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Abstract

A current trend in the semiconductor industry is the use of Multi-Processor Systems-

on-Chip (MPSoCs) for a wide variety of applications such as image processing, auto-

motive, multimedia, and robotic systems. Most applications gain performance advan-

tages by executing parallel tasks on multiple processors due to the inherent parallelism.

Moreover, heterogeneous structures provide high performance/energy efficiency, since

application-specific processing elements (PEs) can be exploited. The increasing number

of heterogeneous PEs leads to challenging communication requirements. To overcome

this challenge, Networks-on-Chip (NoCs) have emerged as scalable on-chip intercon-

nect. Nevertheless, NoCs have to deal with many design parameters such as virtual

channels, routing algorithms and buffering techniques to fulfill the system requirements.

This thesis highly contributes to the state-of-the-art of FPGA-based MPSoCs and

NoCs. In the following, the three major contributions are introduced.

As a first major contribution, a novel router concept is presented that efficiently

utilizes communication times by performing sequences of arithmetic operations on the

data that is transferred. The internal input buffers of the routers are exchanged with

processing units that are capable of executing operations. Two different architectures

of such processing units are presented. The first architecture provides multiply and

accumulate operations which are often used in signal processing applications. The

second architecture introduced as Application-Specific Instruction Set Routers (ASIRs)

contains a processing unit capable of executing any operation and hence, it is not

limited to multiply and accumulate operations. An internal processing core located in

ASIRs can be developed in C/C++ using high-level synthesis.

The second major contribution comprises application and performance explorations

of the novel router concept. Models that approximate the achievable speedup and the

end-to-end latency of ASIRs are derived and discussed to show the benefits in terms

of performance. Furthermore, two applications using an ASIR-based MPSoC are im-

plemented and evaluated on a Xilinx Zynq SoC. The first application is an image

processing algorithm consisting of a Sobel filter, an RGB-to-Grayscale conversion, and

a threshold operation. The second application is a system that helps visually impaired
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people by navigating them through unknown indoor environments. A Light Detection

and Ranging (LIDAR) sensor scans the environment, while Inertial Measurement Units

(IMUs) measure the orientation of the user to generate an audio signal that makes the

distance as well as the orientation of obstacles audible. This application consists of

multiple parallel tasks that are mapped to an ASIR-based MPSoC. Both applications

show the performance advantages of ASIRs compared to a conventional NoC-based

MPSoC. Furthermore, dynamic partial reconfiguration in terms of relocation and se-

curity aspects are investigated.

The third major contribution refers to development and programming methodolo-

gies of NoC-based MPSoCs. A software-defined approach is presented that combines

the design and programming of heterogeneous MPSoCs. In addition, a Kahn-Process-

Network (KPN) –based model is designed to describe parallel applications for MPSoCs

using ASIRs. The KPN-based model is extended to support not only the mapping of

tasks to NoC-based MPSoCs but also the mapping to ASIR-based MPSoCs. A static

mapping methodology is presented that assigns tasks to ASIRs and processors for a

given KPN-model. The impact of external hardware components such as sensors, ac-

tuators and accelerators connected to the processors is also discussed which makes the

approach of high interest for embedded systems.
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Chapter 1

Introduction

1.1 Motivation

The technological advances of embedded systems evolved tremendously in the past

decade. Embedded healthcare systems such as biomedical sensors, pacemakers and fit-

ness trackers are a few examples that show the successful evolution of embedded systems

in our daily life [Wri17]. Likewise, automotive applications as presented in [Ret17c]

and [Ret15e] integrate innovative embedded systems to overcome the challenges in this

application domain. Algorithms to control robotic systems can run efficiently on em-

bedded systems [Ret15d]. Especially, mobile phones being part of another application

domain show the fast progress in embedded systems to fulfill the rising demands. At

least one new iPhone has been released on the market every year since 2007 [Car17].

Every new iPhone was shipped with enhanced hardware resources. The newest iPhone

12 Pro that is commercially available since 2020 contains an A14 Bionic Chip with

six CPU cores and a 16-core neural engine. It is built using a 5 nm technology pro-

cess. In contrast to that, the iPhone of the first generation that is released in 2007

had only a single core based on 90 nm technology demonstrating the rapid evolvement

of Very-Large Scale of Integration (VLSI) [App21]. The increasing performance and

power requirements promote the trend from single-core to multi-core computing with

heterogeneous processing units.

In former times, it was a common approach to increase the clock rate of a single-

core processor to improve the system performance. In 1993, Intel launched its Pentium

processor with a clock rate of 60 MHz. Within a decade Intel increased tremendously

the clock rates to Gigahertz levels. In 2003, Intel launched the Xeon processor running

at a clock rate of 3 GHz [Int21]. The computer industry built processors according to

Moore’s Law [Sch97] and Dennard Scaling [Boh07]. Moore’s Law states that the tran-

sistor size shrinks regularly which allows more transistors to be packed into a processor
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providing more computing power. In particular, it says that the number of transistors

doubles every two years. Smaller transistors achieve less delay and therefore, the com-

puter industry increased the clock rates while preventing a steady increase in power

consumption. The power consumption consists of static and dynamic portions. As

long as the dynamic portion is the largest portion of the power consumption, the over-

all increase in power consumption due to higher clock rates can be kept moderate by

reducing the frequency and voltage. Dennard Scaling is an observation that describes

that the power consumption of transistors stays the same, independent of the transis-

tor size. Around 2004, Dennard Scaling lost its validity. It was no longer possible to

keep the power consumption constant between processor generations due to the rela-

tive growth of leakage current [LS18]. This leads to the so-called ”Power Wall” that

addresses the difficulty of scaling the performance and power consumption in proces-

sors [Bos11]. In order to further increase the application performance, Multi-Processor

Systems-on-Chip (MPSoCs) gained higher importance.

A lot of applications such as image processing have high inherent parallelism which

can be exploited by MPSoCs. MPSoCs mainly consist of multiple Processing Ele-

ments (PEs) such as processors and an on-chip interconnect. Instead of increasing the

clock rate, parallel applications can be distributed and computed concurrently on pro-

cessors to improve system performance. The overall power consumption is increased

due to additional hardware, however, the power consumption per area stays the same.

By using heterogeneous PEs that are optimized for specific applications, embedded

systems can significantly improve their performance per Watt [Sch+07]. For example,

an MPSoC consisting of RISC processors (Reduced Instruction Set Computing) and

on-chip GPUs (graphics processing unit) provides computing capabilities optimized

for certain domains. Depending on the degree of application-specific hardware that is

used, the capability of general-purpose computing in MPSoCs is limited.

Besides the PEs, the on-chip interconnect plays an important role in the system

performance. The more an application is distributed to different PEs, the more the

level of communication overhead increases. Communication overhead arises from data

transfers between PEs. If the on-chip interconnect does not match the communication

requirements, it becomes the bottleneck of the system performance. Traditionally,

multiple PEs were connected by bus-based interconnects. With an increasing number

of PEs, the size of the bus increases and in turn, the on-chip wire lengths also increase.

As a result, the attainable operating frequency is reduced. Additionally, a conventional

bus-based interconnect splits the PEs into slave and master members. At one point

in time, only one master member can initiate a data transfer to a slave member.

This can lead to a reduction in the bandwidth. Networks-on-Chip (NoCs) are a more
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scalable on-chip interconnect for MPSoCs. A NoC consists of several routers that are

separated spatially and connected by links. These routers can operate simultaneously

which enables multiple data transfers from different PEs at the same time. A NoC

implementation can be optimized for an application by integrating Quality of Service

(QoS) such as data compression or by using a specific topology.

Field Programmable Gate Arrays (FPGAs) are integrated circuits that can be pro-

grammed using a hardware description language such as VHDL and Verilog. FPGAs

provide a lower performance than Application-Specific Integrated Circuits (ASICs) but

are more flexible. After an FPGA has been programmed with a hardware design, it

can be still reconfigured with another design. Moreover, some FPGA vendors such

as Xilinx offer dynamic and partial reconfiguration which enables the reconfiguration

of a specific part of the hardware design at runtime. Nowadays, complete NoC-based

MPSoCs can be programmed into FPGAs and can benefit from their flexibility. De-

pending on the application, different hardware optimizations such as a Floating Point

Unit or a digital signal processing filter can be required at different times. Hence, cor-

responding optimizations can be loaded as an accelerator into the MPSoC. In order to

lower the complexity in programming FPGAs, High-Level Synthesis (HLS) tools have

been developed. They enable programming and synthesizing systems modeled by a

high-level programming language such as C/C++.

On the one hand, the underlying NoC-based MPSoCs using FPGAs are highly flex-

ible and can be optimized for a specific application. On the other hand, the complexity

of this hardware structure increases tremendously. The more complex the hardware

design becomes, the more complex and error-prone it is. Approaches such as the reuse

of IP cores and overlay designs aim to ease the design process which in turn restricts the

flexibility. Design methodologies that simplify the development process of NoC-based

MPSoCs on FPGAs without restricting the flexibility are needed. Moreover, program-

mers have to understand and program the complex underlying hardware designs. As

soon as the software development methodologies insufficiently utilize the capabilities

of new hardware architectures, a software productivity gap arises [ML14]. A compre-

hensive methodology for software and design development can provide advantages in

productivity and efficiently unleash novel hardware capabilities.

1.2 Goals

The main goals of this thesis address a two-folded approach: Firstly, novel NoC archi-

tectures that meet high-performance requirements for scalable MPSoCs, and secondly,

innovative development processes of FPGA-based designs and programming methods

3
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Processing Unit

Processing Unita) b)

Figure 1.1: Comparison between stream-oriented (a) and store & load architectures
(b)

for NoC-based MPSoCs.

To achieve this, a hybrid processing paradigm that extends processors commonly

used in MPSoCs for parallel computing with stream-oriented computing in NoCs is

targeted. In this work, parallel computing is defined as the concurrent execution of

tasks by processes running on different processors. Each processor uses one or multiple

memories to store and load data for processing. From a hardware point of view, these

memories are not shared between processors. Stream-oriented computing is understood

as processing the data with a sequence of operations without storing and loading the

data from memory as shown in Fig. 1.1. The use of a hybrid processing paradigm can

be enabled by a new heterogeneous architecture for NoC-based MPSoCs that achieves

acceleration of selected applications. Furthermore, it needs to be investigated which

type of applications benefits from such an architecture in terms of performance. The

investigation has to be carried out by a model for abstract application examples that

approximates the speedup compared to conventional NoC-based MPSoCs. In addition,

FPGA-based prototypes have to be used to prove the benefits of the thesis related to the

hybrid processing paradigm. In this context, besides performance, other aspects such

as the use of dynamic partial reconfiguration by relocation and security mechanisms

for NoC-based MPSoCs have to be discussed.

The design and programming of modern MPSoCs are complex tasks that can po-

tentially lead to a degradation of productivity. Hence, there is a high need to develop

novel methodologies combining the design and programming of homogeneous as well

as heterogeneous MPSoCs. Hardware designs are typically done using a low-level de-

scription while the programming can be performed using a high-level description. In

this work, approaches have to be explored that conduct the design and programming

using a high-level language. Modern tools for HLS can be used to create FPGA hard-

ware designs. Moreover, a hybrid processing paradigm combining stream-oriented and

parallel computing increases the development complexity. This work should discuss
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the integration of mapping algorithms and consistent libraries for message passing in

MPSoCs supporting stream-oriented and parallel computing.

1.3 Contributions

In addition to an analysis of state-of-the-art work, the following contributions are given

by this dissertation.

� FPGA-based NoCs for stream-oriented processing on data that is transferred

through the NoC [Ret17g] [Ret17f] [Ret18a] [Ret21a] [Ret21b]

� Prototypes for real-world use cases in the domain of signal processing [Ret17f]

[Ret18a] [Ret21a] [Ret21b]

� Methodologies for semi-automated design and programming of NoC-based MP-

SoCs using message passing for Kahn-Process-Network (KPN)-based application

models and a software-defined approach using a high-level language [Ret18b]

[Ret20] [Ret18a]

� An open-source toolflow called RePaBit to generate partial bitstreams for relo-

cation in Xilinx FPGAs [Ret16c]

� An analysis of the usage of neural networks to inspect partial bitstreams in the

context of security [Ret19b]

� A theoretical model to justify the usage of Application-Specific Instruction Set

Routers (ASIRs) and to analyze pipelining on operation level [Ret21a]

1.4 Outline

The structure of this PhD thesis is as follows:

Chapter 2 investigates state-of-the-art in the domain of this dissertation by com-

paring different NoCs and MPSoCs

Chapter 3 focuses on architectures for stream-oriented computing in the context

of NoCs.

Chapter 4 explores ASIRs in terms of performance and applications. Besides

a model of this system, different application domains are analyzed in the context of

ASIRs. The applications come from the fields of image processing and digital signal

processing. Moreover, the use of dynamic partial reconfiguration and security aspects

are discussed.
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Chapter 5 presents design and programming methodologies for comprehensive

development of FPGA-based MPSoCs. The goal of these development methodologies

is to increase the productivity in the development of complex MPSoCs.

Chapter 6 summarizes the scientific contributions of this work and presents new

insights for future research.
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Chapter 2

Background and State-of-the-Art

This chapter gives an overview of the state-of-the-art technology and the fundamentals

of Field Programmable Gate Arrays (FPGAs), Multi-Processor Systems-on-Chip (MP-

SoCs) and Networks-on-Chip (NoCs).

In Section 2.1, modern FPGAs are introduced by explaining their structure and

functionality. FPGAs are used as integrated circuits to realize NoC-based MPSoCs in

this work. Moreover, dynamic partial reconfiguration and High-Level Synthesis (HLS)

are discussed. A major focus of this work is on NoCs and MPSoCs. Therefore, a com-

prehensive overview of NoC-based MPSoCs and their research challenges are presented

in Section 2.2. Section 2.3 compares existing computing architectures with Application-

Specific Instruction Set Routers (ASIRs) that are one of the major contributions of this

work. Subsequently, the focus is placed on development methodologies for FPGA-based

systems using HLS in Section 2.4. Section 2.5 summarizes this chapter.

2.1 Field Programmable Gate Array

An FPGA is an Integrated Circuit (IC) that can be programmed to perform a digital

functionality such as a filter operation for digital signal processing [Ret18c] or even a

processor that is programmable using an assembly language [Ret20]. This flexibility

makes FPGAs interesting for various application domains such as robotics [Ret15g]

[Ret16a] and image processing [SG20] [Ret15c].

2.1.1 Overview of Xilinx and Intel FPGAs

The two main manufacturers that dominate the FPGA market are Xilinx and Intel.

Intel is well known for its manufacturing of processors and took over Altera in 2015

[Int15]. Altera was a competitor of Xilinx in the FPGA industry for about 30 years.
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After the takeover, Intel officially distributes the FPGAs that were previously produced

by Altera. Intel offers five different FPGA series: Stratix, Agilex, Arria, Cyclone and

Max [Int20]. Each FPGA family is optimized for different requirements such as area,

costs, hardware resources, power consumption and performance. The Agilex, Stratix,

Arria and Cyclone series are also designed as System-on-Chip (SoC). Such SoCs are

equipped with additional processing capabilities such as an ARM processor besides

an FPGA. The counterparts from Xilinx are the following four different families:

Spartan, Virtex, Kintex and Artix. Xilinx also offers an SoC Series consisting of the

Zynq-7000 SoC family [Xil18d] and Zynq Ultrascale+ devices [Xil20]. Xilinx Zynq-

7000 SoC family integrates an ARM processor and an FPGA using the Kintex Series

[Xil19b] on a single chip. The chip area that contains the FPGA logic is defined as the

Programmable Logic (PL). By integrating FPGA and processor in the same chip, the

software programmability of processors and the hardware programmability of an FPGA

are combined. The so-called Processing System (PS) consists of a dual-core ARM

Cortex-A9 processor with additional peripheral components such as a Level 1 & 2 Cache

as well as an On-Chip Memory (OCM). It should be noticed that implementations of

the Zynq-7000 SoCs exist that provide a single ARM core for low-cost applications.

Moreover, it is worth mentioning that AMD plans to takeover Xilinx, similar to Intel

and Altera, which shows the importance of FPGAs for the computer industry [AMD20].

2.1.2 Reprogrammable Hardware Structure

FPGAs can be divided mainly into two essential types: flash-based and Static Random-

Access Memory (SRAM)-based FPGAs. Fuse-based and anti-fuse-based FPGAs are

not considered in this work. In contrast to flash-based FPGAs, SRAM-based FPGAs

require a non-volatile memory that stores a configuration of the digital function. The

configuration can be loaded into the FPGA to implement the functionality. The con-

siderations in this section refer to SRAM-based FPGAs from Xilinx, since such FPGAs

are used in this work.

A digital function processes binary information given by input signals and outputs

the result vial output signals. For instance, a half adder is a digital function that adds

two binary inputs. The sum can be internally computed using an XOR gatter. A carry

output can be computed using an AND gatter. In general, a digital function can be

represented as a set of switching functions by logic gates. The hardware structure of an

FPGAs must be able to perform multiple logical operations in a configurable manner

to realize any digital function.

An FPGA contains Configurable Logic Blocks (CLBs) arranged in a grid. A CLB

in turn consists of slices and a slice consists mainly of Look-Up Tables (LUTs), Flip-

8
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CLBs

IO-Pads

Interconnect matrix Slice

LUT FF

Reset

Clk

Figure 2.1: Simplified structure of an FPGA

Flops (FFs) and multiplexers. Fig. 2.1 presents the general internal structure of an

FPGA with a simplified version of a slice. A LUT has memory cells that can be

programmed to realize logic, arithmetic and Read Only Memory (ROM) operations.

Input signals are used to address these cells to output the content of a specific cell via

output signals. They basically hold custom truth tables that define the logic of a LUT.

The number of input and output signals depends on the device. Xilinx Kintex FPGA

has six input signals and one output signal [Xil19b]. As the input signals adress the

cells that can be programmed, any logic gatter operation supporting six or less inputs

and one output can be configured. In order to perform functions that require more

inputs and outputs, multiple slices can be connected by a configurable interconnect

matrix. Furthermore, the interconnect matrix can be used to link CLBs and in turn

slices to IO-pads. IO-pads provide external input and output signals of peripheral

components.

The xc7z020 FPGA device from Xilinx Zynq-7000 SoC family is shown exemplarily

in Fig. 2.2. In addition to CLBs, Xilinx FPGAs generally contain Block RAM (BRAM)

and Digital Signal Processing (DSP) tiles which are arranged in columns besides the

CLBs. BRAM tiles are dedicated hardware modules for memory operations and DSP

tiles are dedicated hardware modules that provide fast calculations such as multiplica-

tion, addition, subtraction and accumulation. The FPGA is separated into six clock

regions defined as X0Y0, X1Y0, X0Y1, X1Y1, X0Y2 and X1Y2. To equally distribute

a clock source in the complete FPGA area, clock buffers are used.

They are divided into global (BUFG) and horizontal buffers (BUFH). The global

buffers forward vertically the clock line to the horizontal buffers which drive clock
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Figure 2.2: Internal structure of the xc7z020 SoC from Xilinx Zynq-7000 family

lines called HROW of each clock region. The clock regions placed at the bottom and

right side of the FPGA contain a Clock Management Tile (CMT) and an IO-bank for

external peripheral components. The CMT consists of a Phase Locked Loop (PLL) and

a mixed-mode clock manager (MMCM) that can change the frequency of a reference

clock.

The CLBs are either optimized for logic or memory operations. A CLB optimized

for logic operations is defined as Configurable Logic Block for Logic (CLB L) and a tile

optimized for memory operations (e.g. shift operations) are defined as Configurable

Logic Block for Memory (CLB M). A CLB L tile contains two slices from type sliceL

and a CLB M tile has one slice from type sliceL and one slice from type sliceM. Every

slice is composed of four LUTs, eight storage elements, multiplexer and carry logic.

Carry logic is used to connect the output of a LUT to the input of a LUT located

in another slice of the same column which is beneficial in terms of speed for digital

functions such as counters, adders and comparators.

Programming of an FPGA can be understood as defining the logic of LUTs and

configuring the interconnection matrix. A digital function can be modeled using a

hardware description language (HDL) which can be synthesized into such a config-

uration. The HDL describes temporal and spatial behavior of the digital function-

ality on different abstraction levels. The abstraction levels are gate, structural and

behavioral-level. A model at gate-level uses combinational elements to describe the

functionality of a circuit. Connections between multiple combinational elements can
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be modelled at structural level, while elements can be algorithmically described us-

ing parallel and sequential expressions at the behavioral level also known as Register

Transfer Level (RTL).

2.1.3 High-Level Synthesis

The configuration of the internal FPGA components determines the logic that is imple-

mented. Synthesis tools exist which transform an HDL into a gate-level configuration

of the internal FPGA structure. It is also possible to program an FPGA using a high-

level programming language. HLS tools exist that transforms a function described by

a high-level language into an FPGA. This allows also software developers that have

only little or no experience of HDL to implement FPGA designs. On the one hand the

productivity of the design process can be increased which reduces the time-to-market,

but on the other hand design optimizations on hardware level depends on the HLS

tool. Nevertheless, modern HLS tools support hardware optimizations using pragmas

that are inserted in the source code. For instance, the number of hardware resources

can be limited by specifying a pragma.

Vivado HLS [Xil19d] is a commercial tool from Xilinx for their FPGAs that is

widely used. In [Ret17d], an IEEE 802.11ag receiver is implemented using Vivado

HLS. Besides commercial tools such as Vivado HLS, Open-Source HLS tools are also

available. One example for an Open-Source tool is LegUp [Can+13]. LegUp supports

the compilation of C programs into hardware components that can operate stand-

alone or can be integrated into larger systems. Furthermore, it synthesizes programs

into SoCs that consist of an ARM Processor with an FPGA by separating the code

into parts that are either executed by the ARM processor or the FPGA. Due to the

free availability of LegUp, it is used in several research works. In [RCW20], precise

pointer analysis is explored within LegUp. In [IK18], LegUp is extended to optimize the

synthesis of indirect addressing in loops that is from type A[B[i]]. A and B represents

arrays whose elements are accessible through the index i. [Che+19] investigates the

insertion of additional registers within datapaths and inputs/outputs of memory blocks

to improve the maximum achievable operating frequency.

2.1.4 Partial Reconfiguration

The manufacturer Xilinx supports dynamic partial reconfiguration. In general, the

configuration of an FPGA is stored in a bitstream that can be loaded into it. Par-

tial reconfiguration describes the configuration of a certain subarea or partition of the

FPGA. The partition can be responsible for a specific digital function. Partial re-

11
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configuration allows changing the function of this partition. That is the reason why

dynamic partial reconfiguration is also known as Dynamic Function eXchange. As a

partition comprises only a subset of the FPGA components, a partial bitstream that

only stores the configuration of the subarea is used instead of the complete bitstream.

During partial reconfiguration, the remaining part of the FPGA is unaffected and can

continuously operate without interruption.

Exchanging hardware modules using dynamic partial reconfiguration during run-

time allows switching the functionality of certain areas of the FPGA. From a functional

point of view, the concept is comparable to time multiplexing of hardware modules.

Time multiplexing uses a multiplexer that connects a certain hardware module from

several. During runtime, the multiplexer can be configured to switch the hardware

module. In contrast to that, partial reconfiguration does not require the instantiation

of all modules in an FPGA at the same time. The reconfigurable area of the FPGA

contains only one hardware module. Using partial reconfiguration, the area can be

overwritten with another hardware module. Overwriting a configuration leads to loos-

ing the previous configuration of the reconfigurable FPGA area. Compared to time

multiplexing, the process of partial reconfiguration has an overhead in terms of timing

behavior, since overwriting takes generally more time than selecting another hardware

module using a multiplexer. In the context of dynamic partial reconfiguration, a re-

configurable area is also called reconfigurable partition.

Software-defined radio is a use case that benefits from dynamic partial reconfigura-

tion. Multiple wireless communications standards exist which makes it complicated for

a single device to support most of these standards. Dynamic partial reconfiguration on

FPGAs allows the reconfiguration of a communication standard on-demand [Hos+20].

Nguyen et al. [Ngu+19] show that computer vision applications such as smart cars and

smart robots can also benefit from dynamic partial reconfiguration. In such applica-

tions, an FPGA needs to execute multiple tasks at high data rates. However, since not

all tasks are executed at the same time, hardware resources can be saved when using

dynamic partial reconfiguration. Instead of mapping each task to a static system, the

system reconfigures depending on the current need of tasks. Hence, a smaller FPGA

can be used and the system can still meet the requirements in terms of performance.

MPSoCs can also benefit from dynamic partial reconfiguration. For instance, a hetero-

geneous MPSoC can reconfigure depending on the current application needs Processing

Elements (PEs) with specialized hardware [Ret15f]. A run-time reconfigurable MPSoC

for vision-based space navigation is presented in [Pér+20]. Furthermore, a rapid pro-

totyping platform consisting of multiple FPGAs can also benfit from dynamic partial

reconfiguration as presented in [Ret15b].

12
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However, dynamic partial reconfiguration comes along with additional costs. Be-

sides the time delay that is needed for reconfiguration, each reconfigurable area needs

corresponding partial bitstreams for every hardware component that shall be placed

at one point in time. Assuming every hardware component shall be reconfigured in

multiple reconfigurable areas on the FPGA, the number of partial bitstreams that are

needed is the product of the number of hardware components and reconfigurable parti-

tions. Even if several hardware components have the same functionality, a new partial

bitstream is required by default for each new reconfigurable partition. Accordingly,

the memory needed to store all partial bitstreams increases with the number of hard-

ware components and partitions. This drawback can be critical for embedded systems,

since they have limited memory resources. Moreover, the time for generating partial

bitstreams increases with the number of partitions and bitstreams. The static part of

the FPGA is not partially reconfigurable and requires only a single implementation

run. Nevertheless, the reconfigurable hardware components must be implemented for

each corresponding partition. The toolflow that is used to generate partial bitstreams

and provided by Xilinx for their FPGAs is called Partial Reconfiguration Flow (PRF)

[Xil18c]. The time to synthesize an FPGA design increases with the number of recon-

figurable modules and corresponding partitions using the PRF. Since the generation

of a partial bitstream can take considerably longer than, for example, the compilation

of a C program, it leads to additional effort in the development of a reconfigurable

system.

In [BHS11], an approach is presented that optimizes the generation of reconfigurable

hardware components for one partition in terms of resources, timing and generation

time of the toolflow. A prerequisite of this approach is that the hardware components

only differ slightly in terms of configuration parameters which is valid for a large class of

applications. Different digital filters may vary only in a few parameters and generating

bitstreams for each filter costs additional time. [BHS11] presents an approach that

expresses a bitstream as a function of parameters. By changing the parameters and

evaluating the function, specialized bitstreams can be generated at runtime. The results

presented in [BHS11] show also a reduction of LUTs and an improvement of the timing

behavior. Nevertheless, the specialized bitstreams are fixed to one partition. In this

work, the focus is on optimizing the generation of the same hardware components for

different partitions.

In order to overcome this issue, bitstream relocation can be used. In bitstream

relocation, a partial bitstream that is already implemented for a reconfigurable parti-

tion is modified without a new generation run that it can be reconfigured in another

partition. This modification only adapts the address of the partition and not the
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configuration of the FPGA components which makes the generation of a new partial

bitstream unnecessary. The address determines the which FPGA area is reconfigured.

Using relocation, the number of bitstreams that must be generated becomes indepen-

dent of the number of reconfigurable partitions and is determined only by the number

of hardware components. Each reconfigurable hardware component requires only one

partial bitstream that is modified to place it in different partitions. A relocatable de-

sign with three partitions and three different reconfigurable modules needs only three

partial bitstreams. In contrast to that, nine partial bitstreams are required using the

PRF from Xilinx. Accordingly, bitstream relocation reduces the memory needed to

store all partial bitstreams and the total time needed to generate the design.

Vendor tools usually do not support relocation, since additional design constraints

are necessary that creates a limitation during the routing and placement process of

FPGA logic. The routing and placement process describes the steps conducted by

an FPGA design tool to configure the FPGA components. On the one hand, these

design constraints restrict the placement of hardware modules, on the other hand, the

advantages mentioned previously are also gained.

Three major barriers must be overcome to enable relocation. Bitstream relocation

requires the same arrangement of FPGA resources that are used inside reconfigurable

partitions. A hardware component that uses DSP48E1 blocks in one reconfigurable

partition cannot be configured in another partition that does not contain such blocks.

Hence, the first barrier is the compatibility of different partitions. In this thesis, 1D

relocation is defined as the relocation of partial bitstreams along one dimension which

is typically the vertical direction due to the column-wise arrangement in FPGAs. 2D

relocation is defined as the relocation in vertical and horizontal direction. Since CLBs,

DSPs and BRAM blocks of Xilinx FPGAs are arranged column by column, 2D reloca-

tion requires additional constraints to create compatible partitions that are located at

different horizontal positions.

The second barrier is that the relocation of hardware components requires a consis-

tent interface between static and reconfigurable logic among reconfigurable partitions.

An interface consists of the signal paths between static and reconfigurable area as well

as the FPGA components from which the signals originate and which are used as entry

points. Relocation of partial bitstreams between two reconfigurable partitions with

different interfaces leads to an undefined system state which can lead to a crash of the

reconfigurable hardware component as well the static logic. Signal interfaces between

static and reconfigurable partitions are realized using bus macros [HBB04] that can

be inserted by the designer for FPGAs older than Virtex-4. Partition pins that are

inserted by the synthesis tool can be used for newer FPGAs to connect the static and

14



2.1. FIELD PROGRAMMABLE GATE ARRAY

reconfigurable logic. Bus macros cost two LUTs per signal, while partition pins cost

only one LUT per signal.

Feed-through routes are the third barrier that has to be addressed when dealing

with relocation. These routes are signals of the static logic which are routed through

the reconfigurable partition. Feed-through routes are not consistently implemented

among multiple reconfigurable partitions by default. Accordingly, the relocation of

one partial bitstream into another partition with different feed-through routes leads to

overwriting these routes. As these routes are needed for the functionality of the static

logic, it would destroy logic parts of the static FPGA area. One solution to solve this

problem would be to avoid feed-through routes in general.

Bitstream relocation has been major interest in several research activities such

as in [DRN13], [Han+14], [Gan+12], [Lav+11], [BKT12], [KBT08], [Oom+15] and

[GPK18]. Drahonovský et al. [DRN13] present a technique to design relocatable partial

bitstreams using Xilinx ISE 14.2. Constraints are used to prohibit feed-through routes

through reconfigurable partitions. Moreover, partition pins are extended and fixed

with constraints and an additional LUT per two signals. The usage of direct routing

constraints enables to fix the signal route between LUT and partition pins. Accordingly,

the interfaces of static and reconfigurable partitions can be placed consistently.

Similar to Drahanovský et al., Hannachi et al. [Han+14] manually implement relo-

catable partial bitstreams using Xilinx ISE. In order to avoid adding manually LUTs

between static and reconfigurable logic, Hannachi et al. define the static logic as recon-

figurable. This adds automatically an additional LUT for each signal connecting the

reconfigurable partition with the remaining FPGA. The authors describe this process

as a transformation of partition pins into bus macros. One reconfigurable partition is

used as reference after the initial implementation of a hardware module. The informa-

tion about the placement of the partition pins is extracted from this reference partition

and transferred to the remaining partitions.

Gantel et al. [Gan+12] avoid feed-through routes based on the Isolation Design

Flow (IDF) [Sat20]. IDF provides originally fault containment at the FPGA module

level. A consistent interface between static and reconfigurable partitions is imple-

mented by the tool RapidSmith [Lav+11]. RapidSmith can manipulate netlists with

the Xilinx Design Language (XDL). Similar to [Han+14], the information about the

placement of the necessary LUT and partition pins is extracted from the initial im-

plementation. RapidSmith uses this information to create a so-called hard macro that

can be copied as an interface to remaining reconfigurable partitions.

An automated generation of relocatable partial bitstreams is presented by Beckhoff

et al. [BKT12] with GoAhead. GoAhead defines interfaces in form of entities at RTL-
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level. A User Constraint File (UCF) contains information about the placement of the

interfaces. Using this UCF file, the static logic can be implemented with ISE. An XDL

function integrates blocker macros inside the reconfigurable partitions. These macros

avoid feed-through signals and force also the ISE to use consistent interfaces. Koch et

al. [KBT08] present the ReCoBus-Builder that supports reconfiguration of a partial

bitstream in multiple partitions. The partitions are called slots. A bus structure that

determines which slot communicates to the static logic is added automatically. The

interfaces between static and reconfigurable logic are realized with bus macros that are

placed by XDL functions.

Oomen et al. [Oom+15] present a tool flow using the Vivado Design Suite from

Xilinx. The tool flow is automated by Tcl scripts. A connection partition module

that contains 2-input NAND cells per signal is included between the static and recon-

figurable logic. This module decouples the reconfigurable logic from the static logic

during reconfiguration. In addition, it enables the relative placement of the partition

pins. The tool flow determines the most complex reconfigurable logic and assigns it

to a partition. Subsequently, it is used as a reference partition to place the interfaces.

The authors do not present a mechanism to avoid feed-through routes.

B. Gottschall et al. [GPK18] introduces Reloc as an open-source Vivado workflow

for generating relocatable partial bitstreams. Reloc provides TCL scripts for Vivado

that creates the same interfaces among multiple reconfigurable partitions using buffers.

In this dissertation, a tool flow called RePaBit [Ret16c] is presented that allows the

generation of relocatable partial bitstreams. In comparison to [DRN13] and [Han+14],

RePaBit automates the design flow of relocatable partial bitstreams with Tcl scripts.

RePaBit, [Oom+15] and [GPK18] are the only automated tool flows that use the

Vivado Design Suite instead of ISE. Since the Vivado Design Suite will be supported

by Xilinx in the future, the tool flows using ISE cannot be transferred to new FPGAs.

The works presented in [Gan+12], [BKT12] and [KBT08] use XDL functions that are

not portable to the Vivado Design Suite. However, the Vivado Design Suite does

not support routing constraints to avoid feed-through routes. RePaBit avoids feed-

through routes by a combination of the IDF and PRF from Xilinx. In [Oom+15], it is

not explained how feed-through routes can be avoided with the Vivado Design Suite.

Furthermore, [Oom+15] does not support 2D relocation in contrast to RePaBit. Reloc

is another tool flow that extends Vivado to enable relocatable partial bitstreams. In

contrast to RePaBit, Reloc offers a method to fix feed-through routes by rerouting

them. RePaBit trusts the IDF tool flow to avoid feed-through routes. Table 2.1

summarizes the tools supporting the generation of relocatable partial bitstreams.
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Table 2.1: Summary of research works supporting relocation in Xilinx FPGAs
Work Tool Interface Automated FPGA 1D/2D Feed-

Through
Avoidance

[DRN13] ISE Partition Pins ✓ Virtex-5, Virtex-6 1D/2D ISE routing
constraint

[Han+14] ISE Partition Pins - Virtex-5 1D/2D -
[Gan+12] ISE and

IDF
Bus macros ✓ Virtex-5 1D/2D IDF

[BKT12] ISE Blocker macros ✓ Virtex-4, Virtex-5,
Virtex-6, Virtex-7,
Spartan-6

1D/2D Blocker
macro

[KBT08] ISE Bus macros ✓ Virtex-2/2 Pro,
Spartan-3

1D Blocker
macro

[Oom+15] Vivado Partition Pins ✓ Virtex-7 1D -
[GPK18] Vivado Partition Pins ✓ Xilinx Zynq 1D/2D IDF &

Rerouting
RePaBit
[Ret16c]

Vivado Partition Pins ✓ Xilinx Zynq 1D/2D IDF

2.2 Scalable Computing and Communication Ar-

chitectures

This section presents fundamentals about NoCs and MPSoCs with the focus on FPGA-

based implementations. A detailed view on state-of-the-art technology gives insights

about the current evolution of NoC-based MPSoCs and how they benefit from com-

puting in NoCs.

2.2.1 Networks-on-Chip

The successful evolution of the Very-Large Scale of Integration (VLSI) technology

enabled the development of MPSoCs. However, MPSoCs bear a lot of challenges related

to the on-chip interconnection technology. An on-chip interconnect that becomes the

bottleneck in terms of throughput has a crucial impact on the system performance.

The transition from single-core processors to multiprocessor systems can be real-

ized with different interconnect technologies that enable the communication between

multiple PEs. One method is to directly connect PEs by point-to-point connections.

A direct connection between two PEs can guarantee a high bandwidth but it comes

along with several disadvantages. The more PEs communicate, the higher the wiring

complexity due to additional point-to-point connections. Furthermore, point-to-point

connections are customized to an application which makes it difficult to use such sys-

tems for general-purpose computing. An example for a point-to-point communication

is given by [Lee+08]. In [Lee+08], a hardware implementation of an MPEG2 encoder
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is presented.

Bus-based systems address these problems. A bus is a shared interconnect between

the PEs resulting in a decreased wiring complexity. However, when the number of PEs

increases, the performance of a bus system decreases. This is because the wire lengths

of a bus architecture increase with more PEs, which in turn limits the clock frequency

[Deu+99]. An example for bus architectures is given by the standard Advanced Mi-

crocontroller Bus Architecture (AMBA) [Ltd18]. AMBA is a specification of different

protocols such as Advanced High-Performance Bus (AHB) and Advanced eXtensible

Interface (AXI) with different characteristics.

NoCs have emerged as the most promising communication architectures for MP-

SoCs due to advantages in terms of scalability and throughput [De +10].

Hardware Structure

A NoC consists of several routers that are connected via links to exchange messages

between PEs. The arrangement of links and routers determines the topology of the

NoC. Fig. 2.3 shows three examples of different topologies: ring, mesh and torus. Mesh

topologies can be easily scaled due to their regular structure in which each link between

routers can have the same length. A ring topology consists of a set of routers that are

connected circularly. Each router has two ports that are connected to the neighboring

routers. In contrast to a mesh topology, every router has the same structure. A torus

topology has additional links that connect opposing routers at the edges.

In every topology, an address can be assigned to each router that determines its

location in the NoC. Typically, the position of a router in a two-dimensional mesh-based

NoC is defined by an X and Y-coordinate. NoCs are not limited to 2D topologies. A

two-dimensional mesh topology can be expanded by a third dimension. In [DBS20], an

FPGA-based emulator is presented that constructs three-dimensional NoCs consisting

of up to 10648 routers. The main approaches related to NoCs of this thesis can be

also applied to three-dimensional NoCs. However, the focus is on two-dimensional

mesh topologies in this thesis. Therefore, the term mesh topology refers always to

two-dimensional topologies.

Routers are connected via network interfaces to PEs. In Fig.2.3, PEs and the

network interfaces are excluded for clarity. Before a message is transmitted through

the NoC, it enters the NoC through the network interface. A message is read and

removed from the NoC through the network interface by a PE. Network interfaces

ensure a compatible communication protocol between PEs and routers. If all routers

are connected to a PE, the NoC is a direct NoC [DT04]. If not all routers are connected

to PEs, the NoC is an indirect NoC [DT04].
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Figure 2.3: Three topologies of NoCs: mesh, ring and torus

Routing

A message is transferred across routers from a source to a destination PE in unicast

data transfers. A path between source and destination PEs consists of all routers and

links that are crossed by the message.

The routing algorithm determines which routers and links built the path. Routing

algorithms can be classified into oblivious and adaptive routings [Cho+09]. Oblivious

routing algorithms compute the routing path without any knowledge of a NoC state

such as the traffic load. They can be further classified into deterministic and stochastic

routing algorithms. In a deterministic routing algorithm, the path is only calculated

by the source and destination addresses. Stochastic routing algorithms are based on

coincidence. Accordingly, routing decisions are made randomly. Since NoCs have

a limited size, in reality, a message transferred using a stochastic routing algorithm

arrives at its destination address, if the routing is sufficiently long. An adaptive routing

algorithm takes routing decisions based on the source and destination addresses as well

as the network states inside the NoC.

An adaptive routing algorithm computes routing decisions using not only the origin

and destination addresses but also including states of the NoC. For example, if a router

is defective and cannot transmit messages anymore, a deterministic routing algorithm

cannot compensate for such a failure. An adaptive routing algorithm can adjust the

path by selecting an alternative route [VIA19]. Likewise, the traffic load could be

analyzed at runtime and evenly distributed over the NoC, which in turn leads to less

congestion and consequently, better throughput [Vah+19]. Furthermore, the routing

algorithms of all classes can be minimal or non-minimal [DT04]. A minimal routing

algorithm uses the shortest path between source and destination in contrast to a non-

minimal routing algorithm.

Deadlock and livelock are problems that should be avoided in NoCs. Livelock

describes the misbehavior of a packet that does not reach the destination address in
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a finite time. The packet moves within the NoC by transmitting it through routers,

but it does not reach its destination. This can lead to high traffic load which decreases

the overall performance or blocking the complete NoC for any further transactions.

A minimal routing algorithm cannot generate a livelock according to its definition, as

it creates a routing path with a finite and minimal length. A deadlock occurs when

multiple packets have a cyclic dependency to each other on requesting buffer resources

of a router as shown in Fig. 2.4. Fig. 2.4 shows four packets named A, B, C and

D. It can be seen that each packet must be transferred to a router that is occupied

by another packet. Each packet is stored in a buffer and requests the transmission

into the next buffer which is in turn occupied by another packet. Due to the cyclic

dependency ( A→ B, B→ C, C→ D and D→ A) all packets are blocked and cannot

be forwarded. This permanent stall situation must be solved, otherwise, the routers

cannot be used for any further transactions.

NoCs that contain deadlocks can be recovered by different strategies. An example

of a recovery strategy is changing the path of at least one of the packets which in turn

resolves the cyclic dependency [Wu+20]. A widely used approach to avoid deadlocks is

to provide virtual channels in the router architecture presented by Dally et al. [Dal92].

Virtual channels are additional buffers inside the router. A packet that enters a router

can be stored in different buffer. A virtual channel allocation selects into which buffer

a packet is transferred. The principle is based on providing enough buffers which

resolves the cyclic dependency on memory resources. The situation in Fig. 2.4 can

only occur when multiple packets exclusively request memory resources that have a

cyclic dependency. By adding virtual channels, more memory resources are available

and thus, the cyclic dependency can be removed. Deadlocks can also be avoided by

constraining the routing algorithm instead of adding more memory resources to the

router. By restricting the possible turns of a message and subsequently, only allowing

a set of turns, cyclic dependencies can be avoided.

The XY routing algorithm [DT04] is a deterministic and minimal routing algorithm

for mesh topologies that is deadlock-free and is often used in NoCs due to its simplicity

[CGP12]. It routes packets first along the X dimension until the X coordinate of the

current position matches the X coordinate of the destination address. Subsequently, it

routes along the Y dimension until the destination address is reached. In this work, the

X dimension is defined along the horizontal axis and the Y dimension along the vertical

axis. By applying the routing rules of XY routing algorithm to every packet that is

inserted into the NoC, no cyclic dependency can occur. The XY routing algorithm

only allows a set of turns for a message.

Odd-Even routing [Chi00] is a routing algorithm that allows more turns than the
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Figure 2.4: A deadlock created by the packets A, B, C and D in a NoC

XY routing algorithm and is still deadlock-free. This routing algorithm divides the

X dimension of the mesh network into even and odd columns. If the X coordinate of

a column is even, it is an even column. If the X coordinate of a column is odd, it

is an odd column. The direction of a packet in a mesh NoC is often described with

cardinal directions. If a packet is transmitted along the positive Y dimension, the

direction of the packet points to the North. Equivalently, this definition can be applied

to the East, South and West. If a packet is in a column with an even column, it is

not allowed to change the direction from East to North and from East to South. If a

packet is in an odd column, turns from North to West and from South to West are not

allowed. By applying these rules, adaptive and deterministic routing algorithms can

be implemented.

Like odd-even routing, turn models [GN92] defines clockwise (North → East, East

→ South, South→West, West→ North) and counter-clockwise turns (North→West,

West → South, South → East, East → North) that describe all possible turns of a

message. By prohibiting specific turns from this model, deadlocks can be avoided, if

all possible sequences of any permitted turns do not create a cycle. Examples of rout-

ing algorithms based on the turn models are West-First[GN92] and East-Last [GN92]

routings. A West-First routing algorithm routes firstly packets to the West direction

in case the X coordinate of the destination address is in the West direction. Subse-

quently, no further turns to the West are allowed. A North-Last routing algorithm can

only perform a turn in the north direction as the last turn. Any further turns are not

allowed.
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Figure 2.5: Counter-clockwise and clockwise turns: a) Counter-clockwise turns b)
Clockwise turns c) Permitted turns in a column with clockwise bead d) Permitted
turns in a column with counter-clockwise bead

An extension of the turn models is the abacus turn model providing more flexibility

in terms of turns presented by [Fu+14]. According to [Chi00], a routing algorithm is

deadlock free, if a message cannot perform a clockwise and counter-clockwise turn at the

rightmost column. Fig. 2.5 a) and b) show the turns of the rightmost column that are

necessary for a deadlock scenario. The clockwise turns are from East to South and from

South to West. The counter-clockwise turns are from East to North and from North to

West. The abacus turn model is based on this condition and extends it by restricting

the order of turns in the rightmost column. Two nodes per column are defined as

clockwise bead and counter-clockwise bead at a position that is freely and dynamically

selected. Above a clockwise/counter-clockwise bead no turns from East to South/North

to West are allowed as shown in Fig. 2.5 c)/d). Below a clockwise/counter-clockwise

bead, no turns from South to West/East to North are allowed. A fault-tolerant routing

algorithm based on the abacus turn model that tolerates router failures is presented

in [BS18]. It dynamically adapts the routing path according to the location of failures

and congestions.

Moreover, it is worth to mention that NoCs exists that do not buffer packets at all.

They are defined as buffer-less NoCs [DT04]. Deflection routing [LZJ06] is a stochastic

routing strategy aiming to reduce buffering of packets in NoCs. A packet that arrives

in a router is directly sent to an output port without buffering it. This implies that a

deadlock cannot occur as buffering is a necessary condition for deadlocks. If more than

one packet requests the same output of a router, only one packet is forwarded through

this output while the remaining packets choose randomly another port. Therefore, this
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stochastic algorithm belongs to the non-minimal routing strategies.

Flow Control

Messages are transmitted along a routing path using either circuit switching or packet

switching. In circuit switching, the path from source to destination is completely allo-

cated by the source PE during message transfers and cannot be utilized by other PEs.

After the message is transferred the path is released. In packet switching, the message

is divided into packets that can share the path with other packets. Circuit switching

is often used in NoCs providing real-time capability. A path that is allocated has a

fixed timing as a message transfer cannot be interrupted by other transfers. Surveys

presenting an overview about real-time NoCs are presented in [Ret15a] and [Ret17b].

Packet switching can provide better throughput, since a PE with low communication

data rates can block PEs with higher communication data rates.

Mainly three different flow control mechanisms for packet switching exist: store-

and-forward [DT04], virtual cut-through [KK79] and wormhole routing [FRU96]. In

store-and-forward, an entire message consisting of several packets is temporarily stored

in a router before it is transmitted further. In order to accomplish this, memory

resources that are able to buffer a message must be integrated into the routers. Even if

the next router is capable of buffering already packets, the packet is only forwarded after

the complete message consisting of multiple packets is stored in the router. Virtual cut-

through routing reduces the latency of packet transmissions. As soon as the outgoing

channel of a packet is known and the next router provides available memory to buffer

a packet, packets can already be forwarded, before the complete message is buffered.

However, a router can still buffer a complete message. Hence, both approaches lead to

a high buffer consumption in NoCs. This problem is circumvented in wormhole routing.

A packet is divided into flow units (flits) and each input channel of a router is capable

of storing only a single flit. This reduces the buffer resources of a router compared to

store-and-forward and virtual-cut-through. A packet consists of a header flit containing

at least the destination address, payload flits for the data that is transferred and a tail

flit that indicates the end of the packet. Practically, the header flit can also reach the

destination router before the tail flit is in the NoC.

State-of-the-Art NoCs

Several FPGA-based NoC overlay architectures with a wide variety of optimizations

exist. In the following, multiple state-of-the-art NoCs are presented to give an overview

of the trends.
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OpenSoC

Farzad Fatollahi-Fard et al. [Fat+16] introduce OpenSoC as a comprehensive on-chip

network generator based on Chisel [Bac+12]. After defining configuration parame-

ters in Chisel, C++ and Verilog models of the NoC can be generated. The Verilog

models providing an on-chip communication overlay architecture can be synthesized

on FPGAs. Chisel provides methods such as classes, inheritance, parametrization and

built-in libraries. The routers modeled by OpenSoC support wormhole routing and

virtual channels. They are pipelined and can be arranged in topologies such as mesh

and flattened butterfly. Furthermore, different traffic patterns can be generated to

evaluate the NoC. A standardized AXI network interface is used to support a wide

range of existing Intellectual Property cores (IP cores).

CONNECT

CONNECT [PH15] is a NoC IP core generator providing a wide range of different

NoC overlay architectures for FPGAs. This generation tool is accessible through a

web-based interface that allows the configuration of parameters such as the topology,

NoC size, number of virtual channels, flow control type and the data width of flits.

Furthermore, a network editor allows the generation of custom topologies. The internal

structure of routers can be changed by modifying the allocator type, pipeline stages and

routing which allows the exploration of tradeoffs in performance, area and frequency

for a given application.

Modified CONNECT

CONNECT has been used in several research works due to its open-source availability.

Shaheen et al. [SFM18] propose a modified architecture of CONNECT that is opti-

mized in terms of resources for FPGAs. The main modification is based on a buffer-less

approach. Accordingly, the proposed router architecture forwards an incoming packet

directly to an output port within one cycle. Buffer-less routing is achieved by an al-

location module that consists of an eject unit, static output arbiter and a deflection

unit. The eject unit forwards incoming packets to the local port of a router in case

they reach their destinations. If multiple packets arrive at the same time in the same

destination, a round-robin priority arbiter decides which packet is ejected and which is

deflected. The static output arbiter allocates incoming packets with a higher priority

to the output channels of the router. Packets that have lower priority and must be

deflected are forwarded to the deflection unit. The deflection unit transmits concur-

rently deflected flits to available output ports. In order to not overload the router with
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Figure 2.6: Overview of OpenNoC architecture based on [RV19]

traffic, an inject unit observes and controls flits that are inserted at the local port.

OpenNoC

OpenNoC [RV19] is an open-source NoC architecture that can be implemented effi-

ciently in terms of resource utilization and performance on an FPGA. Furthermore, it

provides a PCIe-based communication controller to access external components. An

overview of the structure is given in Fig. 2.6. The NoC overlay is buffer-less and uses

a unidirectional torus topology. Deflection routing is implemented. The size of the

NoC and the data width of the links can be set through a configuration file. The PE

communication link is implemented as an AXI4 Stream connection. The packetizer

connects the host communication controller to the NoC via an AXI stream interface.

The communication controller is a modified version of the DyRACT IP Core [VF14]

that implements the PCIe controller to receive and send data with a frequency of up

to 200 MHz.

EAGEN

Eagen [ZOT20] is a general-purpose NoC generator which is written in Chisel3 lan-

guage. It can generate C++ and Verilog models of a router for software simulation

and FPGA synthesis. The user can specify application requirements, target constraints

and synthetic or realistic traffic workload for evaluation. An application specification

is used to generate the NoC overlay. Eagen integrates routers with wormhole routing

and virtual channels. The NoC that is generated has configurable design parameters

such as the topology, arbiter, routing algorithm, buffered/buffer-less and the size of the

crossbar. Under given target constraints and workloads, an FPGA simulator can be

used to evaluate the power dissipation and performance for a NoC configuration. The

estimations are fed back and evaluated using a RankBoost learning-to-rank algorithm
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Figure 2.7: Construction of TSA-NoC routers using a smartRoute controller for bypass-
ing infected messages detected by ECC encoders and decoders as well as a hardware
trojan module (DetectANN)[WZL20a]

[Fre+03] to find an optimal NoC configuration.

TSA-NoC

A NoC overlay that implements secure features is presented in [WZL20a]. The NoC

architecture called TSA-NoC uses virtual channels and is arranged in a mesh topology.

It is able to detect hardware trojans using a learning-based hardware trojan mod-

ule (DetectANN) during runtime. A deep-reinforcement-learning-based adaptive rout-

ing controller (SmartRoute Controller) for hardware trojans mitigation is integrated.

This module recognizes suspicious network traffic such as an expected high error rate.

The error rate is determined by error correction code decoders (ECC-decs) located at

input ports of routers, while error correction code encoders (ECC-encs) are located at

the output ports. A bypass channel controlled by the smartRoute controller isolates

infected messages while the remaining traffic is unaffected. An overview of the internal

router structure is given by Fig. 2.7. The ports of the router that are connected to

the PEs are defined as core ports. A crossbar links the incoming ports to the output

ports.

RingNet

An FPGA-based NoC overlay called RingNet is presented in [SLD19]. RingNet aims to

prevent network congestions by introducing a memory module that is placed centrally
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Figure 2.8: NoC overview of RingNet based on [SLD19]

in the NoC. In contrast to NoCs such as EAGEN and OpenSoC, virtual cut-through

flow control is used instead of wormhole routing. The RingNet topology is based on

a tree of multiple ring topologies that are connected through root and leaf interfaces

as shown in Fig. 2.8. The root ring at level 0 contains a system memory and reflector

component. All traffic that is transmitted by a PE is transferred to the system memory

or the reflector component. The system memory buffers messages to avoid and overload

the NoC. The reflector is used as a buffer for control messages. It informs PEs about

data waiting to be read from the buffer. Accordingly, a data transfer of two PEs

requires that the first PE writes the data to the system buffer and the second PE reads

it from the system buffer when it is ready to receive data.

Adaptive and Reliable Network-on-Chip

Scaling down CMOS technology leads to a higher susceptibility to transient and per-

manent faults [KMH05]. As NoCs are the main component for communication in

MPSoCs, mechanisms for fault tolerance can be applied to routers which increases the

reliability of a NoC. In [PPT19], an architecture of an adaptive and reliable router

for NoCs is presented. A mesh topology is arranged by routers that employ different

fault-tolerant strategies. The router is able to detect and tolerate multiple permanent

faults that occur in the routing computation, the input buffers and the crossbar. A

defect inside the input buffers is protected using redundancy provided by an additional

side buffer. An adaptive routing algorithm is implemented that uses the network load

monitored in each buffer and a priority based on the destination and the router lo-

cation. In case of a defect inside the crossbar, additional multiplexers located beside

the crossbar are configured using the XY routing algorithm to provide an alternative

path. Faults occurring in the routing computation are handled by redundant routing

algorithm units.
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Figure 2.9: Topology of HopliteRT* [GN20]

Hoplite, HopliteRT, HopliteRT* and Hoplite-Q

NoC-based MPSoCs that have to meet real-time requirements need a real-time ca-

pable on-chip communication architecture. HopliteRT [WPK17] extends the Hoplite

NoC [KG15] in terms of real-time capabilities. Originally, the Hoplite NoC uses a de-

flection routing algorithm to transfer messages in a unidirectional torus which allows

a lightweight and fast FPGA implementation. No backpressure handshakes are inte-

grated into the buffer-less router which reduces the resource utilization of buffers. Ad-

ditionally, the lightweight implementation of Hoplite allows a high operating frequency

compared to other NoC overlays. However, deflection routing prohibits the calculation

of latency bounds, as it is based on probabilities. In order to enable the calculation of

upper latency bounds, HopliteRT modifies the routing function that enables prioritiz-

ing deflections. Two counters are added to the PE to implement a regulation policy

of packets. The authors show by an analytical model that upper boundaries of the

end-to-end latency between PEs can be calculated. HopliteRT* [GN20] is a further

extension of HopliteRT. It introduces priority-based routing and changes the network

topology as shown in Fig. 2.9. The authors show that the worst and average case

traversal time of high priority packets is improved by at least 2x. Another variant of

the Hoplite router is the Hoplite-Q which is presented in [SK18]. In [SK18], packets are

assumed to be classified based on different priorities. To transfer packets depending on

their priority class, priority bits are added to the message. An additional buffer within

the router can cache lower priority packets if necessary. The implemented routing al-

gorithm analyzes the priority bits of incoming packets and routes them either to the

output port or to the buffer.
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Figure 2.10: Operation modes of DSP48E1-based crossbar presented in [BPT19]:
Overview of a router using two DSP48E1 slices as a crossbar to reduce the resource
utilization and increase the operating frequency

Prabhu et al.

Another NoC overlay that is optimized in terms of resource utilization is presented in

[BPT19]. The internal crossbar of mesh-based routers can consume a relatively high

amount of resources on FPGAs. Prabhu et al. [BPT19] exchange the crossbar of a

router with two Xilinx DSP48E1 slice [Xil18a] as shown in Fig. 2.10. The functionality

of a crossbar can be implemented using two DSP48E1 slices that are time-multiplexed.

By applying different operation modes of the DSP48E1 slice at various times, a crossbar

for a router consisting of five in- and output ports can be facilitated. The DSP48E1

block does not modify the input values with its pre-adder, multiplier and Arithmetical

Logic Unit (ALU) unit. It forwards different input values by exploitation of the internal

multiplexers. These are configured depending on the cycle and the arbitration. The

reconfiguration of the multiplexers is performed per clock cycle.

Guard-NoC

Side-channel attacks are techniques that analyze physical or logical effects to retrieve

secret data. Guard-NoC [Rei+20] is a NoC which protects an MPSoC against a wide

variety of side-channel attacks. This protection is achieved by three approaches that

hide and isolate sensitive data of the NoC. The first strategy is blinding the execution
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time of operations, the second strategy is masking the execution time of operations

and the third strategy is based on dual communications schemes (packet- and circuit

switching). The first two strategies are enabled by another module called Obfuscations

Module. This module is located between the network interface and the PE which

allows timing modifications of messages. The first strategy manipulates the response

time of an incoming request. One possible manipulation is to choose the worst response

time which can be advantageous for systems where the worst and best response times

are similar. The second strategy is implemented by adding a random delay time.

Furthermore, circuit switching is considered by the authors as a communication method

with higher security compared to packet switching. Therefore, Guard-NoC proposes

to use circuit switching for sensitive data and packet switching for less sensitive data.

Summary

Table 2.2 summarizes the NoCs by comparing topologies, FPGAs used for implemen-

tation and their contributions.
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2.2.2 Multiprocessor Systems-on-Chip

The progress in VLSI technology which enables the manufacturing of dies with billions

of transistors is the foundation for the era of MPSoCs. Recently, Huawei announced

that its newest chipset contains 15.3 billion transistors [Fru20]. This high amount

of transistors in a single IC allows the integration of multiple processors that exploit

different levels of application parallelism. This exploitation and the associated perfor-

mance advantages are mainly responsible for the success of MPSoCs. Several levels of

parallelism are found in applications. The levels can be divided into data parallelism,

task parallelism and Instruction-Level Parallelism (ILP) [RR05]. The program code

of an application consists of an instruction sequence. If there are no dependencies

between adjacent instructions, they can be executed in parallel. The parallelism on

instruction level is defined as ILP. ILP is fine-grained parallelism which can be used

within a PE depending on its type. Superscalar processors exploit ILP by executing

the independent instructions on different execution pipelines [HP11]. ILP cannot be

controlled using parallel programming methods such as threads and message passing

as it is implicitly exploited by the hardware units in superscalar processors.

Task level parallelism is based on the fact that a lot of programs can be separated

into multiple code segments also called threads [RJ15]. These threads can be executed

concurrently on an MPSoC by running them on different PEs. An application example

of task-level parallelism is a graphical user interface. Such an application usually

contains several threads that perform tasks like handling user input data, updating the

graphical representation and error handling. Similarly, an embedded system running

a parallel application may have multiple threads such as the reading of sensor data,

controlling actuators and computation of algorithms.

In data-level parallelism, operations can be performed in parallel on independent

data sets. A vector addition sums two vectors with the same length by adding the

individual elements of the vectors and thus, forming a result vector. Each summation

can be performed independently resulting in a throughput that is improved by parallel

executions. In particular, graphic processors exploit extensively data-level parallelism.

The latter levels are also referred to as coarse-grained parallelism [Yoo+18], from

which MPSoCs also benefit due to their parallel architecture. The architecture of an

MPSoC can be abstracted based on the PEs, the communication infrastructure and the

memory units. An MPSoC incorporates multiple instruction-set processors and other

types of processing units that are summarized as PEs. PEs communicate through a

communication infrastructure on a single chip. The communication infrastructure en-

ables the exchange of data between the processors. The following section focuses on

MPSoCs with NoCs as communication infrastructure. From an architectural point of
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view, they can be classified into homogeneous and heterogeneous MPSoCs with shared

or distributed memory. A homogeneous architecture contains only the same type of

PEs. In contrast to that, a heterogeneous architecture contains different types of PEs

such as general-purpose processors, digital signal processors and hardware accelerators.

A homogeneous structure of PEs is easier to program and to scale due to the identical

and regular structure of the PEs. However, a heterogeneous MPSoC provides better

power efficiency due to the different types of PEs that are typically optimized for dif-

ferent computational tasks. Hence, compute-intensive tasks can be efficiently executed

by the appropriate PE. A heterogeneous setup also increases the system complexity for

developers. For example, a software programmer requires a high expertise to efficiently

program heterogeneous PEs.

Moreover, an FPGA design can be updated or designed multiple times with differ-

ent MPSoC configurations. Hence, the design process must be extensively elaborated.

Novel design methods that ease the use of FPGA-based MPSoCs are required. Other-

wise, it leads to a degradation of the development productivity. Simulators as presented

in [Ret16f], [Ret15h] and [Ret16b] allow modeling and evaluating an MPSoC for a given

application at an early development phase. They can be used to estimate the perfor-

mance or power of the system. In [Ret16e] and [Ret18c], an MPSoC simulator is used

to evaluate a sensor fusion algorithm. The results are used to implement such a system

on an FPGA-based MPSoC.

GRVI Phalanx

Hoplite [KG15] is a configurable overlay NoC. In [Gra16], GRVI Phalanx is presented

using Hoplite as NoC. GRVI is an FPGA-efficient soft processor using a RISC-V mi-

croarchitecture consisting of a two or three-stage pipeline. The GRVI Phalanx par-

titions the FPGA into small clusters of GRVI connected by Hoplite. Programming

models such as OpenMP and OpenCL can be applied to this MPSoC overlay.

Manycore Vision Processor

Silva et al. [SLY20] present a manycore overlay architecture for embedded computer

vision applications. The manycore system is implemented on a Xilinx Zynq Ultrascale+

device [Xil20] and consists of multiple tiles. The maximum number of tiles is 65535.

Each tile consists of a lightweight router for mesh-based NoCs, a frame buffer for

incoming vision streams and a processing unit that contains a register file as well as

an ALU. Fig. 2.11 presents the hardware architecture of the overlay for FPGAs. The

manycore system is optimized for vision processing. Frames can be separated and

directly feed to the tiles via an acquisition frame buffer. A visualization frame buffer
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Figure 2.11: The overlay architecture for computer vision based on [SLY20]

stores the processed image and forwards it to the ARM processor. The PEs inside

a tile are lightweight processing cores optimized for computer vision. This overlay

architecture is configurable in terms of size. The PEs located inside the tiles are all of

the same types.

Heterogeneous HeMPS

In [Wäc+12], a framework for the generation of heterogeneous MPSoCs is presented.

The authors divide an application development into 5 major steps: 1. application de-

velopment, 2. platform configuration, 3. code generation, 4. application mapping and

5. debugging. All steps are covered by this framework. An application is described as a

task graph where each task can be mapped to a Plasma processor (MIPS architecture)

[Rho16] or an MBLite processor [Kra17]. Each processor is equipped with a lightweight

operating system called microkernel which enables the static and dynamic loading of

tasks. A graphical user interface can be used to debug and elaborate the system. The

MPSoC extends the HeMPS approach [WBM11] with an additional processor type.

Originally, the HeMPS approach used only Plasma processors. The PEs are connected

by a NoC and are configured either as master or slave nodes. The MPSoC is composed

of one master PE which is a Plasma processor. The master node accesses an exter-

nal task repository and maps tasks to slave nodes which can be MBLite or Plasma

processors. An example of such an MPSoC is given by Fig. 2.12.

The on-chip communication architecture is a 2D mesh HERMES NoC [Mor+04].

This NoC is construced as a mesh topology using wormhole routing. Messages are

transferred by the XY routing algorithm. The bit width of a single flit is 16 bits.

The microkernel operating system provides functions to send and receive data. A task

table identifies the location of each tasks and is updated by the master when a task
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Figure 2.12: Heterogeneous MPSoC consisting of master and slave PEs and a task
repository [Wäc+12]

is mapped to the system. Hence, the task that initiates a communication can use the

task table to address messages.

MeXT-SE

MeXT-SE [PB20] is an MPSoC development tool capable of generating platform inde-

pendent secure MPSoCs by including mechanisms for preventing unauthorized access

to hardware IPs. The user defines the MPSoC by specifying properties such as the

number of processors, memory size, hardware IPs, operating system and FPGA de-

vice. The tool uses a database of third-party IPs and a hardware kernel library to set

up a system description which can be used by tools such as Vivado to generate bit-

streams for FPGAs. The bus-based communication infrastructure that is used inherits

Message Authentication Code (MAC)-based policies to secure the MPSoC.

RVNoC

In [Elm+18], a configurable MPSoC framework is introduced called RVNoC which

produces synthesizable RTL descriptions for ASICs and FPGAs. RVNoC constructs

scalable MPSoCs using configurable PEs, NoCs and a database of accelerators. Due to

the usage of existing IPs, the productivity in designing such MPSoCs is increased. The

MPSoC contains multiple processing tiles that are separated into a core interface layer

and a network interface layer. Fig. 2.13 shows the structure of tiles. Multiple tiles are

connected by the network interface layer to the routers. Inside the core interface layer,

a core based on the RI5CY soft core processor [TG19] communicates to accelerators,

I/O devices and coprocessors through an AXI4 bus. The core uses two Random Access

Memorys (RAMs) for instructions and data. In addition, a ROM that is responsible

for booting is located inside the core interface layer. The network interface layer

communicates to the local ports of the routers using an injector and collector module.
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Figure 2.13: Architecture of RVNoC building block based on [Elm+18]

These modules are respectively connected controllers defined as source Core Network

Interface (CNI) and sink CNI controllers that link registers to the injector and collector

modules. A source control register, a sink control register, a source data register and

a sink data register are directly addressable by the core.

Modular Hybrid Shared Memory MPSoCs

An MPSoC overlay architecture providing a modular memory system is presented in

[Kam+19]. The modular memory system provides configurable shared and private

memory subsystems. The shared memory subsystem is a global scratchpad on-chip

shared memory for data (DTCM) and instructions (ITCM). The private memory sub-

system is a local Tightly Coupled Memory (TCM) to each PE for data and instructions.

The memory subsystems are connected through an AXI crossbar. The sizes of memory

blocks are only limited by the underlying FPGA. The PEs consist of a RI5CY soft-core

processor with a 4-stage in-order pipeline. In order to provide synchronization mech-

anisms between PEs a hardware semaphore is implemented as a separate node to the

AXI crossbar. Additional nodes such as hardware accelerators or interrupt controllers

can be used. Fig. 2.14 presents an overview of such MPSoCs.

The authors of [Kam+19] extend the modular hybrid shared memory MPSoC

with a hierarchical interconnect design for FPGAs in [KHG20]. The system targets

domain-specific and general-purpose applications and can be also considered as a rapid-

prototyping model for the evaluation of different MPSoC configurations. Clusters are

based on the shared-memory system presented in Fig. 2.14 and communicate through

a mesh-based NoC. The underlying NoC is based on ARTNoC [HGE16] that guaran-
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Figure 2.14: A bus-based MPSoC using RISC-V ISA [Kam+19]

Figure 2.15: Overview of an architecture generated by Memphis: a) GPPC cluster with
peripherals and application injector b) internal structure of PE containing a CPU,
scratchpad memory, a router (PS) and a direct memory network interface (DMNI)
(based on [Rua+19])

tees Quality of Service (QoS) in terms of bandwidth and end-to-end latency. Dynamic

partial reconfiguration can be applied to change the configuration of the many-core ar-

chitecture without the need to synthesize the complete architecture again. Moreover,

the memories of PEs can be programmed using partial bitstreams.

Memphis

Memphis [Rua+19] is a framework for heterogeneous many-core generation containing

SystemC models for simulation and VHDL models for prototyping on FPGAs. The

architecture of Memphis is presented in Fig. 2.15. The many-core architecture con-

sists of multiple clusters called General Purpose Processing Cores (GPPC). A GPPC

contains one manager PE and set of slave PEs. All PEs are general-purpose proces-

sors with an Instruction-Set Architecture (ISA) based on MIPS. They are connected

through a mesh-based NoC and build a homogeneous MPSoC structure. Nevertheless,
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heterogeneity can be achieved by adding hardware accelerators as shared peripheral

components. Each PE has its scratchpad memory, a Direct Memory Network Inter-

face (DMNI) that links the CPU and memory to the router that is defined as PS in

Memphis. The DMNI core can be compared with a DMA from a functional point of

view. If the scratchpad memory is not sufficient for applications, additional shared

memory resources can be integrated as peripheral components. A modeled applica-

tion can be inserted through the application injector into the system. The hierarchical

structure of the communication architectures combines the scalability of a NoC with

the well-known AXI bus which is supported by many IP cores.

Summary

Table 2.3 summarizes the MPSoCs by comparing PEs, programming model, commu-

nication and the contributions.
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2.2.3 Discussion

In this section, the state-of-the-art NoCs and MPSoCs presented previously are com-

pared to one of the main contributions of this work called ASIRs. ASIRs provide

processing capabilities during message transactions. Accordingly, they can process

data during transfer times to reduce the workload of processors. Fig. 2.16 represents

visually the impact of ASIRs to the work presented.

A lot of research works presented (see [Fat+16], [PH15], [ZOT20], [Wäc+12],

[Elm+18], [Rua+19]) focus on system generators for NoCs and MPSoCs. They

target systems which are highly configurable to explore the design space and meet

the requirements of various application domains. The design of ASIRs is highly

flexible and can be designed specifically according to an application. Hence, they can

be optimized for certain applications. As the internal processing capability can be

programmed using a high-level language, ASIRs are well suited to extend the design

space of state-of-the-art NoC and MPSoCs generators.

A bus-based MPSoC as presented in [Kam+19] has limited scalability when the

number of processors grows due to the limitation in terms of scalability of a bus. As the

number of processors grows, a bus can lead to a drop in the attainable clock frequency.

The wire lengths of the bus signals increase when the number of processors rises and an

increased wire length decreases the attainable clock frequency. In general, NoCs can

provide higher frequencies for large MPSoCs and hence, a better scalability [HWC04].

Therefore, bus-based systems like [Kam+19] can benefit in general from NoCs. An

essential feature of [Kam+19] is the use of hardware semaphores connected to the bus.

An ASIR-based NoC can be used to extend the synchronization mechanisms similar

to hardware semaphores. For instance, ASIRs can tag messages with a timestamp

that are transferred to a hardware semaphore. Timestamps can be analyzed by the

hardware semaphore to decide which processors get the lock. Accordingly, lock requests

are granted independently from the position of the processors. Thus, Kamaleldin et al.

[Kam+19] enhance the MPSoC with improved hardware synchronization mechanisms

for NoC-based MPSoCs.

Besides hardware synchronizations, various QoSs can be realized by ASIRs for dif-

ferent application domains. Secure NoCs (see [WZL20a] and [Rei+20]) and MPSoCs

(see [PB20]) can extend their security mechanisms by using ASIRs. Functions such

as firewalls, encryption/decryption algorithms and authentication methods represents

only a subset of the possible operations that can be implemented in ASIRs. Fur-

thermore, systems as presented in [Rua+19] can improve their reliability by realizing

functions such as fault detections and recovering methods directly in ASIRs.

In [SLD19], a ring-based NoC is presented providing a shared central memory to

40



2.2. SCALABLE COMPUTING AND COMMUNICATION ARCHITECTURES

buffer messages. The topology can be considered as multiple rings that are connected

through links. ASIRs are originally implemented for mesh-based NoCs. Nevertheless,

the general idea behind ASIRs is not restricted to mesh topologies. The ring topology

combined with ASIRs could provide an architecture consisting of multiple computing

domains. Each ring offers another type of QoSs such as compression, filtering or sorting

algorithms. Hence, a message that shall be processed by ASIRs needs to be transferred

to the appropriate ring and accordingly, it can profit from the corresponding computing

domain.

Routers that transfer messages using buffered routing such as in [BPT19] can be

easily transformed to ASIRs. The internal input buffers can be exchanged by pro-

cessing units from ASIRs due to their modular structure. NoCs that are optimized

in terms of resource utilization for FPGAs often use bufferless routers as presented in

[SFM18], [RV19], [KG15], [WPK17], [SK18] and [Gra16]. Bufferless routing minimizes

the resource consumption of the buffers implemented in FPGAs. Moreover, deflection

routing is often used which makes the allocation of tasks to ASIRs difficult, since the

routing is random-based. However, a combination of ASIR-based and bufferless NoCs

can provide advantages from both systems. A possible combination can have an irreg-

ular structure consisting of sub-networks that are either based on ASIRs or bufferless

routers. A controller that manages the traffic between these sub-networks is needed.

Hence, an application can benefit from both systems. Another option is to equip each

router with processing capabilities that provide the same operations. If every opera-

tion takes one cycle, bufferless routing can be performed since all messages are sent

or processed within the same time. Furthermore, as every ASIR supports the same

operations, a mapping of tasks becomes obsolete.

Traffic with mixed priority is introduced in [SK18]. In order to meet the mixed

priority requirements, it has to be ensured that the lower priority traffic processed by

ASIRs does not block the higher priority traffic. This can be achieved by employing

virtual channels. Traffic with different priorities is routed through different channels.

Generally, the low priority traffic tends to be superseded by high priority traffic result-

ing in delays. These delays can be efficiently used by ASIRs for processing. According

to that, mixed priority traffic implicitly leads to efficient usage of delays by ASIRs.

The need of real-time capability in NoCs is discussed and realized in several research

works (see [WPK17],[GN20], [KHG20]). In general, ASIRs can be used to reduce the

workload of processors and therefore, they can also help to meet the timing deadlines

of the processors. Nevertheless, the calculation of upper timing bounds is more com-

plicated due to the application-specific realization and additional processing during

routing. Thus, it is also recommended to use virtual channels providing different layers
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inside the NoC. Real-time NoCs can be combined with ASIRs without increasing the

complexity of calculating bounds by establishing a layer that is only used for traffic

with real-time constraints. The other layers provide ASIR functionalities, while the

timing constraints are still guaranteed by the layer for real-time traffic.

42



2.2. SCALABLE COMPUTING AND COMMUNICATION ARCHITECTURES

R
ed

u
ci

n
g 

th
e 

w
o

rk
lo

ad
 o

f 
p

ro
ce

ss
o

rs

D
ec

re
as

in
g 

th
e 

co
m

m
un

ic
at

io
n

 
o

ve
rh

ea
d

&

A
SI

R
s

Su
pp

o
rt

in
g 

 t
o

 
fu

lf
ill

 r
ea

l-
ti

m
e 

re
q

u
ir

em
en

ts

[W
as

17
],

 
[G

o
n2

0
],

[K
am

20
]

Ta
ki

ng
 

ad
va

n
ta

ge
 o

f 
st

al
l t

im
es

 in
 

m
ix

ed
-p

ri
o

ri
ty

 
tr

af
fi

c
[S

18
]

B
u

ff
er

le
ss

 N
o

C
s

 c
o

m
b

in
ed

 
w

it
h 

A
SI

R
-b

as
ed

 
N

o
C

s

[S
ha

18
],

 [
R

ed
19

],
[K

ap
15

],
 [

W
as

17
],

 
[S

18
],

 [
G

ra
16

]

[B
M

19
]

Si
m

pl
e 

ex
ch

an
ge

 in
 

b
uf

fe
re

d
 r

ou
te

rs

Ex
te

n
si

on
 o

f 
se

cu
re

 
m

ec
h

an
is

m
s

[W
an

20
a]

, 
[R

ei
20

],
[P

an
20

]

[S
ia

19
]

Pr
ov

id
in

g 
Q

o
Ss

 p
er

 
ri

ng
 n

et
w

o
rk

[K
am

19
]

Ex
te

n
si

o
n

 o
f 

sy
n

ch
ro

ni
za

ti
o

n
 

m
ec

h
an

is
m

s

E
xt

en
si

o
n

 o
f 

re
lia

bi
lit

y 
m

ec
h

an
is

m
s 

[R
u

a1
9

]

[F
at

16
],

 [
P

ap
15

],
[Z

h
a2

0
],

 [
W

äc
12

],
[E

lm
18

],
[R

u
a1

9
]

N
ew

 d
es

ig
n

-s
p

ac
e

d
im

en
si

on
 f

or
 

ge
n

er
at

or
s

F
ig

u
re

2.
16

:
Im

p
ac

t
of

A
S

IR
s

to
st

at
e-

of
-t

h
e-

ar
t

N
oC

s
an

d
M

P
S

oC
s

43



CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

2.3 Comparison between ASIRs and Related Ar-

chitectures

ASIRs reduce the cost of transmitting data by adding processing capabilities to the

communication layer. The idea of reducing the cost of data transmission and the

workload of processors is also known in other domains.

Network-Interface-Cards (NICs) establish connections between servers and net-

works. They have high demands in terms of bandwidth for applications such as High

Performance Computing (HPC) and artificial intelligence [SR15]. Programmable NICs,

so-called smartNICs, have been created to move workload from the server to the net-

work. A smartNIC is able to perform algorithms on the data that is transferred from

the server to the network. Xilinx presented a smartNIC called Alveo for accelerating

data center applications focussing on Deep Neural Networks (DNNs) [Xil18b].

NoCs attempt to scale down the concept of large-scale networks to an on-chip

solution. In this context, ASIRs try to scale down the approach of moving workload

from servers into the network by providing stream-oriented processing within a NoC.

ASIRs take this approach one step further. The equivalent counterpart of smartNICs in

large-scale networks would be a network interface with processing capability for NoCs.

ASIRs allow the distribution of processing capabilities to the complete network that

data can be processed anywhere in the NoC.

Another domain that has similarities to ASIRs is memory computing. To speed

up the access times of memory architectures, the concept of memory hierarchies has

been introduced [HP11]. The general principle behind this is to provide hierarchies

consisting of memory systems with different access times. Data that is used frequently

is stored in memories providing fast access times, while data that is used less frequently

is stored in memories providing slower access times. Typically, memory with slower

access times is cheaper and provides a larger capacity. Hence, memory hierarchies

provide a tradeoff between performance and capacity. In-Memory Computing (IMC)

is an approach that equips a memory system with processing capability. Gauchi et

al. [Gau+19] presents a scalable system inspired by Single Instruction Multiple Data

(SIMD) architectures. The system contains a processor and a set of tiles with IMC

units. Each tile can perform vector operations of different sizes. A CPU controls IMC

tiles by sending IMC instructions through an interconnect. Data that is moved to

an IMC tile can be processed using vector operations inside the memory. An IMC

architecture based on resistive RAM crossbar arrays is shown in [WZL20b]. The IMC

architecture supports an instruction set of 10 instructions. Another work showing the

benefits of IMC is presented in [Yin+20]. S. Yin et al. [Yin+20] introduce a hardware
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accelerator for DNNs. Several instances of SRAM cells are combined with digital

circuits for DNNs. The IMC accelerator supports configurable multibit activations and

large-scale DNNs while improving the chip-level energy efficiency. [Val+19] presents

another IMC unit that focuses also on acceleration of neural networks. The IMC unit

performs analog/binary input activation, first layer operations and binary hidden layer

operations with batch normalization. Cascading these units enables the realization of

different DNN layers.

Contrary to IMC, Near-Memory Computing (NMC) adds accelerators as close as

possible to the memory. Huang et al. [Hua+19] propose an active-routing approach

that moves computation closer to a memory network. A hybrid memory cube [Paw11]

is used to demonstrate the approach of active routing by integrating scatter-gather

operations in the memory network. The logic layer of the hybrid memory cube is the

entry point of the intra-cube network for I/O handling. Huang et al. [Hua+19] add

an active-routing engine to this layer which contains an ALU. Research works of IMC

and NMC show that the integration of processing capabilities into data movement is a

promising compute paradigm.

The general idea of IMC and NMC is to unload the processor and use processing

capabilities during data transfers between memory and processor. Most of the MPSoCs

presented in Section 2.2.2 uses a message passing-based approach to exchange data. In

such systems, IMC and NMC can be only applied locally per node that is connected

to the NoC. Data transfers that are performed between nodes cannot benefit from

memory computing, since no shared memory communication is applied. ASIRs close

this gap by providing processing capabilities inside a NoC.

[Kha+19], [FOS09], [SSF15] and [San+20] presents related works that also extend

NoCs with computational processing power. In the following, the differences to ASIRs

are discussed.

Artificial neural networks are networks that emulate neurons inspired by the na-

ture. In [Kha+19], a flexible NoC overlay called N²OC (Neural-Network-on-Chip) for

hardware implementations of different types of neural networks is presented. Fig. 2.17

shows an example of a neural network implemented on N²OC that computes a three

hidden layer-based network. The general design of an N²OC is based on a mesh topol-

ogy that scales in terms of network size. A neuron weights incoming input signals,

sums them up and uses an activation function to calculate the output. In N²OC, the

PEs emulate the neurons and are developed directly in VHDL as hardware modules.

The inputs of the input layer are inserted at the router ports except for the local port

which is reserved for the PE as shown Fig. 2.17. The utilization of this FPGA-based

NoC provides a reconfigurable neural network approach that can change the neural
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Figure 2.17: Example of N² OC structure for a three hidden layer network [Kha+19]

network structure within the NoC. The neural network size is limited by the size of the

NoC which is set at build time. The entire N²OC can be considered as a co-processing

component providing a neural network engine within a NoC. However, the implemen-

tations of neurons are connected as conventional PEs to the NoC. ASIRs integrate a

processing layer inside the routers. It is obvious that data processed within the NoC

is not transmitted through a network interface to the PE and back for processing.

This would lead to an additional delay. The additional delay is not only caused by

the transmission through a network interface. Moreover, a message that is transferred

through a network interface requires a destination address which must be created.

Fernandes et al. [FOS09] introduce a new programming model based on NoCs that

is called Integrated Processing NoC System (IPNoSys). IPNoSys is a NoC-based dat-

apath architecture containing routers without processors attached through a network

interface. Besides routing of messages, these routers are able to perform operations

on the message. The architecture of IPNoSys is presented in Fig. 2.18. It shows a

4x4 mesh topology of routers called Routing and Processing Units (RPUs). At every

corner of the mesh topology, a memory is located and connected to the NoC through a

Memory Access Unit (MAU). A MAU controls also I/O accesses using an IONode that

is linked to an IO device. The IO device can send data either to a connected MAU

called IOMAU or to the memory. An arbiter prioritizes requests coming from the

IOMAU or the IONode. An IPNoSys application is represented by a graph containing

edges and nodes. Each node represents a task and each edge the communication be-

tween tasks. A task of the node is written in a packet format that can be sent through

the NoC. While a packet and the associated task are transferred through the NoC,

instructions of the task are executed on the data that is sent. IPNoSys provides an

own ISA consisting of 32 instructions. Packets are removed and inserted from the NoC
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Figure 2.18: Overview of IPNoSys [FOS09]
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Figure 2.19: Overview of IPNoSys II [SSF15]

by the MAU that transfers them to its memory. IPNoSys can only handle applications

that have up to four parallel tasks.

IPNoSys II is an extension of IPNoSys presented in [SSF15]. IPNoSys II reduces

the number of RPUs while providing more performance and executing more than four

parallel tasks. The RPU datapath and the memory resource including the MAU inter-

face are grouped as a Packet Processing Unit (PPU). Four PPUs communicate through

a Communication and Synchronization Unit (CSU) as presented in Fig. 2.19. A single

packet with multiple instructions is processed by multiple RPUs. In IPNoSysII, a single

packet containing a task can be processed by a single PPU. The approach using multi-

ple PPUs containing local memory for synchronization and communication is from an

architectural point of view closer to an MPSoC with specialized PEs than a NoC that

processes data during message transfers. The MAU acts as a network interface that

connects memory resources to the processing core and additionally, to the NoC.

Another difference to ASIRs is the model of computation. IPNoSys and IPNoSys

II focus on a new programming model that relies completely on computations inside
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the NoC. Contrary, a NoC using ASIRs can be considered as a scalable hardware accel-

erator shared between multiple PEs which also provides communication mechanisms.

The PEs are still used in an ASIR-based MPSoC. It combines stream-oriented comput-

ing with message passing while IPNoSys does not use dedicated PEs located at each

router. Moreover, the ISA of IPNoSys is more fine-grained in comparison to ASIRs.

Nevertheless, the internal processing units in ASIRs can be flexibly designed using

HLS.

SnackNoC [San+20] takes the idea of ASIRs and evaluates the execution of linear

algebra kernels within a NoC. It proposes to reuse the NoC hardware resources for

processing computational kernels during slack times. Each router is augmented with

an execution unit capable of computing operations by a Router Compute Unit (RCU).

Inside the RCU, a Central Packet Manager (CPM) is used as the main controller of

SnackNoC. It assembles and issues instructions, manages states for SnackNoC kernels

and acts as a memory interface. Instructions are mapped to RCUs through a dedicated

virtual network using so-called instruction flits. The instructions are stored in a local

queue of the router and as soon as the data arrives, the RCU processes the message in

the respective router. An architectural overview is given in Fig. 2.20.

From an architectural point of view, two main differences exist between an ASIR-

based NoC and SnackNoC:

� The ALU is located beside the input buffer in SnackNoC. ASIRs has a processing

unit inside the buffer.

� Instructions are transferred via virtual channels in contrast to ASIRs, which do
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not explicitly use virtual channels for instruction flits. The instruction flits are

located beside the data in the same message.

SnackNoC can process messages from different input channels using the RCU, since

all input channels are connected to the RCU as shown in Fig. 2.20. ASIRs cannot

execute operations on data coming from different input channels. However, ASIRs

can have multiple ALUs per router, because every input buffer can be exchanged with

a processing unit. This allows the parallel execution of messages arriving at different

input channels. The ALUs inside ASIRs cannot be blocked by messages as it is possible

in SnackNoC. Moreover, messages are stored in the input buffer before they can be

transmitted to the RCU, while routers in ASIRs process incoming messages directly

without buffering them in the input buffers. If messages are first stored in a buffer and

then processed in a processing unit such as an ALU, the procedure is similar to the

conventional approach of sending messages via an output port to a hardware accelerator

and transferring the processed data back to the NoC through an input channel which is

not the focus of ASIRs. In addition, a shared RCU creates overhead because conflicts

between multiple requests have to be managed.

The programming of SnackNoC is based on dataflow models. An Application Pro-

gramming Interface (API) layer provides a set of methods to execute linear vector and

matrix operations. In general, the API abstracts the programming of SnackNoC in

a way in which the programmer does not have to worry about building instruction

flits and messages which is similar to ASIRs programming model. SnackNoC can be

extended in terms of operations, according to the authors. This would result in an

extension of the API which maps the new methods to the existing ALU. ASIRs of-

fer a methodology to optimize even the internal processing unit containing the ALU.

Thereby, HLS tools are used to have the design on the same abstraction level as the

programming of the PEs in ASIRs.

Table 2.4 shows the differences between ASIRs and related architectures. To the

best of the author’s knowledge, ASIRs are the only routers that provide a scalable

topology with application-specific operations that can be flexibly designed using HLS

and executed in the buffer of the router without additional delays caused by detours.

2.4 Software-defined Architectures using High-

Level Synthesis

To overcome the productivity gap in FPGA-based designs, HLS tools can be used.

Programming FPGAs using a high-level language leads to better productivity instead
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Table 2.4: Comparison between architectures providing network computing capabilities

Work
Processors
connected
to NoC

Programming
Flexibility

Operations
Merging
messages

Scalable
Processing
Unit inside
buffers

[Kha+19] ✓ + Neural Networks ✓ ✓ -
[FOS09] - ++ 32 Instructions - - -
[SSF15] - ++ 32 Instructions - ✓ -
[San+20] ✓ + Linear algebra kernels ✓ ✓ -
ASIRs
([Ret17f],
[Ret18a],
[Ret21a],
[Ret21b])

✓ +++
Application-Specific
based on HLS

- ✓ ✓

of using a low-level hardware description language. From a programmer’s point of view,

the development and programming of heterogeneous systems are done on the same level

of abstraction when implementing hardware accelerators using HLS. In this work,

software-defined architectures are defined as systems whose architecture is designed

using a high-level language. HLS tools can be used to synthesize an architecture for

FPGAs designed in a high-level language.

A taxonomy for systems developed with HLS is defined in Table 2.5. This taxon-

omy divides a system based on the number of processors and the number of hardware

modules that can communicate through a communication interconnect such as a bus or

a NoC. The number of processors ranges from none over single to multiple processors.

In Table 2.5, Central Processing Unit (CPU) is used to represent a processor. The

number of hardware modules ranges from single to multiple. A system that uses no

processor and only one hardware module inside the FPGA describes the conventional

workflow of HLS tools. An example of such a system is presented in [LKO20] which

shows an implementation of a signal processing algorithm for radars. The step from

a single hardware module to multiple modules is not far apart. Different hardware

modules must be separated by the high-level programming language that is used. The

hardware modules that are described individually communicate through a communi-

cation infrastructure. Adding a single processor to the hardware modules increases

further the flexibility. Processor and hardware modules can be programmed with the

same programming language. However, processors provide still more flexibility. For

instance, several software libraries exist that have proven their functionalities in a lot

of systems and cannot be synthesized using HLS tools. The last column describes the

case in which multiple processors utilize one or multiple hardware modules. Multiple

processors can share a single hardware module as an accelerator to minimize area.

Adding multiple hardware modules increases the area, but it has benefits in terms of
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Table 2.5: A taxonomy for HLS based on system complexity [Ret20]
Number of Processors

None Single Multiple

Number
of

Hardware
Modules

Single
HW

Communication

HWCPU

Communication

CPU HWCPU

Multiple
Communication

HWHW

Communication

HWCPU HW

performance due to less conflict potential. As multiple hardware modules can be used

in parallel, the potential of resource conflicts between processors which would lead to

stall times is decreased. A hardware module can also be connected exclusively to a

processor. As a result, the use of the hardware module is only owned by the con-

nected processor. However, the taxonomy is not limited to the different connections of

hardware modules.

Most of the HLS tools such as Bambu [PF13] and Vivado HLS support the synthe-

sis of a single hardware module. Bambu [PF13] is an HLS tool that transforms most

of C constructs into hardware. A C-program containing a behavioral description of

the synthesizable function is transformed into an HDL description of a corresponding

RTL implementation. This HDL description is compatible with commercial synthesis

tools. Vivado HLS is a commercial HLS tool from Xilinx supporting C, C++ and

SystemC. It synthesizes a software program into an RTL description which can be im-

plemented in FPGAs. Several optimizations such as pipelining and loop unrolling can

be programmed by inserting pragmas. Another HLS tool named LegUp is presented

in [Can+13]. LegUp which is open-source can transform a C-program into a hard-

ware description. The C-program is not allowed to contain recursive structures and

dynamic memory allocation. Additionally to C, it supports OpenMP and Pthreads

and synthesizes them into parallel hardware structures.

An HLS tool which generates multiple hardware modules is presented in [Mor+16].

J. Y. Mori et al. propose a method, which reduces the design time of HLS. In order to

achieve this, a database of hardware modules is necessary. A C-program is analyzed

to generate a task graph that has a finite number of nodes. In this regard, a node can

be separated by function calls. An optimization algorithm determines which hardware

module is mapped to a node. If a node is not available in the database, other HLS

tools can be used to synthesize this node. The database containing pre-synthesized

hardware modules speeds up the design time.
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The second column of Table 2.5 presents HLS of a program written in a high-level

language into single or multiple hardware modules connected to a single processor. For

this purpose, parts of the program are synthesized in hardware, while the remaining

part is compiled for a processor. The communication between the processor and hard-

ware modules is automatically managed. LegUp can be additionally used to generate

program codes for a MIPS processor or an ARM processor connected to a single hard-

ware module. The hardware module can be described by a function definition. Altera’s

memory-mapped on-chip bus is used as a communication infrastructure between the

processor and accelerator.

A commercial tool from Xilinx is SDSoC [Xil19c]. It uses Vivado HLS to synthesize

functions of a C/C++ program. The remaining program is compiled for an ARM pro-

cessor which communicates through an AXI bus to the hardware modules. It supports

Linux-based or bare-metal software projects for the ARM processor. All optimizations

from Vivado HLS can be also applied to SDSoC. Furthermore, the number of hardware

modules is only limited by the resources of the FPGA. In [Ret17e], a hardware/soft-

ware co-design of a Histogram of Oriented Gradients (HOG) algorithm is implemented

using SDSoC.

As the system-on-chip evolves to multi-core systems, the HLS from a single proces-

sor with hardware module evolves to a multiprocessor system as well. The number of

hardware modules can range from single to multiple. Since SDSoC supports operating

systems, a program implemented by a high-level language can contain multiple threads

or processes. The ARM processor is a dual-core Cortex-A9 processor containing two

cores that can be used to concurrently run threads or processes. However, the ARM

processor is limited to these two cores. In [Pal+19], a methodology is proposed that

uses an RVC-CAL dataflow program for HLS to a heterogeneous MPSoC for IoT appli-

cations.The architecture and the constraints of the application are defined separately

apart from the RVC-CAL program. A compiler called Orcc translates the RVC-CAL

program into source code for different targets. Vivado HLS is used to synthesize the

hardware modules of a heterogeneous platform.

Section 5.3 of this works presents an approach that synthesizes an MPI-based pro-

gram into an MPSoC consisting of multiple PEs (see [Ret20]). The PEs can be im-

plemented as microblaze processors with optional accelerators or specialized hardware

modules synthesized by Vivado HLS. Although the main focus of this work is the high-

level synthesis of heterogeneous MPSoCs, a single microblaze processor can also be

implemented with hardware modules.

Taking the previously mentioned approaches into account, this work and SDSoC are

the only approaches that cover HLS of one or more processors with hardware modules.
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SDSoC is limited to the Zynq [Xil18d] and Ultrascale+ [Xil20] SoCs. Both SoCs consist

of ARM processors besides an FPGA. Since the ARM processors are not FPGA-based,

the scalability regarding the number of processors is limited. Furthermore, a lot of

applications such as [SSR17], [Far+15] and [KSD17] only require microblaze processors

due to system requirements. In contrast to SDSoC, this work supports the integration

of microblaze processors to any FPGA supported by the Vivado tools. In addition, it

provides higher scalability, since the number of microblaze processors is configurable

and only limited by the FPGA resources.

2.5 Summary

Section 2.1 describes the function and structure of reprogrammable FPGAs that are

able to realize any logic circuit. Modern FPGAs can integrate multiple processors

or hardware accelerators in a single chip. Contemporary Xilinx FPGAs such as the

Zynq-7000 SoC [Xil18d] have a dual-core ARM processor connected to an FPGA that

provides a hardware/software co-design architecture for a wide variety of systems in-

cluding NoC-based MPSoCs. HLS can be used to program FPGAs using high-level

languages such as C/C++. Moreover, Xilinx FPGAs support dynamic partial recon-

figuration which enables the programming of certain areas of the FPGA interrupting

the remaining area. In this context, relocation describes the usage of the same partial

bitstream for multiple areas spatially distributed on an FPGA.

Section 2.2.1 explains the structure of NoCs and presents state-of-the-art NoCs pro-

viding communication mechanism. Various research works focus on different goals such

as high performance, reliability and security. Furthermore, state-of-the-art MPSoCs

are presented in Section 2.2.2 ranging from homogeneous to heterogeneous structures.

ASIRs [Ret18a][Ret17f] [Ret21a] [Ret21b] are one of the main contributions of this

work. Therefore, Section 2.3 compares ASIR-based NoCs with realted architectures

that perform data operations during data transmissions. This comparison shows that

ASIRs are the first approach to process data directly inside the input buffer during

routing without rerouting to another processing core.

The progress in NoC-based MPSoC requires efficient methods for designing and

programming. Section 2.4 presents software-defined approaches to develop FPGA-

based systems. In this work, software-defined means designing a system on the same

level as the programming of software is conducted. A taxonomy for software-defined

FPGA-designs based on the system complexity is presented.
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Chapter 3

From Conventional Routers to

Application-Specific Instruction-Set

Routers (ASIRs)

This chapter presents architectural design concepts of NoC-based Multi-Processor

Systems-on-Chip (MPSoCs) with the focus on on-chip communication by exploring

NoC designs and showing approaches that integrate and use processing units in a

Network-on-Chip (NoC).

First, the structure of a router used as a baseline in this work is explained besides

network interfaces that allow the construction of MPSoCs on a Xilinx Zynq SoC us-

ing MicroBlaze processors and ARM processors. Furthermore, the impact of routing

algorithms such as the XY, West-first and a combination of both algorithms on the

traffic load is explored (based on [Ret14]). Different traffic scenarios are evaluated and

show that a combination of routing algorithms reduces the traffic load and increases

the NoC throughput. Nevertheless, it is highly specific to a traffic scenario. Moreover,

an MPSoC equipped with a soft-realtime Linux-based operating system is evaluated in

the context of image processing. The operating system is called Linux-based Realtime

Operating System (LinROS) [Ret16d]. It eases the programming of reconfigurable MP-

SoCs by providing a framework for hardware and software tasks. In general, LinROS

presents a reconfigurable MPSoC for stream-oriented image processing applications.

The evaluation clearly shows that placing communicating processors or accelerators

closely together decreases the communication overhead.

Subsequently, an approach is presented that improves the communication overhead.

It extends the internal input buffers of routers with processing units providing multiply-

accumulate operations [Ret17g]. Messages that enter the input buffer can be directly

processed by a processing unit or forwarded without processing. By processing it
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directly in the router, the processing power is moved as close as possible to data

that is transferred through the NoC. The router architecture is developed in VHDL

and analyzed in terms of hardware resources by comparing different implementations

optimized for Xilinx Field Programmable Gate Arrays (FPGAs). This architecture can

efficiently use the communication overhead but lacks on flexibility.

Application-Specific Instruction Set Routers (ASIRs) ([Ret18a], [Ret17f]) are pre-

sented that are not limited to multiply-accumulate operations as they can be pro-

grammed flexibly with any logic. The processing unit is designed by C/C++ using

High-Level Synthesis (HLS). HLS provides higher flexibility in terms of processing

capabilities as well as a higher design abstraction. The internal buffers of routers

are exchanged by these processing units, and consequently, incoming messages can

be optionally processed during routing. In addition, wormhole routing is extended to

wormhole computing in this context.

The chapter is structured as follows. Section 3.1 explores the structure of a router

that is used as a baseline for further work regarding traffic load and in a stream-oriented

MPSoC for image processing. Section 3.2 presents router architectures supporting data

processing in NoCs and the modifications that are needed to extend an MPSoC with

these approaches. Section 3.3 summarizes this chapter.

3.1 Architecture Exploration of NoC-based MP-

SoCs

As presented in Section 2.2.1, a wide variety of different NoC architectures exists aiming

different optimizations. Accordingly, the design space of NoC-based MPSoCs is huge

as a lot of different configurations such as the topology, the routing algorithm and the

type of Processing Elements (PEs) exist. In this section, the router that is used as

a baseline is introduced and evaluated by showing the impact of routing algorithms

on the throughput and the traffic load. Moreover, a comparison between the usage

of different PEs for an image processing application is explored. In this context, a

scheduler is designed that uses dynamic partial reconfiguration to support the mapping

of hardware and software tasks. Hardware tasks are executed by accelerators while

software tasks are performed by MicroBlaze processors. The scheduler is integrated

into a Linux-based real-time operating system.
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Figure 3.1: Overview of the internal router structure

3.1.1 Router Model for Mesh-based NoCs

Routers are the main component of NoCs since they control the transmission of mes-

sages. Mesh-based NoCs allow the use of the routing algorithms described in Section

3.1.1. In addition, the regular structure allows a simple adjustment of the NoC dimen-

sions by adding or removing routers.

Fig. 3.1 gives an overview of the router structure which served as a basis for all

further work within this dissertation. A single router forwards a message from an input

to an output port depending on the routing algorithm. The local port connects a router

with a PE through a network interface in contrast to the north, south, east and west

ports that establish a connection to ports of other routers. The flow units (flits) of a

message enter a router through an input port and leave the router through an output

port. Depending on the output port, flits are transmitted either in north, east, south,

west or local direction. A routing algorithm that is locally computed by a routing

component decides which output port is chosen. The XY routing algorithm is mainly

used in this thesis. Every input port has an input buffer that can queue a flit. The

depth of the buffer determines the number of flits that can be temporarily stored. In

this thesis, the depth is configurable and reduced to a minimum size of one flit by

default. The outputs of the buffers are linked to a crossbar whose output ports are in

turn the output ports of the routers. The crossbar can connect any input port to any

output port. However, the XY routing algorithm restricts the crossbar. For instance,
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Figure 3.2: Data exchange between master and slave using AXI4-Stream protocol:
TVALID before TREADY handshake

a message that enters the router at the north input port can only leave the router at

the south or local output port. Thus, connections from north to east and north to west

are not necessary. As the opportunity of adding a new routing algorithm is kept, a

general crossbar is implemented. The configuration of the crossbar is set by selection

lines which are controlled by the arbiter. The routing algorithm is computed by the

routing component which consists of a Finite-State-Machine (FSM). The input ports

are monitored by the routing algorithm to identify the destination address specifized

in the header flit of a message. The FSM controls the router and sets the selection

lines that are linked to the input of the arbiter. If more than one flit tries to access

the same output port, a resource conflict between multiple input ports occurs. The

output port can only be accessed by one flit at one point in time. Therefore, the arbiter

solves this conflict by granting only one flit. A fixed priority arbiter is implemented due

to its simplicity and lightweight implementation. The router structure shown in Fig.

3.1 enables a concurrent forwarding of flits entering and leaving the router through

different ports. The complete router model is developed in VHDL and synthesized for

FPGAs.

Input Buffer

The input buffer of the router can store flits that are transferred via an AXI4-Stream

protocol [Xil17]. This component enables the buffering of messages in case a flit cannot

be forwarded to the next router or processor.

Generally, the AXI4-Stream protocol can be used to link a component that sends

data to a component that receives data. In bus systems, the component that sends

data or initiates a transaction is called master and the component that receives data

or reacts on the initiation is called slave.

A transaction based on AXI4-Stream protocol uses the signals: CLK, DATA,

TVALID and TREADY. The signal CLK is used as a clock wire to synchronize between

a master and a slave component. The signal DATA transfers the information from the

master to the slave component. The signal TVALID indicates when the master com-

ponent is ready for the data transfer. The signal TREADY indicates when the slave
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Figure 3.3: Data exchange between master and slave using AXI4-Stream protocol:
TREADY before TVALID handshake
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Figure 3.4: Data exchange between master and slave using AXI4-Stream protocol:
TVALID with TREADY handshake

component is ready for the data transfer. Fig. 3.2, Fig. 3.3 and Fig. 3.4 show timing

diagrams of AXI4-Stream-based transactions. Three different handshakes are shown

in these figures. Fig. 3.2 presents that the master is ready (TVALID = ’1’) before

the slave component is ready (TREADY = ’1’) to transfer data. In Fig. 3.3, the slave

component waits for data before the master component is ready to send. Fig. 3.4

presents that the master and the slave component are ready at the same time. In all

cases, data must be valid when TREADY and TVALID are active at the same rising

clock edge. At this point, the slave component receives the data.

The routers developed in this thesis use an additional control signal defined as

TLAST which is optional in the AXI4-Stream protocol. The signal TLAST indicates

the end of a series of transactions as presented in Fig. 3.5. In this thesis, an active

TLAST is used to determine the end of a message. In other words, the tail flit is

indicated by an active signal TLAST.

Input buffers can store a single data word with a configurable bit width. A data

word is the same as a flit which has a bit width of 32 bits.

CLK

DATA[31::0]

TVALID

TREADY

TLAST

Figure 3.5: A series of data transfers indicate the end with signal TLAST
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Figure 3.6: Overview of the routing component

Crossbar

The crossbar is a connection matrix that can connect every input port to every output

port. It is implemented as an asynchronous process and is controlled by the arbiter.

Fig. 3.6 gives an overview of the structure. It is an arrangement of five multiplexers

and five demultiplexers, since five input and output ports are needed.

Every input port is connected to a demultiplexer that links this port to one of five

multiplexers. The demultiplexers decide to which output port a message is forwarded

based on the routing function. The multiplexers located at the output side of the

crossbar can be used to solve conflicts, if multiple messages access the same output

port.

The selection signals have a bit width of three bits enabling eight possible configu-

rations of the multiplexers and demultiplexers. Since a router has only five input und

five output ports, five configurations are only used to select the connection. Setting

the selections signals to one of the remaining three configurations leads to a default

configuration in which the output signals of the corresponding port are set to ’0’.

Fig. 3.7 presents an example of a crossbar configuration that links the north input

port to the local output port and the west input port to the north output port.
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Figure 3.7: Example of a crossbar configuration: North input to local output and west
input to north output
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Figure 3.8: Overview of the routing component

IDLEstart BUSY

<PORT> INPUT TVALID = ’1’

<PORT> OUTPUT TLAST = ’1’
<PORT> OUTPUT TVALID = ’1’
<PORT> OUTPUT TREADY=’1’

Figure 3.9: Finite-State-Machine to control the routing component

Routing

Fig. 3.8 shows the structure of the routing component. The routing component locally

computes an outgoing port for every message that enters the router. This computation

is executed in parallel for every input port (Five Ports: North, West, South, East and

Local Port). Therefore, the routing component has five subcomponents that concur-

rently perform the XY routing algorithm. In each subcomponent, there is an FSM

to control the computation as shown in Fig. 3.10. The input signals of the routing

component are a subset of the input and output signals of the buffers and signals of

the crossbar. The output signals of the routing component give a configuration of the

crossbar that is checked by the Arbiter. This configuration can contain requests that

multiple input ports access the same output port, as every subcomponents selects a

configuration independently from the other subcomponents.
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Listing 3.1: Pseudocode of XY routing algorithm✞ ⊵
1 XY Routing Algorithm (X,Y) :
2 i f (X > XROUTER) then
3 forward to EAST ( )
4 e l s e i f (X < XROUTER) then
5 forward to WEST ( )
6 e l s e i f (Y > YROUTER) then
7 forward to SOUTH ()
8 e l s e i f (Y < YROUTER) then
9 forward to NORTH ()

10 e l s e
11 forward to LOCAL ( )✝ ✆

A subcomponent computes the output port based on the destination address that

consists of an X and Y address. A pseudocode of the XY routing algorithm is shown

in Listing 3.1. The destination address is extracted from the input signals of the

corresponding buffer when the header flit arrives. The destination address has either

a size of 4 bits or 6 bits in this thesis. The address size is configured using generics in

VHDL. Initially, the XY routing algorithm routes a flit in the X dimension until the X

address of the router (X ROUTER) is equal to the X address of the destination. This

can be seen in lines 2 and 3 of the pseudocode. If the X address is greater than the

X ROUTER address, the flits must be forwarded to the east port. If the X address is

smaller than the X ROUTER address, the flits must be forwarded to the west port.

Subsequently, the Y address is compared to the Y address of the router (Y ROUTER).

If the Y address is greater than the Y ROUTER address, the flit must be forwarded to

the south port. If the Y address is smaller than the Y ROUTER address, the flits must

be forwarded to the north port. In all other cases, the flits can be forwarded to the local

port as the destination address must be equal to the router address. This algorithm

assumes a positive Y dimension from north to south and a positive X dimension from

west to east.

The FSM is presented in Fig. 3.9. It has two states: IDLE and BUSY. The

initial state is IDLE. Depending on the signals <PORT> INPUT TVALID,

<PORT> OUTPUT TLAST, <PORT> OUTPUT TVALID and <PORT>-

OUTPUT TREADY, the state changes. The prefix <PORT>can be substituted

by NORTH, EAST, SOUTH, WEST and LOCAL. In IDLE state, the routing

component waits for an incoming flit which is a header flit, since the first flit of a

message is always a header flit. The output of the FSM is set to a default value that

does not connect the input buffer to any output port. This default configuration

cannot create a resource conflict in the arbiter. A header flit arrives when the signal

<PORT> INPUT TVALID is the first time active. At this moment, the output of the
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XY Routing 
Algorithm 

FSM 
CLK 

Figure 3.10: Overview of the internal XY Routing computation controlled by an FSM

CLK

NORTH DEST[5:0] X=2, Y=2

NORTH INPUT TVALID

NORTH INPUT TREADY

NORTH OUTPUT TLAST

NORTH OUTPUT TVALID

NORTH OUTPUT TREADY

NORTH SEL Select SOUTH

Figure 3.11: Example of a timing diagram for the subcomponent XY Routing Algo-
rithm belonging to port north with a local address of X=2 and Y=1 while the FSM
state changes from IDLE to BUSY and from BUSY to IDLE

routing algorithm indicating the configuration for the crossbar is set as the output of

the FSM and the state changes to BUSY. In the state BUSY, the FSM waits until the

complete message is transferred. When the last flit of this message is sent through the

input buffer, the signals <PORT> OUTPUT TLAST, <PORT> OUTPUT TVALID

and <PORT> OUTPUT TREADY become active which indicates the end of the

message for the FSM. At that point, the state changes back to IDLE and the output

of the FSM is resetted. Fig. 3.11 illustrates this behaviour by a timing diagram.

Arbiter

The arbiter checks the output of the routing component on resource conflicts caused by

multiple input ports that try to access the same output port. Different schemes exist to
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prevent such conflicts. A fixed priority arbiter has been developed in this thesis, since

it can be efficiently implemented in terms of FPGA hardware resources. In general,

the priority of a port p can be described by P (p). When two messages arrive at the

input ports X and Y and request the same output port, the arbiter grants the request

of the input port with higher priority. The relation between the requests of X and Y

can be described by Eq. 3.1.

P (X) > P (Y ) (3.1)

The arbiter developed in this work implements the following priority ranking be-

tween all ports.

P (NORTH) > P (SOUTH) > P (EAST ) > P (WEST ) > P (LOCAL) (3.2)

The local port has the lowest priority, as flits that are transmitted through the NoC

should not be blocked by flits that are inserted into the NoC. Otherwise, a NoC easily

tends to be overloaded. The north and south ports have higher priority than the west

and east ports, since it is assumed that messages transferred along the Y dimension are

more likely to reach their destination than messages transferred along the X dimension.

Messages that are close to their destination should exit as soon as possible the NoC to

avoid an overload.

The arbitration process is synchronous and takes a minimum delay of one clock

cycle. The latency L can be delayed depending on the number of conflicts n and the

durations Di of each conflict.

L =

⎧⎨⎩1 , no conflicts

1 +
∑︁n

i=0 Di , n conflicts
(3.3)

An overview of the internal structure is given by Fig. 3.13. The arbiter has five

synchronous processes monitoring each configuration. Every process separately com-

pares the SEL signals to SEL signals from other ports. The SEL signals represent the

configuration of the crossbar given by the routing components for each input port. If

no other SEL signals match, the SEL signals can be directly forwarded as no conflict

occurs. If other SEL signals match, the behavior depends on the priority ranking. The

north port has the highest priority. Therefore, it only checks, if identical SEL signals

have been already granted. In this case, the requesting SEL signals are not granted.

In case of identical SEL signals are requested by a port with higher priority, it can

stall the request. In case of identical SEL signals are requested by a port with lower
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NORTH INPUT SEL[2:0] REQ: SOUTH REQ: SOUTH

NORTH OUTPUT SEL[2:0] GRT: SOUTH

EAST INPUT EN

EAST INPUT SEL[2:0]
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WEST INPUT EN
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LOCAL OUTPUT SEL[2:0] GRT: SOUTH

Figure 3.12: Timing Diagram of Arbiter component showing two conflicts
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Figure 3.13: Internal structure of a fixed priority arbiter consisting of five synchronous
processes
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Listing 3.2: Pseudocode of the arbitration process✞ ⊵
1 ARBITRATION (<PORT> EN , <PORT> INPUT SEL) :
2 i f <PORT> EN = ’ 1 ’
3 For a l l other SEL s i g n a l s w
4 i f (w=<PORT> INPUT SEL)
5 i f w has been granted e a r l i e r
6 <PORT>OUTPUT SEL = DEFAULT
7 e l s e i f w has h igher p r i o r i t y
8 <PORT>OUTPUT SEL = DEFAULT
9 e l s e

10 <PORT>OUTPUT SEL = <PORT> INPUT SEL✝ ✆
priority, it checks if it is already granted and proceeds as described previously. Such a

process is described by the pseudocode in Listing 3.2.

In addition, the fixed priority scheme is explained by the timing diagram 3.12. For

every port <PORT>, an arbitration process can be enabled by <PORT> ENA. This

process checks the signal <PORT> INPUT SEL which gives a potential configuration

of the crossbar. As an example, a message from port north requests the output port

south. The local port requests also the output port south at the same time. Due

to the higher priority from port north, access is granted to port north. Therefore,

simultaneous requests from port east cannot be granted. After the request from port

north is finished, the request from port east is granted. Until the end of this request,

this request cannot be interrupted by another request, even if it has a higher priority.

3.1.2 Network-on-Chip Interfaces

To establish a connection between a processor and a NoC, a network interface is needed.

It connects the local port of the router to the processor. Generally, a network interface

transforms the communication protocol of the processor to the NoC and vice versa.

Two different processors are used in this thesis: MicroBlaze processor and an ARM

processor. The MicroBlaze processor is a softcore provided by vendor Xilinx and can

be integrated into Xilinx FPGAs. The ARM processor that is used in this work is

available as hard core in the Xilinx Zynq-7000 System-on-Chip (SoC). The ARM

processor transfers data between its memory and the FPGA using High Performance

Ports (HPs) and Accelerator Coherency Port (ACP) ports that support the AXI4

protocol and two General-Purpose Ports (GPs) supporting the AXI4-Lite protocol.

The AXI protocol is described in [Xil17].

Network interfaces for both processors that bridge the different interfaces to the

NoC are presented in this section.
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Figure 3.14: A minimal network interface for bidirectional communication that directly
connects a MicroBlaze AXI4-Stream-based port to the local port of a router

MicroBlaze Processor Interface

The MicroBlaze processor has sixteen ports supporting the AXI4-Stream protocol. This

simplifies the structure of a corresponding network interface, since the routers support

the same communication protocol. The simplest network interface can be modeled as

a component that directly connects the MicroBlaze AXI4-Stream port with the local

port of the router as shown in Fig. 3.14. As the connection between the MicroBlaze

processor and the router is bidirectional, a master port that sends messages and a slave

port that receives messages are respectively required on both sides.

To unload the NoC as well as the processor during high traffic loads, the network

interface can be extended with buffers. Flits that cannot be received by a processor

due to its current workload remain in the NoC and can block other messages. A

network interface with buffers can store messages to avoid channels that block other

transactions. Therefore, the network interface from Fig. 3.14 is extended by First-In

First-Outs (FIFOs). Xilinx provides AXI4-Stream compatible FIFOs which can be

used as network interfaces.

Register-based Network Interface

Fig. 3.15 shows a network interface that connects the GP port of the ARM processor

to the router. Since the GP port transmits data via AXI4-Lite and the router supports

AXI4-Stream interfaces, the network interface must bridge the differences between

these protocols. Additional FIFOs are used to buffer messages.

The ARM processor can receive and send messages using registers as shown in Fig.

3.15. Flits that has to be sent are written into the register REG SEND DATA or

REG SEND TDATA. The content of these registers is forwarded to the FIFO, if the
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Figure 3.15: Overview of the register-based ARM processor interface

FIFO is not full. REG SEND DATA transmits its content with an inactive TLAST

signal, while REG SEND TDATA transmits its content with a TLAST signal equal to

’1’. A full FIFO is indicated by the register REG SEND STATUS. The transaction of

a single flit can be performed by checking initially the state of the FIFO. If the FIFO

is not full, the ARM processor can write the flit to the register REG SEND DATA for

header and payload flits or to the register REG SEND DATA for tail flits. The tail flit

can be also used to transfer data. Blocking send routines for header, payload and tail

flits are presented in Fig. 3.16.

Fig. 3.17 shows a read routine for a single flit transaction. The register

REG REC DATA is used to read incoming flits. The FIFO that is connected to the

master port transmits every flit into this register. Additionally, the TLAST signal is

stored in the register REG REC STATUS. The ARM processor reads the content of

the register REG REC DATA and REG REC STATUS during a receive routine. A

bit of the register REG REC STATUS, defined as REC STATE, is equal to ’1’ when

the flit has not been read. After a successful read routine, the FIFO can transfer the

content of the next flit into the register REG REC DATA.

DMA-based ARM Processor Interface

The HP and ACP ports of the ARM processor communicate through AXI4 interfaces.

Xilinx provides a Direct Memoy Access (DMA) IP core [Xil19a] that can be connected

to the HP or ACP port. It transfers data between the AXI4 and the AXI4-Stream

protocol. Fig. 3.18 gives an overview of the DMA-based network interface developed

in this work. The memory that is placed next to the ARM processor is representative

for Double Data Rate (DDR) or On-Chip-Memory of the Zynq-7000 SoC. The DMA

is controlled via an AXI4-Lite interface. FIFOs are located between the DMA and the
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Figure 3.16: A blocking send routine of the network interface for the GP port
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Figure 3.17: A blocking receive routine of the network interface for the GP port
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Figure 3.18: Overview of the DMA-based ARM processor interface

Table 3.1: Registers of DMA-based ARM processor interface (based on [Xil19a])

Register Description

MM2S DMACR Control register
MM2S DMASR Status register
MM2S DA Source address for data sent from AXI4 memory mapped

to AxI4-Stream. Lower 32 bits of address
MM2S DA MSA Source address for data sent from AXI4 from memory

mapped to AXI4-Stream. Upper 32 bits of address
MM2S LENGTH Transfer length in bytes
S2MM DMACR Control register
S2MM DMASR Status register
S2MM DA Source address for data sent from AXI4-Stream to AXI4

memory mapped. Lower 32 bits of address
S2MM DA MSA Source address for data sent from AXI4-Stream to AXI4

memory mapped. Upper 32 bits of address
S2MM LENGTH Transfer length in bytes

local port of the router to buffer messages. The depth of these FIFOs is configurable

and depends on the application.

Table 3.1 lists the registers of the DMA. The DMA is configured in Direct Regis-

ter Mode. The programming sequence for sending and receiving a complete message

consisting of a header flit, one or multiple payload flits and a tail flit is shown in Fig.

3.19. The first step to receive a message is the allocation of memory space at a spe-

cific address location indicated by A. The allocated memory space is used to store an

incoming message. Afterwards, the DMA is configured to run by setting the run/stop

bit to ’1’ that is located in the control register. The DMA automatically writes the

flits of a message into address A. Address A is specified by writing A into the registers

S2MM DA and S2MM DA MSB. The DMA starts to store the flits at location A when
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the number of bytes that will be received is written into the register S2MM LENGTH.

The last steps are necessary to wait until the complete message is copied to the memory.

The sending routine starts by allocating memory likewise the receive routine. The

complete message that should be sent is written to this location. By setting the

run/stop bit to ’1’ in register MM2S DMACR, the DMA starts transferring the message

to the NoC. The memory location of the message is written to the registers MM2S DA

and MM2S DA MSB. The DMA starts sending when the message length in bytes is

written into the register MM2S LENGTH.

3.1.3 Exploration of NoC Design Space

In this section, the router is analyzed in two different contexts to verify and evaluate

the functionalities. The first context presented shows an analysis of the traffic load

depending on the routing algorithms. The structure of the router has been built mod-

ularly in Very-High Speed Integrated Circuit Hardware Description Language (VHDL)

allowing the exchange of each component. The routing component is extended by

supporting the XY and West-First routing algorithms. Both routing functions can be

dynamically select at runtime. Two classes of messages are defined and each class uses

another routing algorithm in the NoC. The presented approach can be also applied for

more than two classes.

The second context presented verifies the functionality of the NoC in a soft-realtime

MPSoC for image processing. Furthermore, dynamic partial reconfiguration is applied

to change the PEs.

The section is based on [Ret14] and [Ret16d].

Routing Algorithms A routing module that provides simultaneously two routing

algorithms is presented in Fig. 3.20. It is not limited to two routing algorithms.

Further algorithms can be added. The FSM analyzes the header flit which contains an

additional field besides the destination address. This field is used to configure the class

of the message and accordingly, the routing algorithm. Since a message can choose

between two routing algorithms, the field has a bit width of one bit. Depending on

the number of routing algorithms, it must be adapted. The FSM activates either the

first routing algorithm or the second routing algorithm to calculate the configuration

of the crossbar. As the header flit does not change during the transmission, the routing

algorithm is selected for the entire path by the processor that sends the message.

The first routing algorithm is the XY routing algorithm. The second routing algo-

rithm that has been implemented is the West-First routing algorithm. The West-First

routing algorithm is based on Turn Models. The West-First algorithm can be imple-
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Figure 3.19: Programming sequence to send and receive a message using the DMA-
based ARM processor interface
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Figure 3.20: Subcomponent of a router that supports two routing algorithms

mented in different ways. The Turn Model of this algorithm describes only which turns

are restricted. It does not define in which order turns have to be performed.

The implementation used in this work is shown in Listing 3.3. Compared to the XY

routing algorithm, the West-First routing algorithm initially checks, if the destination

address is located in a negative X dimension which corresponds to the direction defined

as west. That is why, the routing algorithm is defined as West-First routing algorithm

since a message is routed firstly to the west direction in case the destination address is

located there.

Next, it routes the message in North or South direction until the Y address of the

router is one row above or below it. Afterwards, the dimension that is checked is the X

address of the router and if appropriate, the message is forwarded to the East direction.

In the end, the Y address is controlled again to forward the message to its destination.

Deadlock Avoidance Deadlocks are one main issue in developing routing algo-

rithms. They inhibit the data traffic inside a NoC due to cyclic dependency between

messages. In order to solve this issue, solutions such as virtual channels or routing

algorithms modeled by turn models, can be applied.

Turn models restrict turns to eliminate the possibility of deadlocks. If a turn

model cannot create cycles, the routing algorithm will not lead to deadlocks. The

turn models of the XY and West-First routing algorithms are shown in Fig. 3.21 and
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Listing 3.3: Pseudocode for West-First routing algorithm✞ ⊵
1 XY Routing Algorithm (X,Y) :
2 i f (X < XROUTER) then
3 forward to West ( )
4 e l s e i f (y=1 > YROUTER) then
5 forward to NORTH ()
6 e l s e i f (Y+1 < YROUTER) then
7 forward to SOUTH ()
8 e l s e i f (X > XROUTER) then
9 forward to EAST ( )

10 e l s e i f (Y > YROUTER) then
11 forward to NORTH ()
12 e l s e i f (Y < YROUTER) then
13 forward to SOUTH ()
14 e l s e
15 forward to LOCAL ( )
16✝ ✆

Figure 3.21: Turn Model of the XY routing algorithm

Fig. 3.22. Since the turn models of both routing algorithms cannot create cycles, both

are deadlock-free considered individually. However, it has not been proven that the

combination of two deadlock-free routing algorithms is also deadlock-free.

Using multiple routing algorithms simultaneously guarantees deadlock-freedom, if

the following condition is fulfilled.

� All combinations of turns from all turn models do not create a circle.

Considering the usage of multiple routing algorithms as one adaptive routing algo-

rithm, it is clear that all turns from each turn model must be considered. The adaptive

routing algorithm calculates the routing path depending on the source address, desti-

nation address and the class of the message. The XY routing algorithm has a subset

Figure 3.22: Turn Model of the West-First routing algorithm
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Figure 3.23: Turn Model of the Negative-First routing algorithm

of allowed turns from the West-First routing algorithm. Therefore, the combination of

turns applied in the West-First and the XY routing algorithms does not create cycles.

Accordingly, the proposed routing scheme is deadlock-free.

To show that the XY routing algorithm cannot be combined with every routing

algorithm modeled by turn models, a negative example is given. The negative-first

routing algorithm is combined with the XY routing algorithm. The turn model of

the negative-first routing algorithm is given by Fig. 3.23. The clockwise turns can

be completed by adding the turn from west to south of the XY routing algorithm.

Accordingly, the condition is not fulfilled and this combination can lead to deadlocks.

As described before, more than two routing algorithms can be used, however, this

also increases the number of allowed direction changes. Therefore, the combination of

various routing algorithms increases the probability for deadlocks.

Evaluation of Traffic Patterns To verify the functionality of this approach, two

MPSoCs consisting of routers, MicroBlaze processors, traffic generators as well as an

ARM processor are implemented on a Xilinx Zynq-700 SoC Board (Development-Board

ZC706). The first MPSoC consists of the ARM processor and 7 MicroBlaze processors

that are connected by the mesh-based NoC as shown in Fig. 3.24. The ARM pro-

cessor communicates through the network interfaces through the HP and ACP ports.

All components that are integrated into the FPGA operate at 50 MHz, while the

ARM processor runs at 666 MHz. The design is created with the Xilinx PlanAhead

tool (v14.6). Furthermore, a Linaro-based operating system is installed on the ARM

processor, while the MicroBlaze processors run a bare-metal program.

The second MPSoC has the same structure, however, the MicroBlaze processors

are replaced by traffic generators developed in VHDL. The traffic generators send and

receive messages faster than MicroBlaze processors. A MicroBlaze processor requires a

minimum of two clock cycles to send data through its AXI4-Stream port. To measure

the NoC performance without the overhead of MicroBlaze processors, traffic generators

that require only one clock cycle are used.

One traffic pattern is applied to both MPSoCs. The ARM processor sends messages

via the ACP port to the MicroBlaze processor 7 or the corresponding traffic generator.
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Figure 3.24: Overview of an MPSoC that is used to analyze the ditribution of traffic
load for different messages classes

In addition, data is sent through the HP port to the MicroBlaze processor 4 or the

corresponding traffic generator. All messages are acknowledged by a message back to

the ARM processor. To analyze the traffic load for different routing algorithms, the

traffic pattern is performed using two different classes of messages: class I and class

II. The first class applies the XY routing algorithm. The second class applies the

West-First routing algorithm. Both MPSoCs are evaluated in four different scenarios.

The routing paths between the ARM processor, the MicroBlaze processor 4 and the

MicroBlaze processor 7 do not provide the shortest path. It is worth mentioning that

the focus is on the relative improvement in terms of traffic load for combinations of

different classes.

1. Scenario: All messages are from class I.

2. Scenario: All messages are from class II.

3. Scenario: Messages transmitted through the HP port are from class I and mes-

sages transmitted through the ACP port from class II.

4. Scenario: Messages transmitted through the HP port are from class II and

messages transmitted through the ACP port from class I.
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Figure 3.25: Transmission rates of an MPSoC that contains MicroBlaze processors to
execute four test scenarios

Messages sent by the ARM processor have a size of 16 kByte. An acknowledge

message consisting of a header and tail flit has a size of 8 Byte. The size is arbitrary

set for test purposes. Data transferred via the HP port is stored in the On-Chip memory

and data transferred via the ACP port is stored in the L2 cache due to shorter memory

access times. The ARM processor starts to measure the time, when the messages are

sent. It stops the measurement when they are acknowledged. The timing results are

averaged over ten measurements.

Fig. 3.25 and Fig. 3.26 show the transmission rates for both MPSoCs performing

the four scenarios. The transmission rate R is computed by Eq. 3.4. The HP port and

the ACP port send separately a message of 16 kB and receive an acknowledge message

of 8 B. Hence, the total amount of data that is transmitted is given by 2(16kB + 8B).

The overall data is divided by the time that is measured to calculate the transmission

rate.

R =
2(16kB + 8B)

tmeasured

(3.4)

The first and the second scenario achieve the worst transmission rates for each MP-

SoC. The third and fourth examples show the best performance results due to a better

distribution of the traffic load. The traffic generators achieve a higher transmission

time by the factor of 26x. This is due to the fact that the traffic generators are much

faster in sending and receiving messages compared to the MicroBlaze processors.

The traffic load of the NoC for the four scenarios is presented in Fig. 3.27. Each

arrow represents a message that is transferred through a link. It is worth mentioning

that the first and second scenarios show the worst traffic load distribution. The first
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Figure 3.26: Transmission rates of MPSoC that contains traffic generators to execute
four test scenarios

a) b) 

c) c) 

Figure 3.27: Traffic loads in NoC: a) 1. scenario, b) 2. scenario, c) 3. scenario and d)
4. scenario
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Table 3.2: The variances of the traffic load for each scenario
1. Scenario 2. Scenario 3. Scenario 4. Scenario

Variance [(kB/l)2] 95054519 72684897 50315276 50315276

Table 3.3: Comparison of resource Utilization for router using either the XY, West-
First or a combination of both routing algorithms on an xc7z045 after synthesis

XY West-First XY & West-First

LUTs 781 808 896

scenario shows the highest traffic load in the right upper corner of the NoC and the

second scenario in the right middle of the NoC. The third and fourth scenarios can

distribute the traffic load better in the entire NoC. The distribution improvement can

be also shown by computing the average traffic load laverage by Eq. 3.5 based on the

traffic loads of each link i out of n links. An ideal distribution of the traffic load means

that it is equally distributed. Accordingly, the variance σ2 is equal to 0. The variance

is computed by Eq. 3.6. Table 3.2 presents the variances of each scenario. As expected,

the third and fourth scenarios show the best traffic distributions. Nevertheless, this

improvement depends highly on the traffic. For example, considering uniform random

traffic and a NoC that transfers messages using the XY routing algorithm achieves a

well-balanced variance.

laverage =
1

n

n∑︂
i=1

datai (3.5)

σ2 =
1

n

n∑︂
i=1

(laverage − datai)
2 (3.6)

The resource utilization of a router including only the XY or the West-First routing

algorithm is given in Table 3.3. Moreover, the router supporting both algorithms has a

negligible overhead of 61/88 LUTs compared to a router supporting the West-First/XY

routing algorithm, respectively. The required resources of the MicroBlaze processors

and traffic generators are listed after Synthesis in Table 3.4. The traffic generator uses

only 28 LUTs since it receives a message, stores and sends it directly back to the sender.

LinROS: Soft-Realtime Capability

In this section, the routers are used to build a heterogeneous MPSoC consisting of re-

configurable accelerators, a MicroBlaze processor and an ARM processor. The MPSoC

is equipped with a Linux-based operating system introduced as LinROS [Ret16d] that
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Table 3.4: Resource utilization of the MicroBlaze processor and traffic generator on an
xc7z045 after synthesis

Modules LUTs BRAMs DSPs

MicroBlaze Processors 4327 5 0
Traffic Generator 28 0 0

Reconfigurable 
Partition 1 

ARM MicroBlaze 

Memory 

CDMA 

GP 0 
HP1 HP0 

GP 1 

Reset 

Controller Controller 

Reconfigurable 
Partition 2 

Figure 3.28: Overview of an MPSoC using LinROS

provides soft-realtime capability and a dynamic scheduling mechanism. Generally, the

NoC architecture presented in Section 3.1.1 does not support hard-realtime message

transfers. However, it can provide soft-realtime capabilities under certain conditions

due to wormhole routing.

In wormhole routing, the header flit of a message allocates the path when it is

transferred through routers. The tail flit releases this path for other messages. After

the allocation, a path cannot be interrupted by other messages. Thus, the delay of flits

between source and destination depends only on the number of hops.

Structure of the LinROS-based MPSoC The MPSoC is implemented on a Zynq-

7000 SoC (ZedBoard [AVN12]). The MPSoC is scalable and can be extended with

static and reconfigurable PEs. An example of an MPSoC containing 2 static and 2

reconfigurable PEs is given by Fig. 3.28. The static PEs are the MicroBlaze processor

executing software tasks and the ARM processor. They cannot be reconfigured using

81



CHAPTER 3. FROM CONVENTIONAL ROUTERS TO
APPLICATION-SPECIFIC INSTRUCTION-SET ROUTERS (ASIRS)

Interpreter 

FSM 

Network Interface 

Reconfigurable Partition X 

Controller 

Demux Mux 

Figure 3.29: Structure of the controller that connects HLS-generated accelerators to
the network interface

dynamic partial reconfiguration. LinROS is scalable and not limited to one MicroBlaze

processor. Further MicroBlaze processors can be added to the design.

The ARM processor is static, because it is a fixed core integrated into the processing

system of the Zynq-7000 SoC. It communicates via DMA cores through HP ports to

the NoC that automatically routes the data to the respective PE. Control data such as

a reset can be transmitted through the GP port. Furthermore, the GP port controls a

reconfigurable partition that can be loaded with accelerators. The accelerators execute

hardware tasks and are generated by Vivado HLS. The GP port communicates via an

AXI4-Lite protocol directly with the reconfigurable PEs. This bus is separated from

the NoC to avoid congestion between control data and data processed by tasks.

The ARM processor can be considered as a master PE that runs the scheduler and

manages the control and data flow. Besides the static ARM processor, the MicroBlaze

processor is also set to be static and only its memory can be adapted at runtime by

reprogramming it with a new task. Reprogramming can be conducted in two ways. The

content of the process that is executed by the MicroBlaze processor and located in its

BRAM memory can be overwritten. Therefore, the BRAM memory of the MicroBlaze

processor is connected through a CDMA core to the ARM processor. This requires

a dual-ported BRAM memory. The MicroBlaze processor uses two separate memory

interfaces: Instruction-Side Local Memory Bus (ILMB) and Data-Side Local Memory
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Configuringstart Copying

Figure 3.30: Finite-State-Machine of controller

Bus (DLMB) for instruction and data. This results in the usage of two dual-ported

memories, one for data and the other for instructions. Each of them provides a port to

the respective MicroBlaze memory bus (ILMB and DLMB) and the CDMA. A binary

file for a software task has to be transmitted by the CDMA core to the BRAM memory.

After the binary has been transmitted, the MicroBlaze is initialized to a consistent

state by resetting it. This process facilitates the reprogramming of software tasks

during runtime. Another way to reprogram a MicroBlaze processor is to reconfigure its

BRAM memory using dynamic partial reconfiguration. In this case, partial bitstreams

for each program are required and it implies that the BRAM memories are designed

as reconfigurable partitions. A comparison between reprogramming the MicroBlaze

processor using dynamic partial reconfiguration and a CDMA core to load the new

program is presented in this work. Reconfigurable partitions can be reconfigured using

the Processor Configuration Access Port (PCAP) interface of the Zynq-7000 SoC. The

ARM processor controls the PCAP interface and consequently, it reconfigures the PEs.

Controller for Accelerators An additional controller core is developed as an in-

terface between NoC and accelerator. The controller shown in Fig. 3.29 consists of a

demultiplexer, a multiplexer, an FSM and an interpreter module. The FSM has two

states configuring and copying as shown in Fig. 3.30.

The demultiplexer forwards the data streamed through an AXI4-Stream interface

either to the controller or to the accelerator. The controller analyzes the header flit and

changes the state of the FSM to Copying. In this state, the demultiplexer sends data to

the accelerator. The header flit is not required by the accelerator to process data and

has to be excluded. Moreover, it indicates also the destination address of the output

stream. If the header flit contains a destination address that is equal to the accelerator,

no answer is sent. The controller creates a header flit of the outgoing message using

the address indicated in the header flit and sends it through the multiplexer in state

Configuring. After the accelerator starts processing and is ready to send data, the

multiplexer is configured to forward the output. The controller is ready to receive new

messages when a tail flit is received in the input stream and sent in the output stream.

An accelerator that is used in LinROS can be configured through an AXI4-Lite
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Figure 3.31: Overview of the Linux-based Soft-Realtime Operating System

interface. The ARM processor can write through this interface into registers of the

core. In order to avoid congestion inside the NoC, the AXI4-Lite interface connects

the ARM processor directly to each PE. The NoC is linked to the PE using two AXI4-

Stream-based ports. One is used to send data while the other is used to receive data.

The PEs can be designed and optimized for an application using pragmas that are

supported by Vivado HLS. Three pragmas are required to implement a PE providing

an appropriate interface for LinROS:

1. #pragma HLS INTERFACE axis port=in stream

2. #pragma HLS INTERFACE axis port=out stream

3. #pragma HLS RESOURCE core=AXI SLAVE variable=return metadata=”-

bus bundle CONTROL BUS”

The first pragma defines the AXI4-Stream interface of incoming data. The second

pragma defines the AXI4-Stream interface of outgoing data. The third pragma defines

the AXI4-Lite interface of control data.

Structure of LinROS LinROS is an extension of Linaro 12.04 by a real-time patch

and a device driver enabling task scheduling of reconfigurable accelerators (hardware

task) and reprogramming of MicroBlaze processors (software task). The Linux-based
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operating system runs on the ARM processor. The integrated device driver is imple-

mented as a char driver within the kernel. It provides an interface for applications

running in the userspace. A schematic overview of the device driver is shown in Fig.

3.31. An application within the userspace can communicate through a Buffer, a Con-

trol and a Task interface to the kernel space. The kernel space controls the MPSoC

consisting of the MicroBlaze processor and two reconfigurable partitions in the FPGA

by a DMA, a Program, a Reconf., a Reset and a Register interface.

The Buffer interface facilitates the allocation of memory for data transfers. The

DMA interface can transfer the data that is written into the allocated memory through

the NoC to the PEs and vice versa.

A task is defined by a task description through the Task interface that registers

tasks at the scheduler. A task description of the runtime system is a collection of

information for reconfiguration and execution. Such a task is saved in a struct format

defined as a task container. The task container is shown in listing 3.4. It consists of

fields for bitstreams, a MicroBlaze program, a pointer to a memory location allocated

for data transfers, an object that is used to control accelerators and an entry for the

task scheduler. The field bitstreams point to the partial bitstreams that can be used

to reconfigure the reconfigurable partitions with an accelerator. The field MicroBlaze

program specifies the location of the program for software tasks. The scheduling entry

contains necessary information such as the priority for the scheduler. In case it is

executed, the pointer sched entry has a reference to the element of the execution order.

It can be used to check, if the task is executing.

The execution of tasks is requested by the Control interface. It is used to start

the scheduling of tasks that are registered. Accordingly, the scheduler determines the

order of task executions and forwards this order to the Executor module. Besides the

execution, the Executor saves the states of the NoC inside a state description.

The executor only uses functions that are available inside the kernel space. It

has access to the NoC state descriptor and controls the hardware of the NoC. Three

functions of the task executor are relevant for its external usage: PrepareParition,

ExecuteTask and WaitforExecution.

PreparePartition is used to reconfigure a partition. In the case of Microblaze parti-

tions, the BRAMs are reprogrammed with the respective software of the task descrip-

tion. Subsequently, a reset of the MicroBlaze is performed. The partial reconfiguration

of hardware tasks takes place after isolating the hardware partition that is handled by

the reset module. On success, a reset signal is sent before reversing the isolation that

prevents data transfers during reconfiguration.

ExecuteTask executes a task by starting DMA transactions. The hardware registers
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Listing 3.4: Task Container✞ ⊵
1 s t r u c t noc task {
2 s t r u c t Memory b i t s t r eams ;
3 s t r u c t Memory MBProg ;
4 s t r u c t t r a n s f e r b u f f e r * dataBuf f e r ;
5 s t r u c t hw r e g i s t e r c o n f i g * r e g c on f ;
6 void * s ched ent ry ;
7 } ;
8✝ ✆

of the accelerators are configured as well as the addresses of the target partition and

the ARM processor, before starting the DMA transfer. This is needed to construct the

header flit, fulfill the protocol of the controller and start the accelerator properly.

WaitForExecution blocks the calling thread until the end of the DMA transaction

is reached. The timeout for this process is either one second or the deadline of the task,

in case it is longer. The long default timeout allows a task to finish, even if the deadline

expired. However, it ensures that LinROS never blocks completely. This approach is

only recommended for soft real-time constraints. In case a timeout is reached, the NoC

needs a reset. This is necessary to avoid messages that are still inside the NoC.

The Executor uses the five functions DMA, Reconf., Program, Reset and Register to

control accelerators and MicroBlaze processors. The DMA function controls the DMA

modules. A scatter-gather mode for the DMA is configured. The Program interface

is called to load a program into the BRAM of the MicroBlaze processor using the

CDMA. A program compiled for MicroBlaze processors assumes a single BRAM block.

Therefore, the binary file has to be separated into data and instruction segments for

the respective BRAM block. Each part can be loaded into the corresponding memory

location.

In contrast to Program, the Reconf interface reconfigures the partial bitstream into

the respective reconfigurable partition. During the reconfiguration process, the PE

has to be isolated from the remaining logic, since data can be randomly inserted into

the NoC. This inserted data can fail the system, as there is no mechanism to drop

corrupted messages out of the NoC. The isolation is realized with a decouple logic

to disconnect the PE from the remaining logic. Every PE can be isolated separately

without decoupling other PEs. A reset is necessary after the reconfiguration of an

accelerator to initialize the state. Furthermore, a reset has to be performed when the

BRAM block of the MicroBlaze processor is overwritten by a new program. It initializes

the program counter to zero which initiates a relaunch. Every task registered with a

task description can be either executed by an accelerator or the MicroBlaze processor,

if the bitstreams and the MicroBlaze program are attached to the task description.
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Furthermore, several PEs have different states to monitor and control them. PEs

generated by Vivado HLS can be controlled using registers. They obtain necessary

content such as control and status information. An AXI4-Lite interface is placed at

the reconfigurable partitions which can be used to read and write into these registers.

In order to configure reliably the registers, the Register function is developed.

A MicroBlaze processor does not need to be configured by the AXI4-Lite interface

and therefore, it is not connected to such an interface. In case the MicroBlaze processor

needs some additional configurations, the data can be transmitted through the NoC.

The State Descriptor maintains the state of the NoC. For instance, the positions

of PEs are saved using addresses related to the NoC. In order to ensure the function-

ality of the entire system, the state and parameters for each partition must be known.

Hence, the information of the respective PE about the address of the AXI4-Lite in-

terface, the address related to the NoC, the state of the PE and the addresses of the

program code for instructions and data stored. The latter addresses are only needed

for reprogramming a MicroBlaze processor.

Scheduling Mechanism The states of the PEs are described in Fig. 3.32. A par-

tition that does not execute a task and has not been used is identified by the state

Empty. A MicroBlaze processor that is programmed and a PE that is reconfigured is

in the state Reconf. As soon as the reconfiguration or the programming of MicroBlazes

is done, the Ready state is entered. When a task starts to run, the state changes to

Running. After the task has finished, the partition changes to the state Done and can

be reconfigured for the next task.

The scheduler consists of a state object, a list of remaining tasks and control struc-

tures to maintain the tasks. A scheduling list is implemented as a priority queue, sorted

by the deadlines of the tasks. The priority queue is updated when a task is inserted

into this list. Moreover, a reference of the task position in the list is created in the

scheduling entry.

The scheduler receives one of the four following return values after the task is

completed or an error occurred.

1. NoExec: The task was not started.

2. ExecTimeout: The task did not finish in time, e.g. when the deadline expired.

3. ExecError: An error occurred during execution.

4. ExecSuccess: The task was processed successfully and timely.
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Figure 3.32: Finite-State-Machine running in each PE

The initialization of the scheduler creates, except for the ARM processor, one

thread per NoC partition that either contains a MicroBlaze processor or an accel-

erator. Threads are in idle mode as long as the list is empty. When an entry in the

scheduling list exists, a thread takes one element with the shortest deadline and starts

its execution. A Mutex protects the access to the scheduling list by multiple threads.

It avoids inconsistencies in the list by prohibiting two threads that execute the same

task. The reconfiguration and execution can take place in parallel by another thread.

Performance Analysis and Resourse Utilization Two test tasks were developed

for evaluation: a grayscale conversion and a threshold operation. These test cases are

used to prove the functionality of LinROS and to measure the system performance.

Each operation is implemented as a software task that is executed by the MicroBlaze

processor and a hardware task that is executed by an accelerator.

The first task is the conversion of an RGB image to grayscale. It uses the brightness

method presented by Eq. 3.7.

Y = 0.3R + 0.59G + 0.11B (3.7)

The approximation Y = (R << 1 + G << 2 + B) >> 3 is used to avoid floating

point calculations, where binary shifting is illustrated by >> respectively <<. The

height and the width are needed for the calculation. The second task is a threshold
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Figure 3.33: Execution times including scheduling of the tasks that compute a grayscale
conversion

operation that is applied to the grayscale image and creates a binary image.

The execution times of these operations on MicroBlaze processors and accelerators

are measured. The accelerators are generated with Vivado HLS 2014.4. The FPGA

has a frequency of 100 MHz and the ARM processor runs with 667 MHz. The images

that are processed have a size of 640x480 pixels. Every task processes a complete image

which is transmitted by the ARM processor to the MicroBlaze processor or accelerator.

The performance of LinROS executing the threshold and grayscale conversion is ana-

lyzed. Moreover, the execution times of the tasks depending on their position in the

NoC are also examined. To eliminate the fluctuations from the Linux-based operating

system, the results are measured ten times and averaged. The time that is measured

includes the scheduling, reconfiguring/reprogramming and the complete execution of a

task.

The results of the MPSoC executing the threshold operation and grayscale conver-

sion in each PE are shown in Fig. 3.33 and Fig. 3.35. By comparing the execution

times of the reconfigurable partition 1 and 2, it can be seen that a closer position of

the task to the ARM processors results in an 8% (threshold task) smaller execution

time due to a shorter path. The MicroBlaze processor is furthermore not suitable for

the stream-oriented task, as its execution time is 14.7 times worse than the one of the

reconfigurable partition 1. Hence, the usage of accelerators synthesized with Vivado

HLS is reasonable for stream-oriented tasks.

The throughput of the PreparePartition function that reconfigures the NoC is shown

in Fig. 3.35. The partial bitstreams of the reconfigurable partitions 1 have a size of 277
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Figure 3.34: Execution times including the scheduling of the tasks that perform a
threshold operation

kB. The partial bitstreams of the reconfigurable partitions 2 have a size of 303 kB. It can

be seen that a MicroBlaze processor can be reprogrammed with a throughput of 129.55

MB/s. The throughput to reconfigure hardware tasks in a reconfigurable partition via

the PCAP interfaces is 16.01 MB/s. In [Kad+13], a reconfiguration throughput of

62.8 MB/s is achieved using the Xilinx device driver for reconfiguration under Linux.

Accordingly, LinROS generates an overhead that slows down the throughput of the

reconfiguration time. Moreover, the ARM processor adds an additional overhead due to

DDR accesses. This means that programming a MicroBlaze processor with a program

size of M is faster than a reconfiguration with a partial bitstream of size B, if the

following inequation is satisfied.

M >
129.55

16.01
B (3.8)

The results of the resource utilization are presented in Table 3.5. The resources are

synthesized for a Zedboard (xc7z020) [AVN12] using Vivado 2014.4.

3.1.4 Discussion

Besides the correct functionality of the router, insights about the impact of routing

algorithms on the traffic load and the corresponding throughput are gained. The si-

multaneous use of different routing algorithms, as shown, can achieve an improved

throughput due to a better traffic load distribution. The scenarios presented in this
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Figure 3.35: Execution time of the test tasks including reconfiguration and data transfer

Table 3.5: Resource utilization of the MPSoC equipped with LinROS

Module LUTs FFs DSPs BRAM

Controller 61 63 0 0
MicroBlaze 1711 5717 3 4
Grayscale conversion 376 296 0 0
Threshold 406 360 0 0
DMA 2268 3462 0 2
CDMA 970 1025 0 0

dissertation show an increased transmission rate by the factor of about 2x. Similarly,

the simultaneous use of multiple routing algorithms can be considered as the use of one

adaptive algorithm. However, the selection of suitable routing algorithms is highly de-

pendent on the application which makes it difficult to predict a potential improvement.

The example presented shows a high specific use case that improves the communication

overhead. For larger networks, it is very difficult to find a combination of algorithms

that improve the throughput of the NoC. Thus, this approach has limited scalability.

Even if additional hardware components are integrated to monitor the load on links,

all monitor units must be evaluated. The evaluation overhead rises with the number of

monitor units per link. This in turn limits the scalability again. Adding a processing

layer inside the NoC improves the communication overhead by processing data during

message transfers. It provides higher scalability than combining the routing algorithm
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to improve the overall execution time.

LinROS simplifies the programming of reconfigurable MPSoCs by providing a soft-

ware layer for scheduling hardware and software tasks. The results for the given im-

age processing application show faster execution times of the hardware accelerators

compared to MicroBlaze processors. This confirms the use of hardware accelerators

synthesized by Vivado HLS in MPSoCs for applications with stream-oriented comput-

ing. Moreover, the results also show the impact of the communication overhead. PEs

that are located closer to each other perform faster due to shorter transfer times. It

shows the need to improve communication overhead in MPSoCs. As the hardware

accelerators are controlled via an AXI bus by the ARM processor, the system lacks

scalability for an increasing number of hardware accelerators. All the advantages given

by the NoC architecture are superimposed by the bus. One solution would be to de-

couple the interconnect architectures using different clock lines. The bus can run at

a lower frequency, while the NoC uses a high clock rate. Besides additional overhead

for synchronization, the configuration through the bus can still limit the performance

when the accelerators are not ready before the NoC transmits the data to them. An

approach with less synchronization overhead that still provides high scalability would

be that the configuration of the accelerators is also done through the NoC. By adding

a processing layer to the routers, all issues in LinROS are addressed. Placing hardware

accelerators directly in the routers decreases the communication overhead since the

accelerators are placed closer to the data. Furthermore, no detour through a network

interface is necessary and the scalability limitations are obsolete, as the configuration

of the accelerators is also sent through the NoC.

3.2 Stream-oriented Data Processing in Routers

The communication overhead limits the achievable speedup of an application consisting

of tasks running in parallel on an MPSoC. In this section, novel router architectures

are presented that efficiently use the communication times in MPSoCs. It combines

data transfers of messages with data processing performed by processing units that are

located inside routers. The entire approach can be considered as an additional pro-

cessing layer inside the communication layer of an MPSoC. Two router architectures

providing an additional processing layer are presented and compared. Both architec-

tures are based on the router presented in Section 3.1.1. The first architecture is able

to perform multiply-accumulate operations which can be beneficial for digital signal

processing. The second approach is called ASIR and it is not limited to only one oper-

ation as the processing units are developed using HLS. Furthermore, wormhole routing

92



3.2. STREAM-ORIENTED DATA PROCESSING IN ROUTERS

is extended to wormhole computing showing the construction and flow of messages in

an ASIR-based NoC. Wormhole routing uses header, payload and tail flits. A new type

of flit is needed to control ASIRs. Hence, wormhole routing is extended to wormhole

computing. Besides the efficient utilization of communication times, an ASIR-based

MPSoCs requires additional control mechanisms for their processing units. To ease the

control of processing units, an Message Passing Interface (MPI)-based Application Pro-

gramming Interface (API) is developed that provides methods to communicate between

processors and to process data by the processing units.

Section 3.2.1 presents the extensions of the router that enables data processing

by multiply-accumulate operations. Section 3.2.2 presents the more flexible ASIR-

based approach. Section 3.2.3 introduces a network interface for MicroBlaze and ARM

processors supporting ASIR-based routers. Section 3.2.4 presents wormhole computing.

Finally, these approaches are presented in Section 3.2.6.

The following sections are based on [Ret17g], [Ret17f], [Ret18a] and [Ret21a].

3.2.1 Data Stream Processing Units performing Multiply and

Accumulate Operations

This section presents a processing unit for routers that supports multiply and accu-

mulate operations. Hence, such processing units are defined as data stream processing

units. A message that is forwarded by a router is first stored in the input buffer. From

there, the message is forwarded via the crossbar to the next router or the local proces-

sor. By exchanging the input buffer with a processing unit, incoming messages can be

processed directly in this unit.

An overview of the developed data stream processing unit is shown in Fig. 3.36.

It consists of an internal buffer, coefficients for multiply and accumulate operations,

a processing unit and a demultiplexer. The internal buffer with configurable depth

stores incoming flits in the order of their arrival. It stores flits until it is completely

occupied or contains the tail flit of a message. Depending on the configuration of the

demultiplexer, the flits or the result of the internal processing unit are forwarded. The

internal processing unit multiplies each flit with a coefficient and calculates the sum of

them which is forwarded to the demultiplexer. The coefficients can be preloaded.

The stream processing unit is controlled by an FSM that has three states shown

in Fig. 3.37: Buffer, Load and Mode Multiply & Accumulate (MMAC). These three

states are used to control the operation modes of the data stream processing unit

and can be configured by a special type of flit. This type of flit is introduced as an

instruction flit. To distinguish between instruction and other flits, an additional control

bit is used to indicate the type of flit. The state changes, when the instruction flit is
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Figure 3.36: Overview of the data stream processing unit

BufferstartLoad MMAC

Figure 3.37: Finite-State-Machine to control the data stream processing unit using
three states: Buffer, Load, MMAC

the next flit that will be transferred. The operation modes are the Load mode, the

MMAC mode and the Buffer Mode. They are listed in Table 3.6.

The control flow of flits in the different operation modes is shown in Fig. 3.38.

Initially, the FSM starts in the Buffer mode (Step 1 in Fig. 3.38). Thus, the demulti-

plexer is configured to forward the flits of the buffer. The data stream processing unit

starts collecting flits until the internal buffer is full. The router forwards all incoming

flits until an instruction flit will be forwarded. The router analyzes the instruction flit

and switches the operation mode depending on the instruction flit. The structure of

such a flit is shown in Fig. 3.39. The data processing unit compares the bitfield of the

address with the address of the router that currently buffers this flit. In case they are

equal, the data stream processing unit changes the operation mode to the mode that

is specified in the instruction flit. Moreover, it removes the instruction flit from the

buffer after analyzing. This is necessary since a message is forwarded through multiple
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Figure 3.38: Operation modes of the data stream processing unit
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Table 3.6: Operation modes of the data stream processing unit

Operation Mode FSM State Description

Mode Load Load The Load Mode configures the coeffi-
cients for the multiply-accumulate op-
erations with incoming data flits.

Mode Multiply Accumulate MMAC The MMAC mode multiplies incoming
data flits with the coefficients and adds
the results.

Mode Buffer Buffer Incoming data flits are transmitted
without operations.

Mode  Address 

1 0 

 Instr.  Tail 

Figure 3.39: Structure of an instruction flit

routers and accordingly, through multiple data stream processing units. In case they

are not equal, the message is forwarded without changing the operation mode.

In state Load (Step 2 in Fig. 3.38), the FSM transfers the incoming flits to the

registers of the coefficients. The Load state ends, when another instruction flit enters

the data stream processing unit. This instruction flit is used to indicate that all neces-

sary flits are loaded to the coefficients registers. The instructions flits and the flits in

between are removed from the buffer, since the Load operation is finished.

In state MMAC (Step 3 in Fig. 3.38), the demultiplexer is configured to forward

the output of the internal processing unit. This processing unit computes the output

RMAC based on the values vi that are stored inside n flits and the coefficients ci by Eq.

3.9.

RMAC =
n∑︂

i=0

civi (3.9)

After the output is forwarded, the flit that entered the buffer first is removed.

Hence, a new flit can be stored inside the buffer to perform the multiply and accumulate

operation again. In this manner, the data stream processing unit is pipelined. The

state MMAC ends, when another instruction flit enters the data stream processing

unit. All instruction flits that have been processed by the corresponding router are not

needed anymore and are removed from the message.

The flow of a message that contains multiple instructions is presented in Fig. 3.40.
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Figure 3.40: Data and Instruction Stream: (a) before processing (b) after processing
of one router (c) after processing of two routers

It shows an example of a message with n instruction flits and m payload flits. It is

transmitted through two routers. It can be seen that the number of instruction and

data flits changes by traversing a router since each router decreases the number of

instruction flits by two.

Resource Analysis The data stream processing units are developed in VHDL and

implemented for an xc7z020clg484-1 (ZedBoard [AVN12]) FPGA using Vivado 2016.1.

A router for mesh-based NoCs contains five ports with integrated buffers. Each

buffer per router can be exchanged by a data stream processing unit. Accordingly, a

router can be equipped with up to five data stream processing units. The size of the

data stream processing unit depends on the number of flits are processed per multiply

and accumulate operation. Table 3.7, Table 3.8 and Table 3.9 present the resource

utilization of the data stream processing unit after synthesis for depth sizes of 4, 8

and 16. Furthermore, the multiplications are implemented as 8 bit, 16 bit and 32 bit

signed integer multiplications using only LUTs. Each multiplication is composed of

the first four payload flits that are stored inside the buffer. However, the data stream

processing unit can be configured to include more flits for the multiplication.

To reduce the number of LUTs used per data stream processing unit, DSP48E1

blocks have been implemented to provide the multiply and accumulate operations.
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Table 3.7: Resource utilization of data stream processing unit with a depth size of 4
on an xc7z020 after synthesis using only LUTs for multiplications

Multiplication 8x8 bit 16x16 bit 32x32 bit

LUTs 448 1469 2688
FFs 131 177 241

Table 3.8: Resource utilization of data stream processing unit with a depth size of 8
on an xc7z020 after synthesis using only LUTs for multiplications

Multiplication 8x8 bit 16x16 bit 32x32 bit

LUTs 496 1480 2700
FFs 138 184 248

The corresponding resource utilizations are presented in Table 3.10, Table 3.11 and

Table 3.12. In order to show the overhead of the data stream processing unit, Table

3.13 shows the resource utilization of a FIFO which can be implemented in the router

of Section 3.1.1.

The results show that the type of multiplication (8 bit, 16 bit or 32 bit) has the

highest impact on the resource utilization. In contrast to that, the depth size has a

negligible impact. Since the size of the overall design should be minimized to decrease

the static power consumption and improve the performance, the data stream processing

unit has been efficiently implemented using dedicated DSP blocks. A single multiply-

accumulate operation has one cycle delay in the presented approach. Xilinx DSP blocks

[Xil18a] have a 25 x 18 bit two’s-complement multiplier and a 48 bit accumulator.

It is obvious that the utilization of DSP blocks significantly reduces the amount

of needed LUTs. Since four flits are separately multiplied with preloaded coefficients,

four multiplications are executed in parallel. Afterwards, three additions accumulate

concurrently the results. Four multiplications and three additions of 32 bit values

cannot be mapped to four DSP blocks, because a single DSP block supports 25 x

18 bit signed multiplication. Since four 32 bit multiplications are performed, Vivado

decomposes these multiplications and can use multiple DSP blocks to provide 32 bit

calculations. In this case, Vivado infers 14 DSP blocks. Assuming that each router

contains four data stream processing units for the ports North, East, South and West,

the amount of DSP blocks is quadruplicated. Moreover, an MxN-based mesh increases

the utilization by a factor of MxN in a homogeneous NoC.

The xc7z020clg484-1 FPGA contains 220 DSP blocks which limit the network size

to 3 routers. The execution of 8 and 16-bit multiplications reduces the amount of DSP

blocks to 4 blocks per data stream processing unit. This is due to the internal 25x18 bit
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Table 3.9: Resource utilization of data stream processing unit with a depth size of 16
on an xc7z020 after synthesis using only LUTs for multiplications

Multiplay & Accumulate - Processing Unit 8x8 bit 16x16 bit 32x32 bit

LUTs 525 1498 2720
FFs 149 195 259

Table 3.10: Resource utilization of data stream processing unit with a depth size of 4
on an xc7z020 after synthesis using DSPs for multiplications

Multiplay & Accumulate - Processing Unit 8x8 bit 16x16 bit 32x32 bit

LUTs 161 197 329
FFs 81 81 81
DSPs 4 4 14

multiplication unit and 48-bit accumulation unit of the DSP block. A further reduction

has been achieved by overclocking a single DSP block. The DSP block runs with a

4x faster clock than the remaining logic. In this manner, only a single DSP block is

used per data stream processing unit, since all 4 multiplications and 3 additions are

executed in a pipelined way.

3.2.2 Application-Specific Operations

The approach presented in Section 3.2.1 has an essential disadvantage. The operations

that can be performed by data stream processing units are limited to multiply and

accumulate operations. It limits the full potential of this concept. To overcome this

limitation, this section presents an approach that allows the development of processing

units able to perform any operation.

Furthermore, the efficiency of a message is improved by using only one instruction

flit for an operation. The previous approach uses two instruction flits. The first

instruction flit indicates the start and the second instruction flit indicates the end

of an operation.

The multiply and accumulate operations are fixed to a specific router, as the address

Table 3.11: Resource utilization of data stream processing unit with a depth size of 8
on an xc7z020 after synthesis using DSPs for multiplications

Multiply & Accumulate - Processing Unit 8x8 bit 16x16 bit 32x32 bit

LUTs 172 208 340
FFs 88 88 88
DSPs 4 4 14
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Table 3.12: Resource utilization of data stream processing unit with a depth size of 16
on an xc7z020 after synthesis using DSPs for multiplications

Multiply & Accumulate - Processing Unit 8x8 bit 16x16 bit 32x32 bit

LUTs 188 224 356
FFs 99 99 99
DSPs 4 4 14

Table 3.13: Resource utilization of a buffer for a depth size of 4, 8 and 16

Buffer Depth 4 8 16

LUTs 58 64 79
FFs 43 49 59

of the routers is indicated in the instruction field. In this section, the operations are

not fixed to a router using the instruction flit. The instruction flits contain a bitfield

called instruction that indicates the operation instead of the router address.

The work in this section introduces ASIRs. Inspired by application-specific

instruction-set processors, the routers are defined as ASIRs. ASIRs propose a

router architecture that can process data by an application-specific processing core.

Furthermore, the processing core can be designed with C/C++ using HLS, which

provides high flexibility in terms of feasible operations as well as a higher abstraction

of the design. The internal buffer of routers can be enhanced by such a processing

core and consequently, incoming messages can be processed during transmissions.

Processing Units of ASIRs A detailed overview of the processing unit is shown

in Fig. 3.41. The processing unit consists of a multiplexer, a demultiplexer, a buffer,

an FSM including a counter and a processing core. Every core except the processing

core is developed in VHDL without vendor-specific FPGA components. The processing

core is programmed in C/C++ and can be synthesized using HLS. The demultiplexer

forwards incoming flits either to the buffer that stores the data without processing them

or to the processing core which performs the application-specific operations. Since

AXI4-Stream is used as a communication protocol between routers, the buffer and the

processing core also support AXI4-Stream interfaces. The multiplexer transmits either

the flits from the buffer or from the processing core to the next stage of the router which

is the crossbar. An FSM controls the multiplexers, and therefore, it decides which flit

will be processed by the processing core or forwarded through the buffer. Additionally

to the different types of flits in wormhole routing, instruction flits are needed again.

All flit types used in ASIRs are shown in Fig. 3.42. The header flit is composed
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Figure 3.41: Processing unit with AXI4-Stream interfaces and high-level synthesizable
processing core
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Figure 3.42: Different flit types: 1. header flit, 2. instruction flit, 3. payload flit and
4. tail flit

101



CHAPTER 3. FROM CONVENTIONAL ROUTERS TO
APPLICATION-SPECIFIC INSTRUCTION-SET ROUTERS (ASIRS)

Listing 3.5: C template that implements a threshold function in the processing core✞ ⊵
1 void p r o c e s s i n g c o r e ( i n t * A, i n t * B) {
2 #pragma HLS INTERFACE ax i s port=A
3 #pragma HLS INTERFACE ax i s port=B
4 // Fol lowing code i s app l i c a t i on=s p e c i f i c
5 i n t th r e sho ld =110;
6 i f (*A < th r e sho ld ) {
7 *B=0;
8 } e l s e {
9 *B=1;

10 }
11 }
12✝ ✆

of the destination address that determines the target router of the message, the source

address that shows where the message comes from and bitfields containing the number

of instruction flits within the message as well as a tag information. The processing unit

contains a 16 bit counter value and the operation which is used by a router to decide if

the flits are processed by the processing core or not. The counter value corresponds to

the number of flits that are processed. The bit width of the counter value is configurable

and is set to 16 for evaluation purposes. If the FSM detects an instruction flit based

on the instruction field, it configures the multiplexers to forward messages through the

processing unit until the counter from the FSM reaches the counter value specified

previously by the instruction flit. The payload flits transmit data in 32 bits.

The tail flit is specified by an additional bit in comparison to the payload flit. As

previously mentioned, the processing core is high-level synthesizable. A template pre-

sented in 3.5 has been developed for Vivado HLS that can be used to design processing

cores. The cores synthesized using high-level-synthesis can be directly integrated due

to compatible interfaces.

The template in Listing 3.5 provides an example of a threshold operation that is

synthesizable using Vivado HLS. The values of flits that enter the processing core are

compared to a threshold value of 110. If it is lower than the threshold, the processing

core sends a flit with a value of 0. If it is greater than the threshold, the processing

core sends a flit with a value of 1. Other operations can be implemented using this

template and are only limited by the HLS tool.

The input port of the processing core is represented by an integer pointer named A.

The output port is represented by an integer pointer named B. Other data types can

also be implemented. If the data type uses more than 32 bits, the bit width must be

adapted to the data type. If it uses less than 32 bits, the bit width can be adapted until

the minimum value of 22 bits. The minimum value is determined by the maximum
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number of necessary bits from the header flit or instruction flit. The router presented

in this work is configured with an address size of 6 bits, a tag size of 6 bits and a counter

size of 16 bits. Accordingly, 18 bits (6 bits destination address + 6 bits source address

+ 6 bits tag) are containing necessary information in the header flit. The instruction

flit consists of 6 bits for the operation and 16 bits for the counter value resulting in 22

bits. Therefore, the minimum bit width which can be implemented is 22 bits in the

presented configuration. The pragmas written in lines 2 and 3 are necessary to provide

compatible AXI4-Stream interfaces. Furthermore, Vivado HLS generates control and

status signals. These signals are necessary to reset and start the high-level synthesized

core. The FSM ensures an error-free operation by setting these signals correctly. Using

such processing cores, a router is able to process any function synthesized by Vivado

HLS. A router of a mesh topology can contain up to 5 processing cores with different

or same operations. An efficient number of processing cores inside a router depends

on the application and is determined at design time. Consequently, the development

of a new application that exploits processing inside routers requires the selection and

design of new processing cores.

Control Flow of Flits through the Processing Unit The internal FSM of the

processing unit has three states: Release, Reserve and Idle state. Fig. 3.43 describes

the instruction and data flow of a message through the processing unit.

1. Initially, the FSM is in the Release state. The header flit of a message is forwarded

through the first multiplexer to the buffer in this state. The second multiplexer

transmits the output of the buffer to the crossbar. The configuration of the

processing core by setting the control signals is also done in this state.

2. Afterwards, the instruction flit enters the buffer, which changes the state from

Release to Reserve. This state change requires that the instruction flit indicates

the corresponding operation of the processing core; otherwise, the FSM remains

in the Release state. The Reserve state sets the multiplexer and demultiplexer

to the processing core. In addition, the counter increments at every incoming

flit until it reaches the number of flits that are specified in the instruction flit.

Furthermore, the instruction flit stored in the buffer is removed.

3. The FSM changes from the Reserve state to the Idle state at the moment, when

the counter reaches the specified number of flits. The Idle state disables the first

multiplexer so that no new flit can be forwarded to the processing core as well as

the buffer.
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Figure 3.43: Instruction and data flow of a message through a processing unit
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The Release state is active again when the last flit of the processing core has been

transmitted. In Fig. 3.43, the tail flit which identifies the end of a message is trans-

mitted through the buffer. However, further payload flits can be also transmitted.

3.2.3 Extended Network-on-Chip Interface

An additional control bit per flit is required that distinguishes instruction flits from

other flits such as header, payload and tail flits as shown in Fig. 3.42. The interfaces

of the ARM and MicroBlaze processors that are used in this work provide an AXI4-

Stream interface with a bit width of 32 bits and additional control bits for handshaking

and determining the end of a message. It is not possible to tag directly a flit as an

instruction flit using such an interface. Due to these circumstances, the interfaces are

extended by a module that analyzes the header flit to set the instruction bits. This

implies that the number of instruction flits is encoded in the header flit.

Besides the source address, the destination address and tag information, 6 bits are

reserved to specify the number of following instruction flits. The module forwards the

header flit and sets the instruction bits of the following flits active. For the remaining

payload and tail flits, the instruction bit is set to inactive.

The interface contains an FSM as presented in Fig. 3.44. Three states are modeled:

Header, Instruction (Instr.) and Else. Each state forwards the input to the output.

The states Header and Else forward flits with an inactive instruction bit in contrast to

the state Instruction. This state transmits flits with an active instruction bit.

The initial state is the Header state. In this state, the number of instruction flits is

saved in a memory location, called cnt, when the header flit arrives. In case the value of

cnt is equal to zero, the message contains no instruction flits. Thus, the FSM changes

the state to Else, which is kept until a tail flit is forwarded through the module. This

causes the FSM to change back to state Header.

In case the value of cnt is above zero, the FSM changes first to the state Instruction.

During the state Instruction, the counter is decremented for each flit that is transmit-

ted. At the same time, the flits are transmitted with an active instruction bit. The

FSM changes to the state Else, when the counter reaches the value zero. From this

point on, flits are transferred with an inactive instruction bit. In the state Else, only

payload and tail flits of a message are transferred. The FSM goes to the initial state

after transmitting the tail flit and hence, it is ready to transfer a new message starting

with the header flit.
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Figure 3.44: Finite-State-Machine of the extended network interface for ASIRs

3.2.4 Wormhole Computing

As wormhole routing is enhanced by data processing using ASIRs, the flow control

presented in this work is defined as wormhole computing. In wormhole routing, a

message consists of header, payload and tail flits. A message in wormhole computing

can contain additional instruction flits. However, instruction flits are optional and

a message transferred without instruction flits is transferred as in wormhole routing.

Therefore, wormhole computing is an extension of wormhole routing. Fig. 3.45 shows

the construction of messages that perform wormhole computing. A message is trans-

ferred from its source (0,0) to the destination (1,1) through a routing path consisting

of router: (0,0), (1,0) and (1,1). Since a payload flit with a size of 4 bytes has to be

processed by two instructions, the message consists of a header flit, two instruction

flits, a payload flit and a tail flit. The first instruction A is executed in the router

(1,0) and the second instruction B is executed in the router (1,1). The instruction flit

that is associated to the second operation is sent before the other instruction flit is

transferred.

Fig. 3.45 shows the steps numbered from 1 to 8 that are needed to route a message

through the routers. Step 1 to 4 show how the individual flits are transferred until

the header flit reaches the destination. In Step 3, it can be seen that the instruction

flit B is transferred first through the router (1,0). The router (1,0) is only able to

perform instruction A. Thus, instruction flit B is transferred to the next router. Step

4 shows that all instruction flits are located in their associated routers. The routers

are configured to perform their instruction for the next incoming flit which is marked
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by red routers in Step 5. Furthermore, the instruction flits are removed from the NoC.

The data word that is located inside the payload flit is first transferred and processed

by the router (1,0) and then transferred and processed by the router (1,1). The tail

flit follows the payload flits to release the path for other messages. It is not processed

by the router (1,0) and (1,1).

The general structure of a message in wormhole computing is shown in Fig. 3.46.

The header flit is followed by instruction flits in reverse order of their execution. After

the instruction flits, the payload flits are transferred. Fig. 3.46 a) presents a message of

n instruction flits. A processing unit of an ASIR decreases the number of instruction

flits by one in this example. After the message is transferred through n ASIRs, n

instruction flits are removed from the message as shown in c). The number of useful

instruction flits within a message is limited by the number of ASIRs that are part

of the routing path. The maximum path length of a kxk mesh topology consists of

2k−1 routers and accordingly, the maximum number of instruction flits per message is

2k−1 for a kxk mesh topology. Comparing Fig. 3.45 with Fig. 3.40 shows that ASIRs

increase the efficiency of the message by reducing the number of needed instruction flits.

However, the increase in efficiency requires an additional counter inside the processing

unit to monitor the number of payload flits processed.

Not all payload flits of a message must be processed by an instruction. For in-

stance, a message containing one instruction flit and n payload flits is considered. The

instruction flit indicates that m payload flits are processed by this instruction. If m is

smaller than n, only the first m payload flits are processed and the remaining payload

flits are not processed.

3.2.5 MPI-based Programming Interface

In this thesis, a software layer based on the MPI standard is developed to ease the

generation of messages for ASIRs. The layer includes sending and receiving methods

for communication between processors, as well as the initialization and termination of

the layer. The commands facilitate the exchange of data between processors in the

NoC without dealing with the formal structure of a message. The order of flits for a

message processed by ASIRs is automatically generated.

In order to take advantage of ASIRs, the MPI library is extended with a program-

ming API for ASIRs. The data of a message is tagged with one or more instructions

that have to be performed. Additionally, the order of concatenated operations is de-

fined. It is important to mention that the routers that perform these operations are

not specified.

The routers provide an operation and the programmer of a process tags this oper-
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Figure 3.46: Structure of a message containing header, instruction, payload and tail
flits

ation to the data. The tag is stored inside a communicator object which is used in the

MPI standard. The communicator defines a group of processes that communicate to

each other in MPI. The internal structure depends on the MPI implementation. Stor-

ing the instructions inside the communicator allows keeping the formal structure of the

MPI commands. A send command takes a communicator as an argument. Therefore,

no additional arguments are needed, as the communicator object contains the necessary

information about the data.

In this thesis, the communicator is extended by attributes that store the number

of instructions and two arrays. The first array is a list of the instructions that have to

be executed and the second array contains the number of flits that are processed by

the corresponding instruction. Listing 3.6 shows an example of a message that should

be processed by two operations. The first operation is a normalization process and the

second operation is a threshold computation on 100 flits. The communicator that is

used is called MPI COMM WORLD.

Such a programming method is stream-oriented. The entire architecture of the NoC

can be considered as a network of accelerators. These accelerators provide operations

to process a message. Before a message is transferred through the NoC, it specifies the

type and order of operations as well as the amount of data that is processed as shown

in Listing 3.6.
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Listing 3.6: Example of the MPI-based library supporting ASIRs✞ ⊵
1 . . .
2 MPICOMMWORLD. i n s t r n r = 2 ; // two ope ra t i on s are

subsc r ibed
3 MPICOMMWORLD. i n s t r o p [ 0 ] = NORMALIZATION; // F i r s t opera t i on :

norma l i za t i on
4 MPICOMMWORLD. i n s t r c n t [ 0 ] = 100 ; // 100 f l i t s are proce s s ed

by t h i s opera t i on
5 MPICOMMWORLD. i n s t r o p [ 1 ] = THRESHOLD; // Second opera t i on :

th r e sho ld
6 MPICOMMWORLD. i n s t r c n t [ 1 ] = 100 ; // 100 f l i t s are proce s s ed

by t h i s opera t i on
7 MPI Send(&data , 400 , MPI INTEGER, 1 , NULL, MPICOMMWORLD) ; //

Command to send the data to proce s s 1
8 . . .
9✝ ✆
3.2.6 Discussion

Comparison between ASIRs and Data Stream Processing in NoCs ASIRs

are a further development of the approach presented in Section 3.2.1. The main dif-

ference between both approaches is that ASIRs are more flexible in the selection of

operations. They are not limited to multiply and accumulate operations. In other

words, the approach presented in Section 3.2.1 can be considered as a subclass of

ASIRs. The design of data stream processing units is fixed and cannot be changed

contrary to ASIRs. This could be considered as a disadvantage if one assumes that

the development of new processing units is costly. Nevertheless, as HLS can be used

to develop processing units, the complexity of the development is simplified.

In addition, the overhead in terms of instruction flits is lower in ASIRs. They only

use one additional instruction flit instead of two. This is enabled by additional counters

inside the processing unit. The instruction flit in ASIRs does not contain the address

of the ASIR, instead, it contains a bitfield that indicates the operation. The internal

router unit compares only the type of instruction and not the address which simplifies

the construction of a message. By specifying the address in the instruction flit, the

constructor of the message must know which operation is executed at which router of

the NoC. By specifying the type of instruction, the constructor of the message does

not care about the exact location. If the routing path contains ASIRs able to perform

the instructions, only the order has to be considered. Due to these reasons, further

explorations focus on ASIRs.

Comparison to Accelerators that are connected to Routers Processing data

during routing provides a high potential for performance boosts. Another approach
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Figure 3.47: Comparison between ASIRs and accelerators connected to a router
through an interface

that can also create a speedup is the general usage of accelerators in an MPSoC as

shown in Section 3.1.3. Such accelerators can be attached by a network interface to

the NoC. The network interface transfers the message from the NoC to the accelerator

and back to the NoC. Fig. 3.47 presents the architectural differences between ASIRs

and accelerators connected through a network interface.

An accelerator attached to a network interface would require that the flits are

forwarded through the local port of the router to the network interface. The network

interface forwards the message to the accelerator. ASIRs can be considered as routers

with integrated accelerators as shown in Fig. 3.47. A message can be directly forwarded

through an accelerator using ASIRs, while it stays inside the NoC. The latter case

provides a better latency, as the detour through the network interface is saved.

Furthermore, placing accelerators inside the NoC provides higher flexibility com-

pared to a network interface-based approach. Accelerators of multiple routers can be

concatenated depending on the path. The concatenation of accelerators that are at-

tached to a network interface requires a higher effort in data transmissions since the

flits must be forwarded through multiple network interfaces. Every accelerator that is

concatenated increases the delay with an additional network interface.

Replacing of Input Buffer Replacing the input buffer with a processing unit allows

only the computation of flits that are arriving at the corresponding input port. Hence,

the processing units have to be placed in the appropriate input port depending on

the routing algorithm and the application. Every input port can be exchanged with a
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processing unit, as it provides a potential higher performance. However, the additional

processing units also increase the resource utilization in FPGAs. Depending on the

application, only specific input buffers can be exchanged by a processing unit which is

much more resource-efficient.

Data that comes from different MicroBlaze processors cannot be processed by a

single ASIR. This would be against the definition of wormhole computing. A message

enters and leaves only one processing unit inside an ASIR. Another approach that is

able to process flits of different messages in the same router is adding further ports to

the crossbar. These ports can be controlled by a state machine to merge messages that

are processed.

The processing unit computes one message containing the result from the messages

merged and forwards it again through the crossbar to the next router. This approach

requires significantly more area due to the larger multiplexers within the crossbar and

additional scheduling overhead. Even though it uses more resources, such a concept

is very similar to processing the data inside processors which uses an accelerator or

accelerators attached to the router through a network interface. A processor consumes

the messages, processes the data and sends it back to the NoC.

Efficiency of a Message The efficiency of a message is defined as the ratio of the

data information and the control information. A message in wormhole computing

has an overhead in comparison to messages in wormhole routing which decreases the

efficiency. However, the efficiency changes dynamically with the number of ASIRs that

are traversed, since the number of flits changes during routing. In every ASIR that

performs an operation, the corresponding instruction flit is removed. Furthermore,

the number of payload flits can be increased or decreased in wormhole computing

depending on the operation. A possible use case would be a transformation from RGB

values to grayscale values. The three RGB values with 8 bit per value can be converted

into one grayscale value with 8 bit.

The efficiency E of a message transferred with wormhole routing is given by Eq.

3.10. The numerator consists of the number of flits that transfers the relevant data,

represented by m. The denominator consists of the overall message length containing

the number of payload flits and additional flits for controlling. In wormhole routing, it

is one additional flit caused by the header flit. The tail flit can contain data information.

E =
m

m + 1
(3.10)

Eq. 3.11 describes the efficiency E(h) in wormhole computing. It supposes a trans-

mission of a message containing m payload flits through n ASIRs. The number of
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payload flits that is changed per ASIR is described by c(h).

E(h) =
m + c(h)

m + c(h) + n− h + 1
(3.11)

For a message length m of 100 payload flits, the efficiency is 99.01% in wormhole

routing using Eq. 3.10. In wormhole computing, the efficiency depends on the number

of ASIRs that are traversed. The following examples show that the efficiency compares

only the amount of data information to control information which is not sufficient in

an ASIR-based NoC.

� Assuming that the message would be reduced by 1 flit per ASIR and is sent

through 10 ASIRs, the efficiency is 98.90%.

� Assuming that the message would be increased by 1 flit per ASIR, the efficiency

is 99.10%.

A message length that is increased during routing raises also the network load which

can lead to a degradation of the network throughput, even though it has an increasing

efficiency. Accordingly, the efficiency is an inadequate metric for a fair comparison and

therefore, new metrics are needed.

3.3 Summary

Chapter 3 presents novel approaches for NoC-based MPSoCs with the goal to improve

the communication overhead. The concepts are applied to a router that is used as

a baseline and synthesizable for FPGAs without any vendor-specific properties. The

router uses wormhole routing and the deterministic XY routing algorithm. Further-

more, network interfaces for constructing MPSoCs on the Zynq-7000 SoC are developed

supporting the GP port, HP port and ACP port. The router is evaluated in terms of

traffic load and soft-realtime capability in MPSoCs. The results show that combining

multiple routing algorithms improves the traffic load and reduces the execution times

by a factor of up to 1.9x. The router used in this work supports the XY and the

West-First routing algorithm. Only a negligible overhead of 115 LUTs per router is

observed.

However, this approach highly depends on the traffic that is generated by the ap-

plication. LinROS which is a Linux-based operating system extended with a real-time

patch and running on a reconfigurable MPSoC provides an API that allows the pro-

gramming of tasks that can run on a MicroBlaze processor or as a hardware accelerator.

A scheduler for tasks is implemented as a priority queue. It sorts tasks by deadlines
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and decides in which order the tasks are executed. If the scheduler determines the next

task to be executed by a hardware accelerator, an available partition of the FPGA is

reconfigured with a corresponding partial bitstream that is attached to the task defini-

tion and started by LinROS. Tasks running on MicroBlaze processors behave similarly.

If the scheduler determines the next task to be executed by a MicroBlaze processor,

an available MicroBlaze processor is reprogrammed with the program attached to the

task definition and started by LinROS. The evaluations show that communicating

tasks must be placed as close as possible to reduce the communication overhead. Fur-

thermore, the performance advantages of accelerators synthesized by Vivado HLS are

demonstrated for stream-oriented computing.

By extending a NoC with processing capabilities, data can be processed by hard-

ware accelerators during message transfers. This means that data transfers to hardware

accelerators are kept as short as possible and tasks that communicate with each other

are placed as close as possible to each other. Two scalable concepts that provide

stream-oriented processing capabilities inside the NoC are presented. The first concept

implements multiply and accumulate operations in the router by exchanging the inter-

nal buffer with a corresponding processing unit. Data that is transmitted through a

router can be either processed by multiply-accumulate operations or forwarded without

processing. Especially applications from the signal processing domain can benefit from

this approach as data that is transferred can be directly filtered without wasting time

for data transfers. However, this approach lacks flexibility in terms of programming.

The second approach called ASIR provides a processing unit that can perform any op-

eration and hence, it is not limited to a specific one. This is achieved by using HLS to

design an operation of the processing unit using a high-level language. State-of-the-art

router uses wormhole routing as a control flow mechanism. In this dissertation, worm-

hole routing is extended to wormhole computing that describes the flow control in an

ASIR-based MPSoC. The construction of a message in wormhole computing requires

an additional type of flits for configuring ASIRs. An MPI-based API is developed that

eases the construction of messages in wormhole computing and provides methods to

transfer packets between processors. To construct an MPSoC on a Xilinx Zynq-7000

SoC, a novel network interface is presented that automatically indicates instruction

flits, while the message traverses the interface. By placing the accelerators directly

in the router instead of attaching them, the flits are processed during buffering. This

makes additional detours through a crossbar and a network interface to the accelerator

and back unnecessary. Moreover, the communication time can be efficiently used by

preprocessing the data in payload flits before they reach a processor which can then

perform further processing.
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Chapter 4

Application and Performance

Exploration of ASIR-based

MPSoCs

The communication overhead can become the performance bottleneck of a parallel

application. Stone’s metric [Sto87] shown in Eq. 4.1 approximates the speedup S

of a parallel application taking into account the communication time C, computation

time R, the number of tasks M, and the number of processors N that execute the

tasks. The communication time is the time needed to exchange data between tasks,

while the computation time R is the time needed to process the tasks. The metric

shows that the communication time limits the speedup in Multi-Processor Systems-

on-Chip (MPSoCs). Nevertheless, if the computation time R is much larger than the

communication time C, the speedup scales approximately linear with the number of

processors N.

S =
N R

C

R
C

+ M(N−1)
2

(4.1)

A high ratio of R
C

leads to a high speedup as shown in Fig. 4.1. The higher

the communication time, the more it limits the speedup. In order to increase the

overall system performance in multi-core systems, the communication overhead must

be decreased.

Application-Specific Instruction Set Routers (ASIRs) convert communication time

to computation time, as data is processed while it is transferred. This increases the

ratio of R
C

and accordingly, the achievable speedup. In this chapter, the performance

benefits of ASIRs are evaluated. Similar to Stone’s metric, the achievable speedup

of ASIR-based MPSoCs is approximated. The throughput and the injection rates of
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Figure 4.1: Stone’s Metric: Speedup depending on the number of processors for 1500
tasks

packets with and without ASIRs are modeled to approximate the speedup. In addition,

wormhole computing is evaluated when pipelining is applied. Pipelining in the context

of wormhole computing means that every router along the routing path performs oper-

ations with the same duration or in other words, the complete data processing function

is equally distributed on ASIRs along the routing path. It is shown that a set of oper-

ations distributed evenly across ASIRs achieves low end-to-end latencies between two

communicating Processing Elements (PEs).

Besides these analytical considerations, two applications from real-world use cases

are implemented using ASIR-based MPSoCs. The first use case is the execution of an

image processing algorithm for edge detection showing that the communication time

can be utilized more efficiently. The second use case is an ASIR-based MPSoC that

can be used as a portable device for visually impaired people. A Light Detection and

Ranging (LIDAR) sensor scans the direct environment of a user carrying this device.

An acoustic signal is generated based on the LIDAR scan and transmitted to the user

via headphones. The user concludes information about the environment only on the

basis of the acoustic signal. A similar principle is also used in parking aids. This use

case is evaluated in terms of performance and under which conditions the use of ASIRs

is reasonable.

In addition to the performance analysis, the tool flow Relocatable Partial Bitstreams

(RePaBit) is presented. It allows the relocation of hardware components such as the

processing units located in ASIRs. RePaBit reduces the memory requirements for

partial bitstreams, since relocation enables the use of a partial bitstream in several

reconfigurable partitions. Furthermore, the build time of reconfigurable FPGA designs
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is reduced. However, dynamic partial reconfiguration expands the vulnerability to

malicious attackers. Partial bitstreams with suspicious content such as trojans can be

loaded into a reconfigurable design to infect the system. A machine learning-based

approach is evaluated that analyzes partial bitstreams using neural networks to detect

potential trojans.

The chapter is structured as follows. Section 4.1 introduces the approximation

of the speedup gained by ASIR-based MPSoCs. Section 4.2 presents the advantages

of pipelining operations along the routing path in wormhole computing. In Section

4.3, the designs and results of the two real-world use cases are presented. Section

4.4 presents relocation and Neural Network-based security mechanisms. Finally, a

summary of this chapter is given in Section 4.5.

4.1 Model of Data Processing in NoCs

In this section, the ASIR-based approach is modeled under uniform traffic for kxk mesh

topologies to approximate the potential speedup of MPSoCs. The model is based on

the injection rates and the throughput. Moreover, the impact on the network load of

ASIRs that increase, decrease, or keep the message length is discussed.

Section 4.1.1 presents approximations of the injection rate and throughput of a

NoC. Section 4.1.2 presents approximations of the injection rate and throughput of an

ASIR-based NoC. Based on these approximations, the speedup of an ASIR-based NoC

is presented in Section 4.1.3. The insights are discussed in Section 4.1.4.

4.1.1 Injection Rate and Throughput

A parallel application can be considered as n parallel processes. The duration of each

process can be separated into communication time tcom and computation time tcomp

as presented in Fig. 4.2. The computation time is composed of the execution of

operations excluding the operations for communication between processors such as

send and receive commands. These operations create the communication time. The

sum of communication and computation times is the execution time texec,i of a process

i. In case all processes run concurrently and start at the same time, the total execution

time Texec is the maximum of execution times of all processes as presented in Eq. 4.2.

This scenario considers the maximum achievable parallelization level.

Texec = max(texec,1, texec,2, ..., texec,) (4.2)
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Figure 4.3: Structure of a process on cycle level

Injection Rate of Processors

To approximate the speedup, a process is split into m windows as shown in Fig. 4.3. In

each window, one or more flits are sent and received besides data processing. Accord-

ingly, the duration of a window consists of cycles for data processing (cproc) as well as

for sending (csend) and receiving (crec) flits. Splitting a process into multiple windows

is based on a typical scenario in embedded systems. A process usually runs a loop

that repeats the same order of instructions. A single iteration run of a loop run can be

considered as a window. The structure in Fig. 4.3 can be used to define a flit injection

rate R for a single window. The flit injection rate is calculated by Eq. 4.3.
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R =
csend

csend + cproc + crec
(4.3)

Throughput

The throughput of a NoC is the number of flits that are accepted by the routers

per cycle. If a processor sends more flits per cycle than a router accepts, the NoC is

overloaded and becomes the bottleneck of the system. To achieve the best performance,

the goal must be to reach an injection rate that is equal to the ideal throughput. The

ideal throughput is the attainable throughput that saturates the NoC. The throughput

depends on the topology and the traffic patterns. For uniform traffic, an upper bound

of the ideal throughput can be computed.

Fig. 4.4 shows the channel bisection (dotted line) of a 4x4 mesh topology. The

channel bisection cuts the NoC into two halves that contain the same number of routers,

if possible. Due to the symmetric structure of a mesh, the channel bisection can also

vertically cut the network. Nevertheless, the same derivatives can be applied and

therefore, it is enough to consider only a horizontal channel bisection.

The channel bisection is often used to estimate the ideal throughput, as the channel

bisection determines a lower bound of the load. The load of a channel is defined as the
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amount of traffic that must cross the channel, if each processor injects one flit [DT04].

The maximum channel load is the channel that carries the largest fraction of traffic

under a particular traffic pattern. In uniform random traffic, a process sends equally

likely a message to every other process. In a kxk mesh network, half of the traffic (k2

2
) is

created by the left and the right side of the channel bisection. As the best throughput

occurs when the traffic is distributed evenly across the channel bisection, half of the

traffic generated by the sides remains on its side. As a consequence, 1
2
· k2

2
is transferred

across the channel bisection. The amount of traffic is transferred through k links and

thus, a lower bound for the maximum channel load can be calculated using k2

2k
. For k

is an odd number (k = 3, 5, 7, 9, ..), the side containing less routers creates the lower

traffic load with k(k−1)
2

flits that are transferred through k links. The following equation

can be concluded.

γmax ≥

⎧⎨⎩k
2

, k is even

k−1
2

, k is odd
(4.4)

The channel bandwidth b determines how many flits are transferred through a link

in one cycle. Due to the homogeneous structure of a mesh network, it is supposed that

all channels have the same channel bandwidths. The ideal throughphut θideal can be

computed by Eq. 4.5 (see also [DT04]).

θideal =
b

γmax

(4.5)

An upper bound for the ideal throughput can be computed using Eq. 4.4 and Eq.

4.5.

θideal ≤

⎧⎨⎩2b
k

, k is even

2b
k−1

, k is odd
(4.6)

4.1.2 Injection Rate and Throughput using ASIRs

In an ASIR-based MPSoC, a sequence of operations performed by a process is moved

to ASIRs. In order to model an ASIR-based Network-on-Chip (NoC), the following

assumptions concerning an application are made.

1. A uniform traffic pattern is applied which means that every process sends mes-

sages equally likely to the remaining processes. To determine a performance

model of ASIRs, a process sends a message to and receives a message from every

other process within a window.
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2. The total number of routers that are traversed by messages sent by a process p

within a window is defined as Hp. As uniform random traffic is applied, Hp is also

the number of routers that are traversed by all messages received by a process p

within a window.

3. Every message of the uniform traffic pattern consists of nmsg flits.

4. Every ASIR processes nproc flits of a message by one operation.

5. The message length is changed by ndecr flits per ASIR. By default, the message

length is assumed to be reduced. However, it can also be increased using a

negative value for ndecr. If ASIRs neither generate new flits nor reduce the total

number of flits, ndecr is set to 0.

6. Every ASIR performs the same operation with a duration of cFlit,Process cycles to

process one flit.

7. The mesh topology has a size of kxk ASIRs.

8. The XY routing algorithm is applied.

9. Sending and receiving a single flit takes one cycle.

Injection Rate of Processors

The number of flits that are sent within a window is increased by transferring additional

instruction flits. Every ASIR performs one operation per message and hence, one

additional instruction flit for each ASIR that is crossed is needed. A process sends

a single message to every other process within a window. Hp is defined as the total

number of routers that are traversed by messages sent by a process p. Accordingly,

csend is increased by sending Hp instructions flits. The result is defined as csend,ASIR.

csend,ASIR = csend + Hp (4.7)

The number of cycles cproc is decreased, as operations performed by a process are ex-

ecuted by ASIRs or, in other words, processing tasks of a process are moved to ASIRs.

cproc is reduced by HpcFlit,Processnproc. In order to clarify this reduction, the following

example consisting of 4 processes that communicate with each other is analyzed. Pro-

cess 0 sends one message to processes 1, 2 and 3. A message sent by process 0 reaches

process 1 and 2 after traversing two routers in contrast to process 3. A message reaches

process 3 after traversing 3 routers. H0 can be calculated as follows:
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H0 = 2 + 2 + 3 = 7 (4.8)

Hence, 7 routers are involved in processing data. The messages sent to process 1 and

2 performs data processing with a duration of 2cFlit,Processnproc cycles as cFlit,Processnproc

cycles are needed per ASIR and two ASIRs are traversed. Accordingly, the message

sent to process 3 requires three times cFlit,Processnproc cycles. The total sum of cycles

for data processing in ASIRs is given by:

2cFlit,Processnproc + 2cFlit,Processnproc + 3cFlit,Processnproc (4.9)

= 7cFlit,Processnproc

= H0cFlit,Processnproc

The number of cycles to perform data processing in an ASIR-based MPSoC

is defined as cproc,ASIR. It can be calculated by Eq. 4.10, since ASIRs conduct

HpcFlit,Processnproc cycles to process data instead of the process p.

cproc,ASIR = cproc −HpcFlit,Processnproc (4.10)

The process p sends messages to all other processes, but it also receives messages

from all other processes. Hp also defines the number of routers that are traversed

by messages received by process p, because every process sends one message to all

remaining processes and also receives one message from every other process. Every

router decreases the message length by ndecr and thus, fewer flits are received. The

message length that is routed through a path consisting of h ASIRs is reduced by

h · ndecr flits. As a process receives messages from all other processes, crec is reduced

by Hpndecr cycles.

The example previously used is analyzed again to explain this relation. Process

0 receives a message from processes 1,2 and 3. The path length between process 0

and process 1 or process 2 consists of 2 routers in contrast to process 3 which can be

reached by traversing through 3 routers. Process 0 receives one message from each

process. The messages sent by process 1 and process 2 are sent through two ASIRs

and accordingly, each message has a size of nmsg − 2ndecr. The message that is sent by

process 3 has a message length of nmsg − 3ndecr, when it reaches process 0. The total

number of flits that are received by process 0 is given by:

nmsg − 2ndecr + nmsg − 2ndecr + nmsg − 3ndecr (4.11)

= 3nmsg − 7ndecr
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= 3nmsg −H0ndecr

The time needed to receive 3nmsg flits is equal to crec, because nmsg is the mes-

sage length without using ASIRs. Consequently, crec is reduced by Hp · ndecr. The

time needed by a process to receive messages in an ASIR-based MPSoC is defined as

crec,ASIR.

crec,ASIR = crec −Hp · ndecr (4.12)

The flit injection rate can be adapted to RASIR,p for a process p.

RASIR,p =
csend,ASIR

csend,ASIR + cproc,ASIR + crec
(4.13)

=
csend + Hp

csend + Hp + cproc −HpcFlit,Process(nproc) + crec −Hp · ndecr

=
csend + Hp

csend + cproc + crec + Hp(1− cFlit,Processnproc − ndecr)

It is worth mentioning that the processes have different injection rates, as Hp de-

pends on the location of the process p inside the NoC.

Throughput of ASIRs

The maximum traffic load γmax of the NoC does not change from an original NoC-based

MPSoC to an ASIR-based MPSoC. However, the bandwidth b changes to bASIR, since

additional operations are executed that delay the transmission of flits. Since every

ASIR performs the same operation on the same amount of flits, it is supposed that the

channel bandwidth bASIR is the same across all channels. An upper bound of the ideal

throughput θideal,Asir can be computed by Eq. 4.14 using Eq. 4.4.

θideal,Asir ≤
bASIR

γmax

(4.14)

=> θideal,Asir ≤

⎧⎨⎩2bASIR

k
, k is even

2bASIR

(k−1)
, k is odd

4.1.3 Speedup

To calculate the speedup S, the execution times without (Texec) and with ASIRs

(Texec,ASIR) must be known.

S =
Texec

Texec,Asir

(4.15)
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The execution time Texec of a parallel application for an MPSoC without ASIRs is

approximated by Eq. 4.16.

Texec = m(csend + cproc + crec) (4.16)

The execution time Texec,ASIR for an MPSoC with ASIRs is determined by Eq.

4.17. It is given by the maximum of the execution times Texec,ASIR,p which represents

the duration of a process p. As previously mentioned, all processes are started at the

same time and run concurrently. Therefore, the maximum duration of the processes

determines the total execution time.

Texec,ASIR = max(texec,ASIR,1, texec,ASIR,2, ..., texec,ASIR,n) (4.17)

The execution time Texec,ASIR,p of a single process p is computed by Eq. 4.18. The

Eq. 4.7, 4.10 and 4.12 are used to substitute csend,ASIR, cproc,ASIR and crec,ASIR.

Texec,ASIR,p = m(csend,ASIR + cproc,ASIR + crec,ASIR) (4.18)

= m(csend + cproc + crec + Hp(1− cFlit,Processnproc − ndecr))

The value Hp is not equal for all processes. It depends on the position of the process

within the NoC. The maximum of the execution time Texec,ASIR,p which is the total

execution time of the application can be computed by csend + cproc + crec + Hp,max(1−
cFlit,Processnproc − ndecr).

Hp depends on the location of the process. In uniform traffic, all messages sent by

a process that is located in the middle of a mesh-based NoC traverses less routers than

messages generated by a process that is located closer to the borders of the NoC. For

instance, messages that have their source at the router (1,1) and are sent to all remain-

ing routers cross (2+2+2+2+3+3+3+3=)20 routers as presented in Fig. 4.5. The

process running on router (0,0) sends all messages across (2+2+3+3+3+4+4+5=)26

routers as shown in Fig. 4.6.

The processes located in the corners send messages that traverse the highest amount

of routers defined as Hp,max.

In order to formulate the speedup as a function of a kxk mesh topology, Hp,max(k)

must be determined. To derive Hp,max(k), different levels of routers are introduced.

Routers that are direct neighbours of a source router are defined as level 1 routers.

They create the shortest path of a message by passing only two routers. Routers

that are neighbours of level 1 routers are defined as level 2 routers. Accordingly, the

next higher levels are built. Fig. 4.7 illustrates the different levels of router. The

source router from which the traffic is originated is defined as level 0. A message that
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Figure 4.5: Source at location (1,1) sends uniform traffic in a 3x3 mesh NoC using the
XY routing algorithm
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Figure 4.6: Source at location (0,0) sends uniform traffic in a 3x3 mesh NoC using the
XY routing algorithm
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Figure 4.7: A definition of router levels starting from router (0,0) for a kxk mesh
topology

is sent to a level 1 router traverses two routers, a message that is sent to a level 2

router traverses three routers, and a message that is sent to a level n router traverses

n + 1 routers. In Fig. 4.7, it can be seen that the total number of routers that

are traversed can be split into two sums. The first sum results from all messages

that are sent from level 0 to level k − 1 routers. The sum of all traversed routers

is equal to 2 · 2 + 3 · 3 + 4 · 4 + ... + k · k = (
∑︁k

i=1 i
2) − 1. The second sum results

from all messages that are transferred to routes located below the main diagonal.

These routes include routers from level k + 1 to level k + k − 2. The sum is equal to

(k − 1) · (k + 1) + (k − 2) · (k + 2) + ... + (k − (k − 1)) · (k + (k − 1) =
∑︁k−1

i=1 (k2 − i2).

The addition of both sums equals Hp,max(k).

For a kxk mesh topology, Hp,max(k) is given by Eq. 4.19. The example shown in

Fig. 4.7 is not restricted to the router at location (0,0). It is also valid for the three

remaining routers located in the corners due to the symmetry in mesh networks.

Hp,max(k) =

the first sum⏟ ⏞⏞ ⏟
k∑︂

i=1

i2 − 1 +

the second sum⏟ ⏞⏞ ⏟
k−1∑︂
i=1

(k2 − i2) (4.19)

=
k∑︂

i=1

i2 + (k − 1)k2 −
k−1∑︂
i=1

(i2)− 1

= k2 + (k − 1)k2 − 1

= k3 − 1
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As a consequence, the execution time is given by Eq. 4.20.

Texec,ASIR = m(csend + cproc + crec + Hp,max(1− cFlit,Processnproc − ndecr)) (4.20)

= m(csend + cproc + crec + (k3 − 1)(1− cFlit,Processnproc − ndecr))

From Eq. 4.15, 4.16 and 4.20 the speedup approximated can be concluded:

S =
m(csend + cproc + crec)

m(csend,ASIR + cproc,ASIR + crec)
(4.21)

=
csend + cproc + crec

csend + cproc + crec + Hp,max(1− cFlit,Processnproc − ndecr)

=
1

1 +
Hp,max(1−cFlit,Processnproc−ndecr)

csend+cproc+crec

=
1

1 +
(k3−1)(1−cFlit,Processnproc−ndecr)

csend+cproc+crec

4.1.4 Discussion

The models presented in previous sections are valid under certain conditions.

The Number of Cycles processed by ASIRs is Limited

Considering that a set of the cycles for data processing are moved to ASIRs, the number

of cycles cproc must be greater or equal to the number of cycles HpcFlit,Processnproc that

are executed by ASIRs for processing. Otherwise, ASIRs perform more cycles for data

processing that are executed in total by a process that does not use ASIRs.

cproc ≥
Cycles for data processing executed by ASIRs⏟ ⏞⏞ ⏟

HpcFlit,Processnproc (4.22)

The Reduction of the Message Length is Limited

An ASIR that reduces the message length by ndecr flits requires a message with a

minimum length of ndecr flits and a header flit. Otherwise, the message is removed

by decreasing the length to a zero flits which is not reasonable. Since messages are

forwarded through Hp ASIRs from source to all destinations, Hpndecr flits are removed

from the message of the process p. csend indicates the number of header and payload

flits that are sent by a process. A process sends to k2 − 1 other processes which also
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means that a process sends k2 − 1 header flits as uniform random traffic is applied.

The total amount of flits csend that are sent by a process has to be greater or equal to

Hpndecr + (k2 − 1), otherwise more flits are removed than sent.

csend ≥
Flit reduction⏟ ⏞⏞ ⏟
Hpndecr + (k2 − 1)⏞ ⏟⏟ ⏞

Header flits

(4.23)

The previous statements about the message length have also an impact on crec. As

long as messages are sent through the NoC, messages are also received. Otherwise,

the sending of messages has no justificaton. The minimum length of a message is

considered to be 2 flits: One header flit and one tail flit. In uniform random traffic,

a process receives a message from every other process. In particular, k2 − 1 messages

are sent to a process in a kxk mesh topology. Therefore, crec has a lower boundary of

2(k2 − 1).

crec ≥
Header and Tail Flit⏟⏞⏞⏟

2 · (k2 − 1)⏞ ⏟⏟ ⏞
Number of messages

(4.24)

NoC Saturation

Three different value ranges of ndecr can be analyzed.

1. ndecr > 0: The message length is decreased by ASIRs.

2. ndecr = 0: The message length is fixed.

3. ndecr < 0: The message length is increased by ASIRs.

Fig. 4.8 shows injection rates for an increasing number of Hp and for fixed values

of csend = crec = 100, cproc = 10000, cFlit,Process = 1 and nmsg = 100. ndecr is set to

5, -5 and 0 which covers all three different cases. The values are arbitrary set for any

application fulfilling the conditions.

It can be seen that the injection rate increases exponentially. The injection rate of

a process that uses ASIRs to decrease the message length provides the highest injection

rate, because the total time of the process is reduced by reducing the amount of flits

that have to be read by the process. The lowest injection rate is provided by the process

that uses ASIRs to increase the message length. This is due to the fact that more flits

are received which increases the total time of the process and correspondingly, decreases

the injection rate as the process needs more time to send all flits in the window.

A high injection rate raises also the traffic load of the NoC. If the saturation of the

NoC is exceeded, the NoC becomes the bottleneck of the system and cannot handle
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Figure 4.8: Injection rate of processes connected ASIRs

the injection rate. As a consequence, processes are stalled before they are able to

send or receive flits. In such a situation, the speedup calculated by Eq. 4.21 is not

valid. The model assumes that every flit is sent or received in one cycle. It does not

consider the case that the NoC is the performance bottleneck of the system. Hence, the

highest injection rate RASIR,max must be less or equal to the upper bound of the ideal

throughput θideal,ASIR. This guarantees that the NoC does not become the performance

bottleneck.

Eq. 4.25 is based on Eq. 4.14 and shows the condition that guarantees the validity

of the speedup approximation. The Eq. 4.25 limits the injection rate and also the

speedup. The highest injection rate that the NoC can forward without congestions

is equal to the upper bound of the ideal throughput which depends on the channel

bandwidth and the maximum traffic load γmax.

RASIR,max ≤

⎧⎨⎩2bASIR

k
, k is even

2bASIR

k−1
, k is odd

(4.25)

Speedup Examination

In order to benefit from ASIRs, the speedup must be greater than 1.

1

1 +
(k3−1)(1−cFlit,Processnproc−ndecr)

csend+cproc+crec

≥ 1 (4.26)

The inequality can be rearranged to the following expression:
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Process Time per window⏟ ⏞⏞ ⏟
csend + cproc + crec

csend + cproc + crec⏞ ⏟⏟ ⏞
Process Time per window

+ (k3 − 1)(1− cFlit,Processnproc − ndecr)⏞ ⏟⏟ ⏞
ASIR Contribution

≥ 1 (4.27)

It can be seen that the numerator is equal to the execution time of a process per

window. According to that the expression (k3 − 1)(1 − cFlit,Processnproc − ndecr) in

the denominator is introduced by ASIRs defined as ASIR Contribution. If the ASIR

Contribution is negative, a speedup is achieved. By inserting the lower boundaries

for csend, cproc and crec given in Ineq. 4.23, 4.22 and 4.24, it can be shown that the

denominator is greater than 0.

Moreover, the Ineq. 4.27 can be analyzed by considering the following cases in

which ASIRs can also keep and increase the message length:

1. ndecr > 0:

The message length decreases while the message is forwarded through ASIRs.

This case shows that the reduction of the message length contributes to the

speedup. Even if cFlit,Processnproc is equal to 1, a speedup is achieved when the

message length is reduced. The more flits are processed and the message length

is reduced, the higher the speedup.

2. ndecr = 0:

The message length is fixed and independent of the number of ASIRs that are

traversed. The speedup depends on the product cFlit,Processnproc. A value of

cFlit,Processnproc greater than 1 leads to a speedup. If cFlit,Processnproc is equal

to 1, no speedup is achieved. This is because the overhead in sending addi-

tional instruction flits offsets the lower processing time per process. A value

for cFlit,Processnproc smaller than 1 is not reasonable in ASIR-based MPSoCs, as

ASIRs require cycles to process any number of flits. A value for cFlit,Processnproc

greater than 1 leads to a speedup. Nevertheless, the model is limited due to the

saturation of the NoC as mentioned previously.

3. ndecr < 0:

The message length is increased by ASIRs. It clearly states that an increas-

ing message length impairs the speedup. The term −ndecr counteracts the

cFlit,Processnproc. Only if the sum of ndecr and cFlit,Processnproc is greater than

1, the overhead for sending additional instruction flits is compensated and a

speedup is achieved.
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As a conclusion, this analysis shows that an increasing message length is coun-

terproductive and ASIRs become highly beneficial in terms of performance when the

message length is decreased.

4.2 Pipelining in Wormhole Computing

One of the assumptions in the previous section assumes that every ASIR performs an

operation with the same duration and since all routers are ASIRs in the NoC, a message

is processed by ASIRs along the complete routing path. To show that this assumption

is reasonable, the end-to-end latency of a message is analyzed. Fig. 4.9 shows two

corner cases of message that crosses three routers from source to destination. In both

cases, header flits, tail flits and instruction flits have a latency of 1 cycle per router. The

computation that is performed by one or multiple ASIRs requires in total three cycles

on a single payload flit. For clarity reasons, processing a payload flit with an ASIR

does not change the message length. The first example presented in Fig. 4.9 shows a

message consisting of one header flit, one instruction flit, two payload flits (A and B)

and one tail flit sent through three routers. The complete computation on payload flit

A and B is conducted in the first router of the path. In the second case, the operations

are pipelined along the routing path by an even distribution of the operations across

the three routers. This means that each router performs 1 cycle of the entire processing

and accordingly, the message has three instruction flits instead of one. In both cases,

the header flit is transferred within 3 cycles from source to destination.

In Fig. 4.9 a), the instruction flit enters in cycle 1. The first router analyzes the

instruction flit. The payload flit arrives in cycle 2 in the first router and is processed

until cycle 4 by the first, since the computation requires in total three cycles and is

only executed by the first router. In cycle 5, the payload flit A has been processed

and transferred into the second router while the payload flit B has reached the first

router. Since no further operation on payload flit A is necessary, the payload flit is

sent one router further in each subsequent cycle. The payload flit B remains in the

first router until cycle 7, as it is processed within three cycles. Afterwards, it is also

sent one router further in each cycle. The tail flit follows directly after payload flit B.

11 clock cycles are required in total until all flits have reached their destination.

In Fig. 4.9 b), every instruction flit is transmitted within one cycle per ASIR

until all instruction flits are located along the routing path. In cycle 4, the ASIRs are

prepared for processing payload flits. Since the complete computation requires 3 cycles

and these cycles are equally distributed on each ASIR, every payload flit is processed

within 1 cycle per router. The complete routing path contains three ASIRs which
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process in total three cycles. Therefore, the payload flit A is processed by the first

router in cycle 4, by the second router in cycle 5 and by the third router in cycle 6.

All operations that are performed within the 3 cycles have been performed during the

transmission of payload flit A from the first to the third router instead of remaining in

the first router for 3 cycles. The same sequence can be observed with payload flit B.

The complete processing of the payload flits ends in cycle 8. As a result, the end-to-end

latency takes 9 cycles.

The second case shown in Fig. 4.9 b) is 2 cycles faster than case a). Instruction

pipelining of processors is a well-known method to exploit instruction-level parallelism.

It tries to keep the internal processing unit of the processor busy by dividing incoming

instructions into a sequence of steps that are processed by different processor units.

The advantage of pipelining is that the steps can be executed in parallel. A similiar

approach is applied to ASIRs as shown in Fig. 4.9 b). By distributing the complete

computation on different ASIRs, payload flits can be processed in parallel and keep

the ASIRs of the routing path busy while transferring data.

A sequential pseudocode as presented in Listing 4.1 shows the code structure that

can be directly mapped onto ASIRs using pipelining. Each ASIR operates on 100 pay-

load flits using the same or different operations (operation A, operation B, ... operation

X) which can correspond to array operations. The number of for-loops that follow each

other is equal to the number of ASIRs used. A sequential program containing such a

sequence can be executed by ASIRs in a pipelined way.

To determine a general equation for the end-to-end latency, it is assumed that there

are no collisions among messages and that flits can always be received immediately by

the next router. The total number of clock cycles required to process payload flits is

defined as cprocess. The clock cycles needed to forward a header, a tail or a payload flit

without ASIR-based data processing are all equal and defined as ctransfer. With the

same number of clock cycles, an instruction flit is also analyzed and removed from the

NoC. The corner cases are either the processing of all operations in one ASIR or an

equal distribution of the operation along the complete routing path. Eq. 4.28 calculates

the end-to-end latency LAllInOne in clock cycles for the first case. The path from source

to destination contains n routers and only one of them is used to perform operations on

m payload flits using ASIRs. The first summand results from the processing time of m

payload flits. The second summand can be considered as program time of the ASIR. It

is the amount of time that is needed to prepare the first router for computation. The

third summand is the transfer time of the tail flit.
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3 cycles per payload flit b) all operations are equally distributed on three ASIRs with
1 cycle per payload flit
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Listing 4.1: Sequential pseudocode that can be mapped as a pipeline on ASIRs for a
message length of 100 payload flits✞ ⊵

1 . . .
2 // 1 . ASIR execute s operat i on A on 100 payload f l i t s
3 f o r ( i =0; i <100; i++){
4 f l i t [ i ] = Ope ra t i onA f l i t ( f l i t [ i ] ) ;
5 }
6 // 2 . ASIR execute s operat i on B on 100 payload f l i t s
7 f o r ( i =0; i <100; i++){
8 f l i t [ i ] = Ope ra t i onB f l i t ( f l i t [ i ] ) ;
9 }

10 .
11 .
12 .
13 //X. ASIR execute s operat i on X on 100 payload f l i t s
14 f o r ( i =0; i <100; i++){
15 f l i t [ i ] = Ope ra t i onX f l i t ( f l i t [ i ] ) ;
16 }
17 . . .
18✝ ✆

LAllInOne = cprocess ·m⏞ ⏟⏟ ⏞
ASIR Process Time

+

ASIR Program Time⏟ ⏞⏞ ⏟
2 · ctransfer + ctransfer · n⏞ ⏟⏟ ⏞

Tail Transfer Time

(4.28)

Eq. 4.29 calculates the end-to-end latency LPipeline in clock cycles for the second

corner case. The time that is needed by ASIRs for processing is equally distributed

across all routers. This latency can again be divided into three summands that have

been used to calculate the latency LAllInOne. The first summand calculates the total

clock cycles required to process the payload flits with ASIRs. The second summand

is the time needed to program the ASIRs. The third summand calculates the time

required to transmit the tail flit.

LPipeline = cprocess + cprocess ·
m− 1

n⏞ ⏟⏟ ⏞
ASIR Process Time

+

ASIR Program Time⏟ ⏞⏞ ⏟
ctransfer · (1 + n) + ctransfer⏞ ⏟⏟ ⏞

Tail Transfer Time

(4.29)

Comparing the ASIR processing times of both corner cases, it becomes obvious that

pipelining speeds up the overall processing for n > 1 due to the parallel processing of

payload flits as presented in Ineq. 4.30.

cprocess + cprocess ·
m− 1

n
< cprocess ·m (4.30)
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Figure 4.10: Comparison between LAllInOne and LPipeline for m = 10, cprocess = 10,
ctransfer = 1 and a varying path length from 1 to 6 routers

=> 1 + 1 · m− 1

n
< m

=>
m− 1

n
< m− 1

The program time of ASIRs is increased in the second corner case, since all routers

from source to destination must be programmed using instruction flits. Nevertheless,

the transfer time that contributes to the end-to-end latency of the tail flit is decreased.

This is due to the fact that the tail flit is transferred in parallel to the processing of

payload flits by ASIRs.

The significant benefit of pipelining in wormhole computing is shown in Fig. 4.10.

It compares the end-to-end latencies for a message transaction of 10 payload flits and a

process time of 10 cycles. The transfer time ctransfer is set to 1 cycle and the path length

increases from 1 to 6 routers. The values are arbitrary set and represent a possible

example. It can be seen that dividing the data processing among several ASIRs results

in a reduction of the latency.

4.3 Exploration of Application-Specific Processing

in NoCs

This section presents the benefits of ASIRs in real-world use cases. The first use case

shows an image processing algorithm executed by MPSoCs with and without ASIRs.

The second use case is a portable device that can be used by visually impaired people.
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The device navigates users through unknown environments comparable to a digital

version of a blind crane. The system has been developed within the RaVis 3D project

[Ott19].

Section 4.3.1 is based on [Ret17g] and presents an edge detection algorithm im-

plemented in NoC-based MPSoCs. Section 4.3.2 presents the second use case of the

portable device for visually impaired people. It is based on [Ret21b] and [Ret21a].

4.3.1 Image Processing Algorithm: Edge Detection

Edge detection is a fundamental procedure in image segmentation, which is the process

of dividing an image into multiple parts. Image segmentation is usually used to identify

objects or other relevant information in images. To evaluate ASIR-based NoCs, an

edge detection algorithm is implemented on two MPSoCs. The algorithm starts with a

grayscale conversion of an image that is composed by 640x480 Red Green Blue (RGB)

pixels. An RGB pixel contains values for the red portion (Red), green portion (Green)

and blue portion (Blue). A corresponding grayscale value (Gray) can be calculated

using Eq. 4.31.

Gray =
Red + Blue + Green

3
(4.31)

Afterwards, the grayscale image is filtered by a Sobel operator and compared to a

threshold in order to create a binary image.

Two different MPSoCs are implemented and compared. Both MPSoCs consist of

MicroBlaze processors that communicate through AXI stream interfaces to the NoC.

The first MPSoC is composed by 4 MicroBlaze processors connected by 2x2 mesh-

based NoC without application-specific processing capabilities. The second MPSoC is

composed by 4 MicroBlaze processors that exchange data through a 2x2 mesh-based

NoC using ASIRs.

One MicroBlaze is defined as a master node in both systems. The master node

uses the remaining MicroBlaze processors to execute the image processing algorithm.

Hence, the image is equally distributed to the remaining MicroBlaze processors by the

master node. The 3 MicroBlaze processors can be considered as a co-processor reducing

the workload of the master node and accelerating the application.

In the first MPSoC, the 3 MicroBlaze processors execute concurrently the grayscale

conversion, the sobel filter and the threshold operator. Afterwards, every MicroB-

laze sends the respective part of processed image back to the master node. A timer

controlled by the master measures the total execution time of the image processing

algorithm.
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Figure 4.11: 2x2 mesh-based MPSoC with ASIRs that perform a grayscale conversion
(RGB2Gray) and a threshold operation

In the second MPSoC, the 3 MicroBlaze processors execute only the Sobel operator.

The grayscale conversion and threshold operator are executed by processing units that

are available in ASIRs as shown in Fig. 4.11.

The processing units are respectively located at the local port location of the input

buffer. As a consequence, all messages that are sent from the master node to the

remaining MicroBlaze processors are forwarded through the processing unit with the

integrated grayscale conversion. Messages that are sent from any other MicroBlaze

processor are forwarded through the processing unit with the threshold operation.

Hence, the grayscale conversion is executed when the master node distributes the image.

After the MicroBlaze processors have performed the Sobel operator, the threshold

operation is executed by ASIRs.

The resource utilization of a single input buffer and the processing unit with thresh-

old operator as well as the grayscale conversion on a Xilinx xc7z020clk484 FPGA after

synthesis is presented in Table 4.1.

The resource utilizations of the corresponding routers are presented in Table 4.2.

The MicroBlaze processors are configured in the default configuration with 64kB

local memory. Table 4.3 presents the resource utilization of both MPSoCs used in this

work. Vivado 2018.1 is used to generate the results. The area overhead depends on

the number of processing units that are inserted into the NoC. This decision must be
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Table 4.1: Resource utilization of an input buffer and processing units (PU) of ASIRs
performing a threshold operation and a grayscale conversion on an xc7z020clk484 Xilinx
FPGA after synthesis

LUTs FFs BRAMs DSPs

Input Buffer 3 35 0 0
PU (Threshold) 161 147 0 0
PU (Grayscale conversion) 153 149 0 1

Table 4.2: Resource utilization of a router containing only input buffers and ASIRs pro-
viding a threshold operation as well as a grayscale conversion on a Xilinx xc7z020clk484
FPGA after synthesis

LUTs FFs BRAMs DSPs

Router 498 250 0 0
Router with PU (Threshold) 657 362 0 0
Router with PU (Grayscale conversion) 649 364 0 1

Table 4.3: Resource utilization of two MPSoCs with and without ASIRs for an
xc7z020clk484 Xilinx FPGA after synthesis

LUTs FFs BRAMs DSPs

MPSoC 6916 (13%) 5649 (5.3%) 124 (88.6%) 0
ASIR-based MPSoC 9568 (18%) 9815 (9.2%) 124 (88.6%) 1
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Figure 4.12: Execution times (in seconds) of the image processing algorithm imple-
mented on a single MicroBlaze processor, a 2x2 Mesh-based MPSoC without ASIRs
and 2x2 Mesh-based MPSoC with ASIRs

made by the designer to fulfill the overall requirements of the application.

Fig. 4.12 presents the total execution times of the image processing algorithm.

Moreover, the execution times of both MPSoCs are compared to a single MicroBlaze

processor. It is important to mention that the comparison to a single MicroBlaze

processor is not fair, since the single MicroBlaze processor does not run multiple threads

in parallel. The analysis of the single MicroBlaze processor is added to justify the

absolute execution times of the MPSoCs. The frequency of the presented systems is

100 MHz.

Discussion

The MPSoC without processing units is 2.19x faster than the same algorithm imple-

mented on a single MicroBlaze. The ideal speedup of 3x resulting in an ideal execution

time of 0.38s is not achieved due to communication overhead. The MPSoC performing

the grayscale conversion and the threshold operation inside the NoC is 17.6% faster

than the MPSoC without processing units and 59.1% faster than a single MicroBlaze.

Taking the ideal execution time as a reference, a communication overhead of 0.14s

can be approximated for the MPSoC without ASIRs. It is calculated by subtracting the

ideal execution time from the execution time that is measured. As the communication

overhead is only (0.14s
0.52s

≈)1
4

of the total execution time, it is difficult to achieve a sig-
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nificant speedup. The overall speedup between both MPSoCs is only 1.18x. However,

a communication overhead of 0.06s is approximated for the ASIR-based MPSoC. By

comparing only the communication overheads of the MPSoC with and without ASIRs,

an improvement of 42.8% is observed. This result shows the efficient usage of transfer

times within an ASIR-based NoC.

4.3.2 LIDAR-based Sonifcation System

This section is based on the research results that are obtained during the Radar Vision

3D (RaVis 3D) project. Within the RaVis 3D project, a system is developed to help

visually impaired people in navigation through unknown indoor environments. An un-

known environment can contain obstacles such as chairs, tables and humans. These

obstacles are detected by an ASIR-based MPSoC using a LIDAR. The distance pro-

file scanned by the LIDAR is transformed into an acoustic warning signal transmitted

through headphones. The LIDAR sensor scans the environment in front of the user for

obstacles up to a distance of 4000 mm. A sound signal is modulated in amplitude and

phase based on the relative orientation of the user to an obstacle. The modulations

influence the auditory perception and enable the localization of obstacles. The relative

orientation between the user and the obstacle is determined by two Inertial Measure-

ment Units (IMUs). In addition, the signal is pulsed depending on the distance that

is measured by the LIDAR. An obstacle that is detected far away generates a sound

signal pulsed with a low frequeny. An obstacle that is detected in immediate proxim-

ity generates a sound signal pulsed with a high frequency. This allows the intuitive

estimation of the distance to the obstacle.

With Software-defined System-on-Chip (SDSoC) [Xil19c], Xilinx offers an environ-

ment based on the Eclipse IDE for the development of hardware-accelerated embedded

applications. A developer can analyze the application and outsource slow program

parts into programmable logic. SDSoC uses the Vivado Design Suite and Vivado HLS

to create a complete system based on the designated hardware functions with sup-

port for bare metal, Linux and FreeRTOS. SDSoC has been used to design an MPSoC

supporting a Linux-based operating system in this work. The Linux-based operating

system is necessary to use the open-source library BreezyLidar [Lev16]. BreezyLidar

provides an API to read data from the LIDAR sensor. An ASIR-based MPSoC is

integrated as an existing core into the design created by SDSoC. SDSoC is not used

to move parts of the program code to ASIRs.
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Figure 4.13: Signal difference between the left and right ear of a noise source

Preliminary Studies

The ability of spatial hearing is based on the signal difference between the left and right

ear. It depends on the characteristics of sound waves that travel through a medium

such as air.

Fig. 4.13 presents an overview of the main mechanisms for spatial hearing. A noise

source, which is not equally distant to both ears, creates a phase difference δ between

the left and right ear. The phase difference leads to an interaural delay. A noise source

in front of a person propagates to both ears within the same time and accordingly,

with the same phase. A noise source that is located to the left side reaches the left

ear earlier than the right ear. In case the noise source is located on the right side,

the right ear hears the sound earlier. The phase difference is based on the limited

speed of sound through the medium air. Likewise the phase difference, there is also an

amplitude difference. These differences are cognitively analyzed, which allows binaural

hearing. The maximum phase differences occur if a source is positioned at 90◦ or −90◦.

A sound signal can be modeled by a function xS(t) which depends on the time

t. The sound that arrives at the left ear can be described by xl(t). The sound that

arrives at the right ear can be described by xr(t). The relation between the source and

the destination is given by the head-related transfer function or head-related impulse

response HRIR(x(t)). According to that, xl(t) and xr(t) can be calculated by Eq.

4.32 and 4.33.

el(t) = HRIRl(xs(t)) (4.32)

er(t) = HRIRr(xs(t)) (4.33)
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Figure 4.14: Overview of the MPSoC that sonifies obstacles for localization

System Overview

MPSoCs with and without ASIRs are developed on a Xilinx Zynq-7000 System-on-

Chip (SoC) ZedBoard (xc7z020) [AVN12]. The general structure of both MPSoCs is

shown in Fig. 4.14. The MPSoCs consist of 3 MicroBlaze processors and an ARM

processor. The ARM processor is clocked at 666 MHz and the FPGA at 100 MHz.

The LIDAR sensor connected via USB to the ARM processor is of type URG-04LX-

UG01 [Aut09]. The BreezyLidar library [Lev16] is integrated into the Linux-based

operating system to control the LIDAR. The MicroBlaze processor 2 communicates

to two IMUs through an Inter-Integrated Circuit (I2C) bus. The IMUs are of type

BNO055 [Bos20] from the manufacturer BOSCH. One of these IMUs is fixed to the

LIDAR sensor and the other to the user’s head, as the relative orientation between

the head and the obstacle for binaural hearing is needed. The MicroBlaze processor

communicates through an I2C core to the IMUs. The MicroBlaze processor 1 and

MicroBlaze processor 3 are linked to an audio core through AXI4-Stream interfaces.

The audio core is in turn connected to the audio codec of the ZedBoard which is of

type ADAU1761 [Dev18].

AUDIO Core for Sonification

The audio codec is configured automatically by the audio core after the bitstream is

loaded into the FPGA. The audio core developed in this work generates two digital

signals for the sound generation, as the left and the right ear receive a respective signal

processed by the head-related transfer function. The signals are connected via an Inter-

IC Sound (I2S) bus. After the configuration of the codec is completed, the audio codec
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Figure 4.15: Overview of the audio core that generates a binaural audio signal

is ready to receive the audio signals via I2S streams.

The internal structure of the audio core is presented in Fig. 4.15 and Fig. 4.16. It

is loaded with a periodic signal based on 256 samples, a pulse width and parameters

(coefficients) for the head-related transfer functions. The parameters determine from

which orientation the sound signal is heard. The signal generator creates a baseline of

the warning signal. Although the bit width of the AXI4-Stream protocol is 32 bits,

only the first 24 bits are used for the signal. This is due to the fact that the audio

codec accepts 24 bits as input.

The amplitude of the output signal created by the signal generator is multiplied

with a triangle function which has a value range of 0 to 1. The use of a square-wave

signal form instead of a triangle can lead to jumps in the value range of the sound

signal XS. Such jumps are audible by unpleasant cracking noises, which should be

avoided due to usability. Hence, a triangle function is used to pulse the sound signal

XS which avoids jumps. The triangle function is repeated periodically by holding the

amplitude at value 0 for a variable length that depends on the distance to the obstacle.

Since the audio codec transfers the sound signals with a frequency of 48 kHz, a

clock divider is used to sample the signal XS every 211 · 10 ns. The sampling frequency

is set to approximately 48 kHz. The output of the clock divider is also forwarded to the

head-related transfer functions. Two configurable head-related impulse responses are

necessary to convert the downsampled signal XS into signals for the left (XL) and right
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Figure 4.16: Serial FIR filter to perform a head related transfer function using 256
coefficients

ear (XR). The head-related impulse responses are implemented as filters consisting of

256 coefficients cρ,i. The digital input signal can be generally described by x[k]. The

head-related transfer function HRIRρ[k] for an angle ρ can be calculated with Eq.

4.34. ρ is the relative angle of the sound source location to the head that determines

the coefficients.

HRIRρ[k] =
255∑︂
i=0

cρ,ix[k − i] (4.34)

As the audio codec transmits the digital I2S data streams with a frequency of

43 kHz and the FPGA runs at 100 MHz, the head-related transfer function is not a

time-critical module. To save hardware resources, it is implemented serially with less

hardware multipliers. Fig. 4.16 shows a schematic view of a serial and lightweight

implementation. It accumulates the product of the signal x[k] and the coefficients

cρ,i. A counter iterates through all 256 coefficients and signal elements. Therefore, the

coefficients for a specific angle ρ are stored in a memory and accessible by the counter

value. A single coefficient has a bit width of 16 bits. The signal elements x[k] are

stored in shift registers with a depth size of 256 elements and a bit width of 24 bits. It

shifts the elements with a clock rate of 48 kHz. The counter is enabled when the clock
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Figure 4.17: Overview of the main approach for a LIDAR-based sonification system

rate of 48 kHz is active. The counter counts from 0 to 255 with 100 MHz and starts

again from 0 when the clock rate of 48 kHz has a rising edge. The accumulation runs

at 100 MHz and is only performed as long as the counter is active. An overflow of the

counter resets the accumulation value to 0. The coefficients are transferred through an

AXI4-Stream interface and can be updated during the inactive phase of the divided

clock rate. The outputs are scaled to 24 bits by removing the last bits.

Tasks of the LIDAR-based Sonification System

The application can be split into four main tasks:

1. The LIDAR sensor is attached to the chest of the user and scans a range of 240◦

with a resolution of 0.35◦. The sensor data is stored in an array of 682 elements.

Each element gives the distance in mm to the closest object that is detected within

the range of 4 m. The array is analyzed by identifying the smallest element, since

it represents the closest object to the user. The element in the middle of the array

at 341st position is defined as 0◦ as presented in Fig. 4.17. The element position

of the closest object can be used to determine the angle β. The angle β(i) of the

ith element can be calculated by Eq. 4.35.

β(i) = i · 0.35◦ − 120◦ (4.35)

2. The audio signal is pulsed depending on the distance to the obstacle. An obstacle

located at the end of the range leads to a low-frequent pulse in contrast to a close

obstacle. The pulse allows an intuetively interpretation of the sound. The relation

between distance d in mm and pulse length p in ms is implemented linearly as
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presented in Eq. 4.36.

p = 19.648ms + 0.018
ms

mm
d (4.36)

The pulse length must be configured in the audio core each time a new obstacle

is detected or the distance to the obstacle changes. Besides the configuration of

the pulse length, the signal form has to be programmed. However, the signal

form can be transmitted once and does not change during runtime.

3. The IMUs measure the absolute angles of the LIDAR sensor and the head. The

angle α indicates the orientation of the head to 0◦ which is given by the LIDAR

as reference. The absolute angles of the head and the LIDAR sensor are used to

calculate the angle α. After the system has booted, a calibration phase is started.

This calibration phase is used to align both IMUs. Otherwise, both absolute

angles are not aligned. Nevertheless, the calibration phase is not investigated

further, because it is not accelerated by ASIRs.

4. The audio core is configured with the coefficients for the angle ρ that is composed

of α and β. Since 256 coefficients are required for each angle, all coefficients have

to be configured in the audio core when the angle of the obstacle changes. The

angular resolution of ρ is at 1◦. Thus, 256 · 240 · 2Byte = 122880Bytes are

necessary per channel.

MPSoC without ASIRs

Both MPSoCs run the first task that is also shown in Listing 4.2 on the ARM pro-

cessor. To synchronize all MicroBlaze processors, start messages are sent between the

processors. Moreover, it allows to measure the execution time for each task, since

acknowledge messages are also sent by processors after finishing their tasks.

The pulse length is calculated by MicroBlaze processor 1 from Fig. 4.14 as well as

the initialization of the signal generator using a sine signal. It repetively configures the

audio core with the pulse length during runtime.

The MicroBlaze processor 2 uses the IMUs to calculate the angle alpha.

The MicroBlaze processor 3 takes care of an actual configuration of the angle be-

tween head and obstacle by loading the corresponding coefficients into the audio core.

The following data dependencies result from this mapping.

� ARM processor→MicroBlaze processor 1: The pulse length requires the distance

of the obstacle.
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Listing 4.2: Process executed by the ARM processor✞ ⊵
1 begin
2 whi le (TRUE) :
3 data = read LIDAR ()
4 [ pos , d i s t ] = find mininum ( data )
5 beta = ca l c u l a t e b e t a ( pos )
6 send ( d i s t , MicroBlaze 1)
7 s t a r t t ime r Mic roB laz e1
8 send ( beta , MicroBlaze 3)
9 s t a r t t ime r Mic roB laz e3

10 s e nd s t a r t ( MicroBlaze 2)
11 s t a r t t ime r Mic roB laz e2
12 r e c e i v e a cknow l edg e s and ca l cu l a t e t ime ( )
13 end
14✝ ✆

Listing 4.3: Process executed by MicroBlaze processor 1✞ ⊵
1 begin
2 i n i t i a l i z e s i g n a l g e n e r a t o r ( s i n e )
3 whi le (TRUE) :
4 r e c e i v e ( d i s t )
5 pu l s e l e ng th = c a l c u l a t e p u l s e l e n g t h ( d i s t ) ;
6 c o n f i g u r e pu l s e l e n t h ( pu l s e l e ng th )
7 send acknowledgement (ARM)
8 end
9✝ ✆

� MicroBlaze processor 2 → MicroBlaze processor 3: The calculation of the angle

ρ requires the angle α.

� ARM processor→MicroBlaze processor 3: The calculation of the angle ρ requires

the angle β.

These dependencies are resolved by data transfers. Accordingly, the individual

tasks of the processors are extended by send and receive routines. Furthermore, each

MicroBlaze processor sends an acknowledgment after processing to the ARM processor

for synchronization. The MicroBlaze processor 2 is synchronized by the ARM proces-

sor using a start message. A pseudocode of the ARM processor is given by Listing

4.2, pseudocode of MicroBlaze processor 1 by Listing 4.3, pseudocode of MicroBlaze

processor 2 by Listing 4.4 and pseudocode of MicroBlaze processor 3 by Listing 4.5.

MPSoC with ASIRs

The paths of the messages transferred between the processes are shown in Fig. 4.18.

On these paths, program parts of the MicroBlaze processors 1 and 2 are outsourced into
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Listing 4.4: Process executed by MicroBlaze processor 2✞ ⊵
1 begin
2 whi le (TRUE) :
3 r e c e i v e s t a r t (ARM)
4 [ IMU Head , IMU Lidar ] = read IMUs ( )
5 alpha = ca l c u l a t e b e t a ( IMU Head , IMU Lidar )
6 send ( alpha , MB3)
7 send acknowledgement (ARM)
8 end
9✝ ✆

Listing 4.5: Process executed by MicroBlaze processor 3✞ ⊵
1 begin
2 whi le (TRUE) :
3 r e c e i v e ( alpha )
4 r e c e i v e ( beta )
5 rho = ca l c u l a t e r h o ( alpha , beta )
6 [ c o e f f l e f t [ ] , c o e f f r i g h t [ ] ] = r e a d c o e f f ( rho )
7 c o n f i g u r e c o e f f i c i e n t s ( c o e f f l e f t [ ] , c o e f f r i g h t [ ] )
8 send acknowledgement (ARM)
9 end

10✝ ✆
ASIRs. The process of the ARM processor is not modified. Otherwise, a comparison

between an ASIR router and the ARM processor would not be fair, since the ARM

processor runs at 666 MHz and the NoC at 100 MHz. The calculation of the angle α

performed by MicroBlaze processor 2 is moved to an ASIR at position (0,1). Thus, the

MicroBlaze processor 2 can send directly the sensor data of the IMUs without calcu-

lating the angle, because the angle α is calculated inside the NoC. The computation

of the pulse length is executed by an ASIR at position (0,0). This allows the distance

to be converted into a pulse length, while the message is transferred from the ARM to

the MicroBlaze processor 1. The calculation of ρ is not moved to the routers, since the

angles α and β are sent in different messages by the ARM and MicroBlaze processor.

Results

The system is implemented on a Xilinx Zynq-7000 ZedBoard (xc7z020) [AVN12] using

Vivado 2018.1. The resource utilization of the complete MPSoC using ASIRs is pre-

sented in Table 4.4. The overhead of ASIRs is explicitly compared in Fig. 4.19. Since

program routines have been outsourced from MicroBlaze processors 1 and 2 to ASIRs,

the execution times are compared in Fig. 4.20.
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Figure 4.18: Traffic of the LIDAR-based sonification system on an MPSoC

Table 4.4: Resource utilization of the ASIR-based MPSoC on Xilinx Zynq-7000 SoC
(xc7z020) after implementation

LUTs FFs BRAMs DSPs

ASIR-based MPSoC 17763(33%) 19223(18%) 138(99%) 9(4%)
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Figure 4.19: Resource utilization of ASIRs compared to routers without processing
units
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Figure 4.20: Number of clock cycles that are required by MicroBlaze processors 1 and
2 for one loop iteration

Discussion

The execution times of both MPSoCs differ only slightly due to fluctuations of the Linux

operating system. They approximately needs 0.10001725 ms to perform one loop run

of the ARM processor. Therefore, both MPSoCs meet the real-time requirements of

the system. It must be guaranteed that obstacles are detected and sonified within

milliseconds. Otherwise, catastrophic consequences can arise.

Even if no speedup of the entire application is observed, a performance analysis of

the individual tasks can show which applications can benefit from ASIRs. The tasks

of the MicroBlaze processor 2 include the readout of the IMUs and calculation of the

relative angle α. By calculating the relative angle with ASIRs, no significant acceler-

ation can be achieved either. The reason for this is the readout of the IMUs which

cannot be accelerated and takes a relatively high delay in contrast to the calculation

of the angle.

With MicroBlaze processor 1, the advantages of using ASIRs become apparent. A

speedup of ca. 5x is achieved due to the computation of the distance calculation with

an ASIR. No sensors that are decelerating the process due to interface handling are at-

tached to the MicroBlaze processor 1. The MicroBlaze processor 1 is still indispensable,

as it is used for controlling the audio core through its AXI interface.
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Figure 4.21: Overview of dynamic partial reconfiguration in ASIR-based MPSoCs using
a database of reconfigurable processing units

4.4 Dynamic Partial Reconfiguration

The application-specific operations inside ASIRs can be modified during runtime using

dynamic partial reconfiguration. Fig. 4.21 shows an example of an ASIR-based MPSoC

using reconfigurable processing units. A database that consists of multiple partial

bitstreams containing processing units for different application domains such as image

processing or sorting algorithms can be used to reconfigure ASIRs without interrupting

the rest of the system.

Assuming all operations provided by the processing units must be reconfigured in

every input buffer, the number of partial bitstreams needed increases tremendously

with the NoC size. It can be determined by calculating the product of the number

of reconfigurable processing units and the number of input buffers. This drawback

is very critical especially for embedded systems since they have limited memory re-

sources. Moreover, the high number of partial bitstreams increases the generation time

of the development tools. The static part of an ASIR-based MPSoC requires a single

implementation run. Nevertheless, the reconfigurable processing units must be imple-

mented for each corresponding partition using the Partial Reconfiguration Flow (PRF)

[Xil18c]. Generally, the generation time increases with the number of reconfigurable

modules and corresponding partitions.

Bitstream relocation overcomes this issue. Relocation is partial reconfiguration of

different partitions using the same partial bitstream. It makes the number of partial

bitstreams independent of the number of reconfigurable partitions. Therefore, each
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processing unit requires only one partial bitstream that can be reconfigured in any

partition.

Another problem of partial reconfigurable designs is the security of the system.

Partial bitstreams containing malicious hardware modules such as trojans can also be

loaded into the system. In [Joh+14], it is shown that a hardware trojan is inserted

which eventually enables the recovery of a key in an Advanced Encryption Standard

(AES) circuit. Therefore, it must be guaranteed that partial bitstreams which are

loaded into an ASIR-based MPSoC do not contain any malicious hardware in safety

relevant systems. To protect ASIRs against such attacks, an intermediate layer is

required which checks partial bitstreams against malicious hardware modules.

Due to these issues, Section 4.4.1 based on [Ret16c] investigates relocation by pre-

senting an open-source tooflow called RePaBit. Section 4.4.2 based on [Ret19b] in-

vestigates the identification of the functionality implemented by partial bitstreams.

The identification can be considered as the intermediate layer that detects malicious

hardware modules.

4.4.1 Reconfiguration vs. Relocation - RePaBit

This section presents a tool flow to generate relocatable partial bitstreams using Vivado

Design Suite 2015.3. Tcl scripts are used to automate the tool flow, since Tcl functions

are supported by Vivado Design Suite and can be easily integrated. In addition, the

design can be tested by design rule checks in an early design stage. These design rule

checks verify the correctness of relocatable partitions. The design flow of RePaBit is

divided into 2 phases as shown in Fig. 4.22: a preparative phase and an implementation

phase. The synthesis and placement of relocatable and static partitions are conducted

in the preparative phase. A design rule check is used to verify the correctness of these

partitions. If the design rule check is not passed, the user can replace the partitions to

meet the requirements of relocatable partitions before generating the complete design.

The implementation phase ensures automatically a compatible design of relocatable

partitions. The constraints of a relocatable design such as consistent interfaces are

automatically ensured. Afterwards, a configuration file is generated that can be used

to manipulate the Frame Address Register (FAR) of partial bitstreams. The FAR

specifies the position of the reconfigurable partition that is loaded by the corresponding

partial bitstream. A user that wants to generate relocatable partial bitstreams needs

only to integrate the Tcl scripts in Vivado. Subsequently, RePaBit can be started

by commands from the Vivado shell. All steps executed by RePaBit are independent

of the type of relocation (1D, 2D). 1D relocation refers to partial bitstreams that

can be reconfigured in the same column or row of the FPGA. 2D relocation refers to
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partial bitstreams that can be reconfigured in different columns and rows. The steps

of RePaBit are explained in a general way without referring to 1D or 2D relocation.

Preparative Phase of RePaBit

The preparative phase prepares the constraints for the PRF [Xil18c] and the Isolation

Design Flow (IDF) [Sat20]. The PRF requires that reconfigurable modules are declared

with blackbox attributes. Moreover, the interfaces between reconfigurable modules

must be named identically. Feed-through routes have to be avoided. RePaBit avoids

feed-through routes through the usage of the IDF. The IDF provides the implementa-

tion of modules isolated physically in an FPGA. This physical isolation refers to the

internal logic of modules. Fig. 4.23 presents three different partitions that are isolated.

Routes between isolated partitions are called trusted routes. In contrast to the PRF,

feed-through routes across an isolated partition from different isolated partitions are

not allowed. Feed-through routes can occur from logic that is not isolated. Routes

from this logic can cross all partitions.

Fig. 4.23 shows a global route that is a feed-through route and must be avoided

for relocation. Global routes can be caused by IO signals. The IDF has its constraints

for trusted routes that must be fulfilled. A trusted route has only a single startpoint

and endpoint from one to another isolated partition. Consequently, an outgoing route

from an isolated partition cannot drive multiple isolated partitions. The isolated par-

titions have to be located with a gap between them to ensure a physical isolation.

This gap is called fence and has a minimum distance of one tile. In order to avoid

feed-through routes, a central static module must be created that contains all static

modules. RePaBit automates this step. The central module must be isolated as well

as all reconfigurable modules to avoid feed-through routes. Thus, the communication

between reconfigurable and static modules is only allowed through trusted routes. In

this way, RePaBit guarantees that no feed-through routes occur. After synthesis, the

partitions are placed based on the constraints given by PRF. The constraints given by

the IDF are automatically inserted during the implementation phase. Blackboxes are

assigned to the respective partition of reconfigurable hardware modules. An optional

Design Rule Check developed in Tcl checks the placement of relocatable partitions.

Fig. 4.24 shows the procedure of the Design Rule Check. Initially, the height of re-

configurable partitions is checked. The height must be spanned over one clock region.

Afterwards, the footprint is analyzed in terms of compatibility. Identical footprints

are defined as full compatible. Configurable Logic Blocks (CLBs) can be optimized

for memory instead of logic resources. A module implemented by CLBs with logic

resources can be relocated into partitions based on CLBs with memory resources.
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Figure 4.22: Overview of RePaBit flow
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Figure 4.23: Partitions implemented with the Isolation Design Toolflow

However, a relocation is not guaranteed vice versa. Partitions that differ in the type

of CLBs and guarantee an accurate relocation are called upward/downward compatible.

Logic compatibility is defined as an identical footprint with regards to CLB resources

without considering BRAM and DSP blocks. Finally, the reconfigurable partitions are

validated in terms of the interfaces. This means that the arrangement of tiles at the

partition borders must be consistent among all reconfigurable partitions. If the Design

Rule Check is successful, the implementation phase follows. The Design Rule Check is

optional and can be skipped.

Implementation Phase of RePaBit

The implementation phase generates a relocatable design that can be used to integrate

reconfigurable modules. Furthermore, a configuration file that contains information

154



4.4. DYNAMIC PARTIAL RECONFIGURATION

Check height of 
RPs 

Check footprint 

Upward/ 
Downward 
compatible 

Check tiles for 
interfaces 

Logic 
compatible 

Full compatible 

Figure 4.24: Design rule check of RePaBit to validate the compatibility of relocatable
partitions

about the FAR addresses of the relocatable partial bitstreams is automatically gener-

ated. Listing 4.6 presents the steps that are executed by RePaBit to create a relocatable

design. Interfaces such as an AXI4-Stream interface and an AXI Lite bus are automati-

cally placed at the left or right side of a reconfigurable partition. The position is defined

by the user and indicated by an S in Listing 4.6. This positioning has an advantage in

comparison to an interface at the bottom or top of the module. Another relocatable

partition can be placed directly above or under a partition. Both partitions automati-

cally consist of the same internal structure of tiles due to the column-wise construction

of the FPGA. Therefore, the partitions are directly compatible for relocation. This is

valid under the condition that the widths of the partitions are the same. The first step

adds a reference module determined by the user to the netlist into all reconfigurable

partitions (line 2). The largest module assigned to the smallest reconfigurable parti-

tion is qualified as a reference, since it ensures that all partition pins can be placed

inside reconfigurable partitions. In order to avoid feed-through routes, a partition is

automatically created for static logic (line 3). This partition is called central partition

and placed based on the constraints of the IDF to avoid feed-through routes. It must

include resources such as IO pads, since external signals can result in global routes.

To provide consistent interfaces, RePaBit adds Look-Up Tables (LUTs) to the netlists

in the reconfigurable and static logic (line 4 and 5) as shown in Fig. 4.25. The PRF

also adds additional LUTs for consistent interfaces in the reconfigurable partition. Two

LUTs are added respectively in static and reconfigurable logic per net. They are added
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to the signals that connect the reconfigurable partition with the static partition. Af-

terwards, the LUTs that are included in the static partition are placed at position S in

the floorplan of the FPGA (line 6). This placement of LUTs is defined as a soft macro.

In that regard, the second column of CLBs that has the smallest distance from the

fence is identified as shown in Fig. 4.26. Tests show that the placement of LUTs in the

second column is easier for the IDF as the distance to the fence is larger. The CLBs

from the first column are not allowed to be used for the placement of the soft macro.

The placement of the soft macro inside the second column starts in the middle of the

column. RePaBit iteratively allocates a LUT inside the slices from the middle working

outwards. It alternatively places in the upper half and lower half of the column. This

approach is illustrated in Fig. 4.27. In case of all CLBs in this column are occupied,

the next column will be used.

After the placement of the soft macro inside the static partition, the constraints

for the location of the static partition are removed (line 7). The reason for this is that

the PRF does not allow a partition including IO pads. The placement and routing

of the PRF places partition pins for the interfaces inside the reconfigurable partition

(line 8). These partition pins define interconnects inside the partitions that are used to

connect with logic outside the partition. Afterwards, the design is removed except the

interface that includes the inserted LUTs inside the static and reconfigurable partition

of the reference module and their nets (line 9). The design must be removed, since

it can contain feed-through routes. This procedure generates the soft macro of the

interface that is copied to the remaining modules in the next steps (line 10 – 16). The

soft macros can be associated relatively to the other modules by transferring the LOC

properties and Partition Pin properties that are given from Vivado. In addition, the

Basic Element (BEL) properties of the soft macros are copied for the inserted LUTs of

the remaining reconfigurable modules. The BEL properties determine which LUTs are

used inside a slice. The FIXED ROUTE property that is extracted from the reference

module fixes the nets between the inserted LUTs. Therefore, this constraint can be used

to avoid modifications to the nets by Vivado. In order to provide a consistent interface,

this property is taken over to the other modules. Subsequently, the constraints for the

position of a static partition are inserted again (line 17). The static partition ensures

that no feed-through routes are created during placement & routing using the IDF.

The next step executes the IDF to place and route the design (line 18). RePaBit

fixes the placement and routing of the cells, otherwise another run of the placement &

routing for new reconfigurable modules can create new feed-through routes (line 19).

The execution of the PRF is necessary again to generate partial bitstreams (line 20).

After deleting the reconfigurable modules (line 21), a user can add other reconfigurable
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Listing 4.6: Pseudocode of the implementation of relocatable partial bitstreams in
RePaBit✞ ⊵

1 begin
2 Assign i n i t i a l r e f e r e n c e module (RM) to a l l r e c on f i g u r ab l e

p a r t i t i o n s (RPs)
3 Creat ing p a r t i t i o n o f s t a t i c hardware module
4 I n s e r t LUTs in RP f o r i n t e r f a c e s
5 I n s e r t LUTs in p a r t i t i o n o f s t a t i c hardware module
6 Place s o f t macro o f RMs at s i d e S
7 Delete s t a t i c p a r t i t i o n from des ign
8 Placement & Routing us ing Pa r t i a l Recon f i gura t i on Flow
9 Delete des ign except LUTs and r e l a t e d route s from RM

10 Fora l l remaining hardware modules do
11 Copy BEL p r op e r t i e s from RM
12 Copy LOC prop e r t i e s from RM
13 Copy BEL Pin p r op e r t i e s from RM
14 Copy Pa r t i t i on Pin p r op e r t i e s from RM
15 Copy Fixed\ Route p r op e r t i e s from RM
16 end f o r a l l
17 I n s e r t s t a t i c p a r t i t i o n from l i n e 2
18 Placement & Routing us ing I s o l a t i o n Design Flow
19 Fix c e l l placement and route s
20 Placement & Routing us ing PRF
21 Delete r e c on f i g u r ab l e modules
22 end✝ ✆

modules to the partitions and generate partial bitstreams.

In order to relocate partial bitstreams generated by RePaBit, the FAR addresses

have to be modified in the respective partial bitstream. This implies information

about the placement of the reconfigurable partitions. Therefore, RePaBit creates a

configuration file that provides necessary information to modify partial bitstreams. The

configuration file is from type INI file. The compatibility between partitions is given in

terms of logic and full compatibility. In addition, all FAR addresses to manipulate the

partial bitstreams are reported by analyzing the design. Listing 4.7 shows an example

of a configuration file for two partitions that are defined as pblock 1 and pblock 2.

These partitions are full and logic compatible.

To sum up, RePaBit automates the complex process of generating relocatable bit-

streams. The only steps that have to be made by the user are assigning the interface

position and determining the reference module.

Results

RePaBit is evaluated with two designs implemented on the ZedBoard (xc7z020). The

first design contains two reconfigurable partitions that control LEDs through IOs. This

design is used to verify visually the avoidance of feed-through routes using the IDF.
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Figure 4.25: LUTs inserted to build consistent interfaces
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Figure 4.26: Placement of softmacro on the left side of the reference module
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Figure 4.27: Placement of slices by RePaBit for consistent interfaces

Listing 4.7: Example of a configuration file for two reconfigurable partitions✞ ⊵
1 [ pb lock 1 ]
2 FULLY COMPATIBEL=”pblock 2 ”
3 LOGICAL COMPATIBEL=”pblock 2 ”
4 FAR CLB=00003800
5 FARRAM=00014000
6

7 [ pb lock 2 ]FULLY COMPATIBEL=”pblock 1 ”
8 LOGICAL COMPATIBEL=”pblock 1 ”
9 FAR CLB=00023800

10 FARRAM=00034000
11✝ ✆
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The second design contains two reconfigurable partitions with MicroBlaze processors.

This design is used to check the accurate functionality of relocation using complex

reconfigurable modules with CLBs, BRAM and DSP resources. The overhead in terms

of area and frequency is analyzed in comparison to the PRF. Furthermore, the design

time is investigated depending on the number of partial bitstreams.

Fig.4.28 presents the design containing reconfigurable modules that control respec-

tively LEDs in different ways. The ARM processor communicates through the GP port

to two RESET and one GPIO modules. The RESET module resets the respective re-

configurable partition after relocation. The GPIO core sends a signal with a bit width

of 4. The relocatable cores IO1 and IO2 add a unique ID to this signal and forward

it to the LEDs. As a consequence, relocation causes different blinking of LEDs. In

addition, the functionality of 2D relocation was verified with this design by changing

the position of the reconfigurable partition 2 into clock region X0Y0. The functionality

of the design was not affected by these modifications.

Fig. 4.29 presents the relocatable design containing two MicroBlaze processors

executing different programs. The reconfigurable partitions have a reset input signal

that is controlled by the ARM processor. Each MicroBlaze processor writes a 4 bit

value into a shared register. Since each MicroBlaze processor runs a different program,

the processors write different values into registers. Relocation is identified by the ARM

processor by reading the content of the registers.

Since both partitions of the first design that controls the LEDs are full compatible,

the relocation works accurate using RePaBit. Fig. 4.30 presents the corresponding nets

depicted in green from this design. It is obviously that the interfaces are consistent.

The IOs are located at the right side besides the relocatable partitions to increase

the risk of inducing feed-through routes. Despite these IOs and the interfaces on the

left side of the reconfigurable partitions, no feed-through routes are created due to

RePaBit. The nets are forwarded below the partitions to the IO pads. In contrast

to RePaBit, tests using the standard Vivado toolflow for a reconfigurable design show

the appearance of feed-through routes. Increasing the amount of logic leads only to an

increasing implementation time, but it does not influence the avoidance of feed-through

routes.

Both designs were implemented by Vivado 2015.3 and realized with an FPGA clock

frequency of 100 MHz. The maximum frequencies of both designs using the PRF and

RePaBit are listed in Table 4.5.

The time that is needed by Vivado to generate a relocatable and reconfigurable de-

sign for an increasing number of hardware modules is approximated by linear equations

and shown in Fig. 4.31.
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Table 4.6 and Table 4.7 presents the resource utilizations of both designs using the

PRF and RePaBit.

Discussion

RePaBit achieves a frequency that is only 2.8% lower for the LED design and 1.5% lower

for the MicroBlaze design than the PRF as presented in Table 4.5. This reduction is

reasonable, because the designs providing relocation do not allow feed-through routes.

Hence, signals can take a longer route that results in a lower frequency. However, the

differences seen in the results of this work are negligible. The IO design shows a high

deviation which can be explained by taking into account the longer routes of the IO

signals. They have been placed with purpose inefficiently to increase the risk of feed-

through routes. The PEs of an MPSoC that communicate with external IOs can be

placed closer to the corresponding IO pins. Hence, the degradation of the frequency

can be decreased.

The time tPRF that a tool flow needs to generate a reconfigurable design without

relocation can be approximated by Eq. 4.37.

tPRF = tstatic + treconfigurable = tstatic + m · n · tpartial (4.37)

It results from the time tstatic that is needed to generate the static partition and

the time treconfigurable that is needed to generate the reconfigurable partitions. The

time treconfigurable represents the time that is needed to generate all partial bitstreams.

It is the product of the number of reconfigurable partitions m, the number of partial

bitstreams n and the time tpartial that is needed to generate one partial bitstream.

Furthermore, it is assumed that every partial bitstream requires the same amount of

time. This can be slightly different in reality. However, the equations can be used as

an approximation for partitions that are large enough to provide enough ressources for

every reconfigurable module. If the module uses only a small amount of resources that

are available in the partition, the placement & routing can be performed faster than

for modules that use a high amount of resources. It is much harder for the tool to find

a solution for placement&routing when the partition resources are fully utilized. The

time treloc that a tool flow needs to generate a relocatable design is approximated by

Eq. 4.38.

treloc = tstatic + treloc = tstatic + n · tpartial (4.38)

In contrast to tPRF , treconfigurable is exchanged by the time trelocatable that is needed

to generate relocatable designs. The time trelocatable is the product of n and tpartial.
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Figure 4.28: Relocatable design using IOs

The MicroBlaze design has a time tstatic of 1.55 min using the PRF and 6.4 min using

RePaBit. This overhead is caused by the multiple implementation runs of RePaBit to

avoid feed-through routes. The time tpartial is 0.95 min for a partial bitstream that

contains a MicroBlaze processor and has a size of 318 kB. Assuming that every partial

bitstream consumes the same time to be generated, the Eq. 4.37 and Eq. 4.38 can be

used to predict the generation time for an increasing number of modules. The number

of reconfigurable partitions is set to 2 as it is done in the test designs. Fig. 4.31 shows

that the MicroBlaze design is faster implemented using RePaBit when the number of

partial bitstreams is more than 5.

Since each partial bitstream has a size of 318 kB, a saving of 1908 kB is achieved by

bitstream relocation in case of 6 reconfigurable modules and 2 reconfigurable partitions.

In order to show that RePaBit creates a negligible overhead in terms of area, the

resource utilizations of the MicroBlaze design that is implemented using RePaBit and

the PRF is compared in Table 4.6 and Table 4.7. The resource utilization of BRAM

and DSP blocks is identical for both tool flows. RePaBit shows a negligible overhead of

0.7% in terms of LUTs. RePaBit tends to integrate more FPGA resources due to the

insertion of LUTs that are needed to fix the interface between static and reconfigurable

partition and due to possible rerouting of signals that cannot be realized as feed-through

routes.

4.4.2 A Security Mechanism for Reconfigurable Partial Bit-

streams using Machine Learning

The contribution of this subsection is a novel approach for identifying the functional-

ity implemented in partial bitstreams using artificial neural networks. Neural networks
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Figure 4.29: Relocatable design using MicroBlaze processors

Figure 4.30: Nets of a design using RePaBit

Table 4.5: Comparison of maximum frequencies achieved with partial recnfiguration
flow and repabit

Partial Reconfigura-
tion Flow

RePaBit Relative
Deviation

Design using IOs 140.5 MHz 136 MHz 2.8%
Design using MicroBlaze
processors

115 MHz 113.3 MHz 1.5%
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Table 4.6: Resource utilization of MicroBlaze design using RePaBit on xc7z020

LUTs Slices BRAM DSP

Static Partition 540 239 0 0
Reconfigurable Partition 2396 738 6 3
Total 2936 977 6 3

Table 4.7: Resource utilization of MicroBlaze design using the Partial Reconfiguration
Flow implemented on xc7z020

LUTs Slices BRAM DSP

Static Partition 521 226 0 0
Reconfigurable Partition 2396 742 6 3
Total 2917 968 6 3

have achieved great success in computer vision [Alo+17] and speech recognition[TZS18]

due to their ability to recognize patterns. A bitstream can be considered as an im-

age containing a hardware configuration with different patterns of bits. Each pattern

represents a hardware module. This approach aims to detect and identify bitstream

patterns of a specific functionality using neural networks. TensorFlow [Aba+16] is used

for developing, training and testing the neural networks.

A neural network requires a training phase, before it can classify patterns. A data

set of 1884 different partial bitstreams that contains 16-bit adders or other hardware

modules has been generated for training and testing. Six different neural networks are

implemented and compared to each other in terms of accuracy, loss, precision, recall

and F-Score. The networks are trained to classify the partial bitstreams, if they contain

the adder or not.

Preliminary Studies

Artificial neural networks are inspired by human brains where billions of interconnected

neurons process information in parallel. A neural network consists of an input layer,

one or more hidden layers, and an output layer, whereas each layer consists of neurons.

The input layer receives input features. In this work, the configuration content of a

partial bitstream is used as input features. The output layer classifies the content of

partial bitstreams if a hardware module with a specific functionality is implemented or

not.

A neuron receives signals, processes them, and then transfers the output to the

neurons of the next layer. The input signals of a neuron are weighted by multiplying

them with configurable parameters. The parameters are configured during the training
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Figure 4.31: Comparison of approximated times needed by the Partial Reconfiguration
Flow and RePaBit to generate partial bitstreams

phase. A neuron computes the sum of the weighted input signals, adds a bias value and

applies an activation function to it. An activation function such as the sigmoid function

and the ReLU function [IK17] introduces non-linearity into the neural network. In this

work, a ReLU activation function is used.
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Eq. 4.39 shows the computation of a single layer, where σ is the activation function,

a
(l)
i describes the output of neuron i at layer l, and w

(l)
i,j the weight of the connection

between neuron j at layer l and neuron i at layer l + 1, i.e., the connection from a
(l)
j

to a
(l+1)
i . To train a neural network, a back propagation method is used. The aim of

this method is adjusting the weights and biases by computing the gradient of the cost

function in order to minimize the cost. The cost function evaluates how the neural

network performs over the training set. This leads to a better prediction of the inputs’

label.

A special type of neural network is named convolutional neural network [AMA17].

A convolutional neural network consists of an input layer, hidden layers such as one or

more convolutional layers, pooling layers, fully connected layers and an output layer.

The pooling layer is used to avoid unnecessary information by combining a neuron

cluster into one output neuron. Several kinds of pooling layers exist. For example,
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Figure 4.32: Custom hardware module that communicates through an AXI Intercon-
nect with an ARM processor (based on [Ret19b])

max pooling outputs the maximum value of a cluster. To allow a convolutional neural

network to solve classification problems a fully connected layer is utilized. The output

of the previous layer is flattened into 1-dimensional and then each neuron is connected

to all neurons in the next layer, as a deep neural network.

TensorFlow [Aba+16] is an open-source library for developing classical machine

learning algorithms and neural networks by offering various functions and classes. It

has been used to develop neural networks that are used in this work.

At the beginning of a partial bitstream, header information such as the tool version

is defined. A specific word inside the bitstream determines the beginning of configu-

ration packets that are transferred besides further control data. The packets contain

information such as the configuration data and the FAR address which locates the

exact position of the configuration data inside the FPGA. The configuration data is

grouped into frames and these frames are extracted as inputs for the neural network.

INSPECTION OF PARTIAL BITSTREAMS

The design created contains a reconfigurable hardware module, which communicates

through an AXI bus with an ARM processor as shown in Fig. 4.32.

The custom hardware module is able to perform simple mathematical operations.

The input and outputs of the hardware module are accessible through 4 registers of

32 bits by the ARM processor. 10 different hardware modules have been implemented

to generate multiple bitstreams that are used as training and test set for the neu-

ral network. These hardware modules perform add, multiply, subtract, AND, OR,

XOR, NAND, NOR, XNOR and NOT operations. In addition, 5 combinations of

these modules are integrated into a single hardware module: add & subtract, add &

and, add & add, subtract & subtract and add & multiply. Vivado 2016.4 is used to

create partial bitstreams of the hardware modules. To generate multiple bitstreams

of the same hardware module, the hardware modules have been placed in multiple

locations with different arrangement of ressources inside the FPGA. Besides the de-
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Table 4.8: Resource utilization of all 10 hardware modules
Add Multiply Subtract AND OR XOR NAND NOR XNOR NOT

LUT 16 0 16 16 16 16 16 16 16 16
FF 16 0 16 16 16 16 16 16 16 16

DSP 0 1 0 0 0 0 0 0 0 0

fault routing of Vivado, different routing optimizations are performed such as Quick,

AdvancedSkewModeling, HigherDelayCost and MoreGlobalIterations. The generated

partial bitstreams are compressed to make them as small as possible. All of the above

mentioned configurations lead to a total number of 1884 partial bitstreams. Since the

manual generation of such an amount of bitstreams is very time consuming, a tcl script

has been developed that automates this process.

The goal of the neural networks developed is to identify, if a partial bitstream con-

tains a hardware module that performs an add operation. The 1884 partial bitstreams

include 595 partial bitstreams with an add operation. The raw bitstream bytes should

be converted to a format that TensorFlow can deal with. The frames are extracted

from the partial bitstreams and zero-padded to 26,600 bytes, since the sizes of the par-

tial bitstreams are not equal. The extracted frames are converted to the recommended

TensorFlow’s file format called TFrecord. The frames of each bitstream represent a

feature and its label is either 1 if the partial bitstream includes an add operation or 0

if the partial bitstream includes any other mathematical operation.

Six different neural networks are developed. All six neural networks have an input

layer with 26,600 neurons and one output layer with one neuron that indicates if the

bitstream contains an add operation or not. Each neuron of the input layer processes

1 Byte of a partial bitstream.

� NN1: The first neural network contains two hidden layers with 20 and 10 neu-

rons. The learning rate is 0.005.

� NN2: The second neural network contains four hidden layers with 40 neurons,

30, 20 and 10 neurons. The chosen learning rate is equal to 0.001.

� NN3: The third neural network consists of two hidden layers with 2000 and 100

neurons. The learning rate is 0.0005.

� NN4: The fourth neural network has two hidden layers with 2000 and 2000

neurons.The learning rate is 0.0005.

� NN5:The fifth neural network contains four hidden layers with 4000, 3000, 2000

and 1000 neurons. The chosen learning rate is 0.0005.

166



4.4. DYNAMIC PARTIAL RECONFIGURATION

� CNN: This neural network is a convolutional neural network. The input of

26,600 neurons is reshaped to 2-dimensional 4x6650 neurons and passed to a

convolutional layer consisting of 32 3x3 filters and ReLU activation functions. A

2x2 max pooling layer reduces the size to an output of to 2 x 3345 x 32 neurons,

which is flattened and passed to a fully connected layer with ReLU activation

function. The output of this layer is forwarded to another fully connected layer

with 2 neurons that perform the activation function softmax. The learning rate

is 0.0001.

The ReLU function is used for all hidden layers as activation function. The learn-

ing phase of the neural networks is conducted using the Adagrad optimizer [Taq+18]

which is gradient-based and adapts the learning rate to the parameters. The used cost

function for the convolutional neural network is cross entropy. The batch size is equal

to 50.

Results

The bitstreams are divided into two sets: training and test set. The total number of

partial bitstreams in the training set is 1236 including 304 bitstreams that are labeled as

adders. The test set contains 648 partial bitstreams including 291 bitstreams that are

labeled as adders. The resource utilization of each module for the default configuration

in Vivado 2016.4 is shown in Table 4.8 after implementation.

The neural networks with different sizes are trained with the training set and tested

with the test set. The metrics used to evaluate the models are accuracy, precision,

recall, loss and F-Score F [Gho+20]. A partial bitstream can be classified as an add

operation or non-add operation. The number of partial bitstreams that are correctly

classified as add operations is defined as tp (true positive). The number of partial

bitstreams that are correctly classified as non-add operations is defined as tn (true

negative). On the contrary, the number of partial bitstreams that are not correctly

classified as add operations is defined as fp (false positive) and the number of partial

bitstreams that are not correctly classified as non-add operations as fn (false negative).

According to these definitions, the accuracy is calculated from Eq. 4.40. It calculates

the ratio between the bitstreams that are classified correctly and all bitstreams that

are tested. Eq. 4.41 shows the definition of the precision that describes the ratio

between the bitstreams that are classified correctly as adders and all bitstreams that

are classified correctly and incorrectly as adders. Eq. 4.42 shows the definition of

Recall. It is calculated by the ratio between the bitstreams that are classified correctly

as adder and the bitstreams that are classified correctly as adder as well as not correctly

as non-adder. Loss or Log-loss is a classification metric based on the probabilities
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[Vov15]. The greater the loss value, the poorer the classification. If p(bi) represents

the probability of a partial bitstream bi being an adder function, the loss metric is

calculated by Eq. 4.43. N is the number of partial bitstreams that are classified. The

F-Score is calculated using Eq. 4.44. It is the harmonic mean of the values for precision

and recall.

accuracy =
tp + tn

tp + tn + fp + fn
(4.40)

precision =
tp

tp + fp
(4.41)

Recall =
tp

tp + fn
(4.42)

Loss = − 1

N

N∑︂
i=1

(bilog(p(bi)) + (1− bi)log(1− p(bi))) (4.43)

F =
tp

tp + 1
2
(fp + fn))

(4.44)

All metrics are necessary to comprehensively evaluate the neural networks. Fig.

4.33 shows the evaluation results of the neural networks that analyze the test set, while

Fig. 4.34 shows the evaluation results of the training set. Furthermore, all metrics are

analyzed by swapping the training and test sets. This means that all networks are

trained by the previous test set. Fig. 4.35 presents the corresponding results of the

neural networks analyzing the training set. Fig. 4.36 presents the results of the neural

networks analyzing the test set.

Discussion

The resource utilizations of the hardware modules are listed in Table 4.8. They are kept

low to reduce the time to train the neural networks and generate the bitstreams. Since

the structure of a partial bitstream does not change with the size, the obtained results

can be transferred to larger bitstreams. Another approach to deal with bitstreams for

an entire FPGA can be the separation of the full bitstream into smaller parts. These

parts can be respectively analyzed by the neural networks developed in this work. For

future work, it is interesting to see which relation the size of the hardware module and

the size of these parts must have to correctly identify hardware modules. The same

concept is applied in object detection using neural networks.

The results show that the accuracy of the test evaluation ranges from 70% for NN4

up to 84.72% for the convolutional neural network which achieved also the lowest loss

value of 0.5005 and the highest F-Score of 93%. The lowest precision of 60.74% has NN4
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Figure 4.33: Metric analysis of six different neural networks using the test set; Loss is
normalized to the maximum value of 22.359
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Figure 4.34: Metrics analysis of six different neural networks using the training set;
Loss is normalized to the maximum value of 10.404
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Figure 4.35: Metric analysis using the training set of six different neural networks
trained with swapped training and test sets; Loss is normalized to the maximum value
of 1.224
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Figure 4.36: Metrics analysis using the test set of six different neural networks trained
with swapped training and test sets (Loss is normalized to the maximum value of
56.239)
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compared to all neural networks. The convolutional neural network classifies the partial

bitstreams with the best precision of 92%. Furthermore, the convolutional neural

network outperforms all other neural networks regarding the recall values. Additionally,

the test and training sets have been exchanged to analyze the behaviour of the neural

networks for less training data. Nevertheless, the neural networks trained with less

training data achieved an accuracy of 77.4%, a loss value of 9.6744, a precision of 93.29%

and a recall value of 86.88%. It is important to mention that any other hardware module

can be trained as classification model. This is due to the fact that the FPGA ressources

used by other hardware modules are the same. The difference between the modules

is the arrangement of these ressources resulting in different patterns. Additionally,

hardware inspection based on artificial neural networks does not require any knowledge

about the placement & routing of the development toolchain.

4.5 Summary

Section 4.1 presents an analytical model that confirms the speedup of ASIR-based

MPSoCs under uniform traffic for a kxk mesh topology. The execution times of parallel

processes are separated into multiple time slots on cycle level that are needed to process

data, send and receive flits. The slots are used to approximate the execution times

of parallel applications running on MPSoCs with and without ASIRs. The ratio of

both execution times determines the speedup. Furthermore, the slots can be used to

calculate injection rates of processes and an upper boundary of the ideal throughput

of a NoC. As long as the injection rate is lower than the upper boundary of the ideal

throughput, the model justifies a speedup greater than one.

Section 4.2 analyzes the end-to-end latency between two processes that communi-

cate using wormhole computing. Since ASIRs use instruction flits and changes the flow

of flits by processing them during routing with dedicated processing units, wormhole

routing is extended to wormhole computing. In this section, the flow of flits is analyzed

through ASIRs by evaluating the end-to-end latency depending on the distribution of

operations along the routing path. The end-to-end latency in wormhole computing

consists of an ASIR process time, an ASIR program time and a tail transfer time.

The ASIR process time is the overall number of cycles that are needed to process data

using the processing units of ASIRs. The program time is the number of cycles that

are needed to configure all ASIRs by instruction flits. The tail transfer time is the

number of cycles to transfer the remaining tail flit to the destination. Executing oper-

ations with the same delays in each router of the routing path is considered as uniform

distribution. The opposite is to execute only one operation in the first router of the
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routing path. Although the ASIR program time is increased in uniform distribution,

the end-to-end latency is significantly improved due to a reduction of the ASIR process

time. The overall ASIR process time is decreased since multiple ASIRs can process

concurrently payload flits.

Section 4.3 analyzes the performance of ASIRs in two real-world use cases. The

first use case is an image processing algorithm performing edge detection and the

second use case is an embedded system that helps visually impaired people. A LIDAR

profile is transformed into an audio signal that is used to navigate through unknown

environments. The edge detection is calculated by an RGB to grayscale conversion, a

threshold computation and Sobel operation. An MPSoC consisting of four MicroBlaze

processors is implemented. One MicroBlaze processor acts as a master processor. The

master processor distributes segments of the image consisting of 640x480 pixels to

the remaining MicroBlaze processor. Each segment has the same amount of pixels.

The ASIR-based MPSoC executes the RGB to grayscale conversion and the threshold

operation using ASIRs. The execution time is compared to an MPSoC that executes

all steps of the edge detection by MicroBlaze processors. The ASIR-based MPSoC

exploits the communication time 42.8% better. The second use case presents the limits

and advantages of ASIRs. It was developed within the RaVis 3D project. An MPSoC

consisting of an ARM processor and three MicroBlaze processors is connected to a

LIDAR sensor, two IMUs and the AUDIO codec of the Zedboard. A user can carry

this system to scan its direct environment by the LIDAR sensor. The IMUs indicate

the orientation between the user head and the LIDAR. This is needed since the audio

signal is a stereo signal that seems to be heard from the location of the obstacle. It

can be seen that the external communication to the IMUs and the LIDAR limits the

achievable speedup. However, taking an individual look at each task, a speedup of up

to 5x times is achieved for a process that is detached from external communications.

Despite the performance advantages of data processing during data transmissions,

dynamic partial reconfiguration is explored in Section 4.4. The tool flow provided by

Xilinx supports the generation of one partial bitstream per component for every recon-

figurable partition, even though the same accelerator is implemented. The drawback

is that the memory resources are increased for an MPSoC that has a high number of

reconfigurable partitions and reconfigurable hardware modules. RePaBit is introduced

that provides an extension of the PRF with the IDF to generate relocatable partial bit-

streams. Relocatable partial bitstreams can be reconfigured in multiple reconfigurable

partitions by only changing the FAR address. RePaBit is tested by two designs that

contain MicroBlaze processors and IO access controller. The results show a negligible

overhead in terms of LUTs by 0.7% and a relative decrease of up to 2.8% in the fre-
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quency. This overhead is compensated by a significant reduction of memory resources

for a high number of hardware modules that are reconfigured in different partitions.

Moreover, the generation time of Vivado is improved since fewer partial bitstreams

must be generated.

However, a reconfigurable MPSoC is susceptible for loading malicious hardware

modules into the system. For instance, a hardware trojan can be inserted that spies

data transmissions for attackers. A security mechanism is explored that identifies logi-

cal functions in partial bitstreams using neural networks. Inspired by neural networks

that are used for image processing, neural networks are used to inspect the bitstream

pattern inside a partial bitstream and estimate the underlying functionality that is

implemented. In this work, 1236 partial bitstreams have been generated for training

neural networks. They differ regarding optimization options and the placement on

the FPGA. From these bitstreams, 304 are labeled and represent an adder operation.

Different neural networks developed by the TensorFlow framework A test set of 648

partial bitstreams including 291 bitstreams that contain an adder are used. The results

confirm the feasibility to classify the content of partial bitstreams according to their

functionality. Moreover, a CNN network shows the best precision of 93% compared to

the remaining neural network implementations.
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Chapter 5

Methodologies for Semi-Automated

Design and Programming of

NoC-based MPSoCs

This chapter introduces methodologies for the design and programming of Network-

on-Chip (NoC)-based Multi-Processor Systems-on-Chip (MPSoCs). The focus is on

methods that ease the development process to increase the overall productivity.

Section 5.1 presents a computation model for NoC-based MPSoCs that simplifies

the programming. In addition, the model is extended to support ASIR-based MPSoCs.

The following section shows a methodology that can be used to design and program

homogeneous MPSoCs using a high-level programming language. Section 5.3 extends

this methodology to heterogeneous MPSoCs. Heterogeneous MPSoCs developed in

this work contain MicroBlaze processors and application-specific accelerators. The

accelerators can be connected through AXI-Stream interfaces to MicroBlaze processors

or the NoC.

Section 5.4 presents methodologies to statically map applications that are described

by the computation model of Section 5.1 on homogeneous and heterogeneous MPSoCs.

Additionally, the mapping can be applied to MPSoCs using Application-Specific In-

struction Set Routers (ASIRs). This mapping is analyzed in terms of completeness

and time complexity. Furthermore, dynamic task mapping is discussed. Finally, a

summary of these approaches is presented.

Section 5.1 and 5.4 are based on [Ret18a]. Section 5.3 and 5.4 are based on [Ret18b]

and [Ret20].
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Figure 5.1: An example of a Kahn Process Network consisting of 4 processes

5.1 A KPN-based Computation Model

To conduct an efficient development of an MPSoC, the application must be modeled

in a standardized manner enabling the programming as well as the design. Otherwise,

the development process increases along with the susceptibility to errors. In this sec-

tion, a computation model that is based on Kahn-Process-Networks (KPNs) [Kah74]

is presented to describe an application and visualize it in form of a graph.

5.1.1 Computation Model - Kahn Process Networks

A KPN is a widely accepted model of computation. KPNs are directed graphs as

shown in Fig. 5.1 consisting of vertices that represent sequential processes and edges

that correspond to communication channels between the processes. Communication

channels are considered as unbounded FIFOs. A process that tries to read data out of

an empty communication channel is suspended until the data arrives. Consequently,

a read from the process is blocked. A process that writes through a communication

channel is non-blocking since unbounded FIFOs are always able to receive data and

forward it to the next process. A process has two states: active and blocked. During

the state active, a process computes data or sends data to another process. During

the state blocked, a process waits for data while it tries to read it. Fig. 5.1 describes

an application modeled by a KPN that shows 4 processes in terms of vertices: v1, v2,

v3 and v4. v1 sends data to v2 and v3, while it is in state active. Initially, v2 and v3

are in state blocked and waiting for data from v1. After they received the data, v2 and

v3 process the data and send it to v4, while the states are changed to active. v4 reads

these data and processes it.

In general, a KPN-based graph represented by G contains a set of vertices vi that

represents N processes.
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G = {v1, v1, ..., vN} , (5.1)

Additionally, these vertices are connected by a set of channels C representing m

edges ei.

C = {e1, e1, ..., em} , (5.2)

5.1.2 A KPN-based Computation Model for NoC-based MP-

SoC

A KPN can be used to model an application that can be mapped to an MPSoC as it is

shown in Fig. 5.2. The MPSoC consists of four processors which communicate through

a mesh-based NoC. The processors send and receive messages through a network in-

terface to and from the NoC. Buffering messages inside a network interface can be

beneficial for the throughput of the NoC, especially considering that wormhole routing

is implemented.

In wormhole routing, the routers have a minimum buffer size that allows them to

only store a single flit. Hence, a message consisting of multiple flits occupies multiple

routers while it is transferred. The channel that is allocated by these routers is blocked

for other messages. If no buffering in the network interface is applied and the desti-

nation processor is busy, the message cannot be removed from the network and blocks

the transfer of other messages until the processor is ready to receive. A buffering that

is large enough would avoid this blocked state inside the NoC.

A sequential process of a KPN can be executed by a processor. In this work, only

a single sequential process is mapped to one processor. Multiple processes cannot be

mapped to the same processor. This simplifies the process of mapping, otherwise, it

would be reasonable to consider the computational load of the processor. A processor

with a high load should not execute another process, instead, a processor with a low

load should be used. However, threads can be used inside a process. The programmer

has to program explicitly a process using a thread library such as POSIX threads.

If a process consists of multiple threads that are executed concurrently, it cannot be

considered a sequential process anymore.

The NoC is used to establish the communication channels that transfer messages

between the processes. A software layer can provide an API to guarantee the same

behavior as in the KPN-based computation model. An example of such a layer is

presented in Section 5.2. The KPN-based model assumes a communication channel

that behaves as an unbounded FIFO. This behavior can be enabled by various options.
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Figure 5.2: An example of a NoC-based MPSoC consisting of 4 processors

One option is to operate the NoC with a higher frequency than the processors. If the

throughput of the NoC per port is equal to or greater than the injection and acceptance

rates of the Processing Elements (PEs), the NoC can always transfer messages.

Another method is to design FIFO buffers inside the network interface with suffi-

cient resources to store flits. A processor that sends a message is not a blocked process

when the FIFO accepts the complete message, even though, the NoC is overloaded.

5.1.3 A KPN-based Computation Model for ASIR-based MP-

SoC

ASIRs reduce the communication overhead in MPSoCs, however, the programming of

ASIR-based MPSoCs is complex without an appropriate methodology. This is due to

the fact that the design space is tremendously increased by the heterogeneity of the

NoC. In addition to the mapping of processes on processors, processing units must

be mapped to routers as well. The mapping of processes depends on the application

and the optimization goal. The opimization goal of this work is a reduction of the

communication costs. Contrary to the processes, the mapping of processing units

depends also on the routing algorithm that is supported by the NoC. In this work,

a mapping based on the deterministic XY routing algorithm is implemented, which

allows precalculating the whole path from source to destination.

A KPN-based model is used as computation model for ASIR-based MPSoCs that

consist of MicroBlaze processors connected to a NoC. Each vertex of the KPN repre-

sents a process that can be executed by a MicroBlaze processor or a processing unit
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Figure 5.3: Two different types of vertices: A vertex that executes the process on a
processing unit and a vertex that executes the process on a MicroBlaze processor
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Figure 5.4: Chain of vertices that are mapped to processing units and MicroBlaze
processors

that is placed inside an ASIR. In order to express this heterogeneity with a KPN, the

model is extended by two different types of vertices as shown in Fig. 5.3. The type

defines that the process is executed either by a MicroBlaze processor or an ASIR. The

programmer that models the application has to decide if a process must be executed by

a processor or an ASIR. Since a processing unit of a router receives a message, executes

an application-specific operation and forwards the result to the next PE, it has one

incoming and one outgoing channel. Hence, a vertex for a processing unit must have

one edge for the incoming and one edge for the outgoing data transfers.

In contrast to this, a vertex representing a process that is executed by a MicroBlaze

processor can have any number of incoming and outgoing channels. A graph can also

contain a chain of multiple vertices that are mapped to ASIRs. A general example of

such a process chain consisting of N + 1 processes is given by Fig. 5.4. Nevertheless,

this chain must receive data from a vertex (v1) and send data to a vertex (vN+1)

that are mapped to MicroBlaze processors. Moreover, these MicroBlaze processors

must be different processors. Otherwise, a message would be sent by a MicroBlaze

processor, be processed by the NoC and received by the same MicroBlaze processor.

Such a routing path is not possible with the XY routing algorithm. The corresponding

channel dependency graph would contain a cycle which is a sufficient condition for a

deadlock that can emerge.

Each vertex represents a process that can be programmed in C/C++. A vertex

that is mapped to a processing unit can be implemented using a template presented
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Figure 5.5: Two sets of threads belonging processes and address spaces

in Section 5.2.3. The MicroBlaze processors are programmed in C/C++ and use a

lightweight software library which is based on a Message Passing Interface (MPI) to

exchange data. This library provides an Application Programming Interface (API),

in which every vertex has a unique id that is used to send and receive data between

processes. This unique id corresponds to the address inside the NoC and is defined by

the mapping algorithm.

5.1.4 Comparison to Thread Programming

A process is an executable unit of a program which is allocated to an address space. In

the context of a process, one or more threads can be defined which share this address

space. Multiple processes have respectively their own address spaces as shown in Fig.

5.5.

Threads typically exchange data using a shared memory model. A shared memory

model allows intuitive programming of threads communicating. However, a shared

memory model also entails states such as race conditions that have to be avoided. If

multiple threads try to read from or write to the same memory location, additional

methods must be implemented to avoid that race conditions lead to inconsistent states.

Mutexes, lock mechanisms or atomic operations can be used to keep the system in

defined states. These mechanisms create overhead in memory and system performance,

since additional resources are needed and all of these mechanisms serialize the access to

data. In contrast to thread programming, KPNs cannot create race conditions. They

are not sharing memory locations since all sequential processes have their own address

space.

As shown in Fig. 5.2, every processor has its own memory in this work. This

distributed memory architecture is highly scalable in comparison to a shared mem-
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ory model. Due to the distributed memory architecture, the natural hardware does

not provide threads allocated on different processors. Threads within a processor are

directly possible, since they can share an address space in the local memory of the

processor. In order to enable threads across different processors, a software layer can

be developed that shares the view of multiple processors to one local memory. This

layer enables processors to share memory locations between them. It changes the lo-

cal view to the memory. Similar mechanisms are well known from cache coherency

protocols such as snoopy cache coherency and directory-based cache coherency proto-

cols of multi-core architectures. However, such additional layers create an overhead in

memory resources and performance. Furthermore, the path between a shared memory

location and communicating threads can be long depending on the mesh size. With-

out any length restrictions, the approach is not as scalable as a message passing-based

communication.

In a message passing-based communication as it is used in this work and applied in

the KPN-based model, processors exchange data by sending and receiving messages.

The current owner of the data has full and exclusive access to it. Accordingly, the

data is only placed in memories where it is currently needed. This approach is a

highly scalable solution for the presented MPSoC. Moreover, the hardware architecture

consisting of several local memories supports implicitly message passing.

Another model which is not focussed in this thesis is a hybrid solution. Fig. 5.6

shows an MPSoC consisting of processors owning local memories. These processors

have the same structure as it is used in this work and can be programmed using a

message passing interface. Moreover, the MPSoC contains shared memories that are

directly connected to routers. These memories are distributed over the entire MPSoC

and can be used as a shared memory location for groups of processors. The network

interface of a shared memory can provide additional functions such as the allocation of

address space. The additional overhead that is created by the software layer described

above is swapped to hardware. This kind of shared memory model has been investigated

in researches such as in [Göh+12].

5.2 Design and Programming of Homogeneous

MPSoCs

The KPN-based model splits an application into sequential processes which is manually

done by developers in this work. This process of decomposition requires knowledge

about the structure and parallelism of the application. For homogeneous MPSoCs, the

computation of a histogram is used as an example to show the process of decomposition,
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Figure 5.6: NoC-based MPSoC consisting of processors with local memory and shared
memory

programming and mapping. In this work, the processes of a KPN-based model are

implemented using a high-level programming language such as C or C++ and an MPI-

based communication layer.

5.2.1 Example of an Application using the KPN-based Model

A pixel pi,j of a grayscale image has 256 distinct gray levels. The histogram computa-

tion calculates the cumulative freqeuency of each gray level in an image. Eq. 5.3 and

5.4 calculate the number of pixels grayi for a gray level k of an image that has a size

of mxn pixels:

grayi =
m∑︂
i=1

n∑︂
j=1

Pixel(i, j) (5.3)

Pixel(i, j) =

⎧⎨⎩1 , if pi,j = k

0 , else
(5.4)

k has a range from 0 to 255. To map a KPN-based model onto an MPSoC, the

tasks must be executed concurrently by the MPSoC to achieve a high performance.

The inherent parallelism of the application must be identified by developers in order
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Figure 5.7: KPN-based model of histogram computation for a 2x2 MPSoC

to exploit it.

Fig.5.7 shows the decomposition and KPN-based modeling of a histogram compu-

tation. The image is split into four sub-images that are processed independently and

hence, they can be computed concurrently. The processes of the histogram compu-

tation are described by the vertices v1, v2, v3 and v4. Assuming that the image is

stored in a memory location of a single processor, this processor can split the image

and distributes the parts to the remaining processors. The process v1 represents such a

process and gathers the results of the sub-images. v2, v3 and v4 receive the sub-images,

calculate a histogram of the sub-images and send the results back to v1.

The example given in Fig. 5.7 is mapped to a 2x2 MPSoC. After each process is

modeled and programmed, it can be assigned to a processor of the MPSoC. In this

example, process vi is mapped to MicroBlaze processor Mi.

5.2.2 Automated FPGA Design of an MPSoC

The design of NoC-based MPSoCs can be automated by scripts to simplify the process

of implementing a complete MPSoC on an FPGA. TCL scripts have been developed in

[Ret20] that can be used in Vivado 2017.2 to build a complete MPSoC. A configuration

file of the TCL scripts determines the size of the NoC and the FPGA that is used. The
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Table 5.1: MPI-based functions for an MPSoC consisting of MicroBlaze processors

Function Description

MPI Init() Initialize the MPI execution environment in
MPI-based programs

MPI Comm size() Determines the number of processes
MPI Comm rank() Determines a unique id of the calling process
MPI Recv() Receives a message from another process

while locking the program
MPI Send() Sends a message to another process while

locking the program
MPI Finalize() Terminates MPI execution environment in

MPI-based programs

size of the NoC is described by two dimensions: X and Y which represent a XxY

Mesh-based MPSoC. MicroBlaze processors are connected to the NoC using FIFOs as

network interfaces. As well as the size of the NoC, the configuration of the MicroBlaze

processor in terms of memory size and computational resources can also be done in the

configuration file. The size of the MPSoC is limited by the resources of the FPGA and

depends on the configuration of the MicroBlaze processors.

The general structure of the MPSoC allows reusing such an MPSoC for a wide

variety of applications. If the parallel computing capacity is not sufficient, the number

of processors can be increased using the script.

5.2.3 MPI-based Programming

A lightweight software library which is also the basis for the library mentioned in

Section 3.2.5 provides send and receive functions developed in C. The functions of this

library are based on the MPI standard. A sequential process from a KPN-based vertex

can be programmed using this library that only consumes 1.85 KB.

Besides send and receive routines, this library supports initialization and release

functions that have to be called in the beginning and at the end of the program. The

functions of this API are listed in Table 5.1. For the sake of clarity, the arguments are

not listed.

Listing 5.1 shows an example of a program using the MPI-based library. A KPN-

based model has several processes. Each process can be programmed by defining a

unique id that is used to distinguish between them. Accordingly, the system can be

programmed in an Single Program Multiple Data (SPMD) manner. Each id represents

a process that is mapped on a processor. The function MPI Send() is used to send data

to another process. Assuming that the NoC has enough memory resources to buffer
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Listing 5.1: Example of an MPI-based program with MicroBlaze processors✞ ⊵
1 #inc lude ”mpi . h”
2

3 i n t main ( i n t argc , char *argv [ ] ) {
4 MPI Init(&argc , &argv ) ;
5 i n t rank ;
6 MPI Comm rank(MPICOMMWORLD, &rank ) ;
7 i f ( rank == 0) {
8 // S p e c i f i c program code f o r KPN=based v e r t i c e s which has

an id / rank equal to 1
9 } e l s e {

10 // S p e c i f i c program code f o r KPN=based v e r t i c e s which has
an id / rank not equal to 0

11 }
12 MPI Final ize ( ) ;
13 }✝ ✆

Listing 5.2: Snipped of an MPI header file for a 2x2 MPSoC showing fixed mapping
between ids an adresses of the MPSoC✞ ⊵

1 . . .
2 /* id binary address */
3 /* (3 b i t s f o r x ) (3 b i t s f o r y ) */
4 #de f i n e id0 0b000000
5 #de f i n e id1 0b000001
6 #de f i n e id2 0b001000
7 #de f i n e id3 0b001001
8 . . .
9 }✝ ✆

messages, a call of the send function is non-blocking. The function MPI Receive() is

used to receive messages and blocks until the message arrives.

A simple method to map an application on an MPSoC is a fixed mapping scheme.

The header file mpi.h defines which id corresponds to which address inside the MPSoC

as shown in Listing 5.2. In this example, the process with id0 is assigned to the

MicroBlaze processor which has the address 0b000000 (X coordinate = 0, Y coordinate

= 0). id1, id2 and id3 are assigned to processes that has the addresses shown in Listing

5.2. This fixed mapping can be used to intuitively program an application.

5.3 Design and Programming of Heterogeneous

MPSoCs

This section presents an approach to simultaneously design and program heterogeneous

MPSoCs using a semi-automated software-defined methodology. First, an overview of
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Figure 5.8: MPSoC consisting of 3 MicroBlaze processors and accelerators

the methodology is given, followed by a more detailed analysis of the individual steps.

An example of such an MPSoC consisting of 3 MicroBlaze processors and accelera-

tors that are either connected directly to the NoC or to MicroBlaze processors is shown

in Fig. 5.8. The design of the MPSoC is based on a program that uses the MPI-based

library. Functions can be marked by pragmas to indicate that they are synthesized to

accelerators. These accelerators are connected as co-processing elements to MicroBlaze

processors. Furthermore, a process of the MPI-based program can be synthesized to

an accelerator that is directly connected to the NoC without the need of a processor.

Fig. 5.9 shows a complete development environment of this work for the collat-

eral design and programming of heterogeneous MPSoCs. This flow is introduced as

Software-defined Multiprocessor System-on-Chip (SDMPSoC) [Ret20]. The develop-

ment environment starts with a user input which is processed by python scripts to
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Figure 5.9: Overview of SDMPSoC for software-defined heterogeneous NoC-based MP-
SoCs (based on [Ret20])

generate source files and TCL scripts for Vivado HLS, Vivado and SDK [Xil19e]. These

tools from Xilinx are used to generate the MPSoC for an FPGA. The user inputs com-

prises constraints and the MPI-based program implemented in C. The software layer

of Section 5.2.3 supporting a subset of MPI functions is used for the MicroBlaze pro-

cessors. The user defines the MPSoC size, the FPGA and which process is executed by

a MicroBlaze processor or an accelerator using constraints. An example of a constraint

file written in an XML format for an MPI-based program app.c is shown in Listing 5.3.

The first two processes (P0, P1) are executed by MicroBlaze processors in contrast

to the third and fourth processes (P2, P3). These are executed by accelerators indicated

by the term hardware module. In order to augment a MicroBlaze processor with accel-

erators, pragmas can be defined above a program function. SDMPSoC automatically
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Listing 5.3: Example of a constraint file for SDMPSoC✞ ⊵
1 <c on s t r a i n t s>
2 <program> app . c </program>
3 <FPGA> xc7z020 </FPGA>
4 <PEs> 4 </PEs>
5 <P0> MicroBlaze </P0>
6 <P1> MicroBlaze </P1>
7 <P2> HardwareModul </P2>
8 <P3> HardwareModul </P3>
9 </ c on s t r a i n t s>✝ ✆

analyzes the constraints and the program using Python scripts. These scripts produce

program code for each MicroBlaze processor, high-level synthesizable C files for each

accelerator that is connected to a MicroBlaze processor or directly to the NoC and

corresponding TCL scripts for Vivado HLS and Vivado. The TCL scripts for Vivado

HLS can be used to synthesize the accelerators. The TCL scripts for Vivado build the

MPSoC on an FPGA. To prepare accelerators of MicroBlaze processors, Control Flow

Graphs (CFGs) are created using GCC to identify which MicroBlaze processor requires

an accelerator. The CFG shows which functions are executed by which processor. The

functions that are synthesized to accelerators are marked with the pragma. Using the

CFGs, constraints and the MPI program, an XML file is created that describes the

construction of the MPSoC. In order to avoid misunderstandings, the term PE com-

prises MicroBlaze processors and accelerators that are directly connected to the NoC.

In SDMPSoC, it does not indicate accelerators connected to MicroBlaze processors.

Program Files for PEs

Listing 5.4 shows an example of an MPI-based program with more than one process.

This program is compiled for every MicroBlaze processor and synthesized for accelera-

tors that are directly connected to the NoC. The constraint file defines which process

is executed by a MicroBlaze processor and which process is executed by an accelerator.

Additionally, pragmas as shown in line 2 can be used to indicate accelerators that are

connected to MicroBlaze processors. In this manner, a processor can be optimized for

specific tasks.

Each PE is identified by a unique id. Using conditional expressions, the processes

can query the id as listed in the lines 10 to 15 and perform the corresponding tasks. All

MicroBlaze processors and accelerators perform their own process, hence, the number

of PEs must be greater or equal to the number of processes defined in the MPI program.

Multiple threads that run on a single MicroBlaze processor cannot be implemented

using the MPI-based library. Nevertheless, libraries such as Xilkernel can be included
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Listing 5.4: Example of an MPI-based program with MicroBlaze processors that use
hardware modules✞ ⊵

1 #inc lude ”mpi . h”
2 #pragma mb acc AXISin=in AXISout=out
3 void hw( i n t in [ 1 0 ] , i n t out [ 1 0 ] ) {
4 //program code o f func t i on hw
5 }
6 i n t main ( i n t argc , char *argv [ ] ) {
7 MPI Init(&argc , &argv ) ;
8 i n t rank ;
9 MPI Comm rank(MPICOMMWORLD, &rank ) ;

10 i f ( rank == 0) {
11 // proce s s 0
12 } e l s e {
13 // Al l p r o c e s s e s except p roce s s 0
14 hw(a , b) ;
15 }
16 MPI Final ize ( ) ;
17 }✝ ✆

in the MPI program to provide multiple threads running on a single MicroBlaze pro-

cessor. Threads can control different accelerators that are connected to a processor.

Nevertheless, the programmer should avoid that multiple threads access the same ac-

celerator. Otherwise, a resource conflict emerges since two or more threads use the

same accelerator.

Vivado HLS does not support threads and accordingly, accelerators cannot execute

multiple threads that are programmed. However, Vivado HLS supports a lot of pragmas

to optimize the synthesis result. All of these pragmas can be applied in SDMPSoC.

5.3.1 Hardware Description using XML Format

The constraint file contain the number of PEs, the type of FPGA and which process is

executed by a MicroBlaze processor or accelerator. Since the scripts are developed for

Vivado 2017.2, all Xilinx FPGAs supported by this Vivado version can be used. To

migrate our approach to a newer version, it must be verified that all TCL commands

are still supported. If this is not the case, then these commands must be exchanged.

Furthermore, the version of IP cores such as the MicroBlaze processors has to be

updated within the scripts.

Based on the MPI program and constraints, SDMPSoC creates an XML description

of the system for the internal generation of the output files. This XML description

contains elements of the NoC and every PE. The element that represents the NoC in

the XML file provides the size of each dimension. Since a mesh-based NoC is used in

this work, it has two dimensions. The total number of PEs is computed by the product
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of these dimensions.

Since every PE is represented by another element in the XML file, the elements

are labeled using a unique address. Moreover, every PE has an element that specifies

if it is a MicroBlaze processor or a hardware module. A PE that is a MicroBlaze

processor can be equipped with additional accelerators for optimizations. Hence, these

elements contain additionally their corresponding accelerators as elements in the XML

description. These accelerators are consecutively numbered in the same order as they

are programmed in the MPI program. Nevertheless, the element provides the name of

the accelerator according to the function that is programmed. Every argument of the

function is indicated as an AXI4-Stream interface input or output port. Moreover, the

corresponding AXI4-Stream port of the MicroBlaze processor is indicated. A MicroB-

laze processor has up to 15 AXI4-stream ports that can be used for accelerators and

one port connected to the NoC.

The TCL scripts are generated based on the XML file. In order to identify an

accelerator of a MicroBlaze processor, the MPI program is analyzed. GCC is used to

generate a CFG for every process by calling GCC with option --fdump--tree--cfg.

The CFGs show all executed function calls. These calls are compared to the functions

that are marked by pragmas for High-Level Synthesis (HLS). If a marked function

occurs in a CFG, the corresponding MicroBlaze processor requires an accelerator.

5.3.2 Accelerators

The MPI-based program is parsed by SDMPSoC to generate C codes that can be

synthesized to accelerators using Vivado HLS. The XML description is necessary to

determine which process must be synthesized and which must be compiled for proces-

sors.

In order to generate an accelerator out of a process, the process must be pro-

grammed in accordance with the HLS requirements to synthesize hardware.

The MPI-based functions must be adapted, that Vivado HLS is able to generate

hardware modules out of them. Without modifications, Vivado HLS is not synthesizing

the MPI programm to accelerator with compatible interfaces for the NoC. Any Vivado

HLS pragma can still be used to optimize the hardware module. This is achieved by

performing the following steps:

1. The name of the main function is changed to a name based on the process id.

2. Two function arguments are inserted to send and receive data. Since the NoC has

an input and output AXI4-Stream interface for a PE, the arguments are marked

by Vivado HLS pragmas to synthesize these interfaces. The arguments are arrays
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with the length of the data that is indicated in the corresponding MPI Send()

and MPI Receive() routines of this process and two additional elements. These

additional elements are needed for the header- and tailflit.

3. Vivado HLS usually generates control signals such as start and valid, however,

this hardware module does only require two AXI4-Stream interfaces, a clock and

a reset signal. Further control signals are not supported by SDMPSoC. Hence,

the control signals are disabled by a corresponding pragma.

4. The process executes MPI Send() and MPI Receive() functions from the MPI-

based library. These function calls are exchanged by for-loops that assign the

transferred data to the appropriate function argument that is defined as an output

or input stream. Additionally, a headerflit which includes the destination defined

in the MPI Send() function call and a tailflit is inserted, when data is sent.

Contrary to sending, a dummy variable reads the header- and tailflit, while data

is received.

5. Vivado HLS synthesizes only the code that is executed by the corresponding

process. The process is specified by additional files generated by SDMPSoC.

The steps presented above are a generic method to modify any program that uses

the MPI-based library into synthesizable code for Vivado HLS.

5.3.3 Program Code

The MPI-based program is parsed by a Python script that creates C code for each

MicroBlaze processor. The script performs the following steps:

1. It includes in each MicroBlaze program a unique process id, which is respectively

included in the MPI header file.

2. Functions that are marked by pragmas are exchanged by wrapper functions. In-

stead of processing data as defined in the original function, the wrapper function

manages the data transfers between the MicroBlaze processors and accelerators.

The hardware description of the XML file gives the information which MicroBlaze

processor uses one or more accelerators. Accordingly, only the functions that are

implemented as hardware modules are exchanged with wrapper functions.

3. A wrapper function starts with data transfers to the accelerators and ends with

data transfers from the accelerator. The wrapper function blocks the execution of

the process until all data has been transferred. This simplifies the synchronization

between accelerators and a MicroBlaze processor.
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The steps presented above are a generic method to change the program code for

MicroBlaze processors that uses accelerators presented in Section 5.3.4.

5.3.4 Hardware Modules and TCL Scripts for Processors

Void functions that are defined in the MPI program can be synthesized to accelerators

connected to MicroBlaze processors. Contrary to a void function, a non-void function

returns a value that a MicroBlaze processor cannot receive. Otherwise, SDMPSoC

must be adapted to support the synthesis of non-void functions. Pragmas are used

above a function to define that this function is synthesized to an accelerator as shown

in Listing 5.4.

Every argument of such a function must be transferred to or from a MicroBlaze

processor using AXI4-Stream interfaces. These arguments can be arrays of any data

type supported by Vivado HLS that have a bit width of 32 bits. The development en-

vironment searches for pragmas that contain the term mb acc. As a consequence, other

pragmas from Vivado HLS can be inserted without interacting with SDMPSoC. Each

argument can be implemented either as an AXI4-Stream input port or an AXI4-Stream

output port of the MicroBlaze processor. This is defined within the pragma using the

terms AXISin for an input port and AXISout for an output port as presented in Listing

5.4. The total number of input or output ports of all accelerators for one MicroBlaze

processor can be up to 15, because 16 AXI4-Stream-based ports are provided and one

AXI stream port is connected to the NoC.

SDMPSoC automatically extracts the functions marked by pragmas for Vivado

HLS. For each hardware module, a source file containing the function is generated

with a corresponding TCL script. The TCL script can be launched by Vivado HLS to

create the corresponding IP Core.

5.3.5 TCL Script for MPSoC

Four TCL scripts that build the MPSoC are automatically generated by SDMPSoC.

The first script creates a new Vivado project by setting the FPGA type and the

project name. Additionally, it calls consecutively the three remaining scripts. The

second script generates the NoC based on the routers presented in Section 3.1.1. The

routers of the NoC are defined in the IP-XACT format to integrate them into the

project. Moreover, the accelerators generated by Vivado HLS are also integrated into

the project.

The third script builds the PEs that are connected to routers. The MicroBlaze

processors are configured with the default configuration of Vivado 2017.2. However,
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the configuration can be adapted by modifying the TCL scripts. The routers are

connected to the first AXI4-Stream port of a MicroBlaze processor.

The fourth script connects the accelerators to MicroBlaze processors. The AXI4-

Stream ports of a MicroBlaze process are consecutively connected to the input and

output ports of accelerators. The assignment of these ports is defined in the XML file.

Any MicroBlaze processor can be equipped with any number of specialized accelera-

tors. For instance, MicroBlaze processor 3 is connected to m accelerators (HW) and

MicroBlaze processor 4 is connected to n accelerators in Fig. 5.8. Furthermore, FIFOs

are used between the MicroBlaze processor and accelerators. The FIFOs support depth

to the power of two starting with 16 up to 32768. The script sets the depth to the

next highest value of the array length. This enables that a MicroBlaze processor can

begin with all data transfers to the hardware module and afterward, continue with its

computations. Otherwise, a hardware module can block further execution, when it is

not able to receive new data.

5.3.6 Evaluation: Use Cases

SDMPSoC is evaluated using a benchmark consisting of 6 use cases. Four of them

process an image with a size of 640x480 pixels. The MicroBlaze processor that executes

the first process ditributes equally an image to the remaining MicroBlaze processors.

The first algorithm performs a conversion from Red Green Blue (RGB) to grayscale

resolution. The grayscale value g of a pixel is computed using the RGB values r, g and

b as presented in Eq. 5.5.

g = 0.21r + 0.72g + 0.07b (5.5)

It is a weighted method for grayscale conversion described in [BB10]. The second

algorithm is shown in Eq. 5.6. It is a magnitude computation calculating the squareroot

out of the sum of two squared values.

magnitude =
√︁
x2 + y2 (5.6)

The third algorithm creates a binary image using a threshold operation. The fourth

algorithm is an edge detection based on the Sobel filter for horizontal and vertical edges.

The fifth use case is a Multi Layer Perceptron network consisting of 1 hidden-layer with

10 neurons. It has 400 inputs that can be considered as features from images and 9

output neurons to classify such images. The activation function of the Multi Layer

Perceptron is an approximation of a sigmoid function. Such a Multi Layer Perceptron

network can be trained to classify 9 handwritten digits. The sixth use case is the

calculation of PI using the Monte Carlo method with 999 particles.

193



CHAPTER 5. METHODOLOGIES FOR SEMI-AUTOMATED DESIGN AND
PROGRAMMING OF NOC-BASED MPSOCS

The execution times of these use cases are evaluated on three MPSoCs. The first

MSPoC consists only of MicroBlaze processors. The second MPSoC executes the use

cases by MicroBlaze processors equipped with accelerators. These accelerators are

application-specific and designed for each use case. The third MPSoC uses accelerators

as PEs that are connected directly to the NoC. In general, it might be beneficial to

combine these different types of PEs depending on the application.

All MPSoCs consist of four PEs in which one MicroBlaze processor always dis-

tributes data to the remaining PEs. After the use cases are processed in each PE,

the data is gathered by the first MicroBlaze processor again. The accelerators are

synthesized without any additional pragmas such as unrolling and pipelining for op-

timizations. The MPSoC performing the Monte Carlo method uses the MicroBlaze

processors to randomly generate the 999 particles. That is why the MonteCarlo use

case is not executed by the MPSoC with accelerators as PEs. Vivado HLS does not

support any library for random number generation. This problem can be solved by

implementing its own pseudorandom number generator based on a linear shift register.

However, it is difficult to compare it with the system using only MicroBlaze processors

since a provided software function from Xilinx is used.

As a reference system, a single MicroBlaze processor performs all use cases. All

MPSoCs are built by Vivado 2017.2 on an xc7020clg484 FPGA. The frequency of the

MPSoCs is 100 MHz. The MicroBlaze processors are configured with 64 KB data and

instruction memory. The execution times of each algorithm shown in Fig. 5.10 are

measured by a timer. Table 5.2 presents the resource utilization of all MPSoCs. The

MPSoCs are implemented on a Xilinx xc7020clg484 FPGA.

Excluding the threshold operator, all applications using accelerators attached to

MicroBlaze processors are improved in terms of performance by integrating accelera-

tors. The threshold operation cannot be accelerated, since the communication overhead

exceeds the benefits from the parallelism. Furthermore, this operation is a conditional

assignment that can be efficiently executed by a single MicroBlaze processor. It does

not benefit a lot from specialized hardware. The grayscale conversion executed by

an MPSoC with accelerators connected directly the to NoC provides a speedup of

8.9x compared to an MPSoC without accelerators and 23.8x compared to a single

MicroBlaze processor. Tthe grayscale conversion performs three multiplications using

fixed-point arithmetics that the MicroBlaze cannot execute as fast as specialized hard-

ware. A speedup of 1.1x between the MPSoC with accelerators as PEs and the MPSoC

with MicroBlaze processors using accelerators is achieved due to faster data transfers.

The MicroBlaze processor requires at least 2 clock cycles to send or receive one flit

through its AXI4-Stream port. Accelerators can send and receive one flit within one
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clock cycle.

To analyze the communication overhead and scalability, Fig. 5.11 shows the execu-

tion times for the Sobel operation on 3, 4, 5 and 6 hardware modules. It is obviously

that there is no significant speedup achieved. This is due to the fact that the processing

by the hardware modules contributes negligibly to the entire execution time. The Mi-

croBlaze that distributes the data requires at least two cycles to send 32 bit. The NoC

can transfer 32 bit within 1 cycle and buffer located at the hardware modules can store

the data from the image while it is processed by the hardware modules. Accordingly,

the distribution of the image requires a significant amount of time compared to the

processing of the hardware modules and hence, the number of hardware modules has

no essential contribution, as the MicroBlaze processor is the bottleneck of the system.

All use cases except the threshold and the Monte Carlo application show a better

performance for the MPSoC using accelerators directly connected to the NoC. This

is due to the fact that the accelerators can handle the data transfers faster as Mi-

croBlaze processors. However, the use case Monte Carlo shows that implementing

MicroBlaze processors instead of accelerators is still useful. MicroBlaze processors can

provide more flexibility than accelerators synthesized by Vivado HLS. Vivado HLS

does not support every concept that is used in high-level programming languages such

as dynamic memory allocation.The development process of new applications has been

significantly simplified by SDMPSoC resulting in reduced development time.

BRAM resources are the most limiting factor. However, the size of the memory can

be adapted. It is also worth to mention that the grayscale conversion synthesized by

Vivado HLS consumes 75 DSP blocks. The Vivado HLS tool transforms the Eq. 5.5 to

a hardware module consuming 25 DSPs without any optimizations. The entire design

uses 75 DSPs, since three are implemented.

5.4 Static Task Mapping

This section presents methodologies to map tasks on homogeneous and heterogeneous

MPSoCs. Methodologies that ease and automate the process of mapping tasks are

introduced. Due to reasons of comprehensibility, the task mapping methodology is

initially explained with homogeneous MPSoCs, since ASIR-based MPSoCs can be con-

sidered as an extension of them.

Section 5.4.1 presents an automatable mapping strategy for homogeneous MPSoCs

using a KPN-based application model. Each vertex of the graph is analyzed based on a

breadth first search algorithm [Lun16]. During the analysis, the processes represented

by vertices are allocated to available processors.
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Figure 5.10: Execution times of six use cases implemented on a single MicroBlaze
processor, a 2x2 mesh-based MPSoC consisting of only MicroBlaze processors (only
MB Processors), a 2x2 mesh-based MPSoC consisting of MicroBlaze processors with
specialized hardware modules (MB Processors & HW modules) and 2x2 mesh-based
MPSoC consisting of accelerators as PEs (only HW modules) (based on [Ret20])

Section 5.4.2 introduces changes to extend the methodology for ASIR-based MP-

SoCs. ASIR-based MPSoCs are a new approach that introduces high complexity in

designing and mapping tasks to processors or routers. In this section, complete pro-

cesses are mapped to ASIRs. This does not mean that a process that executes a large

sequence of operations should be mapped to an ASIR. Depending on the application,

a process can also perform a single instruction up to a sequence of operations. In

a homogeneous structure of an ASIR-based NoC, every router can execute the same

type of operation. However, this approach wastes a high amount of resources, if the

routers do not perform any operation. Hence, only specific routers are equipped with

application-specific processing units depending on the application. In addition, the
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Figure 5.11: Execution times of the Sobel use case for different number of hardware
modules (based on [Ret20]))

incorporation of external sensors, actuators or accelerators is presented.

Moreover, the completeness of this mapping approach, time complexity as well as

dynamic mapping are discussed in Section 5.4.4.

5.4.1 Methodology for Task Mapping on Homogeneous MP-

SoCs

In this work, MicroBlaze processors exchange data using message passing. In the

MPI-based library, every MicroBlaze processor has a unique id that is allocated to

an address of the NoC. The address of each id is determined by the mapping. Thus,

static mapping can be done by defining the ids and the corresponding addresses in

the MPI-based library. The approach presented in this work analyzes a KPN-based

graph until all vertices are mapped onto MicroBlaze processors. A heuristic is used to

map communicating tasks to MicroBlaze processors that are located closely together

to reduce communication costs.

Fig. 5.12 shows the steps conducted for a KPN-based graph that consists of five

processes. Initially, the mapping algorithm allocates the vertex v1 to a MicroBlaze

processor, as this vertex is defined as the initial process of the application. Afterwards,

it maps all neighbouring vertices from v1 to MicroBlaze processors, respectively (Step 1

– 3). The vertices are mapped to the closest available MicroBlaze processors and there-

fore, optimizing communication costs. After all vertices that are directly connected to

v1 are mapped, it maps the neighbours of the vertices that have been mapped previ-

ously. vertex v2 is the next vertex that is analyzed (Step 4). It has only one neighbour,

defined as v5, and it is mapped to a processor that has the minimal distance to the

process that is represented by vertex v2. When all neighbouring vertices from vertex
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Table 5.2: Resource utilization of different 2x2 mesh-based MPSoCs on a Xilinx FPGA
(xc7z020clg484)

MicroBlaze
Processors

Accelerators LUT LUTRAM FF BRAM DSP

Single MicroBlaze processor
1 0 1119

(2.0%)
64 (0.4%) 984

(0.9%)
0 (0 %) 0 (0%)

MPSoC without accelerators
4 0 7188

(13.5%)
660 (3.8%) 6051

(5.7%)
70
(50%)

0 (0%)

MicroBlaze processors equipped with accelerators
4 Grayscale Conver-

sion
11920
(22.4%)

736 (4.2%) 11472
(10.8%)

70
(50%)

75
(34%)

4 Magnitude 14395
(27.1%)

662 (3.8%) 12723
(12%)

70
(50%)

3
(1.36%)

4 Threshold 7702
(14.5%)

694 (4.0%) 6381
(6%)

70
(50%)

0 (0%)

4 Sobel 11544
(21.7%)

722 (4.1%) 8772
(8.2%)

70
(50%)

0 (0%)

4 Multi Layer Per-
ceptron

12643
(23.8%)

1015
(5.8%)

12465
(11.7%)

70
(50%)

15
(6.8%)

4 Monte Carlo 8479
(15.9%)

900 (5.2%) 7980
(7.5%)

70
(50%)

24
(10.9%)

Accelerators connected to the NoC
1 Grayscale Conver-

sion
9272
(17.4%)

180 (1%) 9357
(8.8%)

80.5
(57.5%)

75
(34%)

1 Magnitude 10832
(20.4%)

300 (1.7%) 10527
(9.9%)

85
(60.7%)

18
(8.2%)

1 Threshold 3998
(7.5%)

147 (0.8%) 3528
(3.3%)

77.5
(55.4%)

0 (0%)

1 Sobel 4264
(8%)

129 (0.7%) 3690
(3.5%)

83.5
(59.6%)

0 (0%)

1 Multi Layer Per-
ceptron

10232
(19.2%)

320 (1.8%) 10518
(9.9%)

82
(58.6%)

15
(6.8%)

v2 are mapped, the next vertex v3 is analyzed. However, the neighbouring vertex from

v3 has been mapped already. Therefore, vertex v4 is investigated as the next process

(Step 6). Since vertex v4 has also only the mapped vertex v5 as neighbour, the mapping

is completed.
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Figure 5.12: Steps for mapping a KPN-based graph to a homogeneous MPSoC

Steps of Mapping Methodology

Fig. 5.13 describes the steps of the mapping methodology. To map the vertices, a

mapping table is used that shows all available MicroBlaze processors as well as which

vertex has been mapped to which processor. Initially, the table is empty and contains

only addresses of available processors, which are given by an X and Y address as it is

used for the routers. During the mapping process, the table is gradually updated with

mapped vertices.

At the beginning of the algorithm, the starting vertex from the KPN-based graph

G is mapped to a MicroBlaze processor (M << G) by adding it to the mapping table

M . The mapping table arranges all MicroBlaze processors ordered according to an

increasing path length. As the methodology optimizes communication costs, it always

maps to the first available MicroBlaze processor in the table providing the shortest path

length. The path length in terms of hops h between two addresses can be determined

by Eq. 5.7 for a mesh-based NoC using the XY routing algorithm.

h = |x1 − x2|+ |y1 − y2|+ 1, (5.7)

A is a list which is organized as a First-In First-Out (FIFO) and contains vertices

that have been mapped to MicroBlaze processors. Vertices that are added to this list

are placed at the end (A << G).

The active vertex S is the vertex from which all neighbours are analyzed. By reading

from list A, the first element of it becomes the active vertex (S ← A) and is removed

from the FIFO. The next step of the algorithm searches for the first neighbouring
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Figure 5.13: Flow chart of a mapping methodology for MPSoCs

vertex of the active vertex S. This vertex is represented by X. A neighbour vertex can

be found by searching for an edge that connect the active vertex S to another vertex.

In case a vertex is found that has not been mapped already, vertex X will be mapped

on a MicroBlaze processor and added to the next available MicroBlaze processor in the

mapping table.

After the vertex X has been mapped, vertex X is added to the list A (A << X).

This ensures that after all neighbours of the active vertex S are analyzed, vertex X

will also become the active vertex during the next iterations. When all neighbours of

the active vertex S have been analyzed, the next vertex of list A becomes the active

vertex. Subsequently, the methodology checks again for adjacent vertices as described

previously.

In case the active vertex has no unmppapped neighbour, it is checked if list A is

empty. If it is, the mapping is finished. if it is not, vertices that has been mapped and

not further analyzed are available in list A. Thus, the next element of list A is made

active and the mapping table is updated in terms of the routing path length, as the

source node for calculating the number of hops has changed to the new active vertex.

The presented methology cannot find a mapping solution, when the number of ver-

tices exceeds the number of MicroBlaze processors, since one vertex cannot be executed
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Figure 5.14: Steps of the mapping methodology for an ASIR-based MPSoC

by multiple MicroBlaze processors.

5.4.2 Methodology for Task Mapping on ASIR-based MP-

SoCs

The static mapping method for ASIR-based MPSoCs maps sequential processes either

on MicroBlaze processors or to ASIRs. This mapping requires an extension of the

methodology to make use of ASIRs. A processor can execute one process, while a router

has five input buffers and therefore, can execute five processes in parallel. Each process

can be executed by a single processing unit located in the input buffers. However, a

process inside a router can only be executed, when a message passes through the

input buffer supporting the process. Consequently, the mapping has to be extended to

distinguish between processes for routers or processors and it has to consider also the

routing algorithm.

Fig. 5.14 gives an overview of the steps that have to be conducted for ASIR-based

MPSoCs. An application modeled by a KPN-based graph consisting of five vertices

is mapped. The vertex v4 has to be executed by an ASIR. Initially, the mapping

algorithm allocates the starting vertex v1 to a processor. Afterwards, it maps the

neighbouring vertices v2 and v3 to available processors (Step 1-2). The vertices are

mapped to the closest available processor and therefore, optimizing communication

costs. The neighbouring vertex v4 is mapped to a router (Step 3). Step 3 is a special

case, because the mapping to routers depends on the routing algorithm.
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In this work, the deterministic XY routing algorithm is used. A deterministic rout-

ing algorithm determines a routing path only based on the source and destination of

the message. The path does not depend on any state of the NoC. Having a deter-

ministic routing algorithm is a necessary condition of the static mapping methodology

presented. Otherwise, a message that is transferred adaptively through the NoC can

be forwarded using another path that contain routers with other or none accelerators.

Before the vertex v4 is mapped to a router, the methodology checks if the neighbour

vertex from vertex v4 is mapped to a processor. In this example, v5 is mapped to a

processor. If not, the complete chain of vertices must be further analyzed. For the

sake of clarity, this will be discussed later. The presented method begins with mapping

vertex v5 before vertex v4 is allocated. This is due to the fact that a process can be

mapped to a router only when the routing path through the NoC is known. To know

the path, the source and the destination vertex in the NoC must be determined. Hence,

v5 is mapped to an appropriate processor (Step 4). In this example, an appropriate

processor means that the routing path contains enough ASIRs.

The entire routing path between v1 and v5 can be calculated using the XY routing

algorithm, as the source and destination locations are known. Subsequently, the vertex

v4 can be mapped to a router, since the routers that construct the routing path are

known. After all neighbouring vertices and vertex v5 are mapped, the next neighbour

from vertex v2 is analyzed (Step 5). However, all neighbours from v2 are already

mapped. Thus, vertex v3 can be investigated (Step 6). As vertex v3 is also only

connected to vertex v5, the mapping is finished.

Steps of Mapping Methodology

A control flow diagram of the mapping methodology for automation is presented in

Fig. 5.15. The methodology works similar to the mapping presented in Fig. 5.12. The

differences are marked as ASIR specific. In order to map the vertices, an extended

mapping table is necessary that shows all available processors and routers as well as

which vertex has been mapped to which PE. Table 5.3 shows a mapping table for

a 2x2 ASIR-based MPSoC after the complete mapping of the example shown in Fig.

5.14. Initially, the table is empty and contains only addresses defined by an X and Y

address of the available PEs (processors and routers). Processes can be allocated to

available processors and input buffers (North, East, South, West, Local) of all routers.

During the mapping, the available processors and input buffers are gradually updated

with vertices mapped to the corresponding PE.

In case of vertex X is mapped to a router, the methodology determines the entire

chain of processes that have to be mapped to ASIRs. When all adjacent vertices of an

202



5.4. STATIC TASK MAPPING

Table 5.3: Mapping Table for ASIR-based MPSoCs
Address

Vertice
Router

Path length
x y North East South West Local
0 0 v1 - - - - v4 1
0 1 v2 - - - - - 2
1 0 v3 - - - - - 2
1 1 v6 - - - - - 3
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of A

Active vertice has an 
unmapped neighbor?

Is vertice X for processor?

A empty?

S←A
Update table

Mapping 
complete

S←A
M<<S

Map vertice X 
to router*

Yes

Yes

Yes No

No

No

ASIR specific

Figure 5.15: Flow diagram of a mapping methodology for ASIR-based MPSoCs

active vertex S are mapped, the first element of list A is removed. If the list A is empty,

the mapping is complete and the algorithm terminates. If the list A is not empty, it sets

the first element of list A to the next active vertex S. Before the algorithm analyzes

the neighbour vertices of the new active vertex S, the path lengths of the mapping

table are updated. The source vertex for the new path length is the active vertex S.

The following mapped vertices will have a minimum path length related to the active

vertex S.

A detailed description of the mapping of processes to input buffers is presented in

Fig. 5.16. This diagram is excluded from Fig.5.15, for the sake of clarity. In this part

of the methodology, another list R for routers is necessary, which is also structured as

a FIFO. Y represents the active vertex that should be mapped to a router. The first

steps are to add all vertices to the list R, which should be mapped to routers until the
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Figure 5.16: Flow diagram of a mapping methodology for a sequence of operations
executed by ASIRs

first vertex that must be mapped to a processor is found. The length of R defines the

minimum path length to map all vertices to routers, since one vertex can be mapped to

one router. The process at the end of the chain which must be mapped to a processor

is stored in Z. The processor must fulfill two requirements.

� The routing path length between the processors that exchange messages processed

by ASIRs must be greater than the length of R.

� The routers that are used in this path must have enough available buffers free

for all vertices in R.

Only when these conditions are fullfilled, processes can be mapped to ASIRs. Oth-

erwise, it can happen that not enough ASIRs are available. Initially, the methodology
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checks, if the path length is long enough and the number of available buffers inside

this path is sufficient. If one of the requirements is not fulfilled, it searches for an-

other processor with a path length which is equal or greater than the previous path

length. Every router has five buffers available for vertices, however, a message for-

warded through the routers is not entering every buffer. Since the routing algorithm

is deterministic, the complete path as well as the input buffers that are entered by

messages can be determined.

A message that starts from address (x,y) enters first of all the local buffer (L) of the

router located at the same address. If the next hop increases/decreases the X coordinate

of the address, the message enters the east buffer(E)/west buffer(W) of the next router.

If the next hop increases/decreases the Y coordinate of the address, the message enters

the north buffer(N)/south buffer(S) of the next router. This methodology allows the

computation of the number of available buffers for a given path.

After a processor that fullfills these conditions is found, the vertex Z can be mapped

to the corresponding processor (M <<< Z). Furthermore, this vertex is added to list

A (A << Z). As mentioned, list A contains all vertices which have to be investigated

in terms neighbour vertices to analyze the complete graph.

All vertices that have to be mapped to ASIRs are listed in R and can be allocated

using the mapping table as well as the precalculated path ((Y ← R), (M << Y )). The

complete chain of vertices has been mapped, when R is empty.

5.4.3 Extension for Interfacing External Hardware

Fig. 5.17 shows an MPSoC that consists of processors that are connected to different

sensors. An embedded system typically has different processes connected to sensors,

actuators or other external hardware components. In such scenarios, the mapping must

be adapted, since not every processor is equipped with the needed hardware. A process

that requires a specific sensor can be mapped only to a processor that is connected to

such a sensor.

In order to provide a mapping for MPSoCs that interfaces external hardware, the

mapping methology from Section 5.4.2 is extended. A vertex of a KPN-based graph is

extended by providing a tag information about it. For MPSoCs that interface sensors,

a vertex has to be additionally tagged with a hardware type representing a specific

external hardware component. All hardware components hi that are connected to the

MPSoC are listed in H = {hi, h2, ...hn}. If a process and the corresponding vertex

requires a sensor hi, it has to be tagged with the sensor hi.

The same steps from Fig. 5.15 and Fig. 5.16 can also be used with minor mod-

ifications. The mapping table is extended with another column defined as hardware.
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Figure 5.17: Example of a NoC-based MPSoC which has sensors connected to multiple
processors

Table 5.4: Mapping table for MPSoCs interfacing hardware
Address

Vertice
Router

Path length Hardware
x y North East South West Local
0 0 v1 - - - - v4 1 h1

0 1 v2 - - - - - 2 h2

1 0 v3 - - - - - 2 -
1 1 v6 - - - - - 3 -

An example is given by Table 5.4. This column lists which processor is connected to

which type of hardware component. The step M << S enters the vertex S to the

next available slot in the mapping table. This step has to be modified that it checks

the availability of a slot providing the same hardware component. The hardware com-

ponent needed by the process is known by the tag information. If vertex S has no

hardware tag, than an available slot with no hardware must be chosen in order to keep

the processes connected to hardware available. It is assumed that a sensor is only listed

in the table, when it is needed for the application. If vertex S has a hardware tag, it

can only be mapped to an available slot with the same hardware component.
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5.4.4 Discussion

Completeness and Time Complexity Analysis

In this work, task mapping methodologies that enable semi-automated designs are de-

fined as complete, when they analyze all vertices of the KPN-based graph. If vertices

of a graph are not analyzed, they cannot be mapped to a PE. The mapping method-

ologies presented in Section 5.4 can be mainly split into two parts. The first part is

the successive analysis of each vertex which is realized by the breadth first search. The

second part is the allocation of vertices to processors and ASIRs using a mapping table.

The breadth first search is complete [Cop04]. It analyzes every vertex of a graph, if

it is connected by communication channels. A parallel application often has a master

process that distributes data to other processes. This process starts the application

and can be represented by a starting vertex from which the mapping originates. If

multiple vertices exist that start distributing data, as it is shown in Fig. 5.19 (a), the

mapping methodology might not reach every vertex. An example for such a graph can

be an image processing algorithm that processes four images independently by vertices

v1, v2, v3 and v4. The results of these processes are sent to vertex v5. Assuming v1 as

starting vertex, the breadth first search reaches the neighbour vertex v5, but it cannot

find the vertices v2, v3 and v4, since it is a directed graph. The application can be

remodelled by adding a master vertex that synchronizes the tasks. Nevertheless, this

restricts the application types and limits the parallelization of tasks.

Another solution can be to adapt the model that every communication channel

becomes bidirectional by adding additional channels. Fig. 5.19 (b) shows the graph

after adding additional channels to vertex v1, v2, v3 and v4. These modifications can

only be used formally that the breadth first search does not terminate before all vertices

are analyzed. Nevertheless, it can also be realized by sending acknowledge messages.

A process that sends a message to another process receives an acknowledgment and

thus, the receiving process establishes a communication channel back to the sending

process. This cannot be applied to processes that have to be mapped to ASIRs, since

ASIRs do not create new messages. Nevertheless, a vertex that is mapped to ASIRs

always has one incoming and one outgoing channel as required in Section 5.1.3. The

outgoing channel is connected to a vertex that is mapped either to an ASIR or to a

processor. If the vertex is mapped to a processor, the corresponding process can be

used to acknowledge the process that sent the message through ASIRs. An example

consisting of n+1 vertices is given by Fig. 5.18. As a result, any vertex that is mapped

to a processor can be chosen as the first active vertex. Assuming that enough hardware

resources are available, all vertices can be mapped to PEs.
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V1 V2 Vn Vn+1
...

ASIRs

Acknowledge

ProcessorProcessor

Figure 5.18: Chain of vertices that are mapped to processing units and MicroBlaze
processors

v1 v2 v4 

v5 

v3 v1 v2 v4 

v5 

v3 

(a) (b) 

Figure 5.19: Example of applications modeled by a KPN-based graph with no master
vertex (a) and with bidirectional channels (b)
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Listing 5.5: Pseudocode of a mapping methodology for ASIR-based MPSoCs✞ ⊵
1 Mapping (G, a ) //G i s a KPN=based graph and a i s the

i n i t i a l a c t i v e ver tex
2 A. enqueue ( a ) // I n s e r t i n g a in the FIFO A
3 map a to p ro c e s s o r
4 whi le ( A i s not empty )
5 //Removing that ver tex from A, whose neighbour w i l l be v i s i t e d now
6 v = A. dequeue ( )
7 i n i t i a l i z e /update mapping tab l e
8 // i n v e s t i g a t i n g a l l ne ighbors o f v
9 f o r a l l ne ighbors w that are connected through a l i n k to v

10 i f w i s not mapped
11 i f w i s f o r p ro c e s s o r
12 A. enqueue (w)
13 map w to pro c e s s o r
14 e l s e
15 map w and f o l l ow i ng v e r t i c e s x i to ASIRs un t i l x i has

to be mapped to a p roc e s s o r
16 A. enqueue (x )✝ ✆

The time complexity describes how the runtime of an algorithm changes depending

on its inputs. Listing 5.5 presents a pseudocode for the mapping methodology presented

in Fig. 5.15 and Fig. 5.16.

Mapping a KPN-based graph using the pseudocode in Listing 5.5 has a time com-

plexity of O(|V | + |C|), because, in the worst-case scenario, every vertex and every

edge is explored once. |V | represents the number of vertices and |C| the number of

links between vertices.

Static Task Mapping vs. Dynamic Task Mapping Dynamic mapping means

that the processes are allocated to PEs during runtime. In static mapping, the processes

are mapped to PEs at design time.

Even though a lower complexity is needed in dynamic mapping algorithms due

to timing reasons, it requires more extensive control management compared to static

mapping. The static task mapping presented in this work uses an MPI-based software

layer consisting of a header file. This header file implements a table that provides the

addresses of each process that is mapped to a processor. An address is used to send

data to the corresponding process and hence, the mapping is fixed at compile time.

Dynamic mapping requires that a process is implemented by a program code and

can be loaded into the processor during runtime. A bootloader that receives the pro-

gram code can be used to start the process on a processor. Moreover, processes that

communicate have to know the destination address at runtime. In static task mapping,

the addresses are stored in the software layer that does not change during runtime. A
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dynamic table storing the current location of processes can be implemented using a

centralized or decentralized approach for dynamic mapping. A centralized approach

can be realized by placing a dynamic table in one fixed location inside the NoC. Every

process that sends data to another process can request the address from this loca-

tion. An update of the table must be only performed at this location. Therefore, this

approach can be easily implemented.

However, a central mapping table does not scale as good as a decentralized ap-

proach. A mapping table located in the middle of a mesh network has a minimum

average distance to all other processors. The average number of hops to the table

increases along with the mesh size. Processors placed at the corners have the longest

communication channel in terms of hops to the mapping table which can be computed

by Eq. 5.8 for a kxk mesh network. For an even number of k, the equation describes the

case that the centralized dynamic table is placed at the closest position to the corner.

The communication costs in terms of length increase proportional to k. Furthermore,

all requests must be handled by one table which can cause an overload, if the number

of requests increases.

Hcorner = k − 1 (5.8)

In contrast to a centralized approach, a decentralized approach provides better

scalability. A decentralized solution can be that every process has its dynamic mapping

table and becomes the owner of this table. The table only stores the addresses of

processes that communicate to the process that owns it. A request from the processor

is not necessary anymore. Initially, every table can be filled with a mapping solution

that is built at compile time. If a process is mapped to another processor during

runtime, an update of the table must be performed in the corresponding processors

before other processes try to send a message to it. The update of the table must be

controlled to ensure that messages are not sent to an obsolete destination. A successful

sequence diagram of a send routine after a process is mapped to another processor is

given by Fig. 5.20. If a process sends a message to another process and the destination

process is mapped to another location before the message reaches its destination, the

message is lost. That is why the send routine is critical in dynamic mapping solutions.

A protocol as it is shown in Fig. 5.21 can be used to control such situations. After

a process is remapped, it sends an update containing the new address to dynamic

tables. If the sending process receives an update instead of an acknowledgment, the

send routine is triggered again. This control mechanism ensures that no message is

lost, however, it creates an overhead in terms of performance compared to the static

mapping. To avoid sending a large message to a wrong destination, the protocol can be
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Figure 5.20: Sequence diagram of a successfull send routine between process A and B

extended by an initial check, if the destination process is still at the expected location.

5.5 Summary

This chapter presents development methods for homogeneous and heterogeneous MP-

SoCs.

Section 5.1.1 introduces a computation model based on KPNs. Such a model de-

scribes the processes and communication channels of an application using a graph-

based representation, Processes are illustrated as vertices and communication channels

as edges between processes. To deploy this model on ASIR-based MPSoCs, the KPN-

based model is extended. A vertex indicates if it is executed by a processor or an

ASIR. In contrast to thread programming, this model cannot create race conditions or

deadlocks which reduces the overhead in control management.

Section 5.2 presents the mapping of an application modeled by a KPN-based graph

on a homogeneous MPSoC. The methodology is automated by scripts to ease the design

process. The scripts can be configured to implement MPSoCs with different sizes. The

systems are programmed using a software library that is based on MPI.

Section 5.3 shows the transition from homogeneous to heterogeneous MPSoCs. The

heterogeneous MPSoCs use application-specific accelerators in addition to MicroBlaze

processors. The accelerators can be connected to MicroBlaze processors or directly

to routers. The increased design and programming complexity of such MPSoCs is

simplified by an automated tool flow called SDMPSoC [Ret20]. The MPSoC can be
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Figure 5.21: Sequence diagram of a send routine between process A and B while process
B is remapped to another processor

programmed using a software layer that is based on MPI. Moreover, pragmas can be

inserted to identify functions that are synthesized to accelerators used by a MicroBlaze

processor. In a configuration file, an entire process can be indicated as an accelerator

that is directly connected to a router without a MicroBlaze processor. SDMPSoC

combines the design and programming which improves the development productivity

of heterogeneous MPSoCs for FPGAs.

Section 5.4 describes methodologies to map a KPN-based graph on ASIR-based MP-

SoCs. The mapping methodology is explained by showing the steps that are needed

to map it on a homogeneous, heterogeneous and ASIR-based MPSoCs. Furthermore,

a methodology is presented that presents a method to map an application on an em-

bedded system interfacing external hardware such as sensors. It is shown that the

methodology is complete and have a time complexity of O(|V |+ |E|). Finally, a com-

parison between static and dynamic task mapping is discussed.
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Chapter 6

Conclusion and Outlook

This chapter summarizes the dissertation by outlining the major contributions and

presenting an outlook of future work.

6.1 Conclusion

Contemporary Multi-Processor Systems-on-Chip (MPSoCs) use a high number of

Processing Elements (PEs) to exploit the inherent parallelism of applications. The

integration of more PEs goes in hand with more communication. Therefore, on-chip

communication architectures of MPSoCs need to cope with increasing requirements.

If not, the communication architecture results in the performance bottleneck of the

system. Hence, new design and programming methodologies for MPSoCs with the

focus on innovative Networks-on-Chip (NoCs) are highly needed and investigated in

this work.

In Section 3.1.3, a novel routing function supporting multiple routing algorithms in

parallel is designed (see also [Ret14]) to improve the traffic load and the throughput.

Messages which are transferred through the NoC can select a routing algorithm that

computes the routing path. In this work, the XY and West-First routing algorithms

are supported. The header flit of a message indicates which routing algorithm is se-

lected. Thus, multiple messages sent at the same time can be transferred using different

routing algorithms. To guarantee a deadlock-free NoC that supports multiple routing

algorithms at runtime, the use of turn models is extended to define a set of routing

algorithms. Multiple routing algorithms can improve the traffic load and consequently,

the throughput depending on the application.

Moreover, the routers developed in this work are evaluated in the context of a

reconfigurable and heterogeneous MPSoC consisting of an ARM processor, MicroBlaze

processors and hardware accelerators. The ARM processor is equipped with a Linux-
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based operating system extended by a real-time patch and a scheduler for tasks that

can be either executed by hardware accelerators or MicroBlaze processors. The system

is introduced as LinROS [Ret16d] for programming reconfigurable MPSoCs. Prior to

the execution of a task, the scheduler reconfigures the hardware accelerator or loads

the program into the MicroBlaze processor. Subsequently, the scheduler starts the

execution of this task. LinROS simplifies the programming of reconfigurable MPSoCs

by providing an API for defining and handling hardware as well as software tasks. To

reduce the communication overhead, tasks that communicate with each other have to

be placed closely together in the NoC.

By placing processing units inside routers, a NoC gains computing power. Accord-

ing to that, the NoC can execute tasks on data that is transferred which brings the

processing as close as possible during message transfers. A new router architecture pro-

viding multiply and accumulate operations is presented in Section 3.2 (see [Ret17g]).

A processing unit is integrated into the internal buffer of the router that queues flits.

Hence, flits can be processed with multiply and accumulate operations during buffering.

However, they still can be transmitted through the NoC without modifying them. The

processing unit is developed in VHDL and can be configured to use LUTs or DSP41E1

blocks. To equip a NoC with arbitrary operations, Application-Specific Instruction

Set Routers (ASIRs) are developed. The processing unit of ASIRs (see [Ret17f] and

[Ret18a]) can be realized using High-Level Synthesis (HLS) that allows the develop-

ment of ASIRs with a high-level language such as a processor is programmed. A new

flow control mechanism that is based on wormhole routing is created and defined as

wormhole computing [Ret21a]. In wormhole computing, a message consists of header,

payload, tail and instruction flits. Instruction flits are used to control the processing

unit of ASIRs for performing application-specific operations on payload flits. Further-

more, the additional type of flit requires a new network interface for MicroBlaze and

ARM processors. This network interface controls the indications of instruction flits

within a message. The construction of messages for wormhole computing is provided

by a software layer. This layer provides methods to send and receive data between

processors. By specifying a set of operations that are executed by ASIRs, the layer

constructs a corresponding message for an ASIR-based NoC.

To confirm the benefits of ASIRs, a model that justifies the speedup for processing

data inside NoCs is determined in Section 4.1 (see [Ret21a] and [Ret21b]. Moreover, the

concept of pipelining on operation level in wormhole computing is presented. Similar to

the well-known pipelining in processors, distributing operations with the same process-

ing time along the routing path improves the end-to-end latency as flits are processed

in parallel. Besides these considerations, real-world use cases are presented to evaluate
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ASIRs in Section 4.3. The first use case is an image processing algorithm for edge

detection consisting of an RGB to grayscale conversion, a threshold computation and

a Sobel filter. An MPSoC implemented executes the grayscale and threshold computa-

tion by ASIRs while the Sobel operation is performed by MicroBlaze processors. The

evaluation results of ASIRs show that the communication time is efficiently exploited

as the costs are approximately reduced by 42.8%. In the second use case, a portable de-

vice that helps visually impaired people in navigating through unknown environments

is developed. This device creates a distance profile using a Light Detection and Rang-

ing (LIDAR) sensor. Based on this profile, an acoustic signal is generated which allows

conclusions about the location of obstacles in the environment. The acoustic signal

is interpreted to identify the direction and distance of an obstacle, similar to parking

assistance systems. The use case shows that external communication to sensors can

limit the achievable speedup. However, a speedup of up to 5x is achieved using ASIRs

for a task that is decoupled from external communication.

Furthermore, dynamic partial reconfiguration and a security mechanism for recon-

figurable hardware modules are discussed in Section 4.4. The processing units of ASIRs

can be reconfigured using dynamic partial reconfiguration. A tool flow called RePaBit

is presented that extends the Partial Reconfiguration Flow from Xilinx with relocation

(see [Ret16c]). Relocation allows the reconfiguration of one partial bitstream into mul-

tiple FPGA partitions by only modifying the FAR address of the partial bitstream.

Relocation decreases the amount of memory that is needed to store partial bitstreams

in an embedded system. Additionally, it reduces the time that is needed by the tool

flow to generate the complete design for an increasing number of partial bitstreams.

However, the usage of reconfigurable hardware modules integrates a vulnerability for

malicious attackers. For example, a hardware trojan can be reconfigured into an ASIR-

based MPSoC that spies message transfers. A novel approach is developed that inspects

partial bitstreams using neural networks and classifies them according to their function-

ality (see [Ret19b]). The evaluation shows that the functionality of partial bitstreams

can be forecasted before it is reconfigured and executed. Hence, a security layer that

checks the integrity of partial bitstreams can be implemented based on neural networks.

The advantages of heterogeneous architectures are usually accompanied by an in-

crease in programming complexity. Therefore, comprehensive approaches that combine

design and programming methodologies for MPSoCs are presented in this work. To

program MPSoCs with a parallel application, a computation model based on Kahn-

Process-Networks (KPNs) is introduced in Section 5.1. This model uses vertices to

describe the processes of a parallel application. Communication between processes

is represented by edges that link vertices. Furthermore, a methodology is presented

215



CHAPTER 6. CONCLUSION AND OUTLOOK

to design and program heterogeneous MPSoCs on the same abstraction level in Sec-

tion 5.3 (see [Ret18b] and [Ret20]). It combines design and programming based on a

software-defined approach. An application model is programmed using the MPI-based

library resulting in a Single Program Multiple Data (SPMD) program code that is

analyzed and parsed by a python script. The script generates TCL scripts as well as

source codes for MicroBlaze processors to build an MPSoC. Furthermore, pragmas can

be used to indicate functions and processes that shall be implemented as hardware

accelerators. The script extracts the function marked with the pragma and transforms

it into an appropriate code that can be synthesized by Vivado HLS. Furthermore, a

device driver is automatically added to the code that controls the data transfers of

hardware accelerators. The methodology significantly simplifies the development pro-

cess of heterogeneous MPSoCs. In addition, a methodology for static task mapping

using the KPN-based computation model is presented in Section 5.4.2. The algorithm

of this static task mapping is introduced for homogeneous, heterogeneous and ASIR-

based MPSoCs. An application is described based on the KPN-based model which is

extended by another type of vertices for ASIRs. Such a vertex represents a process

that incorporates the processing unit inside ASIRs. Processes that are modeled for

MicroBlaze processors can be compiled, while processes that are mapped to ASIRs are

synthesized using Vivado HLS. The allocation of vertices to certain ASIRs of the NoC

and to MicroBlaze processors is automated by a mapping algorithm. It significantly

reduces the complexity of the design process. Moreover, the mapping algorithm is ex-

tended to support tasks that communicate with external resources such as sensors and

actuators.

6.2 Future Research Directions and Extensions

Future research directions and extensions of this work are various.

ASIR-based NoCs efficiently use the communication time by providing processing

capabilities during routing. However, the programming of such heterogeneous systems

is a complex task. ASIRs would benefit a lot from an autonomous transformation of

a single serial program into a parallel program. The transformation can make efficient

use of ASIRs. The complete mapping and decomposition of tasks are hidden from the

programmer.

In Section 4.2, examples for serial code patterns that can be mapped to ASIRs are

presented. These patterns can be extracted and represented as vertices in a dependency

graph which results in a similar representation of the code that is given in Section 5.4.2.

The graph can be mapped to an ASIR-based MPSoC that is constructed with a master
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processor controlling the complete program flow and multiple slave processors.

Furthermore, several Quality of Services (QoSs) such as reliability and security

provided by ASIRs have not been investigated in this dissertation. An ASIR-based

MPSoC provides a framework that can be used to provide certain QoSs. For example,

ASIRs can be used to compress and decompress payload flits which decreases the traffic

load. Reliability mechanisms can be inserted by ASIRs that compute checksums for a

message or even correct faulty messages. Moreover, ASIRs that decrypt and encrypt

data using preshared keys can be used for security reasons.
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“Adaptive Multiclient Network-on-Chip Memory Core: Hardware Archi-

tecture, Software Abstraction Layer, and Application Exploration”. In:

International Journal of Reconfigurable Computing 2012 (Nov. 2012).

[GPK18] B. Gottschall, T. Preußer, and A. Kumar. “Reloc — An Open-Source

Vivado Workflow for Generating Relocatable End-User Configuration

Tiles”. In: 2018 IEEE 26th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM). ISSN: 2576-2621.

Apr. 2018, pp. 211–211.

[Gra16] J. Gray. “GRVI Phalanx: A Massively Parallel RISC-V FPGA Accelerator

Accelerator”. In: 2016 IEEE 24th Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM). May 2016,

pp. 17–20.

[Hac05] A. Hac. “Embedded systems and sensors in wireless networks”. In: 2005

International Conference on Wireless Networks, Communications and Mo-

bile Computing. Vol. 1. June 2005, 330–335 vol.1.

[Han+14] M. Hannachi, H. Rabah, S. Jovanovic, A. B. Abdelali, and A. Mtibaa. “Ef-

ficient relocation of variable-sized hardware tasks for FPGA-based adap-

tive systems”. In: 2014 26th International Conference on Microelectronics

(ICM). ISSN: 2159-1679. Dec. 2014, pp. 224–227.
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[HGE16] S. Hesham, D. Göhringer, and M. A. El Ghany. “ARTNoCs: An Eval-

uation Framework for Hardware Architectures of Real-Time NoCs”. In:

2016 IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW). 2016, pp. 259–264.

[Hos+20] S. Hosny, E. Elnader, M. Gamal, A. Hussien, and H. Mostafa. “Multi-

Partitioned Software Defined Radio Transceiver Based on Dynamic Partial

Reconfiguration”. In: 2020 IEEE International Symposium on Circuits and

Systems (ISCAS). ISSN: 2158-1525. Oct. 2020, pp. 1–4.

[HP11] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fifth Edi-

tion: A Quantitative Approach. 5th. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2011.

224



BIBLIOGRAPHY

[Hua+19] J. Huang, R. R. Puli, P. Majumder, S. Kim, R. Boyapati, K. H. Yum,

and E. J. Kim. “Active-Routing: Compute on the Way for Near-Data Pro-

cessing”. In: 2019 IEEE International Symposium on High Performance

Computer Architecture (HPCA). ISSN: 2378-203X. Feb. 2019, pp. 674–

686.

[HWC04] J. Henkel, W. Wolf, and S. Chakradhar. “On-chip networks: a scalable,

communication-centric embedded system design paradigm”. In: 17th In-

ternational Conference on VLSI Design. Proceedings. 2004, pp. 845–851.

[IK17] H. Ide and T. Kurita. “Improvement of learning for CNN with ReLU acti-

vation by sparse regularization”. In: 2017 International Joint Conference

on Neural Networks (IJCNN). May 2017, pp. 2684–2691.

[IK18] A. Islam and N. Kapre. “LegUp-NoC: High-Level Synthesis of Loops with

Indirect Addressing”. In: 2018 IEEE 26th Annual International Sym-

posium on Field-Programmable Custom Computing Machines (FCCM).

ISSN: 2576-2621. Apr. 2018, pp. 117–124.

[Int15] Intel. Intel Acquisition of Altera. en-US. 2015. url: https://newsroom.

intel.com/press-kits/intel-acquisition-of-altera/ (visited on

02/16/2021).

[Int20] Intel. Intel® FPGA Product Catalog. en. 2020. url: https://www.amd.

com/de/press- releases/2020- 10- 27- amd- to- acquire- xilinx-

creating-the-industry-s-high-performance-computing (visited on

02/06/2021).

[Int21] Intel. Intel® Microprocessor Quick Reference Guide - Year. 2021. url:

https://www.intel.com/pressroom/kits/quickrefyr.htm#1993

(visited on 01/04/2021).

[Joh+14] A. P. Johnson, S. Saha, R. S. Chakraborty, D. Mukhopadhyay, and S.
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Methodology for the Next Generation Real-Time Vision Processors.” In:

Applied Reconfigurable Computing. Ed. by V. Bonato, C. Bouganis, and

M. Gorgon. Vol. 9625. Lecture Notes in Computer Science. Springer, Mar.

2016, pp. 14–25.

[Ngu+19] M. Nguyen, R. Tamburo, S. Narasimhan, and J. C. Hoe. “Quantifying the

Benefits of Dynamic Partial Reconfiguration for Embedded Vision Appli-

cations”. In: 2019 29th International Conference on Field Programmable

Logic and Applications (FPL). ISSN: 1946-1488. Sept. 2019, pp. 129–135.

[Oom+15] R. Oomen, T. Nguyen, A. Kumar, and H. Corporaal. “An automated

technique to generate relocatable partial bitstreams for Xilinx FPGAs”.

In: 2015 25th International Conference on Field Programmable Logic and

Applications (FPL). ISSN: 1946-1488. Sept. 2015, pp. 1–4.

[Ott19] M. Otten. RaVis3D. de-DE. 2019. url: http://ravis-3d.de/ (visited

on 02/11/2021).

228

https://developer.arm.com/architectures/system-architectures/amba/specifications
https://developer.arm.com/architectures/system-architectures/amba/specifications
http://ravis-3d.de/


BIBLIOGRAPHY
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[WBM11] E. W. Wächter, A. Biazi, and F. G. Moraes. “HeMPS-S: A homogeneous

NoC-based MPSoCs framework prototyped in FPGAs”. In: 6th Interna-

tional Workshop on Reconfigurable Communication-Centric Systems-on-

Chip (ReCoSoC). 2011, pp. 1–8.

[WPK17] S. Wasly, R. Pellizzoni, and N. Kapre. “HopliteRT: An efficient FPGA NoC

for real-time applications”. In: 2017 International Conference on Field

Programmable Technology (ICFPT). Dec. 2017, pp. 64–71.

236



BIBLIOGRAPHY

[Wri17] S. Writer. How Embedded Systems have Transformed the Healthcare In-

dustry With Biomedical Applications. en. Section: News. Nov. 2017. url:

https://www.totalphase.com/blog/2017/11/embedded-systems-

transformed- healthcare- industry- biomedical- applications- 2/

(visited on 01/02/2021).

[Wu+20] Y. Wu, L. Wang, X. Wang, J. Han, S. Yin, S. Wei, and L. Liu.

“A Deflection-Based Deadlock Recovery Framework to Achieve High

Throughput for Faulty NoCs”. In: IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems (2020). Conference Name:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, pp. 1–1.

[WZL20a] K. Wang, H. Zheng, and A. Louri. “TSA-NoC: Learning-Based Threat

Detection and Mitigation for Secure Network-on-Chip Architecture”. In:

IEEE Micro 40.5 (Sept. 2020). Conference Name: IEEE Micro, pp. 56–63.

[WZL20b] X. Wang, M. A. Zidan, and W. D. Lu. “A Crossbar-Based In-Memory

Computing Architecture”. In: IEEE Transactions on Circuits and Systems

I: Regular Papers 67.12 (Dec. 2020). Conference Name: IEEE Transactions

on Circuits and Systems I: Regular Papers, pp. 4224–4232.

[Xil17] Xilinx. AXI Reference Guide. en. 2017. url: https://www.xilinx.com/

(visited on 09/05/2021).

[Xil18a] Xilinx. 7 Series DSP48E1 Slice User Guide (UG479). en. 2018. url:

https://www.xilinx.com/ (visited on 02/16/2021).

[Xil18b] Xilinx. Accelerating DNNs with Xilinx Alveo Accelerator Cards, WP504

(v1.0.1). Oct. 2018. url: https : / / www . xilinx . com / support /

documentation / white _ papers / wp504 - accel - dnns . pdf (visited on

08/10/2021).

[Xil18c] Xilinx. Vivado Design Suite User Guide: Partial Reconfiguration (UG909).

en. 2018. url: https://www.xilinx.com/ (visited on 02/16/2021).

[Xil18d] Xilinx. Zynq-7000 SoC Data Sheet: Overview (DS190). en. 2018. url:

https://www.xilinx.com/ (visited on 09/05/2021).

[Xil19a] Xilinx. AXI DMA v7.1 LogiCORE IP Product Guide. en. 2019. url:

https://www.xilinx.com/ (visited on 09/05/2021).

[Xil19b] Xilinx. Kintex-7 FPGAs Data Sheet: DC and AC Switching Characteris-

tics. en. 2019. url: https://www.xilinx.com/ (visited on 05/09/2021).

237

https://www.totalphase.com/blog/2017/11/embedded-systems-transformed-healthcare-industry-biomedical-applications-2/
https://www.totalphase.com/blog/2017/11/embedded-systems-transformed-healthcare-industry-biomedical-applications-2/
https://www.xilinx.com/
https://www.xilinx.com/
https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf
https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf
https://www.xilinx.com/
https://www.xilinx.com/
https://www.xilinx.com/
https://www.xilinx.com/


BIBLIOGRAPHY

[Xil19c] Xilinx. SDSoC Environment User Guide. en. 2019. url: https://www.

xilinx.com/ (visited on 09/05/2021).

[Xil19d] Xilinx. Vivado Design Suite User Guide: High-Level Synthesis. en. 2019.

url: https://www.xilinx.com/ (visited on 02/16/2021).

[Xil19e] Xilinx. Xilinx Software Development Kit (SDK) User Guide - System Per-

formance Analysis, UG1145. May 2019. url: https://www.xilinx.com/

support/documentation/sw_manuals/xilinx2019_1/ug1145- sdk-

system-performance.pdf (visited on 08/11/2021).

[Xil20] Xilinx. Zynq UltraScale+ Device Technical Reference Manual. en. 2020.

url: https://www.xilinx.com/ (visited on 09/05/2021).

[Yin+20] S. Yin, Z. Jiang, M. Kim, T. Gupta, M. Seok, and J. Seo. “Vesti: Energy-

Efficient In-Memory Computing Accelerator for Deep Neural Networks”.

In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems

28.1 (Jan. 2020). Conference Name: IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, pp. 48–61.

[Yoo+18] D.-H. Yoon, S.-K. Kang, M. Kim, and Y. Han. “Exploiting Coarse-Grained

Parallelism Using Cloud Computing in Massive Power Flow Computa-

tion”. In: Energies 11 (Aug. 2018), p. 2268.

[Zha+09] W. Zhang, L. Hou, J. Wang, S. Geng, and W. Wu. “Comparison Research

between XY and Odd-Even Routing Algorithm of a 2-Dimension 3X3 Mesh

Topology Network-on-Chip”. In: 2009 WRI Global Congress on Intelligent

Systems. Vol. 3. ISSN: 2155-6091. May 2009, pp. 329–333.

[ZOT20] H. Zhang, I. Ohmura, and M. Taiji. “Implementing a Comprehensive

Networks-on-Chip Generator with Optimal Configurations”. In: 2020

IEEE International Conference on Cluster Computing (CLUSTER).

ISSN: 2168-9253. Sept. 2020, pp. 420–421.

238

https://www.xilinx.com/
https://www.xilinx.com/
https://www.xilinx.com/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug1145-sdk-system-performance.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug1145-sdk-system-performance.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug1145-sdk-system-performance.pdf
https://www.xilinx.com/


Publications of the Author
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[Ret15a] S. Hesham, J. Rettkowski, D. Göhringer, and M. A. Abd El Ghany. “Sur-

vey on Real-Time Network-on-Chip Architectures”. In: Applied Reconfig-

urable Computing. Ed. by K. Sano, D. Soudris, M. Hübner, and P. C.
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Soudris, M. Hübner, and P. C. Diniz. Lecture Notes in Computer Science.

event-place: Cham. Springer International Publishing, 2015, pp. 513–518.

[Ret15c] J. Rettkowski, A. Boutros, and D. Göhringer. “Real-time pedestrian de-
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Oehm. “Sensor data fusion with MPSoCSim in the context of electric

vehicle charging stations”. In: Nov. 2016, pp. 1–6.

[Ret16f] P. Wehner, J. Rettkowski, T. Kalb, and D. Göhringer. “Simulating Re-
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