40 research outputs found

    Characterization of Genetic Signal Sequences with Batch-Learning SOM

    Get PDF
    An unsupervised clustering algorithm Kohonen's SOM is an effective tool for clustering and visualizing high-dimensional complex data on a single map. We previously modified the conventional SOM for genome informatics, making the learning process and resulting map independent of the order of data input on the basis of Batch Learning SOM (BL-SOM). We generated BL-SOMs for tetra- and pentanucleotide frequencies in 300,000 10-kb sequences from 13 eukaryotes for which almost complete genomic sequences are available. BL-SOM recognized species-specific characteristics of oligonucleotide frequencies in most 10-kb sequences, permitting species-specific classification of sequences without any information regarding the species. We next constructed BL-SOMs with tetra- and pentanucleotide frequencies in 37,086 full-length mouse cDNA sequences. With BL-SOM we also analyzed occurrence patterns of the oligonucleotides that are thought to be involved in transcriptional regulation on the human genome

    Characterization of Genetic Signal Sequences with Batch-Learning SOM

    Get PDF
    An unsupervised clustering algorithm Kohonen's SOM is an effective tool for clustering and visualizing high-dimensional complex data on a single map. We previously modified the conventional SOM for genome informatics, making the learning process and resulting map independent of the order of data input on the basis of Batch Learning SOM (BL-SOM). We generated BL-SOMs for tetra- and pentanucleotide frequencies in 300,000 10-kb sequences from 13 eukaryotes for which almost complete genomic sequences are available. BL-SOM recognized species-specific characteristics of oligonucleotide frequencies in most 10-kb sequences, permitting species-specific classification of sequences without any information regarding the species. We next constructed BL-SOMs with tetra- and pentanucleotide frequencies in 37,086 full-length mouse cDNA sequences. With BL-SOM we also analyzed occurrence patterns of the oligonucleotides that are thought to be involved in transcriptional regulation on the human genome

    Development and application of distributed computing tools for virtual screening of large compound libraries

    Get PDF
    Im derzeitigen Drug Discovery Prozess ist die Identifikation eines neuen Targetproteins und dessen potenziellen Liganden langwierig, teuer und zeitintensiv. Die Verwendung von in silico Methoden gewinnt hier zunehmend an Bedeutung und hat sich als wertvolle Strategie zur Erkennung komplexer Zusammenhänge sowohl im Bereich der Struktur von Proteinen wie auch bei Bioaktivitäten erwiesen. Die zunehmende Nachfrage nach Rechenleistung im wissenschaftlichen Bereich sowie eine detaillierte Analyse der generierten Datenmengen benötigen innovative Strategien für die effiziente Verwendung von verteilten Computerressourcen, wie z.B. Computergrids. Diese Grids ergänzen bestehende Technologien um einen neuen Aspekt, indem sie heterogene Ressourcen zur Verfügung stellen und koordinieren. Diese Ressourcen beinhalten verschiedene Organisationen, Personen, Datenverarbeitung, Speicherungs- und Netzwerkeinrichtungen, sowie Daten, Wissen, Software und Arbeitsabläufe. Das Ziel dieser Arbeit war die Entwicklung einer universitätsweit anwendbaren Grid-Infrastruktur - UVieCo (University of Vienna Condor pool) -, welche für die Implementierung von akademisch frei verfügbaren struktur- und ligandenbasierten Drug Discovery Anwendungen verwendet werden kann. Firewall- und Sicherheitsprobleme wurden mittels eines virtuellen privaten Netzwerkes gelöst, wohingegen die Virtualisierung der Computerhardware über das CoLinux Konzept ermöglicht wurde. Dieses ermöglicht, dass unter Linux auszuführende Aufträge auf Windows Maschinen laufen können. Die Effektivität des Grids wurde durch Leistungsmessungen anhand sequenzieller und paralleler Aufgaben ermittelt. Als Anwendungsbeispiel wurde die Assoziation der Expression bzw. der Sensitivitätsprofile von ABC-Transportern mit den Aktivitätsprofilen von Antikrebswirkstoffen durch Data-Mining des NCI (National Cancer Institute) Datensatzes analysiert. Die dabei generierten Datensätze wurden für liganden-basierte Computermethoden wie Shape-Similarity und Klassifikationsalgorithmen mit dem Ziel verwendet, P-glycoprotein (P-gp) Substrate zu identifizieren und sie von Nichtsubstraten zu trennen. Beim Erstellen vorhersagekräftiger Klassifikationsmodelle konnte das Problem der extrem unausgeglichenen Klassenverteilung durch Verwendung der „Cost-Sensitive Bagging“ Methode gelöst werden. Applicability Domain Studien ergaben, dass unser Modell nicht nur die NCI Substanzen gut vorhersagen kann, sondern auch für wirkstoffähnliche Moleküle verwendet werden kann. Die entwickelten Modelle waren relativ einfach, aber doch präzise genug um für virtuelles Screening einer großen chemischen Bibliothek verwendet werden zu können. Dadurch könnten P-gp Substrate schon frühzeitig erkannt werden, was möglicherweise nützlich sein kann zur Entfernung von Substanzen mit schlechten ADMET-Eigenschaften bereits in einer frühen Phase der Arzneistoffentwicklung. Zusätzlich wurden Shape-Similarity und Self-organizing Map Techniken verwendet um neue Substanzen in einer hauseigenen sowie einer großen kommerziellen Datenbank zu identifizieren, die ähnlich zu selektiven Serotonin-Reuptake-Inhibitoren (SSRI) sind und Apoptose induzieren können. Die erhaltenen Treffer besitzen neue chemische Grundkörper und können als Startpunkte für Leitstruktur-Optimierung in Betracht gezogen werden. Die in dieser Arbeit beschriebenen Studien werden nützlich sein um eine verteilte Computerumgebung zu kreieren die vorhandene Ressourcen in einer Organisation nutzt, und die für verschiedene Anwendungen geeignet ist, wie etwa die effiziente Handhabung der Klassifizierung von unausgeglichenen Datensätzen, oder mehrstufiges virtuelles Screening.In the current drug discovery process, the identification of new target proteins and potential ligands is very tedious, expensive and time-consuming. Thus, use of in silico techniques is of utmost importance and proved to be a valuable strategy in detecting complex structural and bioactivity relationships. Increased demands of computational power for tremendous calculations in scientific fields and timely analysis of generated piles of data require innovative strategies for efficient utilization of distributed computing resources in the form of computational grids. Such grids add a new aspect to the emerging information technology paradigm by providing and coordinating the heterogeneous resources such as various organizations, people, computing, storage and networking facilities as well as data, knowledge, software and workflows. The aim of this study was to develop a university-wide applicable grid infrastructure, UVieCo (University of Vienna Condor pool) which can be used for implementation of standard structure- and ligand-based drug discovery applications using freely available academic software. Firewall and security issues were resolved with a virtual private network setup whereas virtualization of computer hardware was done using the CoLinux concept in a way to run Linux-executable jobs inside Windows machines. The effectiveness of the grid was assessed by performance measurement experiments using sequential and parallel tasks. Subsequently, the association of expression/sensitivity profiles of ABC transporters with activity profiles of anticancer compounds was analyzed by mining the data from NCI (National Cancer Institute). The datasets generated in this analysis were utilized with ligand-based computational methods such as shape similarity and classification algorithms to identify and separate P-gp substrates from non-substrates. While developing predictive classification models, the problem of imbalanced class distribution was proficiently addressed using the cost-sensitive bagging approach. Applicability domain experiment revealed that our model not only predicts NCI compounds well, but it can also be applied to drug-like molecules. The developed models were relatively simple but precise enough to be applicable for virtual screening of large chemical libraries for the early identification of P-gp substrates which can potentially be useful to remove compounds of poor ADMET properties in an early phase of drug discovery. Additionally, shape-similarity and self-organizing maps techniques were used to screen in-house as well as a large vendor database for identification of novel selective serotonin reuptake inhibitor (SSRI) like compounds to induce apoptosis. The retrieved hits possess novel chemical scaffolds and can be considered as a starting point for lead optimization studies. The work described in this thesis will be useful to create distributed computing environment using available resources within an organization and can be applied to various applications such as efficient handling of imbalanced data classification problems or multistep virtual screening approach

    3rd EGEE User Forum

    Get PDF
    We have organized this book in a sequence of chapters, each chapter associated with an application or technical theme introduced by an overview of the contents, and a summary of the main conclusions coming from the Forum for the chapter topic. The first chapter gathers all the plenary session keynote addresses, and following this there is a sequence of chapters covering the application flavoured sessions. These are followed by chapters with the flavour of Computer Science and Grid Technology. The final chapter covers the important number of practical demonstrations and posters exhibited at the Forum. Much of the work presented has a direct link to specific areas of Science, and so we have created a Science Index, presented below. In addition, at the end of this book, we provide a complete list of the institutes and countries involved in the User Forum

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    In Silico Design and Selection of CD44 Antagonists:implementation of computational methodologies in drug discovery and design

    Get PDF
    Drug discovery (DD) is a process that aims to identify drug candidates through a thorough evaluation of the biological activity of small molecules or biomolecules. Computational strategies (CS) are now necessary tools for speeding up DD. Chapter 1 describes the use of CS throughout the DD process, from the early stages of drug design to the use of artificial intelligence for the de novo design of therapeutic molecules. Chapter 2 describes an in-silico workflow for identifying potential high-affinity CD44 antagonists, ranging from structural analysis of the target to the analysis of ligand-protein interactions and molecular dynamics (MD). In Chapter 3, we tested the shape-guided algorithm on a dataset of macrocycles, identifying the characteristics that need to be improved for the development of new tools for macrocycle sampling and design. In Chapter 4, we describe a detailed reverse docking protocol for identifying potential 4-hydroxycoumarin (4-HC) targets. The strategy described in this chapter is easily transferable to other compounds and protein datasets for overcoming bottlenecks in molecular docking protocols, particularly reverse docking approaches. Finally, Chapter 5 shows how computational methods and experimental results can be used to repurpose compounds as potential COVID-19 treatments. According to our findings, the HCV drug boceprevir could be clinically tested or used as a lead molecule to develop compounds that target COVID-19 or other coronaviral infections. These chapters, in summary, demonstrate the importance, application, limitations, and future of computational methods in the state-of-the-art drug design process

    Enhanced clustering analysis pipeline for performance analysis of parallel applications

    Get PDF
    Clustering analysis is widely used to stratify data in the same cluster when they are similar according to the specific metrics. We can use the cluster analysis to group the CPU burst of a parallel application, and the regions on each process in-between communication calls or calls to the parallel runtime. The resulting clusters obtained are the different computational trends or phases that appear in the application. These clusters are useful to understand the behavior of the computation part of the application and focus the analyses on those that present performance issues. Although density-based clustering algorithms are a powerful and efficient tool to summarize this type of information, their traditional user-guided clustering methodology has many shortcomings and deficiencies in dealing with the complexity of data, the diversity of data structures, high-dimensionality of data, and the dramatic increase in the amount of data. Consequently, the majority of DBSCAN-like algorithms have weaknesses to handle high-dimensionality and/or Multi-density data, and they are sensitive to their hyper-parameter configuration. Furthermore, extracting insight from the obtained clusters is an intuitive and manual task. To mitigate these weaknesses, we have proposed a new unified approach to replace the user-guided clustering with an automated clustering analysis pipeline, called Enhanced Cluster Identification and Interpretation (ECII) pipeline. To build the pipeline, we propose novel techniques including Robust Independent Feature Selection, Feature Space Curvature Map, Organization Component Analysis, and hyper-parameters tuning to feature selection, density homogenization, cluster interpretation, and model selection which are the main components of our machine learning pipeline. This thesis contributes four new techniques to the Machine Learning field with a particular use case in Performance Analytics field. The first contribution is a novel unsupervised approach for feature selection on noisy data, called Robust Independent Feature Selection (RIFS). Specifically, we choose a feature subset that contains most of the underlying information, using the same criteria as the Independent component analysis. Simultaneously, the noise is separated as an independent component. The second contribution of the thesis is a parametric multilinear transformation method to homogenize cluster densities while preserving the topological structure of the dataset, called Feature Space Curvature Map (FSCM). We present a new Gravitational Self-organizing Map to model the feature space curvature by plugging the concepts of gravity and fabric of space into the Self-organizing Map algorithm to mathematically describe the density structure of the data. To homogenize the cluster density, we introduce a novel mapping mechanism to project the data from the non-Euclidean curved space to a new Euclidean flat space. The third contribution is a novel topological-based method to study potentially complex high-dimensional categorized data by quantifying their shapes and extracting fine-grain insights from them to interpret the clustering result. We introduce our Organization Component Analysis (OCA) method for the automatic arbitrary cluster-shape study without an assumption about the data distribution. Finally, to tune the DBSCAN hyper-parameters, we propose a new tuning mechanism by combining techniques from machine learning and optimization domains, and we embed it in the ECII pipeline. Using this cluster analysis pipeline with the CPU burst data of a parallel application, we provide the developer/analyst with a high-quality SPMD computation structure detection with the added value that reflects the fine grain of the computation regions.El análisis de conglomerados se usa ampliamente para estratificar datos en el mismo conglomerado cuando son similares según las métricas específicas. Nosotros puede usar el análisis de clúster para agrupar la ráfaga de CPU de una aplicación paralela y las regiones en cada proceso intermedio llamadas de comunicación o llamadas al tiempo de ejecución paralelo. Los clusters resultantes obtenidos son las diferentes tendencias computacionales o fases que aparecen en la solicitud. Estos clusters son útiles para entender el comportamiento de la parte de computación del aplicación y centrar los análisis en aquellos que presenten problemas de rendimiento. Aunque los algoritmos de agrupamiento basados en la densidad son una herramienta poderosa y eficiente para resumir este tipo de información, su La metodología tradicional de agrupación en clústeres guiada por el usuario tiene muchas deficiencias y deficiencias al tratar con la complejidad de los datos, la diversidad de estructuras de datos, la alta dimensionalidad de los datos y el aumento dramático en la cantidad de datos. En consecuencia, el La mayoría de los algoritmos similares a DBSCAN tienen debilidades para manejar datos de alta dimensionalidad y/o densidad múltiple, y son sensibles a su configuración de hiperparámetros. Además, extraer información de los clústeres obtenidos es una forma intuitiva y tarea manual Para mitigar estas debilidades, hemos propuesto un nuevo enfoque unificado para reemplazar el agrupamiento guiado por el usuario con un canalización de análisis de agrupamiento automatizado, llamada canalización de identificación e interpretación de clúster mejorada (ECII). para construir el tubería, proponemos técnicas novedosas que incluyen la selección robusta de características independientes, el mapa de curvatura del espacio de características, Análisis de componentes de la organización y ajuste de hiperparámetros para la selección de características, homogeneización de densidad, agrupación interpretación y selección de modelos, que son los componentes principales de nuestra canalización de aprendizaje automático. Esta tesis aporta cuatro nuevas técnicas al campo de Machine Learning con un caso de uso particular en el campo de Performance Analytics. La primera contribución es un enfoque novedoso no supervisado para la selección de características en datos ruidosos, llamado Robust Independent Feature. Selección (RIFS).Específicamente, elegimos un subconjunto de funciones que contiene la mayor parte de la información subyacente, utilizando el mismo criterios como el análisis de componentes independientes. Simultáneamente, el ruido se separa como un componente independiente. La segunda contribución de la tesis es un método de transformación multilineal paramétrica para homogeneizar densidades de clústeres mientras preservando la estructura topológica del conjunto de datos, llamado Mapa de Curvatura del Espacio de Características (FSCM). Presentamos un nuevo Gravitacional Mapa autoorganizado para modelar la curvatura del espacio característico conectando los conceptos de gravedad y estructura del espacio en el Algoritmo de mapa autoorganizado para describir matemáticamente la estructura de densidad de los datos. Para homogeneizar la densidad del racimo, introducimos un mecanismo de mapeo novedoso para proyectar los datos del espacio curvo no euclidiano a un nuevo plano euclidiano espacio. La tercera contribución es un nuevo método basado en topología para estudiar datos categorizados de alta dimensión potencialmente complejos mediante cuantificando sus formas y extrayendo información detallada de ellas para interpretar el resultado de la agrupación. presentamos nuestro Método de análisis de componentes de organización (OCA) para el estudio automático de forma arbitraria de conglomerados sin una suposición sobre el distribución de datos.Postprint (published version

    Machine Learning and Its Application to Reacting Flows

    Get PDF
    This open access book introduces and explains machine learning (ML) algorithms and techniques developed for statistical inferences on a complex process or system and their applications to simulations of chemically reacting turbulent flows. These two fields, ML and turbulent combustion, have large body of work and knowledge on their own, and this book brings them together and explain the complexities and challenges involved in applying ML techniques to simulate and study reacting flows. This is important as to the world’s total primary energy supply (TPES), since more than 90% of this supply is through combustion technologies and the non-negligible effects of combustion on environment. Although alternative technologies based on renewable energies are coming up, their shares for the TPES is are less than 5% currently and one needs a complete paradigm shift to replace combustion sources. Whether this is practical or not is entirely a different question, and an answer to this question depends on the respondent. However, a pragmatic analysis suggests that the combustion share to TPES is likely to be more than 70% even by 2070. Hence, it will be prudent to take advantage of ML techniques to improve combustion sciences and technologies so that efficient and “greener” combustion systems that are friendlier to the environment can be designed. The book covers the current state of the art in these two topics and outlines the challenges involved, merits and drawbacks of using ML for turbulent combustion simulations including avenues which can be explored to overcome the challenges. The required mathematical equations and backgrounds are discussed with ample references for readers to find further detail if they wish. This book is unique since there is not any book with similar coverage of topics, ranging from big data analysis and machine learning algorithm to their applications for combustion science and system design for energy generation

    Phenotypic Screening of Chemical Libraries Enriched by Molecular Docking to Multiple Targets Selected from Glioblastoma Genomic Data

    Get PDF
    Like most solid tumors, glioblastoma multiforme (GBM) harbors multiple overexpressed and mutated genes that affect several signaling pathways. Suppressing tumor growth of solid tumors like GBM without toxicity may be achieved by small molecules that selectively modulate a collection of targets across different signaling pathways, also known as selective polypharmacology. Phenotypic screening can be an effective method to uncover such compounds, but the lack of approaches to create focused libraries tailored to tumor targets has limited its impact. Here, we create rational libraries for phenotypic screening by structure-based molecular docking chemical libraries to GBM-specific targets identified using the tumor’s RNA sequence and mutation data along with cellular protein–protein interaction data. Screening this enriched library of 47 candidates led to several active compounds, including 1 (IPR-2025), which (i) inhibited cell viability of low-passage patient-derived GBM spheroids with single-digit micromolar IC50 values that are substantially better than standard-of-care temozolomide, (ii) blocked tube-formation of endothelial cells in Matrigel with submicromolar IC50 values, and (iii) had no effect on primary hematopoietic CD34+ progenitor spheroids or astrocyte cell viability. RNA sequencing provided the potential mechanism of action for 1, and mass spectrometry-based thermal proteome profiling confirmed that the compound engages multiple targets. The ability of 1 to inhibit GBM phenotypes without affecting normal cell viability suggests that our screening approach may hold promise for generating lead compounds with selective polypharmacology for the development of treatments of incurable diseases like GBM
    corecore