inputs and filters the signals;

Chapter 7. Case study 2: Model-Driven In-the-Loop Testing in Railway Domain 137

TheCITsetsarelay$card$
connectedtothe$PM$$

The$electric$signalsare
processedbythe$PM,$

that$writes$$
onaCANbus

ACANbus$reader$sends$
the$output$totheCIT$

CIT

ETHERNET$

PHY$

CANBUSUSB$

Figure 7.15: The configuration of the PM for HIL Testing.

3. since the PM sends the filtered inputs to a network card connected on a CAN bus,

these messages are sniffed by a USB-to-CAN device that is connected to the CIT

through USB;

4. the CIT receives the filtered signals through an interface that interact with the USB-

to-CAN device, verifying that the PM behaves as expected.

Chapter 7. Case study 2: Model-Driven In-the-Loop Testing in Railway Domain 138

7.3 Discussion

The SUT passed all the model-in-the-loop tests, behaving correctly. The CIT enabled an

early detection of design fault in the life cycle, because we exercised the design model in its

context, before a complete implementation was available.

Moreover, focusing on modeling the environment, we are suggesting a form of separation

of concerns to build the validation test plan, that guides the design of test cases considering

the conditions that affect the behavior of the environment, reasoning on the modalities with

which it interacts with the SUT.

The CIT also enables to perform SIL and HIL testing, that provide multiple benefits to

companies that develops critical systems, like Prolan:

• the company can validate the multiple instances of the system by executing tests

on the final products (i.e., the Prolan Monitor on top of Prosigma configured for a

specific installations – what is called a specific application), assessing their behavior

in a simulated environment. Indeed, CIT enables to perform load and stress testing,

that are high recommended by CENELEC EN 50128 during V&V activities;

• moreover, since the CIT can assess any implementation – not only the one developed

using the proposed model-driven methodology –, it is reusable to assess the imple-

mentation developed in diverse programming. In fact, high safety-critical systems like

Prosigma adopts a lockstep fault-tolerant approach, i.e., it is composed of three com-

puter systems with diverse architectures that run the same functions in parallel. The

applications the run on these platform are generally developed with diverse program-

ming, thus the company has to validate three different implementations that comply

to the same requirements, but that are developed by separate teams. The use of di-

verse programming is common for safety-critical applications, and high recommended

by CENELEC EN 50128;

Chapter 7. Case study 2: Model-Driven In-the-Loop Testing in Railway Domain 139

Finally, we highlight that the CIT can be easily reused for future projects or be integrated

as a part of more complex CITs. In this way, it becomes a valuable company assets for

validating domain specific systems.

Chapter 8

Case study 3: Model-Driven
FMEA in Automotive Domain

8.1 Experimentation

In Chapter 3 we presented a model-driven methodology to support Failure Mode and Effects

Analysis (FMEA), that can be integrated with the proposed software development life cycle.

The approach enables formal knowledge representation – thus automated reasoning, making

FMEA part of the model-driven design of critical systems.

This work was born from the fruitful industrial-academic collaboration in the context

of European project CECRIS [9], indeed the research on FMEA was favored during six

month of secondment of the Ph.D. candidate in Critical Software S.A., a multinational

company with headquarters in Portugal that develops safety-critical systems and provides

consulting and expertise for the certification. Critical Software performs FMEA analysis

for its customers, and a model-driven approach for FMEA is useful to support its business,

saving efforts and time to conduct the analysis.

The following case study has been provided by the ARTEMIS Joint Undertaking project

Embedded Multi-Core systems for Mixed Criticality applications in dynamic and changeable

real-time environment (EMC2) [90], that aims at providing cost efficient solutions for inte-

grating applications with different levels of safety and security on single computing platforms

140

Chapter 8. Case study 3: Model-Driven FMEA in Automotive Domain 141

in open contexts, including multi-core and many-core computing hardware.

In particular, the use case is a demonstrator of a modern embedded system for mixed

criticality car applications under development by Critical Software S.A., that offers a solu-

tion to run concurrently software with distinct safety-critical requirements on a multi-core

platform.

In this case study, we report our experience on how to conduct the analysis of failure

modes, propagation and effects from SysML design models, using our approach, including

FMEA Diagrams.

8.1.1 System Modeling

In System Modeling, the Designer targets to formalize the knowledge of the system by

means of the model. Therefore, (s)he starts to specify the system requirements through use

cases (Fig. 8.1). The system is an info-entertainment software which runs concurrently with

a safety-critical in-car emergency call (eCall) application. The latter activates assistance

in case of accidents, automatically sending relevant information (e.g., position) to rescue

services.

Then, the Designer models the requirements and their dependencies, by means of SysML

Requirement Diagrams: the requirements can be refined with a top-down approach, using

relations of containment; and defining dependencies between couples of requirements. For

instance, figure. 8.2 includes the non-functional requirement EMC2-REQ-0305 that specifies

the constraints on the execution of real-time tasks: it belongs to the class of requirements

named ECM2-REQ-0300, and depends on the functional requirement EMC2-REQ-0121,

which requires a scheduler with a preemptive queue for the proper handling real-time tasks.

After the requirements have been specified using SysML Requirement and Use Case

Diagrams, we move to model the system architecture, using Internal Block Diagrams. The

top-level consists of a real-time operating system (RTOS) that manages safety-critical tasks

Chapter 8. Case study 3: Model-Driven FMEA in Automotive Domain 142

and resources running concurrently on distinct CPU cores, with a commercial off-the-shelf

operating system (Android OS), contained within a virtualized environment managed by

the Hypervisor (Fig. 8.3). The less critical tasks run in user space atop the RTOS. Finally,

the Hypervisor and the RTOS interact with a Board Support Package (BSP) abstracting

hardware-specific services. The RTOS internal structure (Fig. 8.4) comprises a Scheduler,

and other components managing Clock, Devices, Resources, and System Calls. Require-

ments are allocated to components at this stage.

In addition, the Designer specifies by behavioral diagrams the realization of the use cases

and the components’s behavior, according at an abstraction level suited for the scope of the

FMEA analysis. For instance, we modeled the Activity Diagram in Fig. 8.5 to show how

the internal parts of the system collaborate to realize the use case Perform eCall (Fig. 8.1).

Figure 8.1: Excerpt of Use Cases Diagram of EMC2 prototype.

Chapter 8. Case study 3: Model-Driven FMEA in Automotive Domain 143

Figure 8.2: Excerpt of SysML Requirements Diagram of EMC2.

Figure 8.3: SysML Internal Block Diagram of the EMC2 prototype.

Chapter 8. Case study 3: Model-Driven FMEA in Automotive Domain 144

Figure 8.4: Internal Block Diagram of the Safety-Critical RTOS Component.

C
h

a
p

ter
8
.

C
ase

stu
d

y
3
:

M
o
d

el-D
riven

F
M

E
A

in
A

u
tom

otive
D

om
ain

1
4
5

Figure 8.5: Activity Diagram of the use case Perform eCall.

Chapter 8. Case study 3: Model-Driven FMEA in Automotive Domain 146

8.1.2 FMEA Modeling

FMEA Modeling aims at refining the design model with FMEA-oriented information ex-

ploitable for automatic FMEA analysis in the next phase. It starts by refining the design

model: the FMEA Analyst identifies the components’ functionalities with a FMEA view-

point, i.e., abstracting the component functionalities according to the FMEA scope, and on

the basis of the behavioral diagrams modeled by the Designer, such as the Activity Diagram

of Fig. 8.5.

The FMEA Analysts specifies the component functionalities by means of use cases.

For instance, figure 8.6 shows the high-level functionalities assigned to the Safety-Critical

RTOS and to the Scheduler : the Scheduler creates new processes, modifies their status,

and performs their scheduling to the processors.

Now come into play the FMEA Profile and the FMEA Diagrams for conducting the

Figure 8.6: Use Cases for the SC-RTOS and Scheduler components.

Chapter 8. Case study 3: Model-Driven FMEA in Automotive Domain 147

analysis of failure modes, propagation and effects in a systematic way. The engineer proceeds

in two iteration with a bottom-up approach.

In the first iteration, (s)he creates one FMEA Diagram for each component: (s)he places

the CUA in the middle, its functionalities in the top-right side of the diagram, and CUA’s

requirements in the lower-right; then, looking at the CUA functionalities, the analyst defines

the CUA failure modes. The failure modes are represented as use cases with the stereotype

FailureMode.

A tool should support the automatic generation of FMEA Diagrams. Indeed, an auto-

matic model-to-model translator can create one FMEA Diagram for each CUA. Then, the

translator can also identify the CUA’s adjacent components, its assigned requirements and

functionalities, and synthesize these information in the FMEA Diagram. Therefore, a sim-

ple translator can provide the Analyst with an environment ready for adding the valuable

information in the FMEA model, avoiding redundant and pedantic tasks.

In the second iteration, once all components’ failure modes have been specified, the

engineer re-examines all diagrams: since the FMEA Diagram now have been populated

with the failure modes of the adjacent components, it is easy for the Analyst to connect

the external failure modes and internal faults with the CUA’s failure modes, and these with

their effects, by linking failure modes with the requirements.

Figure 8.7 shows one FMEA Diagram of EMC2, having the Scheduler component as

CUA. We can observe how the diagram offers a synoptical view on the CUAs functionalities

and requirements, internal faults, and failure propagation. For instance, the ClockManagers

failure mode Timer Callbacks are not handled properly can propagate to the Scheduler,

causing the failure mode Priority of Real-time Processes not respected, that violates the

requirement EMC2-REQ-0121 and affects the functionality Schedule Process.

Besides the information added with the graphical support, the Analyst has to enrich

the model with textual properties made available by the FMEA Profile, e.g., to specify the

Chapter 8. Case study 3: Model-Driven FMEA in Automotive Domain 148

«Block»
ClockManager

«FailureMode»
Clock Devices are

not registered

«FailureMode»
Timer Callbacks are
not handled properly

«Block»
ResourceManager

«FailureMode»
Status of the cores is
not observed properly

«Block»
Scheduler

«FailureMode»
The scheduler

cannot be started

«FailureMode»
Impossible to schedule

next process

«Block»
Scheduler

Start Scheduler

Schedule Process

«FailureMode»
Priority of RT Processes

not respected

«FailureMode»
Impossible to change

Process status

«FailureMode»
Processes not

scheduled to the
correct CPU core

«InternalFault»
Software or Memory Fault

«Requirement»
EMC2-REQ-0120 Scheduler

«Requirement»
EMC2-REQ-0121 Scheduler must
have a preempitve queue for RT
tasks

«Requirement»
EMC2-REQ-0122 Manage the state
of processes

«Requirement»
EMC2-REQ-0123 Assign cores
balancing the load

Modify Process Status

Figure 8.7: FMEA Diagram for the EMC2 Scheduler component.

logical conditions that determine the propagation of a failure, or the reuse of past projects or

domain knowledge. For instance, we adopted the stereotypes FailureMode and InternalFault

to customize the semantic of the UML Use Case and Behavior for the purposes of FMEA

(Fig. 8.7).

8.1.3 M2T trasformation

FMEA Diagrams augment the model with the information needed to perform a FMEA

Analysis. Adopting a model-driven approach, the FMEA model is model-to-text translated

into a Prolog Knowledge base, which is suited to perform the next phase of Model Analysis.

The FMEA Profile empowers the automatic transformation rules, and helps to define the

mapping between the model elements with the Prolog facts and predicates.

In this case study, we manually performed a preliminary translation of a portion of the

model, converting in Prolog the information about the requirements, use cases, fault and

Chapter 8. Case study 3: Model-Driven FMEA in Automotive Domain 149

failure propagation. The knowledge base defines in Prolog the facts regarding the elements

(e.g., the blocks, the internal fault and the component’s functionalities), as well as the

relations between the component and the failure mode, and between the functionalities

and the requirements, through the predicates failureMode, impactUC and impactReq ; then,

the predicate doesFail relates the components failure modes with the faults and failures

occurred in the system.

Figure 8.8 shows a Prolog code excerpt relative to the Scheduler. The predicates defined

in the figure are the following:

isBlock(Component)

Component is a block.

isInternalFault(Component, Fault)

Fault is an internal fault of Component.

isUC(Component, UC)

UC is an use case of Component.

failureMode(Component, FailureMode)

FailureMode is a failure mode of Component.

impactUC(Component, FailureMode, UC)

FailureMode is a failure mode of Component that impacts the use case UC.

impactReq(Component, FailureMode, Req)

FailureMode is a failure mode of Component that violates the requirement Req.

doesFail(Component, FailureMode, FailureModeList, FaultList)

Component fails due to failure mode FailureMode, given the list of activated faults FaultList

and the failures in the system FailureModeList.

Chapter 8. Case study 3: Model-Driven FMEA in Automotive Domain 150

/* Scheduler */

isBlock(scheduler).

isInternalFault(scheduler, softwareOrMemoryFault).

isUC(scheduler, startScheduler).

isUC(scheduler, scheduleProcess).

isUC(scheduler, modifyProcStatus).

/* ---- */

failureMode(scheduler, schedulerCannotBeStarted).

impactUC(scheduler, schedulerCannotBeStarted, startScheduler).

impactUC(scheduler, schedulerCannotBeStarted, scheduleProcess).

impactReq(scheduler, schedulerCannotBeStarted, req_0120).

doesFail(scheduler, schedulerCannotBeStarted, FailureModeList, FaultList) :-

once(member([scheduler, schedulerCannotBeStarted], FailureModeList)),

(

once(member([scheduler, softwareOrMemoryFault], FaultList));

doesFail(clockManager, clockDevicesNotRegistered, FailureModeList, FaultList)

).

/* ---- */

failureMode(scheduler, impossibleToScheduleNextProcess).

impactUC(scheduler, impossibleToScheduleNextProcess, scheduleProcess).

impactReq(scheduler, impossibleToScheduleNextProcess, req_0120).

doesFail(scheduler, impossibleToScheduleNextProcess, FailureModeList, FaultList) :-

once(member([scheduler, impossibleToScheduleNextProcess], FailureModeList)),

(

once(member([scheduler, softwareOrMemoryFault], FaultList));

doesFail(clockManager, timerCallbacksNotHandled, FailureModeList, FaultList)

).

Figure 8.8: Fragment of the Prolog Knowledge Base relative to the Scheduler.

8.1.4 Model Analysis

After the knowledge base has been generated, the analyst can pose query to the Prolog

inference engine to actually perform the FMEA analysis, and to generate the FMEA work-

sheets. The queries are based on the predicates which have been defined in shared knowledge

base, and that can be reused across multiple projects. The complexity of using Prolog for

querying the system can be masked using simpler graphic user interfaces that abstract away

from the underlying syntax of Prolog.

As an example of predicates that are present in a shared knowledge base to support the

Chapter 8. Case study 3: Model-Driven FMEA in Automotive Domain 151

analyses, we discuss the following:

shallowReqViolated(Component, LocalFault, LocalReqViolated, FailureMode)

true if the activation of LocalFault in Component causes FailureMode that causes the viola-

tion of the requirement LocalReqViolated which has been directly assigned to the component.

shallowAllReqViolated(Component, LocalFault, LocalReqViolatedSortedList)

true if and only if the activation of LocalFault in Component causes the violation of all the

component requirements that appear sorted lexicographically in LocalReqViolatedSortedList.

deepReqViolated(Component, LocalFault, ReqViolated, FailureModeList)

true if the activation of LocalFault in Component causes directly or indirectly the violation

of the requirement ReqViolated, due to the propagation of a failure of Component (listed

in FailureModeList) which is generated by LocalFault, and considering all the requirements

that are reachable in the graph of the requirements.

deepAllReqViolated (Component, LocalFault, ReqViolatedSortedList, Fail-

ureMode)

true if and only if the activation of LocalFault in Component causes directly or indirectly

the violation of all the requirements ordered lexicographically in ReqViolatedSortedList, due

to the propagation of the FailureMode of Component which is generated by LocalFault, and

considering all the requirements that are reachable in the graph of the requirements.

All deep-predicates are also offered in form of SysReqViolated, that filter out the violation

of requirements that are not at system level. An excerpt of the shared Prolog knowledge

base containing the predicates for the model analysis is shown in figure 8.9.

Chapter 8. Case study 3: Model-Driven FMEA in Automotive Domain 152

% Search for a requirement violated without considering propagations

% (in adjacent components and in the requirement graph).

shallowReqViolated(Comp, LocalFault, LocalReqViolated, FailureMode) :-

isInternalFault(Comp, LocalFault),

doesFail(Comp, FailureMode, _, [[Comp, LocalFault]]),

impactReq(Comp, FailureMode, LocalReqViolated).

shallowReqViolated(Comp, LocalFault, LocalReqViolated) :-

shallowReqViolated(Comp, LocalFault, LocalReqViolated, _).

shallowAllReqViolated(Comp, LocalFault, LocalReqViolatedSortedList) :-

isInternalFault(Comp, LocalFault), % Needed to print the LocalFault unification

findall(LocalReqViolated,

shallowReqViolated(Comp, LocalFault, LocalReqViolated),

Z),

sort(Z, LocalReqViolatedSortedList).

% Search for a requirement violated considering propagations

% (in adjacent components and in the requirement graph).

deepReqViolated(Comp, LocalFault, ReqViolated, FailureModeList) :-

isInternalFault(Comp, LocalFault),

doesFail(C, F, FailureModeList, [[Comp, LocalFault]]),

(impactReq(C, F, ReqViolated);

impactReq(C, F, LocalReqViolated), reqFailure(LocalReqViolated, ReqViolated)).

deepReqViolated(Comp, LocalFault, ReqViolated) :-

deepReqViolated(Comp, LocalFault, ReqViolated, _).

deepSysReqViolated(Comp, LocalFault, SysReqViolated, FailureModeList) :-

sysReq(SysReqViolated),

deepReqViolated(Comp, LocalFault, SysReqViolated, FailureModeList).

deepSysReqViolated(Comp, LocalFault, SysReqViolated) :-

deepSysReqViolated(Comp, LocalFault, SysReqViolated, _).

deepAllReqViolated(Comp, LocalFault, ReqViolatedSortedList) :-

isInternalFault(Comp, LocalFault),

findall(ReqViolated, deepReqViolated(Comp, LocalFault, ReqViolated), Z),

sort(Z, ReqViolatedSortedList).

deepAllReqViolated(Comp, LocalFault, ReqViolatedSortedList, FailureMode) :-

isInternalFault(Comp, LocalFault),

failureMode(Comp, FailureMode),

findall(ReqViolated,

(deepReqViolated(Comp, LocalFault, ReqViolated, FailureModeList),

once(member([Comp, H], FailureModeList)), H = FailureMode), Z),

sort(Z, ReqViolatedSortedList).

Figure 8.9: Fragment of the Prolog shared Knowledge Base defining predicates for model
analysis.

Chapter 8. Case study 3: Model-Driven FMEA in Automotive Domain 153

1st Query – Local Effects of Failure Modes

In the first query we asked to the inference engine to provide all the local effects of the

Scheduler ’s failure modes that are due to a single fault.

As shown in Fig. 8.10, Prolog correctly reported the five failure modes modeled in the

FMEA Diagram in Fig. 8.7, and for each of them Prolog identified the affected requirements.

?- shallowReqViolated(scheduler, LocalFault, LocalReqViolated, FailureMode).

LocalFault = softwareOrMemoryFault,

LocalReqViolated = req_0120,

FailureMode = schedulerCannotBeStarted

LocalFault = softwareOrMemoryFault,

LocalReqViolated = req_0120,

FailureMode = impossibleToScheduleNextProcess

LocalFault = softwareOrMemoryFault,

LocalReqViolated = req_0121,

FailureMode = priorityOfRTNotRespected

LocalFault = softwareOrMemoryFault,

LocalReqViolated = req_0122,

FailureMode = impossibleToChangeProcStatus

LocalFault = softwareOrMemoryFault,

LocalReqViolated = req_0123,

FailureMode = procNotScheduledToCorrectCore

Figure 8.10: Results of the execution of the query 1 on the EMC2 knowledge base.

2nd Query – End Effects of Failure Modes

In the second query, we asked Prolog to identify all the system level effects for each failure

mode of the Scheduler.

As reported in Fig. 8.11, Prolog identified two system level requirement violations,

EMC2-REQ-0120 and EMC2-REQ-0120 . The former is caused by any Scheduler ’s failure

modes, since it is a requirement associated to the functionalities offered by a scheduler

in the system; while the latter is caused by the failure mode Priority of RT Processed not

Chapter 8. Case study 3: Model-Driven FMEA in Automotive Domain 154

respected : this failure mode leads to the violation of the local requirement EMC2-REQ-0121

(as shown in the FMEA Diagram in Fig. 8.7) that through EMC2-REQ-0305 propagates

to the requirement EMC2-REQ-0300 (as represented in Fig. 8.2).

?- deepAllSysReqViolated(scheduler, LocalFault, SysReqViolatedList, FailureMode).

LocalFault = softwareOrMemoryFault,

SysReqViolatedList = [req_0120],

FailureMode = schedulerCannotBeStarted

LocalFault = softwareOrMemoryFault,

SysReqViolatedList = [req_0120],

FailureMode = impossibleToScheduleNextProcess

LocalFault = softwareOrMemoryFault,

SysReqViolatedList = [req_0120, req_0300],

FailureMode = priorityOfRTNotRespected

LocalFault = softwareOrMemoryFault,

SysReqViolatedList = [req_0120],

FailureMode = impossibleToChangeProcStatus

LocalFault = softwareOrMemoryFault,

SysReqViolatedList = [req_0120],

FailureMode = procNotScheduledToCorrectCore.

Figure 8.11: Results of the execution of the query 2 on the EMC2 knowledge base.

3rd Query – Causes of a Requirement Violation

In the third query we reversed the previous query, since we investigated all the failure modes

that cause the violation of the requirement EMC2-REQ-0300 . This query is relevant to

check what failure modes must be managed to reduce the risk of critical system failure.

For this query, Prolog identified two failure modes: the first one is due to the Scheduler ’s

failure mode Priority of RT Processed not respected (i.e., the case spotted in the previous

query); whereas the second one is associated to the failure mode Timer Callbacks are not

handled properly of the ClockManager. In fact, analyzing the second failure mode (Fig. 8.7),

we observe that this failure mode propagates again to the Schedulers failure mode Priority

Chapter 8. Case study 3: Model-Driven FMEA in Automotive Domain 155

of RT Processed not respected, that we know that affects EMC2-REQ-0300 .

?- deepSysReqViolated(Component, LocalFault, req_0300, FailureModeList).

Component = scheduler,

LocalFault = softwareOrMemoryFault,

FailureModeList = [[scheduler, priorityOfRTNotRespected] | _G45]

Component = clockManager,

LocalFault = softwareOrMemoryFault,

FailureModeList = [[scheduler, priorityOfRTNotRespected],

[clockManager, timerCallbacksNotHandled] | _G48]

Figure 8.12: Results of the execution of the query 3 on the EMC2 knowledge base.

4th Query – Worksheet Generation

As fourth query, we wanted to assess the ability of the knowledge base to provide all the

data necessary to generate a generic FMEA Worksheet for the Scheduler.

To build the column of the local effects we can use the output of the first query, which

determined the local effects of all Scheduler’s failure modes. Instead, to get the root causes

and the end effects of each failure mode, we execute on the knowledge base the following

query:

deepSysReqViolated(Component, LocalFault, SysReq, FailureModeList),

once(member([scheduler, SchedulerFailure], FailureModeList)).

The query returns true if LocalFault in Component propagates according to the Failure-

ModeList and causes a violation of the system requirement SysReq. For each Component,

LocalFault and SysReq, the query gives only one answer per failure mode of the scheduler

(i.e., only one unification between SchedulerFailure in FailureModeList).

By executing the query, we extracted all the information needed to complete the FMEA

Worksheet: the data have been transformed and tabulated in Tab. 8.1.

C
h

a
p

ter
8
.

C
ase

stu
d

y
3
:

M
o
d

el-D
riven

F
M

E
A

in
A

u
tom

otive
D

om
ain

1
5
6

Failure Mode Causes Local Effects End Effects

The scheduler cannot be
started

ClockManager due to software or memory fault
that causes timer callbacks not properly handled

EMC2-REQ-0120 EMC2-REQ-0120

ClockManager due to software or memory fault
that inhibits the registration of the clock devices
Scheduler due to internal software or memory
fault.

Impossible to schedule next
process

ClockManager due to software or memory fault
that causes timer callbacks not properly handled

EMC2-REQ-0120 EMC2-REQ-0120

Scheduler due to internal software or memory
fault.

Priority of the RT Processes
not respected

ClockManager due to software or memory fault
that causes timer callbacks not properly handled

EMC2-REQ-0121 EMC-REQ-0300

Scheduler due to internal software or memory
fault.

EMC2-REQ-0120

Impossible to change Process
status

Scheduler due to internal software or memory
fault.

EMC2-REQ-0122 EMC2-REQ-0120

Processes not scheduled to the
correct core

Resource Manager due to software or memory
fault that causes a status of the cores not ob-
served properly.

EMC2-REQ-0123 EMC2-REQ-0120

Scheduler due to internal software or memory
fault.

Table 8.1: FMEA Worksheet for the Scheduler generated automatically by queries on the knowledge base.

Chapter 8. Case study 3: Model-Driven FMEA in Automotive Domain 157

8.2 Discussion

In this case study we reported our experience with conducting the proposed model-driven

FMEA in Chap. 5.

The approach tightly integrates the work of the Designer with the FMEA Analyst, that

can start the analysis by reusing the knowledge provided by the former with a common

language based on the standard SysML. How it was experienced in Critical Software, this

solution provides high benefits for the FMEA, since the FMEA Analysts face the problem

of manually extracting the information from multiple sources, in an error-prone way and

typically using diagrams to synthesize the knowledge.

The novel FMEA Diagram enables the analyst to reason directly on the model to identify

failure modes, propagation and effects, exploiting it as primary source of knowledge of the

system:

• FMEA Diagrams offer a synoptical view on the structure and behavior of the compo-

nents, thus help the Analyst in reasoning on the failure modes and failure propagation

in a model-centric FMEA approach;

• by M2M transformations, the FMEA Diagrams concentrate the time of the FMEA

Analyst in enriching the model with the valuable FMEA-oriented information;

• FMEA Diagram aims at becoming a common language between multiple RAMS teams

to share the knowledge about the failure behavior of the system.

The analyses performed in Prolog revealed the suitability of the language to analyze the

FMEA-oriented model for conducting the typical queries addressed in a FMEA analysis.

The use of a Prolog makes the methodology more flexible, since the analysts can reuse

the knowledge derived by domain libraries or past projects: the Analysts can easily add new

types of predicates in the knowledge base to support more specific and complex queries.

Chapter 8. Case study 3: Model-Driven FMEA in Automotive Domain 158

Indeed, Prolog can support particular kind of analysis typically not currently addressed

during a FMEA Analysis due to their complexity, such as the analysis of multiple faults,

or the effects of fault barriers in the system. The engine also supports custom queries sent

directly from the command-line interface.

Finally, during Model Analysis we were able to generate a detailed FMEA worksheet for

the component under analysis. Applying the methodology within model-driven life cycles,

we can effectively reduce time and cost of development, enabling to early verification of

RAMS requirements and support to FMEA analysis and documentation.

Conclusion

Model-driven techniques are appealing for industries, as they can reduce development costs,

time and guarantee better quality of the products. However, the introduction of model-

driven engineering into traditional development process is not a matter of using models

and supporting tools to gain the benefits of the models, they require strong adaptation of

current industrial practices, and have an influence on the software development process.

Indeed, MDE influences the organization and involves the skills of the engineers, the

roles, the communication between the teams, the tools and the stakeholders’ responsibili-

ties. Companies that aim at innovating their process face the problem on how they should

change long established methodologies: traditional development processes need to carefully

reengineered for the MDE, and it is not clear the impact of the integration of MDE into

development life cycles [92]; despite the great advances in the field of MDE, there are still

few studies that focus on complete model-driven life cycle processes that are suited for

the mainstream adoption. The lack of consolidated model-driven life cycles has become a

serious concern of the scientific community, that has started a new series of conferences

dedicated to the topic: the Model-Driven Development Processes and Practices workshop

(MD2P2) [91].

This dissertation aims at filling this gap, by proposing a novel software development

process that uses model-driven approaches during the whole life cycle, addressing the limi-

tations of past proposals:

159

Conclusion 160

• it covers the full software development life cycle, and merges into the ‘V’ the abstrac-

tions of MDA, MDT and CENELEC V-Model, to favor the reuse and improve the

exploitation of models, by focusing on the relevant aspects of the system during all

phases of the process. The methodology agrees with the CENELEC EN 50128 stan-

dard, as it uses a compliant V-Model and includes the activities and roles required

for the certification, supporting the automatic generation of the artifacts;

• the life cycle is flexible to multiple applications and domain, since it uses OMG stan-

dard and general-purpose languages. Nevertheless, the methodology is founded on

viewpoints rather than on models, thus it can be instantiated with domain-specific

formalisms and particular tools to meet the industrial needs;

• the process supports numerous techniques of model-driven V&V, including functional,

structural, interface and validation testing. This enables to choose the most cost-

effective combination of methods during the V&V. Moreover, it includes a new defini-

tion of the CIT, that enables to perform model-, software-, and hardware- in-the-loop

testing: these kinds of tests are valuable for the assessment of critical systems, be-

cause allow to the detection of faults at an early stage, reducing the overall costs of

development;

• the process includes a model-driven SysML FMEA, which supports reliability and

safety analysis. The integration favors better consideration of RAMS requirements

in the first stages, by allowing early feedback from the FMEA team, that enables

to an early verification and validation of the design. Differently from past studies,

the proposal exploits custom SysML FMEA Diagram, that speeds up the activity

of FMEA Modeling, by supporting the reasoning of the FMEA Analyst in the same

conceptual framework of the Designer. Moreover, Prolog follows the same inductive-

deductive mindset of the analyst and opens to custom queries, that enable to a wide

Conclusion 161

range of FMEA analyses, also enhancing the reuse of the domain knowledge by means

of separate Prolog libraries.

Concluding, this work has been strongly influenced by the fruitful collaboration with the

industry conducted by the Ph.D. candidate, in the framework of the EU Project CECRIS.

The industry has still no clear understanding on how to adapt their processes to exploit

MDE, and most of past research focused on particular phases or subprocesses of the software

development life cycle, creating multiple techniques. This thesis engineers the model-driven

development of critical systems, and composes with new ideas the multiple fragments of

research, to create one picture of the MDE, ready to the industrial application and for the

development critical systems.

Glossary

Activity the execution of a step of a Software (sub)process in the context of a SDLC.

Artifact is an outcome of a software process.

Bounce time is the transient time during which an unstable signals quickly alternates in

its value.

CAN Bus is a high reliable serial bus designed to allow microcontrollers to communicate

with each other. It was born in automotive domain and now adopted for many kinds

of embedded systems.

Diverse programming is an approach for detecting and masking residual design (and

software) faults by developing redundant versions of the system.

Generic application is a system that can be re-used for a class/type of application with

common functions (CENELEC EN 50129).

Generic product is a system that can be re-used for different independent applications

(CENELEC EN 50129).

Markov chain is a discrete time stochastic process that evolves through states on a state

space: informally, at each step the process is in a state s and can evolve to s′ with

a probability only depending on the current state and not on the sequence of events

that preceded it..

162

Glossary 163

Markov decision process is a discrete time stochastic control process: informally, at

each step the process is in a state s and randomly can evolve to a state s′ by choosing

an action a. The probability of choosing a is not influenced by previous states and

actions, and the action determines a reward for the decision maker.

Model a description of system that throught abstractions neglects all the aspects that are

not of interest.

Phase used as synonym of subprocess in the context of a Software Process.

Safety Function a function that implements a part or whole of a safety requirements

(CENELEC EN 50128).

Safety Integrity the likelihood of a system satisfactorily performing the required safety

functions under all the stated condition within a stated period of time (CENELEC

EN 50126).

Safety Integrity Level one of a number of defined discrete levels for specifying the safety

integrity requirements of the safety functions to be allocated to the safety related

systems. Safety Integrity Level with the highest figure has the highest level of safety

integrity (CENELEC EN 50126).

Safety-related software software which performs safety functions (CENELEC EN 50128).

Signal aspect is the appearance of a lineside signal, as viewed from the direction of an

approaching train, or the appearance of a cab signal [93].

Software Development Life Cycle includes the software processes used to specify and

transform software requirements into a deliverable software product.

Software Process is a set of interrelated activities and tasks that transform input work

products into output work products; it includes the definition of inputs, transforming

Glossary 164

work activities, and outputs generated, can also include input and exit criteria, de-

composition of the work activities into tasks, personnel, roles and responsibilities and

tools. May include subprocesses.

Software Process Model is a simplified description of a software process that presents

one view of that process.

Software Product Life Cycle includes a SDLC with additional software processes for

all other inception-to-retirement processes for a software product.

Specific application is a system used for only one particular installation (CENELEC

EN 50129).

Task is the smallest units of work subject to management accountability.

UML Profile is a collection of extensions to customize UML (and SysML) for a specific

purpose.

View a representation of a particular system that conforms to a viewpoint [11], Sec. 1.1.2.

Viewpoint a reusable set of criteria for the construction, selection, and presentation of

a portion of the information about a system, addressing particular stakeholder con-

cerns [11], Sec. 1.1.2.

Bibliography

[1] D. C. Schmidt. “Guest Editor’s Introduction: Model-Driven Engineering”. In: Com-
puter 39.2 (Feb. 2006), pp. 25–31.

[2] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson. “Assessing the State-of-
Practice of Model-Based Engineering in the Embedded Systems Domain”. In: Proc.
of the 7th International Conference on Model-Driven Engineering Languages and Sys-
tems (MODELS 2014). Ed. by J. Dingel, W. Schulte, I. Ramos, S. Abrahão, and E.
Insfran. Cham: Springer International Publishing, 2014, pp. 166–182.

[3] N. Marko, G. Liebel, D. Sauter, A. Lodwich, M. Tichy, A. Leitner, and J. Hans-
son. Model-Based Engineering for Embedded Systems in Practice, Research Reports
in Software Engineering and Management. Tech. rep. University of Gothenburg, 2014.

[4] M. Broy, S. Kirstan, H. Krcmar, B. Schätz, and J. Zimmermann. “What is the ben-
efit of a model-based design of embedded software systems in the car industry?” In:
Software Design and Development: Concepts, Methodologies, Tools, and Applications:
Concepts, Methodologies, Tools, and Applications (2013), p. 310.

[5] P. Baker, S. Loh, and F. Weil. “Model-Driven Engineering in a Large Industrial Con-
text — Motorola Case Study”. In: Proc. of the 8th International Conference on Model
Driven Engineering Languages and Systems (MoDELS 2005). Ed. by L. Briand and
C. Williams. Springer Berlin Heidelberg, 2005, pp. 476–491.

[6] T. Weigert and F. Weil. “Practical experiences in using model-driven engineering to
develop trustworthy computing systems”. In: Proc. of the IEEE International Con-
ference on Sensor Networks, Ubiquitous, and Trustworthy Computing. Vol. 1. IEEE,
2006.

[7] A. Ferrari, A. Fantechi, and S. Gnesi. “Lessons Learnt from the Adoption of Formal
Model-Based Development”. In: Proc. of 4th International Symposium on the NASA
Formal Methods (NFM 2012). Ed. by A. E. Goodloe and S. Person. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 24–38.

[8] P. Mohagheghi and V. Dehlen. “Where Is the Proof? - A Review of Experiences
from Applying MDE in Industry”. In: Proc. of 4th European Conference on the Model
Driven Architecture – Foundations and Applications (ECMDA-FA 2008). Ed. by I.
Schieferdecker and A. Hartman. Vol. 5095. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 432–443.

165

Bibliography 166

[9] EU Project CECRIS, CErtification of CRItical Systems. http://www.cecris-project-
.eu, visited on 2016-03.

[10] M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven Software Engineering in
Practice. 1st. Morgan & Claypool Publishers, 2012.

[11] Object Management Group (OMG). MDA Guide. http://www.omg.org/cgi-bin/doc?-
ormsc/14-06-01, visited on 2016-03. Version 2.0. 2014.

[12] S. Kent. “Model Driven Engineering”. In: Proc. of the Third International Conference
on Integrated Formal Methods (IFM ’02). London, UK, UK: Springer-Verlag, 2002,
pp. 286–298.

[13] Object Management Group (OMG). MDA Guide. http://www.omg.org/cgi-bin/doc?omg/-
03-06-01, visited on 2016-03. Version 1.0.1. 2003.

[14] R. Soley et al. “Model driven architecture”. In: OMG white paper (2000).

[15] Object Management Group (OMG). Systems Modeling Language (SysML). http://-
www.omg.org/docs/formal/08-11-02.pdf, visited on 2016-03. Version 1.1. 2008.

[16] P. Baker, Z. R. Dai, J. Grabowski, Ø. Haugen, I. Schieferdecker, and C. Williams.
Model-Driven Testing: Using the UML Testing Profile. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2007.

[17] Z. R. Dai. “Model-driven testing with UML 2.0”. In: Proc. of the 2nd European Work-
shop on Model Driven Architecture (MDA) with an emphasis on Methodologies and
Transformations (EWMDA’04). 2004.

[18] I. Schieferdecker. “The UML 2.0 Test Profile as a Basis for Integrated System and Test
Development”. In: Proc. of Kllen Druck+Jahrestagung der Gesellschaft fr Informatik.
Vol. 35. 2005, pp. 395–399.

[19] I. Davies, P. Green, M. Rosemann, M. Indulska, and S. Gallo. “How do practitioners
use conceptual modeling in practice?” In: Data & Knowledge Engineering 58.3 (2006),
pp. 358 –380.

[20] A. Forward and T. C. Lethbridge. “Problems and Opportunities for Model-centric
Versus Code-centric Software Development: A Survey of Software Professionals”. In:
Proc. of the 2008 International Workshop on Models in Software Engineering (MISE
’08). New York, NY, USA: ACM, 2008, pp. 27–32.

[21] J. Hutchinson, M. Rouncefield, and J. Whittle. “Model-driven engineering practices
in industry”. In: Proc of the 33rd International Conference on Software Engineering
(ICSE). 2011, pp. 633–642.

[22] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. “Empirical Assess-
ment of MDE in Industry”. In: Proc. of the 33rd International Conference on Software
Engineering (ICSE ’11). New York, NY, USA: ACM, 2011, pp. 471–480.

[23] J. Hutchinson, J. Whittle, and M. Rouncefield. “Model-driven engineering practices in
industry: Social, organizational and managerial factors that lead to success or failure”.
In: Science of Computer Programming 89, Part B (2014), pp. 144 –161.

Bibliography 167

[24] J. Whittle, J. Hutchinson, and M. Rouncefield. “The State of Practice in Model-Driven
Engineering”. In: IEEE Software 31.3 (2014), pp. 79–85.

[25] F. Tomassetti, M. Torchiano, A. Tiso, F. Ricca, and G. Reggio. “Maturity of software
modelling and model driven engineering: A survey in the Italian industry”. In: Proc. of
the 16th International Conference on Evaluation Assessment in Software Engineering
(EASE 2012). 2012, pp. 91–100.

[26] M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and G. Reggio. “Preliminary Findings
from a Survey on the MD State of the Practice”. In: Proc. of the International Sym-
posium on Empirical Software Engineering and Measurement (ESEM). 2011, pp. 372–
375.

[27] M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and G. Reggio. “Benefits from Mod-
elling and MDD Adoption: Expectations and Achievements”. In: Proc. of the 2nd
International Workshop on Experiences and Empirical Studies in Software Modelling.
EESSMod ’12. Innsbruck, Austria: ACM, 2012, 1:1–1:6.

[28] M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and G. Reggio. “Relevance, benefits,
and problems of software modelling and model driven techniques – A survey in the
Italian industry”. In: Journal of Systems and Software 86.8 (2013), pp. 2110 –2126.

[29] M. Petre. “UML in Practice”. In: Proc. of the 2013 International Conference on Soft-
ware Engineering (ICSE ’13). San Francisco, CA, USA: IEEE Press, 2013, pp. 722–
731.

[30] L. T. W. Agner, I. W. Soares, P. C. Stadzisz, and J. M. Simão. “A Brazilian survey on
UML and model-driven practices for embedded software development”. In: Journal
of Systems and Software 86.4 (2013), pp. 997 –1005.

[31] G. Mussbacher, D. Amyot, R. Breu, J.-M. Bruel, B. H. C. Cheng, P. Collet, B. Combe-
male, R. B. France, R. Heldal, J. Hill, J. Kienzle, M. Schöttle, F. Steimann, D.
Stikkolorum, and J. Whittle. “The Relevance of Model-Driven Engineering Thirty
Years from Now”. In: Proc. of the 17th International Conference on Model-Driven
Engineering Languages and Systems (MoDELS 2014). Ed. by J. Dingel, W. Schulte,
I. Ramos, S. Abrahão, and E. Insfran. Cham: Springer International Publishing, 2014,
pp. 183–200.

[32] M. Huhn and H. Hungar. “8 UML for Software Safety and Certification”. In: Model-
Based Engineering of Embedded Real-Time Systems: International Dagstuhl Work-
shop, Dagstuhl Castle, Germany, November 4-9, 2007. Revised Selected Papers. Ed.
by H. Giese, G. Karsai, E. Lee, B. Rumpe, and B. Schätz. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 201–237. url: http://dx.doi.org/10.1007/978-3-
642-16277-0_8.

[33] R. Pettit, N. Mezcciani, and J. Fant. “On the needs and challenges of model-based
engineering for spaceflight software systems”. In: Proc. of the IEEE 17th International
Symposium on Object/Component/Service-Oriented Real-Time Distributed Comput-
ing (ISORC 2014). 2014, pp. 25–31.

Bibliography 168

[34] B. Kitchenham. Guidelines for performing Systematic Literature Reviews in Software
Engineering, Version 2.3. Tech. rep. EBSE-2007-01. Keele University and University
of Durham, 2007.

[35] Elsevier. Scopus. http://www.scopus.com, visited on 2016-03.

[36] SAE International. SAE Homepage. http://www.sae.org, visited on 2016-03.

[37] Inderscience Enterprises. Inderscience Online. http://www.inderscienceonline.com, vis-
ited on 2016-03.

[38] AHS International. AHS Homepage. https://vtol.org/store/index.cfm, visited on 2016-
03.

[39] J. Hugues, M. Perrotin, and T. Tsiodras. “Using MDE for the rapid prototyping of
space critical systems”. In: Proc. of the 19th IEEE/IFIP International Symposium
on Rapid System Prototyping (RSP 2008) - Shortening the Path from Specification to
Prototype. 2008, pp. 10–16.

[40] A. Baumgart, P. Reinkemeier, A. Rettberg, I. Stierand, E. Thaden, and R. Weber. “A
model-based design methodology with contracts to enhance the development process
of safety-critical systems”. In: Lecture Notes in Computer Science 6399 LNCS (2010),
pp. 59–70.

[41] P. Sanchez, J. Barreda, and J. Ocon. “Integration of domain-specific models into a
MDA framework for time-critical embedded systems”. In: Proc. of the 2008 Interna-
tional Workshop on Intelligent Solutions in Embedded Systems. 2008, pp. 1–15.

[42] L. Burgareli, S. Melnikoff, and M. Ferreira. “A software modeling approach based on
MDA for the Brazilian Satellite Launcher”. In: Proc. of the SpaceOps 2008 Conference.
2008.

[43] H. Wang, C. Gao, and S. Liu. “Model-based software development for automatic train
protection system”. In: Proc. of the 2nd Asia-Pacific Conference on Computational
Intelligence and Industrial Applications (PACIIA 2009). Vol. 1. 2009, pp. 463–466.

[44] I. Djordjevic, C. Gan, E. Scharf, R. Mondragon, B. Gran, M. Kristiansen, T. Dimi-
trakos, K. Stølen, and T. Opperud. Model based risk management of security critical
systems. 2002, pp. 253–264.

[45] J. Delange, L. Pautet, J. Hugues, and D. De Niz. “An MDE-based process for the de-
sign, implementation and validation of safety-critical systems”. In: Proc. of the IEEE
International Conference on Engineering of Complex Computer Systems (ICECCS).
2010, pp. 319–324.

[46] G. Macher, M. Stolz, E. Armengaud, and C. Kreiner. “Filling the gap between au-
tomotive systems, safety, and software engineering”. In: Elektrotechnik und Informa-
tionstechnik 132.3 (2015), pp. 142–148.

Bibliography 169

[47] H. Sporer, G. Macher, E. Armengaud, and C. Kreiner. “Incorporation of Model-Based
System and Software Development Environments”. In: Proc. of the 41st Euromicro
Conference on Software Engineering and Advanced Applications (SEAA 2015). 2015,
pp. 177–180.

[48] M. Bordin, T. Tsiodras, and M. Perrotin. “Experience in the Integration of Heteroge-
neous Models in the Model-driven Engineering of High-Integrity Systems”. In: ed. by
F. Kordon and T. Vardanega. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 171–184.

[49] Z. Wang, A. Herkersdorf, S. Merenda, and M. Tautschnig. “A model driven develop-
ment approach for implementing reactive systems in hardware”. In: Proc. of the Forum
on Specification, Verification and Design Languages (FDL 2008). 2008, pp. 197–202.

[50] I. Gray, N. Matragkas, N. Audsley, L. Indrusiak, D. Kolovos, and R. Paige. “Model-
based hardware generation and programming - The MADES approach”. In: Proc.
of the 14th IEEE International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing Workshops (ISORCW 2011). 2011, pp. 88–96.

[51] A. Prakash, I. Schieferdecker, M. Wagner, and C. Hein. “Rotary dial model - A model-
driven methodology for autonomic network design”. In: Proc. of the IEEE Globecom
Workshops (GC Wkshps 2012). 2012, pp. 891–896.

[52] S. Biffl, R. Mordinyi, and A. Schatten. “A model-driven architecture approach using
explicit stakeholder quality requirement models for building dependable information
systems”. In: Proc. of the ICSE 2007 Workshops: 5th International Workshop on
Software Quality, WoSQ 2007. 2007.

[53] R. Jeffords, C. Heitmeyer, M. Archer, and E. Leonard. “Model-based construction and
verification of critical systems using composition and partial refinement”. In: Formal
Methods in System Design 37.2-3 (2010), pp. 265–294.

[54] F. Flammini, S. Marrone, N. Mazzocca, R. Nardone, and V. Vittorini. “Model-Driven
V&V Processes for Computer Based Control Systems: A Unifying Perspective”. In:
Proc. of the 5th International Symposium on Leveraging Applications of Formal Meth-
ods, Verification and Validation. Applications and Case Studies (ISoLA 2012). Ed.
by T. Margaria and B. Steffen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 190–204.

[55] N. Rungta, O. Tkachuk, S. Person, J. Biatek, M. Whalen, J. Castle, and K. Gundy-
Burlet. “Helping system engineers bridge the peaks”. In: Proc. of the 4th International
Workshop on the Twin Peaks of Requirements and Architecture (TwinPeaks 2014).
2014, pp. 9–13.

[56] D. Hardin, T. Hiratzka, D. Johnson, L. Wagner, and M. Whalen. “Development of
security software: A high assurance methodology”. In: Lecture Notes in Computer
Science 5885 LNCS (2009), pp. 266–285.

[57] D. Méry and N. K. Singh. “A generic framework: from modeling to code”. In: Inno-
vations in Systems and Software Engineering 7.4 (2011), pp. 227–235.

Bibliography 170

[58] P. Arcaini, A. Gargantini, and E. Riccobene. “Rigorous development process of a
safety-critical system: from ASM models to Java code”. In: International Journal on
Software Tools for Technology Transfer (2015).

[59] G. Pintér, I. Majzik, and Z. Micskei. “Supporting Design and Development of Safety
Critical Applications”. In: Proc. of the 10th Symposium on Programming Languages
and Tools, (SPLST-2007). Ed. by Z. Horváth, L. Kozma, and V. Zsók. Dobogókő,
Hungary: Eotvos University Press, 2007, pp. 61–75.

[60] G. Carrozza, M. Faella, F. Fucci, R. Pietrantuono, and S. Russo. “Integrating MDT
in an industrial process in the Air Traffic Control domain”. In: Proc. of the 23rd IEEE
International Symposium on Software Reliability Engineering Workshops (ISSREW
2012). 2012, pp. 225–230.

[61] M. Borek, N. Moebius, K. Stenzel, and W. Reif. “Model-driven development of secure
service applications”. In: Proc. of the 2012 IEEE 35th Software Engineering Workshop
(SEW 2012). 2012, pp. 62–71.

[62] E. Grant and T. Datta. “Roadmap to a DO-178C formal model-based software en-
gineering methodology”. In: Proc. of the International MultiConference of Engineers
and Computer Scientists. Vol. 1. Lecture Notes in Engineering and Computer Science.
2015, pp. 460–465.

[63] A. Ferrari, M. Papini, A. Fantechi, and D. Grasso. “An industrial application of
formal model based development: The metrô rio ATP case”. In: Proc. of the 2nd
International Workshop on Software Engineering for Resilient Systems (SERENCE
2010). 2010, pp. 71–76.

[64] A Garro, A Tundis, L Rogovchenko-Buffoni, and P Fritzson. “From Safety Require-
ments to Simulation-driven Design of Safe Systems”. In: Proc. of the 12th Interna-
tional Conference on Modeling and Applied Simulation (MAS 2013). 2013.

[65] Object Management Group (OMG). Semantics of a Foundational Subset for Exe-
cutable UML Models (fUMLTM). http://www.omg.org/cgi-bin/doc?formal/2013-08-
06.pdf, visited on 2016-03. Version 1.1. 2013.

[66] Object Management Group (OMG). Concrete Syntax for a UML Action Language:
Action Language for Foundational UML (ALF). http://www.omg.org/spec/ALF, vis-
ited on 2016-03.

[67] F. P. J. Brooks. “No Silver Bullet Essence and Accidents of Software Engineering”.
In: Computer 20.4 (1987), pp. 10–19.

[68] G. Carrozza, M. Faella, F. Fucci, R. Pietrantuono, and S. Russo. “Engineering Air
Traffic Control Systems with a Model-Driven Approach”. In: IEEE Software 30.3
(2013), pp. 42–48.

[69] Eclipse Foundation. Eclipse. http://www.eclipse.org, visited on 2016-03.

[70] Commissariat à l’Énergie Atomique, Atos, Cedric Dumoulin. Papyrus. http://www-
.eclipse.org/papyrus, visited on 2016-03.

Bibliography 171

[71] Wielemaker, Jan and alia. SWI-Prolog. http://www.swi-prolog.org, visited on 2016-
03.

[72] M. Hecht, E. Dimpfl, and J. Pinchak. “Automated Generation of Failure Modes and
Effects Analysis from SysML Models”. In: Proc. on the 2014 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW). 2014, pp. 62–
65.

[73] P. David, V. Idasiak, and F. Kratz. “Reliability study of complex physical systems
using SysML”. In: Reliability Engineering & System Safety 95.4 (2010), pp. 431–450.

[74] J. Xiang, K. Yanoo, Y. Maeno, and K. Tadano. “Automatic synthesis of static fault
trees from system models”. In: Proc. of the 5th IEEE International Conference on
Secure Software Integration and Reliability Improvement (SSIRI). 2011, pp. 127–136.

[75] G. Sindre and A. L. Opdahl. “Eliciting security requirements with misuse cases”. In:
Requirements Engineering 10.1 (2004), pp. 34–44.

[76] G. Sindre. “A look at misuse cases for safety concerns”. In: Situational Method Engi-
neering: Fundamentals and Experiences. Springer, 2007, pp. 252–266.

[77] T. St̊alhane and G. Sindre. “A Comparison of Two Approaches to Safety Analysis
Based on Use Cases”. In: Conceptual Modeling - ER 2007. Ed. by C. Parent, K.-D.
Schewe, V. Storey, and B. Thalheim. Vol. 4801. Lecture Notes in Computer Science.
Springer, 2007, pp. 423–437.

[78] K. Allenby and T. Kelly. “Deriving safety requirements using scenarios”. In: Proc. of
the 5th IEEE Int. Symp. on Requirements Engineering. 2001, pp. 228–235.

[79] C. Picardi, L. Console, F. Berger, J. Breeman, T. Kanakis, J. Moelands, S. Collas, E.
Arbaretier, N. De Domenico, E. Girardelli, O. Dressler, P. Struss, and B. Zilbermann.
“AUTAS: a tool for supporting FMECA generation in aeronautic systems”. In: Proc.
of the 16th European Conference on Artificial Intelligence (ECAI04). 2004, pp. 750–
754.

[80] M. Molhanec. “Model based FMEA method for solar modules”. In: Proc. of the
36th International Spring Seminar on the Electronics Technology (ISSE). IEEE. 2013,
pp. 183–188.

[81] Y. Kitamura, N. Washio, Y. Koji, M. Sasajima, S. Takafuji, and R. Mizoguchi. “An
ontology-based annotation framework for representing the functionality of engineering
devices”. In: Proc. of the ASME International Design Engineering Technical Confer-
ences and Computers and Information in Engineering Conference. American Society
of Mechanical Engineers. 2006, pp. 125–134.

[82] V. Ebrahimipour, K. Rezaie, and S. Shokravi. “An ontology approach to support
FMEA studies”. In: Expert Systems with Applications 37.1 (2010), pp. 671–677.

[83] P.-J. Gailly, W. Krautter, C. Bisière, and S. Bescos. “The Prince project and its
applications”. English. In: Logic Programming in Action. Vol. 636. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 1992, pp. 54–63.

Bibliography 172

[84] P. Schmidt. “An ontology-based annotation framework for representing the function-
ality of engineering devices”. In: Proc. of the Workshop on Spacecraft Flight Software
(FSW-12). ASME, 2012.

[85] No Magic, Inc., Magic Draw. MagicDraw. http://www.nomagic.com/products/magic-
draw.html, visited on 2016-03.

[86] IBM Corp. Rational Rhapsody Developer. http://www-03.ibm.com/software/products/-
it/ratirhap, visited on 2016-03.

[87] Conformiq Inc. Conformiq Designer. http://www.conformiq.com/products/conformiq-
designer, visited on 2016-03.

[88] IBM Corp. Rational Rhapsody TestConductor Add On, User Guide. http://pic.dhe-
.ibm.com/infocenter/rhaphlp/v7r6/topic/com.ibm.rhp.oem.pdf.doc/pdf/RTC User Guide.pdf,
visited on 2016-03.

[89] IBM Corp. Rational Rhapsody Automatic Test Generator Add On, User Guide. http://pic-
.dhe.ibm.com/infocenter/rhaphlp/v7r5/topic/com.ibm.rhapsody.oem.pdf.doc/pdf/ATG -
User Guide.pdf, visited on 2016-03.

[90] Embedded Multi-Core systems for Mixed Criticality applications in dynamic and
changeable real-time environment (EMC2). http://www.artemis-emc2.eu, visited on
2016-03.

[91] R. Hebig, R. Bendraou, M. Völter, and M. Chaudron. “Model-Driven Development
Processes and Practices: Foundations and Research Perspectives”. In: Proc. of the
1st International Workshop on Model-Driven Development Processes and Practices.
CEUR, 2014, pp. 2–6.

[92] R. Hebig and R. Bendraou. “On the Need to Study the Impact of Model Driven
Engineering on Software Processes”. In: Proc. of the 2014 International Conference
on Software and System Process (ICSSP 2014). New York, NY, USA: ACM, 2014,
pp. 164–168.

[93] European Railway Agency (ERA). Glossary of railway terms. http://www.era.europa-
.eu/document-register/pages/glossary-of-railway-terms.aspx, visited on 2016-03. 2010.

