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Abstract—Software abstractions are crucial to effectively pro-
gram heterogeneous Multi-Processor Systems on Chip (MPSoCs).
Prime examples of such abstractions are Kahn Process Networks
(KPNs) and execution traces. When modeling computation as a
KPN, one of the key challenges is to obtain a good mapping,
i.e., an assignment of logical computation and communication
to physical resources. In this paper we compare two system-
level frameworks for solving the mapping problem: Sesame and
MAPS. These frameworks, while superficially similar, embody
different approaches. Sesame, motivated by modeling and design-
space exploration, uses evolutionary algorithms for mapping.
MAPS, being a compiler framework, uses simple and fast
heuristics instead. In this work we highlight the value of common
abstractions, such as KPNs and traces, as a vehicle to enable
comparisons between large independent frameworks. These types
of comparisons are fundamental for advancing research in the
area. At the same time, we illustrate how the lack of formalized
models at the hardware level are an obstacle to achieving fair
comparisons. Additionally, using a set of applications from the
embedded systems domain, we observe that genetic algorithms
tend to outperform heuristics by a factor between 1× and 5×,
with notable exceptions. This performance comes at the cost of a
longer computation time, between 0 and 2 orders of magnitude
in our experiments.

I. INTRODUCTION

Several developments in the last decade have firmly estab-

lished this as the multicore era. One of the main repercussions

of this is that abstracting at the level of an Instruction-Set

Architecture (ISA) is no longer sufficient to improve appli-

cation performance. Instead, today’s chips feature multiple

different processing elements that are exposed individually to

the software developers. This is true, for example, for the high-

performance Tilera many-cores [26] (now commercialized

by Mellanox Technologies) or the NoC-based homogeneous

many-cores by Adapteva [15]. Not only the size of architec-

tures keeps increasing, but also their heterogeneity. Especially

in the embedded-systems domain, multi-processor systems-on-

chip (MPSoC) like Texas Instruments’ Keystone II [2] or the

big.LITTLE™Architecture in Samsungs’ Exynos [9], feature

programmable cores of different types (e.g. ARM or DSP)

and/or specialized hardware accelerators.

Within the gargantuan endeavor of efficiently programming

MPSoCs, a central challenge is the mapping problem. The
mapping problem refers to the task of deciding where in

hardware to place the different parts of a software application.

This includes mapping both computation to the different cores,

as well as communication to the memory and interconnect

subsystem. The difficulty lies in that fact that the number

of possible mappings grows exponentially as applications and

architectures become larger, rendering exhaustive approaches

intractable in practice. This is why different solutions for

finding near-optimal mappings have been proposed [22], [31],

[21], [11], [19], [4], [16], [20]. However, the variety of pro-

gramming models, target architectures and simulation environ-

ments makes it extremely difficult to make comparison across

different frameworks. This represents an obstacle to assess the

effectiveness of individual solutions which is fundamental for

advancing research.

In this paper we analyze and compare two such frame-

works, namely Sesame [11] and MAPS [19]. Sesame is an

environment which allows researchers to model and simulate

applications executing in MPSoCs at the system-level. Using

this simulation core we evaluate a framework for design space

exploration which uses evolutionary algorithms to find near-

optimal mappings. MAPS, on the other hand, is a compiler

framework that targets MPSoCs and uses similar models to

those of Sesame. In MAPS, mappings are obtained using

simple heuristics.

This paper first describes an environment setup for com-

paring Sesame and MAPS that allows to obtain meaningful

results. Comparing two large frameworks is no simple task.

If the results should be of any value, we have to ensure the

input to the different frameworks is indeed comparable. We

contribute to future efforts by describing the lessons learnt in

the process of comparing. In particular, we explain why com-

mon abstractions are crucial for ensuring a fair comparison,

and motivate the need for formal models of hardware at the

system level.

For the comparison itself we use a set of applications from

different areas in the embedded systems domain, including

multimedia and signal processing. While efficient software

execution can have different goals, like power consumption or

resource usage, a minimal computation time remains one of

the main goals of any system. We thus compare the execution

times estimated for the mappings obtained by the different

frameworks. Since the time spent while deriving a mapping is
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Figure 1. Abstractions in the mapping problem

important for design or compilation cycles, we also compare

the execution times of the mapping algorithms themselves.

The rest of the paper is structured as follows. Section II

introduces the two frameworks and their common models.

The basic experimental setup for comparison is described

in Section III. The comparison results are the matter of

Section IV, while sections V and VI discuss related work and

conclude the paper, respectively.

II. KPN APPLICATIONS ON HETEROGENEOUS PLATFORMS

The problem of programming and efficiently executing

applications for heterogeneous multicores is, in general, an

extremely complex problem. As is common with such general

problems, abstractions are used in order to reduce the problem

in a way which is general enough to produce good results, but

specific enough to allow for structured approaches to solve it.

An example of such an abstraction for programming hetero-

geneous multicore systems is to use Kahn Process Networks

(KPNs) [13] to describe applications, and to consider the

problem of mapping KPN applications to hardware resources.

This includes abstractions on different parts of the system: at

the application level, the execution model, and in describing

the hardware platform.

In this section we introduce Kahn Process Networks and

process traces. We then briefly state the problem of mapping

KPN applications to heterogeneous hardware, and explain the

different abstractions involved. Thereafter we describe the two

frameworks analyzed in this paper: Sesame and MAPS.

Problem Definition

The problem of mapping KPN applications to heteroge-

neous hardware involves abstractions at different levels, as

depicted in Figure 1. At the application level, programs are
described using the KPN model. In this model, applications

are partitioned into different processes, which encapsulate the
different parts of the computation. These processes are not

isolated; they communicate by exchanging data. In the KPN

model this is abstracted by defining communication channels
between processes that act as unbounded FIFO buffers. The

Kahn process network is the resulting system, usually formal-
ized as a graph with processes as nodes and channels as edges.

The structure offered by KPNs has several advantages. One

of these comes at the execution level. From its semantics,
KPN applications are deterministic [13]. That is, the process

network will always produce the same results given the same

input. In particular, the results are independent of the execution

order of the processes and individual timings, provided no

artificial deadlocks are introduced when restricting the sizes of

the FIFO buffers. This fact can be utilized to create program

traces of a KPN application that are independent of the

execution, capturing the behavior of the execution at a high

abstraction level.

Abstractions are also required for describing the hardware

architecture. To this end, an architecture is described as a set
of processing elements (PEs) and communication resources.
The latter is an abstraction for any way data can be shared

between processes residing on one or several PEs. These range

from simply shared memories, and local scratchpads for single

PEs, to specialized resources like hardware-FIFOs. Actual

hardware architectures, and the libraries used (or operating

system, if applicable), are much more complex than this.

However, there is no simple abstraction that allows to capture

all these details in a straightforward manner, which is why

different frameworks use different such abstractions.

Using these models, decisions are made for deploying the
applications onto the hardware. At this level, one also uses

abstractions. As is canonical from the application description,

processes are mapped to PEs, and the communication channels

between them to hardware resources. It is also common to

distinguish between the mapping of processes to PEs and the

scheduling at runtime. In this paper, we limit ourselves to

scheduling within a single PE when several processes have

been mapped to it. There are additional decisions that have

to be taken in this context, like buffer sizing, where the sizes
of the FIFO buffers have to be chosen. This is crucial for

an efficient and deadlock-free execution, but is outside the

scope of the comparison in this paper. We limit ourselves to

comparing strategies for mapping.

The problem of mapping KPN applications to heterogenous

hardware, as studied in this paper, is that of finding a map-

ping of processes to PEs and of channels to communication

resources. This mapping should be optimal or at least near-

optimal in some sense for a particular execution, which is

captured in the form of a trace. Optimality can be defined in

different ways. In this paper, we limit ourselves to execution

time.

A. The Sesame Framework

Sesame is a system-level modeling and simulation environ-

ment that facilitates automated performance analysis of MP-

SoC systems, according to the Y-chart design approach [24],

[11]. The various components of Sesame’s modeling and

simulation framework are shown in Figure 2. Sesame maps

application models onto architecture models for co-simulation

by means of a trace-driven simulation, while using an inter-

mediate mapping layer for scheduling and event-refinement

purposes.

For application modeling, Sesame uses the aforementioned

KPN model of computation, where the processes are writ-

ten in C++. To allow for rapid creation and modification

of models, the structure of the KPN in the application is
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Figure 2. The Sesame flow

not hard-coded in the C++ implementation of the processes.

Instead, it is described in a language called YML (Y-chart

Modeling Language), which is an XML-based language. This

also facilitates the creation of libraries of parameterized YML

component descriptions that can be instantiated with the ap-

propriate parameters, thereby fostering re-use of (application)

component descriptions. To simplify the use of YML even

further, a YML editor has been developed to compose model

descriptions using a GUI.

Sesame features a process network execution engine sup-

porting Kahn semantics, called PNRunner. It executes KPN

application models, thereby generating the application events

that represent the workload imposed on the architecture. This

execution engine runs the KPN processes as separate threads

using the Pthreads API. By executing the KPN model, annota-

tions from manual instrumentation cause the KPN processes to

generate traces of application events which subsequently drive

the underlying architecture model. There are three types of ap-

plication events: the communication events read and write, and
the (symbolic) computational event execute. These application
events typically are coarse grained, such as execute(DCT) or
read(16x16 pixel block, channel id).
The architecture models in Sesame, which typically operate

at the so-called transaction level, simulate the performance

consequences of the computation and communication events

generated by an application model. To this end, the architec-

ture model components are parameterized with the latencies

associated with specific application events (e.g., executing a

particular function, reading from memory, etc.). An archi-

tecture model is constructed from generic building blocks

provided by a library, which contains template performance

models for processing components (like processors and IP

cores), communication components (e.g., busses and crossbar

switches) and various types of memory. The structure of an

architecture model is also described in YML within Sesame.

It specifies which building blocks are used from the library

and how they are connected. Sesame’s architecture models

are implemented using the in-house language Pearl, which is

a small but powerful discrete-event simulation language that

provides easy construction of the models and fast simulation.

To bind application tasks to resources in the architecture

model, Sesame provides an intermediate mapping layer. It

controls the mapping of KPN processes (i.e. their event traces)

onto architecture model components by dispatching appli-

cation events to the correct architecture model component.

The mapping also includes the mapping of KPN channels

onto communication resources in the architecture model. The

mapping layer has two additional purposes. First, the event

dispatch mechanism in the mapping layer provides a variety

of static and dynamic policies to schedule application tasks

(i.e., their event traces) that are mapped onto shared archi-

tecture model components. Second, the mapping layer is also

capable of dynamically transforming application events into

(lower-level) architecture events in order to facilitate flexible

refinement of architecture models [24].

The output of system simulations in Sesame provides the

designer with performance estimates of the system(s) under

study together with statistical information such as utilization

of architectural components (idle/busy times), the contention

in a system (e.g., network contention), profiling information

(time spent in different executions), critical path analysis, and

average bandwidth between architecture components. Such

results allow for early evaluation of different design choices,

identifying trends in the systems’ behavior, and can help in

revealing performance bottlenecks early in the design cycle.

Here, the process of design space exploration is also facilitated

by the fact that system configurations (bindings, scheduling

and arbitration policies, performance parameters, and so on)

are specified using YML descriptions. Hence, different system

configurations can be rapidly simulated without remodeling

and/or recompilation. To actually explore the design space to

find good system implementation candidates, Sesame typically

deploys a Genetic Algorithm (GA). For example, to explore

different mappings of applications onto the underlying plat-

form architecture, the mapping of application tasks and inter-

task communications can be encoded in a chromosome. This

chromosome is subsequently manipulated by the genetic oper-

ators of the GA [10]. Such GA-based design space exploration

has been demonstrated to yield good results [25].

B. The MAPS Framework

The MPSoC Application Programming Studio (MAPS) is a

collection of tools for parallel programming [19], [5]. It in-

cludes a parallelizing compiler that uses profiling information

to dynamically track data dependencies and thereby extract

hidden parallelism from sequential C programs [8]. Besides the

sequential input, MAPS accepts a parallel specification written

in the so-called “C for Process Networks” language [27], an

extension to the C language that allows to specify KPN appli-

cations. Finally, MAPS includes a source-to-source compiler

based on Clang [17], called cpn-cc, that generates platform-
specific C code for heterogeneous MPSoCs. As such, even if

using the KPN application model, MAPS is a framework for

programming rather than for modeling.

MAPS parallel programming flow for KPN applications is

shown in Figure 3 (see also [6]). Similar to Sesame, the tool

flow uses event traces in order to derive the mapping. These

traces are not generated with user annotations but directly

from the C code that defines the behavior of the processes.

To this end, cpn-cc is used to generate an instrumented
Pthreads-implementation of the application. When running this

implementation on the host, a functional trace is generated

which contains information about the control paths followed

by every processes and the channel access events (read and
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Figure 3. The MAPS flow

write). Different sequential performance estimation techniques

are then used to approximate the execution time elapsed

between events for each one of the processor types in the

target multicore (e.g., [12]).

Similar to Sesame, MAPS includes an abstract model of the

architecture. The model includes descriptors for processors,

processor types, memories, interconnects, runtime parameters

(e.g., scheduling policies and context switch costs) and a list

of communication primitives. This list specifies, in a generic

way, which APIs can be used to move data between two

processors in the platform. The cost of moving data is modeled

as a piecewise function that retrieves the number of cycles

needed depending on the number of transferred bytes. To

account for DMA-based and similar communication, the cost

is split into producer and consumer side. These cost functions

are obtained from the platform’s data sheets and by running

benchmark applications. They can be relatively complex for

real architectures, as shown in [23]. On the processor side,

MAPS uses a list of functional units with supported operations,

number of registers and other architectural parameters. These

models are used for the sequential performance estimation

mentioned above. In contrast to Sesame, the architecture model

was not originally meant to be used for MPSoC design but

rather to model existing platforms.

For mapping, MAPS supports several user constraints, in-

cluding mapping constraints and real time constraints. To

find a mapping that meets the constraints in the most ef-

ficient way, or to find an unconstrained mapping with the

best performance, simple heuristics are used. These include

common approaches, like load balancing or a heuristic based

on simulated annealing. These, as well as other heuristics

like the “affinity” and “throughput” heuristics are described in

[6]. The heuristics have as input the time-annotated execution

traces and the architecture model. In [7], for example, a

graph representation of the traces is used for buffer sizing

and mapping. There, a more elaborate heuristic called Group-

Based Mapping (GBM) iteratively assigns resources to the

application by analyzing the dynamic critical path of the

graph. As the heuristic progresses, critical channels and/or

processes are fixed to good performant resources (primitives or

processors). Towards the end, less critical application elements

are then assigned to resources.

Akin to Sesame, MAPS uses a discrete event simulator

to estimate the performance of the KPN application given

a mapping. It is referred to as the “Trace Replay Module”

(TRM). The estimate is then used by iterative heuristics and to

provide a final estimate to the programmer. It includes a Gantt

Chart, buffer utilization profiles and other execution statistics.

The TRM uses the runtime information to simulate context

switches, consumes computation time as estimated for the

sequential processes and, retrieves the communication costs

depending on the token sizes, known at compile time.

Today, the MAPS tool flow is now commercialized by

Silexica as the “SLX Tool Suite” [28]. In this paper, we

compare against the version of the tools and the algorithms

as described in [5].

III. COMPARING THE FRAMEWORKS

When building large frameworks like MAPS and Sesame,

even very similar ideas will result in differences in the im-

plementation. An evident difference is, however, the way the

frameworks make mapping decisions (c.f. Figure 1). While

MAPS focuses on quick and simple heuristics, Sesame ex-

plores the design space with elaborate and time-consuming

genetic algorithms. Both approaches come with trade-offs:

while we expect simple heuristics to yield acceptable results

in a short time, we also expect genetic algorithms to achieve

better results at the cost of a longer computation time. One

aim of this work is to investigate the accuracy of these

expectations.

In this section we present the experimental setup for com-

paring both frameworks, as well as the lessons learned by

doing it. We show why the abstract model of KPNs and

traces is invaluable for comparison, and how it allows us

to overcome design differences, like the granularity of the

executions. Similarly, we explain how the architecture model

represents the major hurdle for tallying the frameworks, and

the limitations this brings to our comparison.

A. Experimental Setup

To achieve a fair comparison of the two frameworks, we

leverage the abstractions at different levels of the flows as

presented in Figure 1. For comparing the quality of mappings,

the absolute values of simulation times obtained with different

simulators would be meaningless. We therefore decided to

compare performance as reported by the Sesame simulator.

This implies that the mappings produced by one framework

must be translated to the other for simulation purposes. Ev-

erything else is kept fixed during the comparison.

In a similar way we translate the result of the mapping, we

have to ensure that both frameworks receive the exact same

model of the application. As input model we selected CPN

applications and translated the KPN representation to Sesame.
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The reason for this choice is that MAPS integrates a flow

for estimating performance on different processor types [12],

while Sesame expects these estimations to be there already.

Since performance estimation is outside the scope of this work,

we decided to use the values produced by MAPS for both

tools. This also implies that we need to translate MAPS traces

into Sesame traces.

Figure 4 shows the basic flow for comparing the mapping

strategies of both frameworks. In the figure we show how

the intermediate abstractions from the MAPS framework, at

the bottom, are translated into Sesame abstractions, at the

top. We use blue arrows to represent automated translation

tools implemented in the context of this work to enable the

comparison. Building these tools was possible due to the

formal nature of the abstractions used at the application,

execution and decision levels.

A the application level, the KPN model is the same in

both frameworks. There are, of course, minor implementation

differences. For example, channels are described using input

and output ports of processes on Sesame, in contrast to MAPS,

where communication is described by writing to and reading

from named channels. However, since the model itself is the

same, the translation work is a straightforward task and needs

only concern itself with implementation details. The same is

true for translating at the level of mapping decisions.

At the execution level, process traces are also a well-

defined abstraction. However, MAPS and Sesame use different

philosophies for traces. MAPS annotates execution on a fine-

grained level, not only documenting every write and read,

but also the execution time between these, however minor

it might be. Sesame, on the other hand, uses annotations at

a coarser level. The processing overhead between consecu-

tive communication events, for example, is modeled into the

communication costs, and no execution annotation is made

for the process. This has the advantage of reducing the trace

size and thus simulation time, but incurs in accuracy loss. For

comparison, however, both approaches could be used. This is

where the formal model of traces shines, since it allows us

to use different levels of abstraction with the same formalism.

For this work we used fine-grained traces, since we obtained

those from the MAPS performance estimation tool, and they

allow us to better scrutinize the accuracy of both mapping

decision strategies.

The dotted light-blue arrow in Figure 4 represents the

translation of the architecture model. There is no formalism

similar to KPN and traces for describing architectures. For this

reason, there was no simple, automated approach for transla-

tion. Therefore, we manually translated the architecture model.

Since there were several model differences, we calibrated both

architectures iteratively, as outlined in the following section,

in order to have a high fidelity in the execution times from

the simulations.

B. Calibrating the Architecture Models

Calibrating the architecture models is a crucial task for

ensuring a fair comparison since the mapping decisions are

often based on estimations extracted from the model. In

particular, we need to ensure enough fidelity between models.

When choosing between two mappings, the idea is for the

algorithms to choose the one with the lower execution time.

However, if the two algorithms disagree on which mapping

yields the lowest execution time, their performance is not

being compared fairly.

Ensuring a good correlation and fidelity between the simu-

lated execution times is difficult. Several factors play a role in

this. Since there is no formal description of the architecture,

details of the simulation differ. Examples of this are the model-

ing on when hardware is blocked during the simulation, how

communication costs are modeled, the modeling of context

switches, among others.

In order to calibrate the models, we ran an application

as benchmark on both simulators (an mjpeg decoder, in this

case). We calibrated a model of the TI Keystone II archi-

tecture, which features heterogeneous cores and communica-

tion resources [2]. We randomly generated 1000 mappings
and estimated the execution time using each mapping on

both frameworks. We identified points of large discordance

between simulations in this fashion, and by looking at the

mappings, execution statistics and Gantt charts, we identified

the differences of the models that yielded different estimations.

We iterated this process until we obtained a satisfactory

correlation of the simulations. Figure 5 shows the results of

the final calibration of the architectures. Each point in the

figure represents a different randomly-generated mapping. Its

coordinates represent the estimated execution times simulated

on both frameworks. Thus, in the ideal case, depicted as the

blue line, the values should be the same for both frameworks.

The estimations from both simulations compared in Fig-

ure 5 have a strong correlation. For these measurements, we

obtained an estimate of the correlation-coefficient (Pearson

product-moment) of 0.91. An important measure in design-
space exploration, however, is also fidelity. To this end, we

estimated both usual measures of rank correlation. The Kendal

τ coefficient for the dataset yielded an estimate of τ = 0.69.
The Spearman rank-correlation coefficient ρ, on the other
hand, resulted in a correlation of ρ = 0.84. This implies
that while the absolute values of the simulations are strongly

correlated, the fidelity (monotonicity of simulated time) is not

optimal. This is a limitation of our comparison which cannot
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Figure 5. Calibration of the architecture and execution models

be simply circumvented, since it depends on the hardware

models and implementation details of the simulators that

cannot be fine-tuned only from the architecture description.

C. Lessons Learned

While working towards a fair comparison of the methods

used in both frameworks, we learned important lessons along

the way. We believe these lessons could provide important

insights in the future, when considering a comparison of

system-level design and programming frameworks, as well as

when designing new ones.

From a distance, both frameworks look very similar. This

is even more so apparent when comparing figures 2 and

3. Upon closer inspection, however, the small differences

accumulate. Several of these differences have an obvious ex-

planation: While Sesame is built with modeling and estimation

in mind, the main focus of MAPS is on actually generating

and executing code on hardware. For example, this design

difference has repercussions on the models of the architectures.

MAPS models the sizes of the channels and memories in

bytes, while Sesame does it in tokens, independent of the

data type. Similarly, MAPS models the frequencies of the

processors, while Sesame deals with amounts of cycles. In

the same manner, MAPS has a rigid hardware model, inspired

by what was found in the examples. This includes a split-cost

communication model between the producer and the consumer

side or context-switching costs when multiple processes run

on a single PE. Sesame, on the other hand, has a much more

flexible description: it uses the PEARL language to program its

functionality. While this allows to model the aspects outlined

above, each of them has to be programmed additionally in

PEARL for the different components.

Apart from the technical effort, translating the KPN de-

scriptions from one framework to another is straightforward.

The same is true for the traces. This is because of the formal

nature of the abstract models used. Since there is a very clear

definition of the model, for translating from one framework

to the other we do not need to first understand what is being

abstracted and how it is modeled.

In both frameworks, the hardware architecture, including

the communication between component and runtime details,

Name No. of pr./ch. Short description

audio filter 8/8 Two-channel low-pass filter
mandelbrot 18/32 Mandelbrot set calculation (16 Jobs)
mjpeg 12/15 Motion JPEG decoder (128× 128)
matmult 5/6 10× 10 matrix multiplication
sobel 5/15 Sobel filter on 40× 40 image

Table I
BENCHMARKS APPLICATIONS

are modeled with ad-hoc abstractions. While this approach

serves the purpose of each individual framework, compari-

son and integration are greatly hampered by it. This is not

a deliberate choice of the frameworks: to the best of our

knowledge, there is no formal model well-suited for hardware

architecture abstractions in a way that is comparable to KPNs

and execution traces at the application and execution levels.

We believe that the system-level community as a whole would

benefit from having and using such formal models at this level

of abstraction.

IV. EXPERIMENTAL RESULTS

Using the basic setup described in Section III (refer to

Figure 4), we evaluate MAPS and Sesame on a set of KPN

applications. The benchmarks are listed in Table I, showing

the number of processes and channels of each application to

give an idea of the complexity for the mapping problem. The

“mjpeg” and “audio filter” benchmarks from the multimedia

and signal processing domains are similar to those described

in [5]. Similarly, the “sobel” filter benchmark is described

in [27].

For the architecture, we use the model of the TI Key-

stone II [2], the calibration of which we described in Sec-

tion III-B. It has 8 DSP cores and 4 ARMs, each with their
own local scratchpad memories. Additionally, the PEs can

communicate over the L2 cache and over main memory. The

model includes different communication libraries, which can

have complex trade-offs depending on the token sizes and

the amount of data transferred [23]. All experiments were

conducted on a machine running Ubuntu Linux 15.10, with

eight Intel®Core™i7-4790 CPU at 3.60 GHz and 32 GB of
DDR3 memory at 1600 MHz.
We used five of the simple heuristics available in MAPS,

including the more specialized GBM heuristic, as mentioned

in Section II-B. Similarly, we used the GA, which uses a μ+
λ evolutionary strategy [14] with fixed parameters of μ =
20 = λ. With this non-tuned setup, we recorded the results of
the algorithm for 5, 10, 20 and 50 generations. Since the GAs
depend on (pseudo) random number generation, we recorded

the averages over five executions with five different random

seeds.

Figure 6 shows the results of the different mapping strate-

gies for each application. For comparing between benchmarks,

the resulting application execution time was normalized to

the one obtained with the GA with 50 generations. For the
GAs, additional error bars show the unbiased estimations of

the standard deviation resulting from the five executions. The

figure shows that, as expected, GAs mostly outperform simple
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Figure 6. Performance of the mappings obtained with the different heuristics

heuristics. Two interesting exceptions are the Sobel filter and

matrix multiplication, where GBM outperforms the GAs. This

is the case because in these applications, communication is

fine-grained and frequent. Thus, the best mapping actually uses

a single PE, because communication costs outweigh speed

gains from multiple cores. This solution is difficult to find

with an approach based on randomness, like GAs. This is

also noticeable due to the large variability in the results of the

different runs of the GA for these benchmarks, compared to

the other benchmarks.

Besides the application performance results, we also eval-

uate the execution time of the different mapping algorithms,

with a summary in Figure 7. The figure shows relative com-

putation times normed to that of the load balancing heuristic.

Again, the timings for the GA algorithms depend on the

random seed, and the variation is represented by error plots

showing the unbiased estimations of the standard deviation.

This variability comes primarily from the fact that the GAs are

implemented using a cache to avoid re-executing a simulation,

and the amount of repeated mappings depends on the random

seed. The figure has a logarithmic scale because of the

large timing differences. We report user-time, since the GA

algorithms can use several threads to evaluate mappings in

parallel. Additionally, since the trace formats are different

(binary and text formats), we ignore the system time required

to read the files.

The trends in this graph are also very clear. In general,

genetic algorithms tend to take the most time, ranging from 0
to 2 orders of magnitude longer in the examples considered.
The GBM heuristic, which is more complex than the rest and

has a stronger dependence on the problem size, tends to take

longer than the rest of the heuristics, but less than the GAs.

The difference here is within around an order of magnitude in

all cases. It is important to note issues affecting these results

which should be taken into account when interpreting them.

The GAs are implemented using Python, a dynamic language

which has to be interpreted, even though the simulations are

compiled C programs. The MAPS heuristics, on the other

hand, are implemented in C++ and are therefore expected to

run faster than if implemented in Python. Other issues like

the sizes and formats of the different input files have a large

Figure 7. Computation times of the different heuristics

impact on execution time, since these have to be parsed.

V. RELATED WORK

The problem of mapping on multicore systems is a growing

field of research and has spawned several methods for solving

it [29]. In particular, besides MAPS and Sesame, there are sev-

eral other frameworks for modeling dataflow applications and

mapping onto MPSoCs, most notably DOL [31], ESPAM [21],

Daedalus [22] and TURNUS [4].

Similarly, genetic algorithms and other metaheuristics have

been compared thoroughly in general settings [1]. At the

application level, the different formal models have also been

studied in-depth [18]. Even a related problem of mapping has

been studied, comparing and contrasting different heuristics

[3]. However, these results and approach are not apt for

contemporary MPSoCs. While related, they are from the

pre-multicore era and deal with very different assumptions

about the computational cores and communication costs, com-

pared to today’s heterogeneous multicores, where most of

the communication happens on-chip. In this work we have

presented a comparison that is specific to today’s problem of

mapping applications to physical resources. To the best of our

knowledge, there has been no direct comparison of frame-

works as those described above. In particular, heuristics for

solving the problem of mapping for MPSoCs as is addressed

by the described approaches have never been systematically

compared.

VI. CONCLUSION

In this paper we compared two system-level frameworks for

solving the mapping problem: Sesame and MAPS. Both these

frameworks are similar at a first glance: they have analogous

flows and use comparable abstractions at each level. We

identified that some of these abstractions are easy to compare

thanks to formal models like KPNs and traces. However,

there is no formalism for describing hardware architectures,

which makes a fair comparison difficult. To ensure a good

correlation and fidelity between the simulated execution times,

we calibrated the architecture models by using numerous

generated mappings. A formal hardware model would have

significantly eased this phase. Altogether, we believe that the
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academic community and industry would greatly benefit from

using a common formal model for hardware architectures. An

interesting work in this direction is the standardization effort

of the Multicore Association on the Software-Hardware In-

terface for Multi-Many-Core (SHIM) Specification [30] (with

contributions by Silexica).

We also evaluated different mapping algorithms used in

Sesame and MAPS. Genetic algorithms found better mappings

than heuristic-based ones, with a relative performance ranging

from 1× to 5×. At the same time, there are two extreme
cases where the heuristic-based algorithm GBM outperforms

genetic algorithms. Comparing the computation time, the

genetic algorithms take significantly more time to produce

the mapping, ranging from 0 to 2 orders of magnitude in the
examples considered.

There are several directions for future work that can use

the comparison setup described in this paper. In particular,

we can extend the evaluation and analysis, taking particular

parameters into account, like the granularity of the traces, or

looking into multi-objective optimization.
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