443 research outputs found

    Design and Programming Methods for Reconfigurable Multi-Core Architectures using a Network-on-Chip-Centric Approach

    Get PDF
    A current trend in the semiconductor industry is the use of Multi-Processor Systems-on-Chip (MPSoCs) for a wide variety of applications such as image processing, automotive, multimedia, and robotic systems. Most applications gain performance advantages by executing parallel tasks on multiple processors due to the inherent parallelism. Moreover, heterogeneous structures provide high performance/energy efficiency, since application-specific processing elements (PEs) can be exploited. The increasing number of heterogeneous PEs leads to challenging communication requirements. To overcome this challenge, Networks-on-Chip (NoCs) have emerged as scalable on-chip interconnect. Nevertheless, NoCs have to deal with many design parameters such as virtual channels, routing algorithms and buffering techniques to fulfill the system requirements. This thesis highly contributes to the state-of-the-art of FPGA-based MPSoCs and NoCs. In the following, the three major contributions are introduced. As a first major contribution, a novel router concept is presented that efficiently utilizes communication times by performing sequences of arithmetic operations on the data that is transferred. The internal input buffers of the routers are exchanged with processing units that are capable of executing operations. Two different architectures of such processing units are presented. The first architecture provides multiply and accumulate operations which are often used in signal processing applications. The second architecture introduced as Application-Specific Instruction Set Routers (ASIRs) contains a processing unit capable of executing any operation and hence, it is not limited to multiply and accumulate operations. An internal processing core located in ASIRs can be developed in C/C++ using high-level synthesis. The second major contribution comprises application and performance explorations of the novel router concept. Models that approximate the achievable speedup and the end-to-end latency of ASIRs are derived and discussed to show the benefits in terms of performance. Furthermore, two applications using an ASIR-based MPSoC are implemented and evaluated on a Xilinx Zynq SoC. The first application is an image processing algorithm consisting of a Sobel filter, an RGB-to-Grayscale conversion, and a threshold operation. The second application is a system that helps visually impaired people by navigating them through unknown indoor environments. A Light Detection and Ranging (LIDAR) sensor scans the environment, while Inertial Measurement Units (IMUs) measure the orientation of the user to generate an audio signal that makes the distance as well as the orientation of obstacles audible. This application consists of multiple parallel tasks that are mapped to an ASIR-based MPSoC. Both applications show the performance advantages of ASIRs compared to a conventional NoC-based MPSoC. Furthermore, dynamic partial reconfiguration in terms of relocation and security aspects are investigated. The third major contribution refers to development and programming methodologies of NoC-based MPSoCs. A software-defined approach is presented that combines the design and programming of heterogeneous MPSoCs. In addition, a Kahn-Process-Network (KPN) –based model is designed to describe parallel applications for MPSoCs using ASIRs. The KPN-based model is extended to support not only the mapping of tasks to NoC-based MPSoCs but also the mapping to ASIR-based MPSoCs. A static mapping methodology is presented that assigns tasks to ASIRs and processors for a given KPN-model. The impact of external hardware components such as sensors, actuators and accelerators connected to the processors is also discussed which makes the approach of high interest for embedded systems

    IRON-MAN: An Approach To Perform Temporal Motionless Analysis of Video using CNN in MPSoC

    Get PDF
    This paper proposes a novel human-inspired methodology called IRON-MAN ( Integrated RatiONal prediction and Motionless ANalysis ) for mobile multi-processor systems-on-chips (MPSoCs). The methodology integrates analysis of the previous image frames of the video to represent the analysis of the current frame in order to perform Temporal Motionless Analysis of the Video ( TMAV ). This is the first work on TMAV using Convolutional Neural Network (CNN) for scene prediction in MPSoCs. Experimental results show that our methodology outperforms state-of-the-art. We also introduce a metric named, Energy Consumption per Training Image ( ECTI ) to assess the suitability of using a CNN model in mobile MPSoCs with a focus on energy consumption and lifespan reliability of the device

    TMAV: Temporal Motionless Analysis of Video using CNN in MPSoC

    Get PDF
    Analyzing video for traffic categorization is an important pillar of Intelligent Transport Systems. However, it is difficult to analyze and predict traffic based on image frames because the representation of each frame may vary significantly within a short time period. This also would inaccurately represent the traffic over a longer period of time such as the case of video. We propose a novel bio-inspired methodology that integrates analysis of the previous image frames of the video to represent the analysis of the current image frame, the same way a human being analyzes the current situation based on past experience. In our proposed methodology, called IRON-MAN (Integrated Rational prediction and Motionless ANalysis), we utilize Bayesian update on top of the individual image frame analysis in the videos and this has resulted in highly accurate prediction of Temporal Motionless Analysis of the Videos (TMAV) for most of the chosen test cases. The proposed approach could be used for TMAV using Convolutional Neural Network (CNN) for applications where the number of objects in an image is the deciding factor for prediction and results also show that our proposed approach outperforms the state-of-the-art for the chosen test case. We also introduce a new metric named, Energy Consumption per Training Image (ECTI). Since, different CNN based models have different training capability and computing resource utilization, some of the models are more suitable for embedded device implementation than the others, and ECTI metric is useful to assess the suitability of using a CNN model in multi-processor systems-on-chips (MPSoCs) with a focus on energy consumption and reliability in terms of lifespan of the embedded device using these MPSoCs

    Crosstalk Noise Aware System For WDM-Based Optical Network on Chip

    Get PDF
    Network on chip (NoC) is presented as a promising solution to face off the growing up of the data exchange in the multiprocessor system-on-chip (MPSoC). However, the traditional NoC faces two main problems: the bandwidth and the energy consumption. To face off these problems, a new technology in MPSoC, namely, optical network-on-chip (ONoC) has been introduced which it uses the optical communication to guaranty a high performance in communication between cores. In addition, wavelength division multiplexing (WDM) is exploited in ONoC to reach a high rate of bandwidth. Nevertheless, the transparency nature of the ONoC components induce crosstalk noise to the optical signals, which it has a direct effect to the signal-to-noise ratio (SNR) then decrease the performance of the ONoC. In this paper, we proposed a new system to control these impairments in the network in order to detect and monitor crosstalk noise in WDM-based ONoC. Furthermore, the crosstalk monitoring system is a distributed hardware system designed and test with the different optical components according the various network topology used in ONoC. The register-transfer level (RTL) hardware design and implementation of this system can result in high reliability, scalability and efficiency with running time less than 20 ms
    corecore