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Abstract 

The widespread adoption of location-aware technologies has afforded analysts new opportunities 

for efficiently collecting trajectory data of moving individuals. These technologies enable 

measuring trajectories as a finite sample set of time-stamped locations. The uncertainty related 

to both finite sampling and measurement errors make it often difficult to reconstruct and 

represent a trajectory followed by an individual in space-time. Time geography offers an 

interesting framework to deal with the potential path of an individual in between two sample 

locations. While this potential path may be easily delineated for travels along networks, this will 

be less straightforward for more nonnetwork-constrained environments. Current models, 

however, have mostly concentrated on network environments on the one hand and do not account 

for the spatiotemporal uncertainties of input data on the other hand. This article simultaneously 

addresses both issues by developing a novel methodology to capture potential movement between 

uncertain space-time points in obstacle-constrained travel environments. 
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1. Introduction 

Recent years have seen the development of a range of widely and readily available tracking 

technologies, such as location-aware technologies (LATs) (2004) and geosensor networks 

(Stefanidis et al. 2003). These technologies are revolutionising the ways in which data about 

spatial behaviour is acquired by enabling researchers to collect massive volumes of trajectory 

data of mobile objects and individuals in real-time. Tracking data, however, are affected by at 

least two important sources of spatiotemporal uncertainty. First, trajectories are typically 

approximated by a sequence of locations pinpointed at discrete timestamps. Due to finite 

sampling, the uncertain positions of an individual have to be interpolated between successive 



sample points. While uncertainty about an individual’s trajectory increases if sampling intervals 

are larger, higher sampling frequencies result in finer granularity and more spatiotemporal detail 

(Hornsby et al. 2002). The sampling frequency may be inherent to the tracking device at hand or 

may result from an incomplete spatial coverage of a geosensor network (i.e. the position of an 

individual is not recorded in areas outside the radio range of the sensors). In addition, sampling 

frequency can be influenced by system failures. For example, the sampling rate of GPS 

measurements may decrease in urban locales if the signal is blocked by obstructions (e.g. 

buildings). A second source of uncertainty arises from the fact that sample points themselves are 

prone to measurement inaccuracy depending on the spatial resolution of the tracking technique 

used. While individuals may be traced with an acceptable accuracy using GPS, the accuracy of 

short-range, wireless radio-communication technologies is often much lower and may depend 

upon the radio range and power class of the sensors and the amount of overlap between their 

radio ranges. Both finite sampling and measurement errors often hamper a straightforward 

reconstruction of individual trajectories on the basis of tracking data. 

 

To cope with the problem of finite sampling in moving object databases (MODs), several 

researchers, among them (Sistla et al. 1998), (Moreira et al. 1999), (Trajcevski et al. 2004), and 

(Pfoser et al. 2005) have sought to delineate and query the unknown path between two observed 

locations given a presupposed maximum travel velocity in an unconstrained isotropic travel 

environment. In line with the advances in MODs, time geographers have also studied the 

sampling problem extensively using time geography’s key concept, i.e. the space-time prism 

(Hägerstrand 1970, Miller 1991, Kwan et al. 1998, Yu et al. 2008). However, while the sampling 

problem is well-studied in time geography, the equally important problem of how this sampling 

problem interferes with the imperfect observation of sample points has received far less attention 

(Miller 2005). A notable exception is Neutens et al. (2007a) who, relying on the basic principles 

of rough set theory (Pawlak 1982), provide a conceptual framework to analyse how spatial and 

temporal uncertainty about the sample points propagates through a space-time prism by 

specifying lower and upper approximations of the prism dimensions. While conceptually 

appealing, their model has limited applicability since it assumes that travel occurs in an 

environment without any obstacles. The aim of the present paper is to enhance the applicability 

of this conceptual model to constrained travel environments and put it into practice by proposing 

and implementing a formal theoretical framework for defining and constructing rough space-time 

prisms in planar space with obstacles. The framework is particularly useful for modelling 

nonnetwork-constrained phenomena (e.g. pedestrian movement in urban and built environments) 

and accounts for both finite sampling and measurement errors. 

 

The remainder of this article is organised as follows. Since our approach relies on time 

geography, the next section introduces the key concepts of time geography and documents the 

geocomputational models that have been developed in recent years for analysing an object’s 

uncertain position between two fixed sample points. Section 3 discusses the formal definition and 

representation of a traditional space-time prism. This definition is extended toward the case of 

uncertain constraints in section 4, and the case of an environment populated with obstacles in 

section 5. Then in section 6, both approaches are combined, and an algorithm to derive obstacle-

constrained space-time prisms with uncertain constraints is presented. An example case within a 

simple environment is used throughout the paper to clarify the methodology. Finally, in section 7, 

we draw conclusions and outline avenues for future research. 

 



 

2. Background 

 

Time geography 

Back in the 1970s, Torsten Hägerstrand (1970) and his associates at the University of Lund 

(Sweden) developed a worldview for understanding the interdependencies between human 

beings, nature and technology, known as time geography. Time geography provides a conceptual 

perspective to analyse spatiotemporal patterns of human movement. In particular, the time-

geographical approach articulates the scarcity of space and time, and emphasizes the importance 

of the constraints an individual is faced with when moving through geographical space (Pred 

1977, Lenntorp 1978). Three types of constraints are distinguished: (i) Capability constraints 

refer to an individual’s cognitive limitations and physiological necessities such as eating or 

sleeping; (ii) Coupling constraints restrict travel and activity participation by dictating where, 

when, and for how long individuals have to join other people, tools, or material artefacts in space 

and time; (iii) Authority constraints refer to the institutional and societal context including laws, 

rules, norms and other regulations implying that specific areas are only accessible at specific 

times for specific persons. These three constraints are interrelated and manifest themselves by 

dictating the time budget during which activities can be undertaken to achieve a project (i.e. a 

series of sequential tasks necessary to the completion of any intention-inspired or goal-oriented 

behaviour) (Carlstein et al. 1978, Pred 1981). 

 

The basic tenet of time geography is the space-time path which represents the uninterrupted 

string of movements of an individual in space-time. The course of a space-time path results from 

the interaction between constraints and projects and is typically visualised in a three-dimensional 

framework in which time is integrated orthogonally to a flattened topography. In this 

representation, an individual’s travel speed is inversely proportional to the slope of its space-time 

path. Another key concept is the space-time prism which demarcates the envelope of all space-

time paths an individual might have drawn during the time budget between two successive 

timestamps. It is important to note that while a space-time path represents revealed spatial 

behaviour, space-time prisms capture potential spatial behaviour.  

 

Implementations of time-geographical concepts 

In the past two decades, the time-geographical approach has regained attention in geographical 

information science and transportation geography. Technological advances in geographical 

information systems (GIS) as well as the increased availability of georeferenced trajectory data 

have opened up new opportunities to enhance the realism of the time-geographical entities and to 

apply these in empirical studies regarding individual accessibility (Miller 1991, Kwan et al. 1998, 

Yu et al. 2007, Schwanen et al. 2008). Renewed interest in time geography also dovetails with 

the paradigm shift in transportation policy towards travel demand management and the activity-

based approach to travel forecasting that has increasingly gained momentum since the mid-70s 

(Axhausen et al. 1992, Timmermans et al. 2002, Dong et al. 2006). 

 

Modelling heterogeneous travel environments  

In recent years, there has been a flurry of geocomputational methods to model the unknown 

position of an individual during the time budget between two time-stamped positions. These 

methods have sought to improve the classical representation of the space-time prism to deal with 

the complexities of real-world travel environments. An important accomplishment is the 



calculation of potential path areas within transportation networks. Following the seminal work of 

Miller (1991), a number of authors have specified GIS-based algorithms to derive the paths that 

an individual could have taken between two discrete locations within a road network (e.g. Kwan 

et al. 1998, Miller et al. 2000, Wu et al. 2001, Weber et al. 2002, Kim et al. 2003). These 

network-based approaches offer only a static synopsis of an individual’s travel possibilities but 

do not account for the spatial variation in travel possibilities during a time budget. Therefore, 

some authors have proposed algorithms to derive the full three-dimensional, network-based 

space-time prism based on shortest path algorithms within road networks (Neutens et al. 2007a, 

Kuijpers et al. 2009). Despite the proliferation of methods to delineate travel possibilities within 

transportation networks, only few studies have been concerned with modelling non-motorised, 

non-network yet spatially constrained movements through space-time prisms. A recent example 

is Miller and Bridwell (2009). They introduced an analytical theory to derive field-based space-

time paths and prisms using velocity fields. A velocity field is a smooth differential function that 

assigns a velocity to each location in continuous space (Puu et al. 1999). Although this method 

allows examining theoretical conjectures about accessibility in continuous space, a spatial 

decomposition into a lattice is required to use the approach in empirical research. A drawback of 

this decomposition is that it introduces errors that cannot be resolved by increasing the lattice 

density (see Goodchild 1977, Miller et al. 2009). 

 

Modelling travel constraint uncertainty 

Another line of scientific inquiry concerns the implications of spatiotemporal uncertainty about 

the prism properties (i.e. maximum travel velocity, origin and destination point) for the prism 

dimensions. For example, several researchers have examined the ways in which prism-based 

accessibility is affected by uncertainty in travel time caused by unreliable transportation or 

systematically recurring congestion (e.g. Hall 1983, Ettema et al. 2007, Schwanen et al. 2008). 

Hendricks et al. (Hendricks et al. 2003), for their part, have proposed a sequential partitioning 

method to model a wayfinder’s indiscernibility between future travel possibilities. Neutens et al. 

(2007b) have furthered this approach and sought to calculate and represent the three-dimensional 

prism if its origin and destination points are not known exactly. They introduced the concept of a 

rough space-time prism to model the potential movement between two uncertain sample points 

through the prism’s lower and upper approximation. Although a conceptually elegant solution to 

deal with both finite sampling and measurement errors, the application of the approach is 

currently limited to unconstrained travel environments. Furthermore, it does not explicitly 

address how measurement uncertainty about sample points intertwines with uncertainty about the 

maximum travel velocity. 

 

The present paper contributes to these lines of inquiry in at least two ways. First, we complement 

existing network-based methods with a novel approach to model nonnetwork-constrained 

phenomena, including pedestrian movements in urban and built environments. Drawing on 

research in computational geometry (e.g. Kapoor et al. 1997, Hershberger et al. 1999, Inkulu et 

al. 2009), we propose a methodology to construct space-time prisms in planar space with 

obstacles. Our approach does not require a discretisation of space and time. Rather than 

approximating space-time prisms as a set of contours at discrete moments in time using a field-

based lattice, space-time prisms are modelled and implemented as solid objects in continuous 

space. This eliminates errors resulting from discretisation and avoids the storage and processing 

of large amounts of voxel data. Second, the approach allows gaining insights into how 



combinations of uncertainty about the maximum travel velocities and the spatiotemporal 

uncertainty about sample points affect an individual’s travel possibilities. 

 

 

3. A space-time prism in an unconstrained travel environment 

 

A space-time prism measures the ability to reach locations in space and time in between two 

locations separated in time, respectively denoted as origin and destination. Origins and 

destinations may be derived from the locations of fixed activities reported in travel diaries (e.g. 

Cullen et al. 1975, Weber et al. 2003), or they can be estimated using stochastic frontier 

modelling (e.g. Pendyala et al. 2002, Kitamura et al. 2006). As in (Miller 2005, Shoval et al. 

2007), this article will take the viewpoint of origins and destinations sampled through a tracking 

system, although our method can be applied to spatiotemporal data obtained from other 

observation or estimation techniques as well. In classical time geography, a space-time prism is 

determined by its origin, destination, and a finite maximum velocity in an unconstrained isotropic 

travel environment (Miller 2005). Given these constraints, a space-time prism is obtained from 

the intersection of two cones (Figure 1). The forward cone encloses all space-time points that can 

be reached from the origin, while the backward cone captures all space-time points where an 

individual could have come from when (s)he is to arrive at the destination. In the remainder we 

will refer to these cones as reachability cones. The height of the reachability cones corresponds 

to the time budget that results from the origin and destination temporal coupling constraints. 

Their side slopes and aperture correspond to the maximum travel velocity that an individual may 

attain. 

 

 
Fig. 1 Space-time prism obtained from the intersection of a forward cone and a backward cone 

More formally, a space-time prism in an unconstrained isotropic travel environment can be 

defined as follows. Let ℝ be the set of real numbers, ℝ� the set of positive real numbers, and ℝ� 

the two-dimensional real plane with metric �� being the Euclidean distance. Though any metric 

space S with metric �� would be possible, we will consider travel in the (x, y)-plane ℝ� and 



represent this movement in (x, y, t)-space ℝ� × ℝ, where t represents time. Let � = 
�� , �� , ��� ∈
ℝ� × ℝ denote the origin, � = 
��, ��, ��� ∈ ℝ� × ℝ the destination, �� ∈ ℝ� the time budget, 

and ���� ∈ ℝ� the maximum velocity. 

 

Definition 1. The forward cone ��
�, ��, ����� with origin �, time budget ��, and maximum 

velocity ���� is the set of all space-time points � = 
�, �, �� that satisfy: 

���
�, �� ≤ 
� − �������
�� ≤ � ≤ �� + ��   

The forward cone has its apex at the origin and is oriented forward in time. 

  

Definition 2. The backward cone !�
�, ��, ����� with destination �, time budget ��, and 

maximum velocity ���� is the set of all space-time points � = 
�, �, �� that satisfy: 

���
�, �� ≤ 
�� − ������
�� − �� ≤ � ≤ ��

  
The backward cone has its apex at the destination and is oriented backward in time. 

 

Definition 3. The space-time prism "
�, �, ����� with origin �, destination �, and maximum 

velocity ���� is given by: 

"
�, �, ����� =  ��
�, �� − �� , ����� ∩ !�
�, �� − �� , ����� 
 

Fig. 1 shows how "
�, �, 2ms'(� for � = 
0m, 0m, 0s�, � = 
100m, 0m, 120s� is obtained from 

the intersection of reachability cones. In the remainder, we will extend the space-time prism to 

cope with uncertain origins, destinations, and maximum velocities, and with obstacle-constrained 

travel environments. 

 

 

4. A rough space-time prism in an unconstrained environment 

 

In order to model the uncertainty of constraints, each space-time prism P will be represented as a 

rough set through its lower and upper (approximation) prism. The upper prism "+ includes all 

space-time locations that are potentially reachable. "+ is delimited by the least restricted space-

time paths in terms of accessibility, i.e. best case scenario paths. Suppose that there is uncertainty 

about the departure time (temporal coupling constraint) of an individual. Then "+ will be 

bounded by space-time paths that assume the earliest possible departure time. Analogously, the 

lower prism represents what is reachable in all cases and is bounded by worst case scenario 

space-time paths (e.g. assuming the latest possible departure time). The uncertain part of a rough 

space-time prism is the boundary body Δ"-, which equals "+ ∖ "-. Hence, three parts can be 

distinguished: what is certainly reachable ("-), what may be reachable (Δ"-�, and what is 

certainly not reachable (\"+�. Though this distinction has to be kept in mind, we will not 

explicitly consider Δ"- any further, due to its dependency on "- and "+. In the remainder of this 

paper, we will use the term rough to refer to the dual representation of a lower and upper 

approximation. 

 

Rough space-time prisms can deal with three types of uncertainty, i.e. spatial, temporal and 

velocity uncertainty (Neutens et al. 2007a). In the context of tracking systems, there is spatial and 

temporal uncertainty stemming from the measurement inaccuracy of the tracking technologie. 



Wireless tracking technologies such as Bluetooth and WiFi employ a certain spatial radio range 

and temporal scanning interval. Although uncertainty may differ in space and time, for many 

tracking data it makes sense to presume a constant spatial and temporal uncertainty related to the 

accuracy of the technology at hand. The maximum velocity, on the other hand, cannot be directly 

related to measurement accuracy and is often approximated by means of a lower and an upper 

estimate (e.g. maximum velocity on a road during respectively peak and off-peak hours). 

 

Consider origin o, destination d, time budget ��, spatial accuracy 01, temporal accuracy 0�, 

maximum velocity ����, lower maximum velocity �-, and upper maximum velocity �+, with 

01, 0�, �- , �+ ∈ ℝ�, and �- ≤ ���� ≤ �+. 

 

Definition 4. The lower forward cone ��-
�, ��, 01, 0�, �-� is the set of all space-time points 

� = 
�, �, �� that satisfy: 

���
�, �� ≤ 
� − �� − 0���- − 01
�� + 0� ≤ � ≤ �� + �� − 0�   

 

Definition 5. The upper forward cone ��+
�, ��, 01, 0�, �+� is the set of all space-time points 

� = 
�, �, �� that satisfy: 

���
�, �� ≤ 
� − �� + 0���+ + 01
�� − 0� ≤ � ≤ �� + �� + 0�   

 

Definition 6. The lower backward cone !�-
�, ��, 01, 0�, �-� is the set of all space-time points 

� = 
�, �, �� that satisfy: 

���
�, �� ≤ 
�� − 0� − ���- −  01
�� − �� + 0� ≤ � ≤ �� − 0�   

 

Definition 7. The upper backward cone !�+
�, ��, 01, 0�, �+� is the set of all space-time points 

� = 
�, �, �� that satisfy: 

���
�, �� ≤ 
�� + 0� − ���+ + 01
�� − �� − 0� ≤ � ≤ �� + 0�   

 

Definition 8. The lower space-time prism "-
�, �, 01, 0�, �-� is given by: 

"-
�, �, 01, 0�, �-� =  ��-
�, ��, 01, 0�, �-� ∩ !�-
�, ��, 01, 0�, �-� 
 

Definition 9. The upper space-time prism "+
�, �, 01, 0�, �+� is given by: 

"+
�, �, 01, 0�, �+� = ��+
�, �� − �� , 01, 0�, �+� ∩ !�+
�, �� − �� , 01, 0�, �+� 
 

Property 1. ∀"
�, �, ����� ⊂ ℝ� × ℝ , ∀�- , �+ , 01, 0� ∈ ℝ� 
∃"-
�, �, 01, 0�, �-�, "+
�, �, 01, 0�, �+� ⊂ ℝ� × ℝ ∶ " ⊇ "- ∧ " ⊆ "+ ∧ �- ≤ ���� ≤ �+ 

 

That is, for each space-time prism P and for each set of valid rough maximum velocities, spatial 

accuracy, and temporal accuracy, there exist a lower space-time prism "- and an upper space-

time prism "+, such that " contains "-, and "+ contains P. Note that "- might be the empty set 

independent of the uncertainty parameters, whereas "+ can never be an empty set whenever one 

of these parameters is strictly positive. The model of rough space-time prisms also generalises the 

classical model, which is obtained from the special case where accuracies are negligible and 



rough maximum velocities are considered equal. Therefore, the boundary body dissolves and, 

according to definition 9, the attained upper and lower prisms both equal the classic prism. In 

addition, note that, according to the first equation of definition 5, the upper forward cone has its 

apex at time � = �� − 0� − 01/�+. However, due to the second equation, only time stamps higher 

than or equal to �� − 0� are valid. Analogous reasoning applies for the upper backward cone, and 

therefore, upper reachability cones are flattened at the top over a circular area with radius 01 

which reflects the underlying spatial uncertainty. 

 

The example approximation prisms "-
�, �, 10m, 5s, 1.9ms'(� and "+
�, �, 10m, 5s, 2.1ms'(� 

are illustrated in Fig. 3 (with o, d as in Fig. 1). 
 

 
Fig. 2 An uncertain space-time prism modelled by its lower (in grey), and upper (filled lines) approximation. 

 

5. A space-time prism in an obstacle-constrained travel environment 

 

Until now, movement has been considered to happen in an unconstrained travel environment. 

Though this assumption underlies traditional time geography, it is hardly tenable and most often 

highly unrealistic for true geographical spaces. This assumption has been abandoned in later 

work, as discussed in section 2. In addition to these approaches, we present an alternative 

considering an isotropic travel space populated with obstacles. Obstacles can be any kind of 

inaccessible areas, as are building blocks, water bodies and highways to pedestrians. The space in 

between the obstacles is assumed to be unconstrained and isotropic, which enables us to preserve 

the maximum velocity constraint and thereby support the well-studied time-geographical entities 

introduced earlier. 

 

We will clarify our approach using a simple example case. Fig. 3 shows a map of three buildings 

A, B, and C at university campus ‘De Sterre’ in Ghent (Belgium). The area surrounding the 

buildings can be assumed open and accessible to pedestrians. Two positions are located at 

building entrances, for which we assume they are a student’s origin o and destination d in 

between two subsequent lectures. Let us consider a time budget of two minutes for the student to 

walk from o to d, with a maximum walking velocity of 2m.s
-1

 as an educated guess. Our aim is 

now to construct the student’s space-time prism according to these constraints, taking account of 

the obstacles blocking his/her passage. 



 

 
Fig. 3 Travel environment constrained by university buildings A, B, and C 

As follows from section 3, reachability cones provide an answer to two fundamental questions: 

(i) which locations are reachable for the individual within the given time budget if (s)he starts at 

the origin; (ii) from which locations is the destination reachable within the given time budget  (2). 

Assessing the accessibility from (to) a certain location requires knowledge about all shortest 

paths from (to) this place. In an unconstrained isotropic space, all reachable locations lie within a 

certain radius from the origin or destination, as all shortest paths are simply the straight beeline 

connectors. To construct space-time prisms in obstacle-constrained environments, however, 

shortest paths are to be calculated that avoid the obstacles.  

 

In computational geometry and geographical information systems, obstacles such as buildings 

and impassable areas are generally modelled as regions using a polygonal geometry. Research in 

computational geometry has offered efficient algorithms to compute the shortest paths in a 

Euclidean plane in the presence of such polygonal obstacles. To this end, there have been two 

fundamentally different approaches. The visibility graph method (Kapoor et al. 1988, Kapoor et 

al. 1997), on the one hand, and the wavefront method (Mitchell 1993, Hershberger et al. 1999) on 

the other hand. Some (e.g. Inkulu et al. 2009) have also considered combinations thereof. For 

exact algorithms and computational details, we refer to the specialised literature. We may employ 

such an algorithm in order to determine all necessary shortest paths within an obstacle-

constrained travel environment in case of obstacles modelled as polygons, as we will further 

assume according to its generality in GIS. It is important to note that only the shortest paths to 

polygon vertices have to be calculated, due to the following reasoning. Whenever an obstacle q 

blocks the straight connection from o to any other point, the corresponding shortest path(s) from 

o will pass along an extreme (i.e. a tangential point) of q when observed from o. This extreme 

will always be a vertex in the case of a polygonal obstacle. 

 

Let = = >?(, … , ?A, … , ?BC be a set of obstacles, and DA  = E�A( , … , �AF , … , �AGH be the set of 

vertices of obstacle ?A. Let I"
�, �, =� denote the shortest path from o to v avoiding the obstacles 

in Q. 

 

Definition 10. The shortest path set I"I
�, =� is the set of all shortest paths I"
�, �, =� from o 

to all vertices v of all obstacles q in Q:  



I"I
�, =� =  J J I"
�, �AF , =� 
G

FK(

B

AK(
 

 

Fig. 4 and  Fig. 5 respectively show a map of I"I
�, >L, !, �C� and I"I
�, >L, !, �C� for the 

example case. An SPS is a tree in which each vertex v is a node that is associated with a shortest 

path distance and a parent (i.e. the preceding vertex along the shortest path), with the origin / 

destination being the root parent. A vertex is reachable if its shortest path distance is smaller than 

or equal to the distance budget, i.e. the product of time budget and maximum velocity.  

 

Let �M
�� denote the distance to vertex v along shortest path X. 

 

Definition 11. The reachable set NI
�, =, ��, ����� is the set of all vertices that lie within 

distance budget �� ∙ ���� from origin o along a shortest path avoiding the obstacles in Q: 

NI
�, =, ��, ����� = E�P�QR
�,S,T�
�� ≤ �� ∙ ����H 

 

 

 

 

  
Fig. 4 Shortest paths from the origin (big dot) to all vertices (small dots)   Fig. 5 Shortest paths from the 

destination (big dot) to all vertices (small dots) 

All parent vertices act as wavefront propagators that induce separate reachability cones according 

to the time budget that remains at the time they are reached. Given a set of obstacles Q, a time 

budget ��, and a maximum velocity ����, the forward cone at parent vertex � = 
�, �, �� is 

specified as ��
�, �� − �, ����� with � = �QR
�,S,T�
�� ∙ ����'(. Analogous reasoning applies 

for a parent’s backward cone !�
�, �� − �, ����� and � = �QR
�,S,T�
�� ∙ ����'(. 

 

Not all parts of the yet obtained parent cones are reachable. Their inaccessible parts can be 

modelled as spatial zones that are to be extruded vertically along the time axis. Two different 

types of extrusions have to be made: (i) extrusion of the areas that overlap with obstacles; (ii) 

extrusion of the areas that are obscured by obstacles. To obtain their reachable parts, the 

extrusions will have to be subtracted from the parent cones. As thereafter, the resulting bodies are 

no longer true cones, we will term them reachability bodies, i.e. forward body and backward 

body.  



 

Let U
V, �� denote straight spatial connection line segment from a to b. 

 

Definition 12. The parent forward body "�!
�, �, =, ��, ����� for a parent v with respect to 

origin �, obstacle set Q, time budget ��, and maximum velocity ���� is given by: 

"�!
�, �, =, ��, �����
= ��
�, �� − �QR
�,S,T�
�� ∙ ����'(, �����
∖ >� = 
�, �, ��|∀? ∈ =: U
�, ��⋂? = ∅C 

 

Definition 13. The parent backward body "!!
�, �, =, ��, ����� for a parent v with respect to 

destination �, obstacle set Q, time budget ��, and maximum velocity ���� is given by: 

"!!
�, �, =, ��, �����
= !�
�, �� − �QR
�,S,T�
�� ∙ ����'(, �����
∖ >� = 
�, �, ��|∀? ∈ =: U
�, ��⋂? = ∅C 

 

Fig. 6 and  

Fig. 7 illustrate the reachability bodies for a parent vertex of building B, according to origin, 

destination and time budget specified earlier. The figures also indicate the footprint of the 

obstructed zones to be extruded. Note that the reachability bodies are situated at different time 

intervals, due to their different temporal orientation as well as to the temporal difference 

corresponding to the respective shortest path distances from o to v and from d to v. 

 

 
Fig. 6 Forward reachability body of a parent vertex (black dot) with indication of spatial extrusion zones.  

Fig. 7 Backward reachability body of a parent vertex (black dot) with indication of spatial extrusion zones. 

 

The overall reachability bodies are now obtained from the union of all reachability bodies, either 

the forward or the backward bodies, over all parents.  

Let �V[M
�� denote the parent of vertex v along shortest path X. 



 

Definition 14. The forward body �!
�, =, ��, ����� with origin �, obstacle set Q, time budget 

��, and maximum velocity ���� is given by: 

�!
�, =, ��, �����
= JE"�!
�\, �, =, ��, �����P∃� ∈ NI
�, =, ��, �����: �\ = �V[QR
�,S,T�
��H 

 

Definition 15. The backward body !!
�, =, ��, ����� with destination �, obstacle set Q, time 

budget ��, and maximum velocity ���� is given by: 

!!
�, =, ��, �����
= JE"!!
�\, �, =, ��, �����P∃� ∈ NI
�, =, ��, �����: �\ = �V[QR
�,S,T�
��H 

 

In analogy to definition 3, the obstacle-constrained space-time prism is obtained from the 

intersection of the forward and backward bodies (Fig. 8). 

 

Definition 16. The obstacle-constrained space-time prism OCP
�, �, =, ����� with origin o, 

destination �, obstacle set Q, and maximum velocity ���� is given by: 

]�"
�, �, =, ����� =  �!
�, =, �� − �� , ����� ∩ !!
�, =, �� − �� , ����� 
 

 

 
Fig. 8 Obstacle-constrained space-time prism with indication of obstacles 

 

 

6. A rough space-time prism in an obstacle-constrained travel environment 

 

6.1. Combination of approaches  

 

This section concerns the integration of the approaches of sections 4 and 5. Whereas in a classical 

unconstrained environment, space-time prisms follow from the intersection of two reachability 

cones (definitions 1-3), two sets of parent reachability bodies are to be intersected, when 

accounting for obstacles (definitions 14-16). These reachability bodies are geometrically 

equivalent to cones with subtracted vertical extrusions (section 5). The constraints that determine 

these underlying cones, however, are not affected by the further subtraction of parts, and 



subsequent union with other bodies. Therefore, we may preserve the methodology of section 5 

and adopt definitions 12 and 13, in order to obtain rough parent reachability bodies. 

Subsequently, the definitions 14-16 can be adapted analogously in order to construct the rough 

reachability bodies and space-time prisms for an environment constrained by obstacles. Hence, 

for a given origin o, destination d, obstacle set Q, time budget tb, spatial accuracy 01, temporal 

accuracy 0�, lower maximum velocity �-, and upper maximum velocity �+, we obtain: 

 

Definition 17. The lower parent forward body "�!-
�, �, =, ��, 01, 0�, �-� for a parent v is given 

by: 

"�!-
�, �, =, ��, 01, 0�, �-�
= ��-
�, �� − �QR
�,S,T�
�� ∙ �-'(, 01, 0�, �-�
∖ >� = 
�, �, ��|∀? ∈ =: U
�, ��⋂? = ∅C 

 

Definition 18. The upper parent forward body "�!+
�, �, =, ��, 01, 0�, �+� for a parent v given 

by: 

"�!+
�, �, =, ��, 01, 0�, �+�
= ��+
�, �� − �QR
�,S,T�
�� ∙ �+'(, 01, 0�, �+�
∖ >� = 
�, �, ��|∀? ∈ =: U
�, ��⋂? = ∅C 

 

Definition 19. The lower parent backward body "!!-
�, �, =, ��, 01, 0�, �-� for a parent v is 

given by: 

"!!-
�, �, =, ��, 01, 0�, �-�
= !�-
�, �� − �QR
�,S,T�
�� ∙ �-'(, 01, 0�, �-�
∖ >� = 
�, �, ��|∀? ∈ =: U
�, ��⋂? = ∅C 

 

Definition 20. The upper parent backward body "!!+
�, �, =, ��, 01, 0�, �+� for a parent v is 

given by: 

"!!+
�, �, =, ��, 01, 0�, �+�
= !�+
�, �� − �QR
�,S,T�
�� ∙ �+'(, 01, 0�, �+�
∖ >� = 
�, �, ��|∀? ∈ =: U
�, ��⋂? = ∅C 

 

Definition 21. The lower forward body �!-
�, =, ��, 01, 0�, �-� is given by: 

�!-
�, =, ��, 01, 0�, �-�  
= JE"�!-
�, �, =, ��, 01, 0�, �-�P∃� ∈ NI
�, =, ���: �\ = �V[QR
�,S,T�
��H 

 

Definition 22. The upper forward body �!+
�, =, ��, 01, 0�, �+� is given by: 

�!+
�, =, ��, 01, 0�, �+�  
= JE"�!+
�, �, =, ��, 01, 0�, �+�P∃� ∈ NI
�, =, ��, �+�: �\ = �V[QR
�,S,T�
��H 

 

Definition 23. The lower backward body !!-
�, =, ��, 01, 0�, �-� is given by: 

!!-
�, =, ��, 01, 0�, �-�
= JE"!!-
�\, �, =, ��, 01, 0�, �-�P∃� ∈ NI
�, =, ��, �-�: �\ = �V[QR
�,S,T�
��H 

 



Definition 24. The upper backward body !!+
�, =, ��, 01, 0�, �+� is given by: 

!!+
�, =, ��, 01, 0�, �+�
= JE"!!+
�\, �, =, ��, 01, 0�, �+�P∃� ∈ NI
�, =, ��, �+�: �\ = �V[QR
�,S,T�
��H 

 

Definition 25. The lower obstacle-constrained space-time prism ]�"-
�, �, =, 01, 0�, �-� is 

given by: 

]�"-
�, �, =, 01, 0�, �-� =  �!-
�, =, ��, 01, 0�, �-� ∩ !!-
�, =, ��, 01, 0�, �-�  
 

Definition 26. The upper obstacle-constrained space-time prism ]�"+
�, �, =, 01, 0�, �+� is 

given by: 

]�"+
�, �, =, 01, 0�, �+� =  �!+
�, =, ��, 01, 0�, �+� ∩ !!+
�, =, ��, 01, 0�, �+�  
 

 

6.2. Algorithm 

 

Based on the methodology of section 5 and the definitions 17-26, we have implemented an 

application program that takes an origin, a destination, a set of obstacles, a spatial accuracy, a 

temporal accuracy, a lower maximum velocity, and an upper maximum velocity as input 

parameters, and returns the corresponding rough obstacle-constrained space-time prisms. The 

resulting prisms are then visualised as 3D solids by means of a CAD system. A description of the 

application’s main algorithm is given in pseudo-code in Algorithm 1. The algorithm first 

computes the shortest paths from the origin (�I"I� and from the destination 
�I"I�, relying on 

an existing algorithm as discussed in section 5. Next, these shortest path sets are used to compute 

the reachable sets of obstacle vertices according to the time budget and maximum velocity for the 

lower 
�UNI, �UNI� and upper 
�^NI, �^NI� approximations. Then, the reachability bodies 


�!U, �!^, !!U, !!^� corresponding to the four reachable sets are calculated. According to 

definitions 21-24, this is achieved as the union of the respective parent bodies over all parents in 

the reachable set. As follows from definitions 17-20, these parent bodies are obtained as cones 

subtracted with extrusions of obstructed areas. Finally, forward and backward bodies are 

intersected to achieve the overall lower 
]�"U� and upper space-time prisms 
]�"^�. 

 
Algorithm 1 – Main algorithm for computation of rough obstacle-constrained space-time prisms 

Inputs: 

  �, �, =, 01, 0�, �- , �+ 
 

Outputs: 

  ]�"-
�, �, =, 01, 0�, �-� 
  ]�"+
�, �, =, 01, 0�, �+� 
 

Algorithm: 

01: shortest paths from o � �I"I = I"I
�, =� 

02: shortest paths from d � �I"I =  I"I
�, =� 

03:  tb = �� − �� 

04: using �I"I �  �UNI = NI
�, =, ��, �-� 

05: using �I"I �  �UNI = NI
�, =, ��, �-� 

06: using �I"I �  �^NI = NI
�, =, ��, �+� 



07: using �I"I �  �^NI = NI
�, =, ��, �+� 

08:  for each parent v in �UNI 

09: lower forward cone � "��- = ��-
�, �� − �QR
�,S,T�
�� ∙ �-'(, 01, 0�, �-�  

10: extrusions � cd = >� = 
�, �, ��|∀? ∈ =: U
�, ��⋂? = ∅C 

11: parent lower forward body � "�!- = "��- ∖ cd 

12: lower forward body ��!- = �!- ∪ "�!- 

13:  next v 

14: for each parent v in �UNI 

15: lower parent backward cone � "!�- = !�-
�, �� − �QR
�,S,T�
�� ∙ �-'(, 01, 0�, �-� 

16: extrusions � cd = >� = 
�, �, ��|∀? ∈ =: U
�, ��⋂? = ∅C 

17: lower parent backward body � "!!- = "!�- ∖ cd 

18: upper backward body �!!- = "!!- ∪ "�!- 

19:  next v 

20: for each parent v in �^NI 

21: upper parent forward cone � "��+ = ��+
�, �� − �QR
�,S,T�
�� ∙ �+'(, 01, 0�, �+� 

22: extrusions � cd = >� = 
�, �, ��|∀? ∈ =: U
�, ��⋂? = ∅C 

23: upper parent forward body � "�!+ = "��+ ∖ cd 

24: upper forward body ��!+ = �!+ ∪ "�!+ 

25:  next v 

26: for each parent v in �^NI 

27: upper parent backward cone � 

  "!�+ = !�+
�, �� − �QR
�,S,T�
�� ∙ �+'(, 01, 0�, �+� 

28: extrusions � cd = >� = 
�, �, ��|∀? ∈ =: U
�, ��⋂? = ∅C 

29: lower parent backward body � "!!+ = "!�+ ∖ cd 

30: upper backward body �!!+ = "!!+ ∪ "�!+ 

31:  next v 

32: lower obstacle-constrained prism � ]�"- =  �!- ∩ !!- 

33: upper obstacle-constrained prism � ]�"+ =  �!+ ∩ !!+ 

34:  return  ]�"-, ]�"+ 

 

6.3. Example  

 

To illustrate our methodology, we will reconsider the university campus example with a student 

having two minutes to travel from o to d (Fig. 3). Suppose that (s)he was tracked at o and d with a 

spatial accuracy 01 of 10m and a temporal accuracy 0� of 5s. According to Bohannon (1997), 

reliable estimates for an adult’s maximum gait speed range from 1.749m.s
-1

 to 2.533m.s
-1

 when 

considering differences in sex and age class. Let us take this as lower �- and upper �+ 

approximation maximum velocity respectively. The lower and upper prisms corresponding to 

these constraints are presented in Fig. 9 and   Fig. 10. A cross section through both prisms along 

the origin-destination axis is shown in Fig. 12. Note that, according to the definitions and 

properties of section 4, the temporal extremes of the prism lie strictly within the time budget for 

the lower approximation, whereas they exceed the time budget in the upper approximation. Also, 

the upper prism is flattened out at its origin and destination, due to the spatial uncertainty. 

 

It appears that there is a large difference between the lower and upper prisms in this case: 

whereas the student might have easily passed along all sides of all buildings in the upper prism, 

(s)he is restricted to an almost linear course passing north of the buildings in the lower 

approximation scenario. Hence, it would have been a harmful limitation not to consider the given 



spatial and temporal accuracy for this case. However, beyond this example, this reasoning may 

apply for many real-world applications, as similar or even lower accuracies may be obtained from 

existing tracking technologies. Further, we note that only a limited part of the lower prism 

intersects with the beeline connector from o to d (Fig. 11), which contrasts sharply with the case 

of an unconstrained environment emphasizing the impact of accounting for intermediate 

obstacles. 

 
Fig. 9 Obstacle-constrained lower space-time prism  Fig. 10 Obstacle-constrained upper space-time prism 

 

 
Fig. 11 Cross section through time of lower (dark grey) and upper (light grey) prisms along the axis origin (o) – destination (d), 

with indication of vertical obstacle extrusions (white rectangles) 

 

The resulting lower and upper prisms can be considered a basis for further analysis. The volume 

of a space-time prism, for instance, may be used as a measure of general accessibility (Lenntorp 

1978, Burns 1979, Villoria 1989). Let us apply this measure in order to illustrate the impact of 

our approach. Table 1 presents the resulting volumes for all four scenarios that arise from taking 

into account or otherwise neglect the uncertainty and/or the obstacles. We obtain significantly 

smaller volumes when accounting for the uncertainty and for the obstacles. Ignoring uncertainty, 

we find a restriction to 68% when taking account of the obstacles. Analogously, when 



considering uncertainty, we achieve restrictions to 13% and 82% for lower and upper 

approximations respectively. Hence, with respect to the prism volume, we may conclude that, for 

this case, considerable overestimates are to be made whenever we neglect either the uncertain 

constraints, or the obstacles.  

 
Table 1 Space-time prism volumes in m².s according to four different scenarios 

 without uncertainty* with uncertainty 

unconstrained 
1 908 020 (lower) 185 383 

(upper) 5 423 407 

obstacle-constrained 
1 297 306 (lower) 24 125 

(upper) 4 432 806 

* taking ���� = Sf�Sg
� = 2.141i. 1'( 

 

 

7. Conclusions 

 

Taking the viewpoint of nowadays tracking technologies, our contribution to time geography is 

twofold. First, it was shown how classical time-geographical concepts can be redefined in order 

to model the uncertainty associated with their underlying constraints (section 3). Typically with 

tracking data, uncertainties will arise from inaccuracies, errors and noise associated with the 

technology at hand. Relying on the basic principles of rough set theory, we have formally 

elaborated how space-time prisms under uncertainty can be described as rough sets with lower 

and upper approximations. Not only are these approximations conceptually appealing, they are 

also computationally efficient and robust as they allow an easy integration of different sorts of 

uncertainty. 

 

Secondly, we have proposed an alternative to the assumption of unconstrained travel environment 

by assuming an isotropic space studded with impassable obstacles (section 4). A comprehensible 

methodology for the construction of space-time prisms according to this alternative assumption 

was elaborated. We may find many kinds of environments, both indoors and outdoors, that might 

be acceptably abstracted to isotropic spaces with impassable obstacles. Pedestrian precincts in 

urban environments, among others, are usually open, freely accessible and populated with 

discrete obstacles such as buildings, monuments, fenced or hedged areas, etc. Our approach 

complements earlier studies that have modelled space-time prisms within transportation 

networks. It also adds to the recent work by Miller and Bridwell (2009) who propose a field-

based representation implemented as a lattice approximation. Although their approach allows for 

a complete relaxation of the uniform velocity assumption, it will be a less efficient solution, in 

terms of both storage and computation, in case of isotropic environments with obstacles. Our 

approach avoids the elongation and deviation errors related to a lattice approximation, and offers 

a valuable alternative if the necessary data is lacking to build a reliable and fully covering 

velocity field. 

 

Both contributions, when integrated (section 5), offer a framework for time geography to 

represent and analyse uncertain spatiotemporal data in an environment constrained by obstacles. 

The yet obtained rough and obstacle-constrained space-time prisms allow for the assessment of 

the impact of different spatial and temporal uncertainty factors as well as various configurations 



of obstructs on accessibility. Rough obstacle-constrained prisms, and by extension the chains (or 

necklaces) of chronologically successive prisms, are powerful tools for accessibility analysis. The 

approach presented will be particularly effective for micro-scale applications because the smaller 

the travel environment and time budgets, the more impact spatiotemporal uncertainty will have 

and the less acceptable will be the ignorance of obstacles. While it may be acceptable to neglect 

uncertainty and abstract entire cities or urban districts as network-constrained spaces at a macro 

or meso scale (e.g. Kwan 1999, Weber et al. 2002, Weber 2003, Kwan et al. 2004), this 

reasoning may not apply when focusing on city centres and urban neighbourhoods at a micro 

scale. Therefore, we believe that our approach may provide increased insights into various micro-

scale applications, including monitoring tourists or mass event visitors, crowd management, 

crime scene analysis, disaster management and evacuation planning.  

 

Several extensions and refinements of our model should be addressed in future work. Since the 

concept of a space-time prism has now gained an acceptable degree of realism in order to analyse 

common tracking data in obstacle-constrained environments, we are planning to validate our 

methodology by means of extensive data sets. Particular emphasis will be placed on how to 

employ the proposed concepts to infer additional knowledge about trajectories and to measure the 

accessibility in space and time (Dijst et al. 2002, Shoval et al. 2007, Neutens et al. 2008, 

Schwanen et al. 2008, Berger et al. 2009). Further, we could consider alternatives to modelling 

uncertainty. Detailed and abundant numerical uncertainty data, if available, may validate the 

calculation of presence probabilities or membership functions. These functions, however, may 

significantly complicate the proposed methodology, especially when it comes to the combination 

of different sorts of uncertainty. Concerning the environmental constraints, an appealing 

extension could be to consider time-varying constraints. Instead of permanent obstacles, this 

would allow for handling temporary objects such as those associated to temporary events (e.g. 

stages, tents, and stands during a festival). Also, we might consider obstacles with passable 

interiors for which then different constraints apply. Lawn and bushes patches in a park, for 

example, could, instead of isotropic space, be considered permeable obstacles with a deviant 

maximum velocity with respect to pedestrian visitors. 
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