9,862 research outputs found

    Production networks and failure avalanches

    Get PDF
    Although standard economics textbooks are seldom interested in production networks, modern economies are more and more based upon suppliers/customers interactions. One can consider entire sectors of the economy as generalised supply chains. We will take this view in the present paper and study under which conditions local failures to produce or simply to deliver can result in avalanches of shortage and bankruptcies across the network. We will show that a large class of models exhibit scale free distributions of production and wealth among firms and that metastable regions of high production are highly localised

    Solitonic State in Microscopic Dynamic Failures

    Full text link
    Onset of permanent deformation in crystalline materials under a sharp indenter tip is accompanied by nucleation and propagation of defects. By measuring the spatio-temporal strain field nearthe indenter tip during indentation tests, we demonstrate that the dynamic strain history at the moment of a displacement burst carries characteristics of formation and interaction of local excitations, or solitons. We show that dynamic propagation of multiple solitons is followed by a short time interval where the propagating fronts can accelerate suddenly. As a result of such abrupt local accelerations, duration of the fast-slip phase of a failure event is shortened. Our results show that formation and annihilation of solitons mediate the microscopic fast weakening phase, during which extreme acceleration and collision of solitons lead to non-Newtonian behavior and Lorentz contraction, i.e., shortening of solitons characteristic length. The results open new horizons for understanding dynamic material response during failure and, more generally, complexity of earthquake sources

    Modelling potential movement in constrained travel environments using rough space-time prisms

    Get PDF
    The widespread adoption of location-aware technologies (LATs) has afforded analysts new opportunities for efficiently collecting trajectory data of moving individuals. These technologies enable measuring trajectories as a finite sample set of time-stamped locations. The uncertainty related to both finite sampling and measurement errors makes it often difficult to reconstruct and represent a trajectory followed by an individual in space-time. Time geography offers an interesting framework to deal with the potential path of an individual in between two sample locations. Although this potential path may be easily delineated for travels along networks, this will be less straightforward for more nonnetwork-constrained environments. Current models, however, have mostly concentrated on network environments on the one hand and do not account for the spatiotemporal uncertainties of input data on the other hand. This article simultaneously addresses both issues by developing a novel methodology to capture potential movement between uncertain space-time points in obstacle-constrained travel environments

    Atomic fountains and optical clocks at SYRTE: status and perspectives

    Get PDF
    In this article, we report on the work done with the LNE-SYRTE atomic clock ensemble during the last 10 years. We cover progress made in atomic fountains and in their application to timekeeping. We also cover the development of optical lattice clocks based on strontium and on mercury. We report on tests of fundamental physical laws made with these highly accurate atomic clocks. We also report on work relevant to a future possible redefinition of the SI second

    Boolean Delay Equations: A simple way of looking at complex systems

    Full text link
    Boolean Delay Equations (BDEs) are semi-discrete dynamical models with Boolean-valued variables that evolve in continuous time. Systems of BDEs can be classified into conservative or dissipative, in a manner that parallels the classification of ordinary or partial differential equations. Solutions to certain conservative BDEs exhibit growth of complexity in time. They represent therewith metaphors for biological evolution or human history. Dissipative BDEs are structurally stable and exhibit multiple equilibria and limit cycles, as well as more complex, fractal solution sets, such as Devil's staircases and ``fractal sunbursts``. All known solutions of dissipative BDEs have stationary variance. BDE systems of this type, both free and forced, have been used as highly idealized models of climate change on interannual, interdecadal and paleoclimatic time scales. BDEs are also being used as flexible, highly efficient models of colliding cascades in earthquake modeling and prediction, as well as in genetics. In this paper we review the theory of systems of BDEs and illustrate their applications to climatic and solid earth problems. The former have used small systems of BDEs, while the latter have used large networks of BDEs. We moreover introduce BDEs with an infinite number of variables distributed in space (``partial BDEs``) and discuss connections with other types of dynamical systems, including cellular automata and Boolean networks. This research-and-review paper concludes with a set of open questions.Comment: Latex, 67 pages with 15 eps figures. Revised version, in particular the discussion on partial BDEs is updated and enlarge
    • …
    corecore