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Abstract 

 
Drug discovery is a process that aims to identify drug candidates by a thorough evaluation of the 

biological activity of small synthetic molecules or biomolecules. The modern drug discovery 

process includes identifying the disease to be treated and its unmet medical needs; selecting a 

druggable molecular target and validating it; developing in vitro assays for high throughput 

screening of compound libraries to identify hits against the target; hit optimization to generate 

lead compounds with adequate efficacy, potency, and selectivity in animal models. Subsequently, 

the lead compounds are further optimized to improve their potency and pharmacokinetics before 

moving forward with clinical development. Computational strategies are now necessary tools for 

speeding up multiple steps of the drug discovery process. The use of such approaches is 

described in this chapter. 
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Introduction  

 

Drug discovery is a process that aims to identify a small synthetic molecule or a large biomolecule 

drug candidate after a thorough evaluation. In general, the preclinical drug discovery process 

includes multiples steps (Figure 1): identifying the disease to be treated and its unmet medical 

needs; selecting a druggable molecular target and validating it; developing in vitro assays for high 

throughput screening of compound libraries against the target to identify that alter target´s activity 

(called hits); hit optimization to generate lead compounds with adequate in vitro potency and 

selectivity, and demonstrate efficacy and safety in disease animal models. Subsequently, the lead 

compounds are further optimized to improve their efficacy and pharmacokinetics before moving 

forward to clinical drug development [1].  

 

Overview of preclinical drug discovery process. UMN, unmet medical needs; KOL, key opinion leader; SAR, structure-

activity relationship; GWAS, genome-wide association studies; HTS, high throughput screening; POM, proof of 

mechanism; PK, pharmacokinetics; PD, pharmacodynamics (modified from [1]).  

 

The drug´s target 

Drugs typically fail in the clinic for two main reasons; primarily is that they lack efficacy, and the 

second is that they are not safe [1,2]. As such, identification and validation of the target is one of 

the most crucial steps in developing a new drug. “Target” is a general term that refers to a variety 

of biological entities, such as proteins, genes, and RNA [3]. A good target must be efficient in 

modulating the disease, meet clinical and commercial requirements and, most importantly, be 

‘druggable.’ A ‘druggable' target can be reached by the putative drug molecule, which is usually 

a small molecule or a larger biological one, and which, once bound, elicits a biological response 

that can be measured both in vitro and in vivo [2,3].  
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Target identification is the process of selecting the molecular target - for example, a protein or a 

nucleic acid - of a small molecule [4]. Introducing a small molecule drug into a living cell is the 

same as directly disrupting one or more nodes in a complex network of genes and gene products. 

In general, this perturbation causes a response in almost every node of the network (all genes 

and their products). The task of target identification is to identify direct target nodes and 

distinguish them from nodes that respond indirectly to the target nodes. The traditional approach 

to target identification is to employ a variety of experimental methods to locate the active 

compound's physical binding sites [5]. However, physical binding determination, in addition to 

being a costly and time-consuming process that is often the rate-limiting step in drug 

development, does not always imply an observable effect on protein or gene activity. As a result, 

it is preferable to identify targets based on actual cell response data [5]. This prompted the 

proposal of model-based methods in which response data are used to infer network models, 

including the direct targets of external perturbations, for the underlying gene regulatory networks 

[4–6].  

 

Drug target validation could be highly beneficial for new drug research and development and for 

gaining a better understanding of the pathogenesis of the target-related diseases. Essentially, the 

target validation process should include identifying a biomolecule of interest. To assess its 

potential as a target, a bioassay to measure relevant biological activity must be developed. Then, 

it is possible to conduct a high-throughput screening (HTS) to find hits. Hits can be further 

characterized using the same or additional bioassays [7–9]. 

 

The target validation process should be carried out on three levels: molecular, cellular, and whole 

animal model levels.  Small molecules obtained through HTS are useful for confirming new drug 

targets. The majority of HTS models are molecular in nature, i.e., cell-free systems. Screening for 

a specific enzyme inhibitor, for example, usually entails mixing the enzyme with samples to detect 

a decrease in the substrate or an increase in the product in the enzyme catalytic process. 

However, there is a significant difference between a cell-free system and a cell-based system. 

Because there are many predictable and unpredictable factors, the results from this level are not 

entirely reliable. Actual results from this level, on the other hand, convey the point that hits 

genuinely act on the target. Validation at the cellular level confirms cell-free results. Small 

molecules may be used at this level to highlight the pathological significance of the target. Animal 
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models are used to validate the target at the whole level. If the hit obtained from HTS displays a 

therapeutic effect in animal models, then it may be promising [9,10]. Target identification and 

validation improves confidence in the target-disease relationship and allows researchers to 

investigate whether target modulation causes mechanism-based side effects [2,3]. 

 

Computer-Aided Drug Discovery  

Computer-aided drug discovery (CADD) is a discipline that comprises a broad range of 

theoretical and computational approaches that are part of modern drug discovery. CADD collects 

multiple chemical-molecular and quantum strategies to discover, design, and developing 

therapeutic chemical agents. Many CADD approaches are based on structure-activity 

relationships (SAR). The main objectives of CADD are part of multidisciplinary work for the 

improvement of bioactive molecules, the development of therapeutic alternatives, and the 

understanding of biological events at the molecular level [11]. 

 

The CADD methods can be broadly classified into two groups, namely structure-based (SB) and 

ligand-based (LB) drug discovery. CADD has become an effective and indispensable tool in 

therapeutic development. The human genome project has made a large amount of sequence 

data available for use in various drug discovery projects. Furthermore, increased knowledge of 

biological structures and increased computer power have enabled the effective use of 

computational methods in various stages of the drug discovery and development pipeline. As a 

result, in silico tools are more important than ever before, and they have advanced 

pharmaceutical research. As a result, CADD has been integral in discovering numerous available 

pharmaceutical drugs that have received FDA approval and have reached the consumer market 

[12–14]. 

 

In the case of proteins as drug targets, especially those for which their three-dimensional (3D) 

structure has been solved, the SB methods are fundamental. Although structures of relevant drug 

targets were not always available directly from X-ray crystallography in the early days, 

comparative models based on homologs began to be used in lead optimization in the 1980s 

[15,16]. It was recognized in the 1990s that 3D structures were helpful in defining topographies 

of the complementary surfaces of ligands and their protein targets and that they could be used to 

optimize the potency and selectivity of the leads [17]. As a result, several crystal structures of real 

drug targets became available. For example, the anti-AIDS drugs Agenerase and Viracept were 
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developed using the crystal structure of HIV protease [18,19]. The use of crystallographic 

structures has also been employed to develop treatments for other diseases such as influenza 

[20] and cancer [21,22]. Several drugs are currently on the market as a result of this structure-

based design approach [23].  

 

SB designing methods, which were previously used to optimize these leads into drugs, are now 

frequently used much earlier in the drug discovery process. Protein structure is used in target 

identification and selection (the assessment of a target's druggability), virtual screening for hits, 

and fragment screening. Furthermore, structural biology's critical role in lead optimization to 

engineering increased affinity and selectivity into leads remains as crucial as ever [16]. 

 

This chapter provides an overview of the structure-based methods used in CADD. We discuss 

structure prediction tools that are commonly used in structure-based drug discovery, molecular 

docking algorithms, virtual screening as a high-throughput screening technique, lead 

optimization, methods for evaluating drug ADME properties, and the use of molecular dynamics 

(MD) for the study of protein-ligand interactions and binding affinity prediction. In addition, we will 

discuss recent advancements and implementation of Artificial Intelligence (AI) algorithms for 

CADD.  

 

Predicting the target structure by sequence/structure homology 

The function of a protein is primarily determined by its 3D structure. However, methods for 

determining the spatial organization of a protein are time-consuming and expensive. The structure 

determination process typically entails the development of a protein expression system, protein 

purification crystallization, and finally, structure determination, which each successive step may 

take months to years to accomplish [24]. For this reason, while the number of available protein 

sequences has increased exponentially, the number of experimentally derived protein structures 

has lagged far behind. There has been extensive research into in silico methods for structure 

determination over several decades. The sequence/structure homology approach aims to create 

a method for determining the 3D structure of a protein based solely on its sequence [25]. One 

strategy, known as homology modeling, takes advantage of protein structure redundancy by 

predicting the structure of an unknown protein using homologous proteins, or structurally related 

proteins from the same family. Even though there are millions of proteins, the number of distinct 

structural folds is two to three orders of magnitude lower [25,26]. The assumption is that all 



7 
 

members of a protein family are related through divergent evolution from a common ancestor and 

thus must share the same basic fold [27]. Thus, if a protein belongs to a family in which the 

experimental structures of several proteins have been determined, an atomic model of the protein 

can be constructed by comparing it to those structures. The structural genomics initiatives aim to 

characterize most protein sequences through an efficient combination of targeted high-

throughput experimental structure determination and prediction [28], implying that homology 

modeling is a useful tool for biologists [25]. 

 

SWISS-MODEL (https://swissmodel.expasy.org/) is a well-known and widely used online tool for 

protein structure homology modeling due to its extensive functionality, ease of use, and speed. 

The prediction procedure includes template recognition, target-template alignment, model 

construction, and model evaluation. For template recognition and target-template alignment, 

BLAST [29] and HHblits [30] are employed. The target protein structure is constructed by copying 

the atomic coordinates from the template following target-template alignment. The unaligned 

region is constructed by searching the fragment library. The quality of the final model is evaluated 

by the knowledge-based score function QMEAN [31]. The broad functionality, easy operability, 

and fast running make SWISS-MODEL one of the most widely-used homology modeling tools in 

the past two decades [32–34]. 

 

Another homologous modeling method is Modeller (https://salilab.org/modeller/), which 

implements structure modeling by satisfying spatial constraints. The spatial constraints can be 

derived from target-template alignment as well as data from NMR spectroscopy, fluorescence 

spectroscopy, site-directed mutagenesis, stereochemistry, and intuition. Stereochemical 

restraints usually supplement these homology-derived restraints on bond lengths, bond angles, 

dihedral angles, and nonbonded atom-atom contacts that are obtained from molecular 

mechanics force field. The final model is evaluated by DOPE potential [35]. Modeler can also 

perform auxiliary tasks such as fold assignment, phylogenetic tree calculation, and de novo 

modeling of loops in protein structures [36,37]. 

 

The use of homology models in drug discovery has played an important role in developing kinase 

inhibitors [38]. Over 500 kinases have been identified in the human genome, but only 50 have 

had their structures determined experimentally so far. When the structure of an inhibitor is 

unknown, homology models can be used to optimize its affinity [38]. This includes  increasing 
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affinity for the kinase target(s) and decreasing affinity for related kinases and identifying kinases 

for selectivity screens based on structural homology in the region where the inhibitor binds [39]. 

Homology models can also be successfully used as a starting point for virtual screening.  

 

Identifying ligand-binding regions 

several efforts have been made to generate structural data of protein targets using experimental 

or computational models. It is becoming increasingly important to develop functional 

computational methods capable of identifying sites involved in forming intermolecular interactions 

in protein-ligand systems [16]. For instance, by identifying steric strain or other types of high-

energy conformations that frequently occur at active sites [40,41] or by identifying protein clefts 

that can accommodate ligands [42]. Almost all protein functional sites are typically formed 

through mutation and Darwinian selection, and thus they are the most highly conserved regions 

of a protein [43–45]. Several computational methods have been developed to integrate this 

information to predict putative binding sites in proteins [46]. 

 

The realistic prediction of putative ligand or protein binding sites has important implications for 

rational drug design and a better understanding of protein-protein interaction networks. 

Identifying and characterizing putative protein binding sites on proteins can assist in determining 

the number and type of protein interaction partners. In silico methods for predicting protein-

protein interaction sites can also be used to predict protein aggregation [47,48] or the nonspecific 

binding to a variety of partners [49]. Recent approaches to predicting protein binding sites and 

protein binding sites and which partner protein may bind could be useful in predicting protein 

interaction networks [50]. 

 

High-affinity binding cavities for small drug-like ligands, contrary to protein-protein sites, are 

frequently less polar or more hydrophobic than the rest of the protein surface [42,47,51–55]. 

Because organic drug-like molecules are smaller in size than proteins, the buried surface area of 

small molecule protein-ligand interactions is generally smaller than in protein-protein interactions. 

Small molecules' high-affinity binding sites are usually concave pockets or cavities on the surface 

of proteins, or sometimes partially buried that achieve strong interactions through a sufficiently 

large number of favorable protein-ligand contacts [51]. In many ways, algorithms for predicting 

protein-protein interfaces are similar to methods for predicting binding regions for small drug-like 
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molecules. However, due to the distinct general architecture of these types of binding sites, there 

are some significant differences [54,56]. 

  

Since a concave binding cleft on the protein surface commonly forms the small-molecule binding 

site, the detection of binding pockets or protein cavities requires special attention. Generally, the 

importance of a concave binding site explains the better performance of binding site prediction 

for small drug-like ligands compared to protein binding site prediction. Concave regions on protein 

surfaces are less common than the flat or slightly curved surfaces typical for protein-protein 

interfaces [46]. The explanation and methods of several algorithms based on various detection 

principles for druggable binding site detection have been previously reviewed in detail [57]. 

 

Fpocket (http://fpocket.sourceforge.net/) is an open-source pocket detection package that uses 

Voronoi tessellation and alpha spheres to detect pockets. The modular tool is organized around 

a central library of functions, which serves as the foundation for three main programs: i) Fpocket 

is used to identify protein pockets, (ii) Tpocket is used to organize pocket detection benchmarking 

on a set of known protein-ligand complexes, and (iii) Dpocket is used to collect pocket descriptor 

values on a set of proteins. Fpocket relying on a simple scoring function can detect 94% and 92% 

of the pockets within the best three ranked pockets from the holo and apoproteins, respectively. 

Fpocket provides a rapid, open-source, and stable basis for further developments related to 

protein pocket detection, efficient pocket descriptor extraction, or druggability prediction 

purposes [58]. 

 

Structure-guided virtual screening  

Multiple techniques are considered to examine the interplay between alteration in protein 

biological functionality and therapeutic consequences. As a result, druggability uses a structure-

based approach to assess the likelihood that small drug-like molecules have intrinsic potencies 

to bind and modulate protein activities. [59–61].  

 

The available public domain databases that are specifically aimed at drug discovery scientists all 

have their own specialist content and, in general, this is complementary. For example, vendor 

information, patented compounds, data on marketed drugs, and bioactivity data for both efficacy 

and liability targets, and crystal structures of small molecules bound to protein targets can all be 
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found in public databases. The number of compounds ranges from the comparatively small 

manually curated sets, such as ChEBI, to large patent databases, such as SureChEMBL, where 

the data is extracted from patents using ‘name to structure’ and ‘image to structure’ software and 

for which manual curation would be a prohibitively expensive task. Some databases also take 

depositions from other databases or directly from depositors. For example PubChem includes 

data from ChEMBL and ChEBI, alongside an extensive set of user depositions; ChEMBL includes 

some data from PubChem, and ZINC contains data from ChEMBL [63]. 

 

When selecting compounds in the early stages of the drug discovery phase, drug-likeness is 

essential because it helps optimize pharmacokinetics and pharmaceutical attributes as chemical 

stability, solubility, bioavailability, and distribution profile [62]. Drug-like compounds are chemical 

molecules with functional groups and physical properties that are similar to the majority of known 

drugs and thus can be hypothesized to be biologically active or have therapeutic potential [64,65]. 

Compared to the narrow range distribution of approved drugs, these compounds fall below 

essential physicochemical thresholds such as molecular mass, hydrophobicity, and polarity 

[66,67]. Regardless, there is no apparent structural similarity between drug-like compounds. Any 

approved drug and drug development has a high rate of attrition; the selective selection of 

compounds with inherent drug-likeness improves the chances of surviving this event [67]. A 

thorough understanding of the principles of target binding site recognition and druggability, as 

well as the drug-likeness of a chemical molecule, could thus increase the likelihood of novel 

chemical molecules becoming viable therapeutic options in disease intervention. [61].  

 

Selecting (or designing) compounds in silico that bind to a protein active or druggable site can 

represent a challenge [16]. Structure-guided virtual screening (VS) is a complementary tool to 

HTS that attempts to find hits in the early stages of drug discovery. Specifically, once a 

macromolecular target is selected, compounds are needed to initiate efforts toward a clinical 

candidate. The goal of VS is to identify these early “hits” among a library of compounds. What 

differentiates HTS from VS is that HTS is an experimental approach, while VS is a theoretical one. 

HTS tests large numbers of compounds for their ability to affect the activity of target molecules 

by addressing whether a compound reacts biochemically with the target. For example, questions 

such as “does it bind to the target protein?”, “does it trigger enzymatic reactions?”, “does it 

activate signaling pathways?” are explored by HTS assays. As mentioned above, compounds 

showing positive results are passed onto a more rigorous assay. It cannot be emphasized enough 

that positive results must be reconfirmed because if false positives are being pursued, the 
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investment detriment down the road will be high. On the other hand, negative results can mean 

that a potentially valuable compound is not considered. The latter could be an issue if no hits are 

found. However, the goal of HTS is not to find all possible hits in a library collection but a sufficiently 

enough set to use as starting scaffolds for initial discovery efforts. Therefore, while false positives 

could be costly if pursued and thus, re-confirmation of the results is critical, false negatives are 

not and should not cause worry. In the following step, chemists need to intelligently select two to 

three classes of compounds that show the most promise for potential clinical candidates. HTS is 

time-consuming, requires infrastructure, and has a low success rate (<5%); nonetheless, it has 

been the method of choice for the last 20 years in the pharmaceutical sector. 

 

On the other hand, VS is an in-silico HTS method. It consists of virtually placing (docking) 

collections of millions of compounds into a biological target, followed by an evaluation of the 

tightness of the fit (scoring). VS offers a quick assessment of huge libraries and reduces the 

number of compounds that need testing to identify early hits. Thus, the basic requirements for VS 

are: i) a compound collection, which highly depends on the objective of the project (see above); 

ii) the structure of the biological target, and iii) an appropriate docking/scoring scheme. The 

choices made for each of these requirements come with a set of questions that need to be 

addressed to make the process as efficient and accurate as possible [68]. 

 

A great variety of docking tools and programs, such as AutoDock [69], AutoDock Vina [70], 

LeDock [71], UCSF DOCK [72], Glide [73], GOLD [74], MOE Dock [75], Surflex-Dock [76], etc., 

have been developed for both commercial and academic uses [77–79]. The sampling algorithm 

and scoring function, which determine a docking program's sampling and scoring power, are the 

two most important components. Shape matching, systematic search (such as exhaustive 

search, fragmentation, and conformational ensemble), and stochastic search algorithms(such as 

Monte Carlo methods, genetic algorithms, Tabu search methods, and swarm optimization 

methods) are the most commonly used sampling algorithms [80]. Popular scoring functions can 

be divided into three categories: force field, empirical, and knowledge-based scoring functions 

[81–83]. Recently, some quantum mechanical (QM) and semi-empirical quantum mechanical 

(SQM) scoring functions have been developed to capture binding affinity trends and native pose 

identification [84,85]. The problem of sampling efficiency can be effectively, or at least partially, 

overcome with the rapid development of computer hardware. However, it remains a huge 

challenge for available scoring functions to predict the binding affinities of diverse small molecules 

with high accuracy [86,87]. 
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When tested on large sets of protein-ligand complexes, state-of-the-art docking programs 

correctly dock 70–80% of ligands [73,74,88]. However, in docking techniques, it is complex to 

determine a ligand's relative affinity compared to other compounds. In most virtual screening 

approaches, in silico methods dock and rank many commercially available (or synthetically 

accessible) compounds, and the highest-ranking compounds are chosen for acquisition (or 

synthesis) and experimental testing for action against the target protein. Despite these difficulties, 

the in silico methods are valuable and influential in structure-guided design. For example, if there 

is an enormous enrichment of actual hits in a selected subset of compounds than a subset 

selected by another mechanism, VS would be effective. This condition does not necessitate a 

highly accurate scoring feature or a rigorous treatment of receptor flexibility. Successful examples 

of virtual screening in identifying novel hits and the demonstration of significant enrichment have 

been described, and there have been many other reports in the literature [68,89–91]. 

 

It is interesting to consider current and future trends in the VS approach. There is still much to be 

done in the area of improved ranking and scoring functions. However, while this method is 

beneficial, it is not completely satisfactory [92–94]. Receptor flexibility is still a hot topic of study, 

and the current standard is to use functions that tolerate minor clashes and multiple receptor 

conformations [95–97]. Water molecules that form hydrogen bonds with proteins are now being 

studied using automated methods that enable ligands to either displace or form hydrogen bonds 

with them, depending on which case is the most energetically favorable [98]. Given the academic 

and pharmaceutical industry's success with structure-based drug design and virtual screening, 

several more examples of virtual screening and docking applications can be expected to appear 

in the literature in the future [16].  

 

De novo structure-guided drug design 

Existing compound libraries cannot always contain molecules that are an optimal fit for a given 

target protein, or the compounds themselves may be a limited novelty. In silico methods that can 

design new ligands are, therefore, potentially useful. One of the de novo design methods involves 

placing fragments in the binding cleft of protein targets and then ‘growing' them to fill the available 

space, optimizing electrostatic, van der Waals, and hydrogen bonding interactions [99–102]. 

There are significant challenges in correctly positioning and scoring modeled molecules, just as 

there are with virtual screening. However, the fragment-based de novo design can also generate 
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molecules that are difficult to synthesize [101,102]. For these reasons, there has been a trend to 

start de novo design with a moiety (or fragment) that has previously been shown to bind well to 

the protein target. Since the designed compounds are built on an active scaffold, more control 

over the ‘synthesizability' of the designed compounds can be exercised. As a result, the designed 

compounds are more likely to bind to the receptor.  

 

The evaluation of candidate compounds is critical in the design process because a de novo design 

program typically suggests many candidate compounds. Scoring functions indicate which 

structures are the most promising. In this context, it is common to distinguish between receptor-

based (e.g., docking, receptor-derived pharmacophores) and ligand-based (e.g., similarity 

metrics) scoring, depending on the reference knowledge used to guide the search for new 

compounds [103]. In addition, multiple scoring functions can be used in parallel to enable multi-

objective design [104,105], i.e., different (potentially competing) properties considered 

simultaneously. For example, properties like aqueous solubility, toxic characteristics, synthetical 

feasibility, and biological activity are of vital interest for potential ligand structures and they can 

be explicitly incorporated into the construction process by multi-objective scoring [106]. 

 

In the ideal case, de novo design software suggests high-quality (in terms of the scoring function) 

molecular structures. However, there is no guarantee that a designed compound will receive 

immediate approval from a medicinal chemist. It is critical to understand that de novo design 

rarely results in new chemotypes with nanomolar activity, target selectivity, and an acceptable 

pharmacokinetic profile. Instead, de novo generated molecules are frequently “concept 

compounds” that require significant further optimization. However, compared to screening an 

arbitrary compound collection, de novo design can be expected to have a higher hit rate. A de 

novo design algorithm must solve three problems for successful automated compound design 

[107]:  

i) The structure sampling problem – how to assemble candidate compounds, e.g., atom-based or 

fragment-based.  

ii) The scoring problem – how to assess molecule quality, for example, through 3D receptor-ligand 

docking and scoring (requires receptor structure) or ligand-based similarity measure (requires 

reference ligands, also known as "templates").  
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iii) The optimization problem – how to navigate in search space systematically, for example, using 

depth-first/breadth-first search, Monte Carlo sampling with the Metropolis criterion, evolutionary 

algorithms, or exhaustive structure enumeration. 

 

The majority of the early de novo design tools were entirely atom-based. Modern approaches 

frequently include a wide range of large and small virtual molecular entities for compound 

construction, as well as a few single-atom fragments. Atom-based approaches have the 

advantage of performing fine-grained molecule sculpting and, theoretically, assembling the entire 

chemical universe of structures. These benefits come at a cost: many potential solutions 

complicate a systematic search for beneficial compounds. The fragment-based approach, which 

reduces the search space size significantly, is a shortcut to generating new ligands. If fragments 

that are commonly found in drug molecules are used for molecule assembly, the designed 

compounds have a high likelihood of being druglike themselves. Notably, fragment hits have a 

high “ligand efficiency” [108,109] (calculated as binding energy divided by the number of non-

hydrogen atoms), making them ideal for further optimization. A fragment can be as simple as a 

single atom or as complex as a polycyclic ring system. It is insufficient to have a high probability 

of exhibiting desired biological activity on the target for de novo designed candidate ligands. 

 

As previously mentioned, proposed compounds must also be chemically synthesizable. Since the 

early days of de novo design, it has been well established that one of the primary goals of de novo 

design is the ease of synthesis of the virtually constructed molecules. Nonetheless, for a long 

time, this issue has gone unaddressed. The chemical feasibility of candidate compounds is still a 

problem that is far from being solved. The assembly of molecular building blocks by rule-based 

virtual reaction schemes is a typical pattern of de novo design programs that explicitly consider 

synthetic tractability. Suitable building blocks, for example, can be obtained through the virtual 

retrosynthesis of drug molecules. The same set of reactions are then used to assemble new 

candidate compounds. It is reasonable to expect such designed compounds to have some 

degree of "drug-likeness" and to contain only a few undesirable (e.g., reactive, toxic) structural 

elements [110]. Virtual structure assembly can be guided by simulated organic synthesis steps, 

allowing a synthesis route for each generated structure to be proposed. Alternatively, additional 

software can automatically analyze de novo design ligand candidates to propose generalized 

synthetic routes and select potential reagents from databases of available compounds [106]. 
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A strategy that combines the use of relevant scaffolds and fragments to obtain compounds within 

a limited chemical space is computational combinatorial chemistry (CCC). Over the last two 

decades, the number of synthesis protocols and chemical scaffolds available for parallel, 

automated, fast chemistry has dramatically increased [111,112]. Particularly useful are reactions 

that embrace a large number of starting materials while remaining resistant to structural variations 

within their respective reactive groups, enabling the resulting compound library to cover a wide 

range of structural diversity. For example, libraries can be created with theoretical 

multicomponent reactions (MCRs). In MCRs, the combination of three or more different starting 

material groups allows for the quick and easy creation of large combinatorial libraries that accept 

a wide range of chemical functionality. MCR libraries have been shown to yield drug candidates 

from various chemical scaffolds [112–114]. Combinatorial library screening (either virtual or 

experimental) has proved to be an effective method in the hit-and-lead discovery phase. The 

success rate of designed biased and focused compound libraries can reach over 50%, 

significantly higher than the historical rate of 15–20% for “blind” high-throughput screening [112]. 

It turns out that the use of structural information corresponds to a notable change in combinatorial 

chemistry in recent years, away from broad "diversity" library synthesis and toward far more 

focused approaches. 

 

Molecular dynamics in drug discovery 

The introduction of computers and efficient computational science tools have played a critical role 

in speeding up the drug discovery process while also making it less cumbersome and less 

expensive. An active area of research is the development of efficient methods and computational 

tools to aid in the speeding up of quantitative in silico calculations of drug and target properties 

beyond binding prediction. For example, many quantum mechanical and classical simulation tools 

are now available to assist in calculating the properties of molecules that can be used to predict 

their potency as a drug [115]. 

 

In molecular dynamics (MD) experiments, a computer simulation is used to gain insight into the 

behavior of a real-world physical system or process. A model system is created to accomplish 

that specific goal that represents or emulates the given physical system [116]. The target 

structure is not fixed but fluctuates in response to temperature. Thus, using a single static target 

structure, such as a crystallographic structure, to predict binding sites and protein-ligand binding 

from VS experiments may result in an inaccurate prediction of binding sites and protein-ligand 
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binding [115]. Accordingly, for the model system, a MD simulation and analysis should generate 

a time series or an ensemble of states ("observations") and provide various system properties 

derived from these states [116]. 

 

More importantly, using MD, one can observe behavior that is otherwise inaccessible to 

experimentation and test “what-if” scenarios (e.g., mutation studies) [117,118]. As a result, 

simulation techniques have become invaluable tools for modern research, complementing 

experimental approaches. With the continued advance of computing power, such tools will only 

become more important [116]. MD seeks to derive statements about a molecular system's 

structural, dynamical, and thermodynamic properties. The system is typically a biomolecule 

(solute) immersed in an aqueous solvent, such as a protein, enzyme, or a collection of lipids 

forming a membrane (water or electrolyte). For proteins and enzymes, the experimental protein 

structure deposited in the Protein Data Bank (PDB) [119] serves as a starting point for MD 

simulations. If no structure is available, one must resort to modeling (predicting) the structure for 

which several techniques are available and have previously been described in this text. MD 

simulations could be used to generate a set of target conformations and assess the ability of 

ligands to bind to target proteins. A traditional MD trajectory will be made up of successive target 

conformations that are very close to the local minimum corresponding to the starting 

conformation.  

 

However, several MD methodologies have been developed to simulate other relevant effects such 

as binding energy calculation or ligand-driven conformational changes of the target, such 

methods include replica exchange MD [120], accelerated MD [121], and metadynamics [122]. 

MD simulations can be used to accurately predict a drug molecule's binding site and 

corresponding binding energy.  

 

MD simulation techniques have established their relevance in modern drug discovery and 

development processes over the last 5 decades [115,116]. It is now possible to simulate even 

large and complex (bio)molecular systems in time scales that can provide important insights into 

real-life molecular events and interactions, thanks to advances in computer power, new force 

fields, and improved sampling methods. Successful MD of the protein RAS revealed the 

conformational dynamics of highly flexible target proteins, providing useful information for drug 

discovery and development [123–125]. Furthermore, MD-generated conformational ensembles 
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can aid ligand design against intrinsically disordered proteins that are extremely flexible [126–

128]. MD simulations can also reveal important details about antibody-antigen interactions, which 

can aid in the development of new antibody therapeutics with better properties [129–131]. To 

improve the accuracy of ranking putative hits, MD-based binding free energy calculations are 

widely used in the hit identification phase [132–134].  

Furthermore, various enhanced MD techniques that probe the drug residence times at the target 

site aid in developing drugs with improved binding kinetics [135]. In developing peptide 

therapeutics, MD simulations can also help with peptide docking by improving conformational 

sampling and refinement of peptide-protein complexes [136,137]. Due to the large size of the 

simulation system, MD simulations of membrane proteins embedded in a relevant cell membrane 

model have been complicated, but those using a method called coarse-graining have helped to 

reduce the computational cost [138,139]. The addition of the membrane to MD simulations 

revealed new information about lipid-protein interactions, membrane protein function, and ligand 

entry and exit into the target binding site [140,141]. MD simulations have also been shown to be 

useful in pharmaceutical development and formulation studies, in addition to the first steps of the 

drug discovery process. For example, crystalline and amorphous drugs [142], drug-polymer 

formulations [143], or drug-loaded nanoparticles [144] can be studied by MD simulations to 

complement experimental studies. Insights into such systems at the molecular level can improve 

the solubility, stability, and other properties of drug formulations [116].  

 

In summary, MD simulations can be a valuable tool for assisting in the early stages of modern 

drug discovery and development. Furthermore, due to theoretical and technological 

advancements in the field, MD simulations are likely to gain even more importance, and they play 

an important role in the process of drug discovery. Hopefully, one day, a computer will be able to 

develop a drug, significantly speeding up the process of drug discovery [115,116]. 

 

Artificial Intelligence in drug discovery 

The vast chemical space, which is estimated to contain over >1060 molecules, encourages the 

testing of many molecules to identify to increase the number of molecules with clinical application 

[145]. The lack of advanced technologies, on the other hand, limits such testing, making it a time-

consuming and costly task that can be addressed by using artificial intelligence (AI) [146]. AI can 

recognize hit and lead compounds, allowing for faster drug target validation and structure design 

optimization [145,147]. Different applications of AI in drug discovery are depicted in Figure 3. 
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Role of artificial intelligence (AI) in drug discovery. AI can be used effectively in different parts of drug 

discovery, including drug design, chemical synthesis, drug screening, polypharmacology, and drug 

repurposing. Modified from [147]. 

 

 

AI is a technology-based system that uses a variety of advanced tools and networks to simulate 

human intelligence. AI makes use of systems and software that can interpret and learn from data 

in order to make independent decisions in order to achieve specific goals. Its applications are 

continuously being extended in the pharmaceutical field [147]. To date, rapid advances in AI-

guided automation are on track to completely transform society's work culture [148,149]. 

 

AI encompasses various method domains, including reasoning, knowledge representation, 

solution search, and machine learning (ML). ML employs algorithms that can recognize patterns 

within a set of data that has been further classified. Deep learning (DL) is a subfield of machine 

learning that uses artificial neural networks (ANNs). These are made up of a network of 

interconnected sophisticated computing elements called "perceptons," which are analogous to 

human biological neurons and mimic the transmission of electrical impulses in the brain [150]. 

ANNs are a collection of nodes that receive separate inputs and convert them to outputs, either 

singly or in groups, using algorithms to solve problems [151]. ANNs involve various types, 
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including multilayer perceptron (MLP) networks, recurrent neural networks (RNNs), and 

convolutional neural networks (CNNs), which utilize either supervised or unsupervised training 

procedures [152]. 

 

AI in drug screening 

Physicochemical properties of a drug, such as a solubility, partition coefficient (logP), degree of 

ionization, and intrinsic permeability, indirectly impact its pharmacokinetic properties and 

specificity for a target receptor family must be taken into account when developing a new drug 

[153]. Physicochemical properties can be predicted using a variety of AI-based tools. For 

example, ML uses large data sets generated during previous compound optimization to train the 

program [154]. In addition, molecular descriptors, such as SMILES strings, potential energy 

measurements, electron density around the molecule, and atom coordinates in 3D, are used in 

drug design algorithms to generate feasible molecules via DNN and predict their properties [155]. 

 

Prediction of bioactivity and toxicity 

The affinity of drug molecules for the target protein or receptor determines their efficacy. Drug 

molecules that do not interact with or have a high affinity for the targeted protein will not be able 

to provide a therapeutic response. It is also possible that developed drug molecules interact with 

unintended proteins or receptors, resulting in potential toxicity. As a result, DTBA (drug-target 

binding affinity) is critical for predicting drug-target interactions. AI-based methods can assess a 

drug's binding affinity by looking at the features or similarities between the drug and its target. To 

determine the feature vectors, feature-based interactions recognize the chemical moieties of the 

drug and the target. On the other hand, in a similarity-based interaction, the similarity of the drug 

and the target is taken into account, and it is assumed that similar drugs will interact with the 

same targets [156]. 

 

Many strategies involving ML and DL have been used to determine DTBA. ML-based approaches 

such as Kronecker-regularized least squares (KronRLS) evaluate drug and protein molecule 

similarity [157]. Drug features from SMILES, ligand maximum common substructure (LMCS), 

extended connectivity fingerprint, or a combination thereof can also be considered [156]. For 

instance, matched molecular pair (MMP) analysis [158] investigates a single localized change to 

a drug candidate and its impact on the molecular properties and bioactivity of the molecule. It is 
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commonly used in quantitative structure-activity relationship (QSAR) studies [158]. In a typical 

study, MMPs for de novo design tasks are generated using retrosynthesis rules. A candidate 

molecule has a static core plus two fragments (which describe the transformation) [159]. After 

that, the core and these fragments are encoded. Finally, three previously used machine learning 

(ML) methods, namely random forest (RF) [160], gradient boosting machines (GBMs) [161], and 

Deep Neural Networks (DNNs) [162], are used to extrapolate to new transformations, fragments, 

and modifications of the static core. These models, for example, were trained using IC50 data from 

five different kinases and a bromodomain-containing protein [163]. DNN outperformed RF and 

GBM in terms of overall performance in predicting compound activity [163]. With the dramatic 

increase in public databases containing a large number of structure–activity relationship (SAR) 

analyses (such as ChEMBL and Pubchem), MMP with ML has been used to predict many 

bioactivity properties such as oral bioavailability [164], distribution coefficient (logD) [165,166], 

intrinsic clearance [167], absorption, distribution, metabolism, and excretion (ADME) [165,168], 

and mode of action [169]. 

 

AI can also be employed to predict toxic effects and, thus, to avoid undesirable characteristics of 

any drug molecule. In order to predict toxicity, preliminary studies using cell-based in vitro assays 

are frequently used, followed by animal studies to determine a compound's toxicity, increasing 

the cost of drug development. LimTox, pkCSM, admetSAR, and Toxtree are some of the AI web-

based tools that can help predict toxicity, decreasing the costs during drug development [154]. 

Advanced AI-based approaches look for similarities among compounds or project the toxicity of 

the compound based on input features. The Tox21 Data Challenge was a collaboration between 

the National Institutes of Health (NIH), the Environmental Protection Agency (EPA), and the US 

Food and Drug Administration (FDA) to test several computational techniques for predicting the 

toxicity of 12,707 environmental compounds and drugs [154]. DeepTox, an ML algorithm, 

outperformed all other methods by identifying static and dynamic features within chemical 

descriptors of molecules, such as molecular weight (MW) and Van der Waals volume, and could 

accurately predict a molecule's toxicity using predefined 2,500 toxicophore features [170]. The 

DeepTox algorithm first normalizes the chemical representations of the compounds, from which 

a large number of chemical descriptors are computed and used as the input to ML methods. The 

descriptors are categorized as static or dynamic. Static descriptors include atom counts, surface 

areas, and the presence or absence of a predefined substructure in a compound [170][36]. The 

presence and absence of 2,500 predefined toxicophore features [38] and other chemical features 

extracted from standard molecular fingerprint descriptors are also calculated. Dynamic 
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descriptors are calculated in a prespecified way. Despite a potentially infinite number of different 

dynamic features, the algorithm keeps the dataset within manageable limits [36]. In typical test 

cases, the DeepTox algorithm shows good accuracy in predicting the toxicology of compounds 

[36]. 

 

Prediction of the target protein structure 

As previously stated, it is critical to predict the target protein structure to design the drug molecule 

for selective disease targeting. Because the design is in accordance with the chemical 

environment of the target protein site, AI can assist in structure-based drug discovery by 

predicting the 3D protein structure, which can help predict the effect of a compound on the target 

as well as safety considerations prior to its synthesis or production [171]. AlphaFold, a DNN-

based AI tool, was used to analyze the distance between adjacent amino acids and the 

corresponding angles of the peptide bonds to predict the 3D target protein structure. It performed 

exceptionally well, correctly predicting 25 out of 43 structures using only primary protein 

sequences [172]. These results were significantly better than the second-place contester, which 

correctly predicted only three of 43 test sequences. AlphaFold relies on DNNs that are trained to 

predict the properties of a protein from its primary sequence. It predicts the distances between 

pairs of amino acids and the φ–ψ angles between neighboring peptide bonds. These two 

probabilities are then combined into a score which is used to estimate the accuracy of a proposed 

3D protein structure model. Using these scoring functions, AlphaFold explores the protein 

structure landscape to find structures that match predictions [172]. 

 

Predicting drug–protein interactions 

Predicting a drug interaction with a receptor or protein is critical for understanding its efficacy and 

effectiveness, allowing for drug repurposing and avoiding polypharmacology [171]. Various AI 

methods have successfully predicted ligand-protein interactions with high accuracy, resulting in 

improved therapeutic efficacy [171,173]. Wang et al. used a model based on support vector 

machines (SVMs) to discover nine new compounds and their interactions with four key targets. 

The model was trained on 15,000 protein-ligand interactions and was developed based on 

primary protein sequences and structural characteristics of small molecules [174]. Yu et al. used 

two random forests (RF) models with high sensitivity and specificity to predict possible drug-

protein interactions by combining pharmacological and chemical data and validating them against 

known platforms such as SVM. These modes could also predict drug-target associations, which 
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could be expanded to include target–disease, and target associations, speeding up the drug 

discovery process [175].  

 

AI's ability to predict drug-target interactions has also been used to aid in repurposing existing 

drugs and avoiding polypharmacy. When a drug is repurposed, it automatically qualifies for Phase 

II clinical trials [145]. This saves money because relaunching an existing drug costs ~$8.4 million 

versus ~$41.3 million for launching a new drug entity. [176]. Drug–protein interactions can also 

help predict the likelihood of polypharmacology, which is when a drug molecule interacts with 

multiple receptors, resulting in off-target side effects. [177]. AI can help design safer drug 

molecules by designing new molecules based on the principles of polypharmacology. [178]. SOM 

and other AI platforms and the vast databases available can be used to link multiple compounds 

to a variety of targets and off-targets. Bayesian classifiers and similarity ensemble approach (SEA) 

algorithms can be used to establish links between the pharmacological profiles of drugs and their 

possible targets [179]. Li et al. showed how to use KinomeX, an AI-based online platform that 

uses DNNs to detect polypharmacology in kinases based on their chemical structures. This 

platform employs a DNN that has been trained with over ~14 000 bioactivity data points derived 

from over ~300 kinases. Thus, it can investigate a drug's overall selectivity for the kinase family 

and specific subfamilies of kinases, which can aid in developing new chemical modifiers [180]. 

Ligand Express, Cyclica's cloud-based proteome-screening AI platform, is one notable example. 

Ligand Express is used to find receptors that can interact with a specific small molecule (whose 

molecular description is in SMILE string) and produce on- and off-target interactions. This aids in 

comprehending the drug's potential side effects [181]. 

 

On the other hand, Quantum Mechanics (QM) or QM/molecular mechanics (MM) hybrid methods 

are useful for predicting protein-ligand (drug) interactions in drug discovery [182,183]. These 

methods consider quantum effects for the simulated system (or region of interest in the case of 

QM/MM) at the atomic level, providing significantly higher accuracy than classical MM methods. 

Because MM methods only use simple energy functions based on atomic coordinates, the time 

cost of QM-based methods is much higher than that of MM methods [183,184]. The use of AI 

methods in QM calculations thus involves a tradeoff between QM accuracy and the lower time 

cost of MM models [185]. AI models have been trained to reproduce QM energies from atomic 

coordinates and outperform MM methods in calculation speed. AI is mostly used for atomic 

simulations and electrical property predictions. In contrast, DL has been used to predict the 

potential energies of small molecules, effectively replacing computationally demanding quantum 
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chemistry calculations with a fast ML method [185]. DFT (density functional theory) potential 

energies derived from quantum chemistry have been calculated and used to train DNNs on large 

datasets. In a study of two million elpasolite crystals, for example, the accuracy of an ML model 

improved with increasing sample size, reaching 0.1 eV/atom for DFT formation energies trained 

on 10,000 structures. The model was then used to evaluate compositional alternatives for a 

variety of properties [186]. 

 

The de novo drug design approach has been widely used to design drug molecules in recent 

years. The traditional method of de novo drug design is being phased out in favor of evolving DL 

methods, which have the advantages of less complicated synthesis routes and more 

straightforward prediction of novel molecule bioactivity [155]. Computer-aided synthesis planning 

can also suggest millions of structures that can be synthesized and predict multiple synthesis 

routes for each of them [187]. 

 

After a molecule has been virtually screened for potential bioactivity and toxicology, the search 

for the best chemical synthesis pathway to synthesize the drug candidate begins. This step is 

frequently difficult and inefficient. Despite knowledge of hundreds of thousands of transformation 

steps, novel molecules cannot be efficiently synthesized due to novel structural features or 

conflicting reactivities [188]. Retrosynthesis analysis searches for ‘backward' reaction pathways 

indefinitely until a set of simpler, readily available precursor molecules is obtained. [189]. Monte 

Carlo tree search (MCTS) [190] is the technique of choice for making branch decisions. Monte 

Carlo simulations employ random search steps with no branching until an optimal solution is 

discovered. Algorithms for computer-assisted synthesis planning (CASP) [191,192] were 

previously developed to aid retrosynthesis analysis, but they failed to gain widespread acceptance 

among chemists. These algorithms necessitate incorporating human knowledge into executable 

programs. However, manual encoding of chemistry does not scale to exponentially growing 

knowledge, and the results obtained from reaction databases frequently lacked chemical 

intelligence [189]. ML approaches trained on empirical data can now be used to (i) predict the 

likelihood of a transformation at a specific branching position and (ii) guide the selection of random 

steps. A predefined transformation rule can link the molecule (or an intermediate) to specific 

precursors at each transformation step. AI algorithms can be trained on the yields and costs of 

these transformation rules in the literature and then predict the most feasible retrosynthesis 

pathway for a given molecule. 
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A recently reported 3N-MCTS method [189] combines three different neural networks with MCTS 

to create a CASP workflow. Each network is in charge of a specific task: (i) an expansion node, 

(ii) a rollout node, and (iii) an update node. In the expansion node, the algorithm looks for new 

ways to transform the molecule (or an intermediate) in the past. It includes a ‘in-scope’ policy that 

evaluates the feasibility of a transformation using 12.4 million transformation rules from the 

literature [193]. The neural networks are trained to predict the best transformation for the 

molecule (or intermediate) in question, guiding the selection of expansion pathways. Because 

positive data dominate the literature, a transformation is thought to be less feasible if its reverse 

reaction is high yielding. 

Furthermore, selecting high-yielding transformations helps to eliminate the possibility of side 

products [189]. In the rollout node, the ‘in-scope’ policy is similar to that in the expansion node, 

except that only frequently reported transformation rules are used. During the expansion phase, 

this strategy allows for a slow and thorough search for the best transformation possibilities but a 

faster evaluation of position values during the rollout phase. The evaluation of a specific pathway 

is incorporated into the search tree in the update node. These nodes are used iteratively to search 

for transformations with the highest scores for a molecule submitted for retrosynthesis analysis 

and can eventually identify possible precursors for the entire reaction pathway [189]. 

 

The performance of MCTS on the test set of molecules was superior to that of other alternative 

algorithms. For example, MCTS solved 80% of retrosynthesis problems when a 5 s per molecule 

time limit was applied [189], and the rate of solving can exceed 90% if the time limit is raised to 

60 s. More impressively, the speed per molecule for 3N-MCTS is 20-fold faster than the traditional 

Monte Carlo method [189,194]. 

 

Grzybowski et al. developed the Chematica program [195], now renamed Synthia, which can 

encode a set of rules into the machine and suggest possible synthesizing routes for eight 

medicinally important target molecules. This program has shown to be effective in terms of 

increasing yield and lowering costs. It is also capable of providing alternative synthesizing 

strategies for patented products and assisting in the synthesis of compounds that have not been 

synthesized yet. Similarly, DNN focuses on organic chemistry and retrosynthesis rules, which, 

when combined with MCTS and symbolic AI, improves reaction prediction and the drug discovery 

and design process, which is much faster than traditional methods [189,196]. 
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AI use in de novo molecule design can benefit the pharmaceutical industry because of its 

numerous advantages, including online learning and simultaneous optimization of previously 

learned data and suggesting possible synthesis routes for compounds, resulting in a faster lead 

design and development [197,198]. 

 

Conclusions  

 

Computational methods such as protein structure prediction methods, virtual high-throughput 

screening, and docking methods have been used to accelerate the drug discovery process. They 

are now routinely used in academia and the pharmaceutical industry. These methods are well 

established and have shown great promise and success. They are now a valuable integral part of 

the drug discovery pipeline. Computationally predicting and filtering large molecular databases 

and selecting the most promising molecules to be optimized is less expensive and faster. 

  

Only molecules with the predicted biological activity will be tested in vitro. This saves money and 

time by lowering the risk of committing resources to potentially ineffective compounds that would 

otherwise be tested in vitro.  

 

Virtual screening methods based on structure and ligand are widely used, with most applications 

focusing on enzyme targets [199]. Even though structure-based methods are more commonly 

used, ligand-based methods have resulted in the discovery of many potent drugs. Virtual HTS 

(VHTS) methods are useful for quickly screening large repositories of small molecules and 

selecting a smaller number of potential drug-like molecules for testing. These methods can help 

to significantly reduce the cost associated with the drug discovery process by reducing the 

number of possible molecules that need to be tested experimentally. Several studies have shown 

that VHTS can identify molecules that conventional high-throughput screening (HTS) experiments 

cannot. [200]. As a result, VHTS methods are frequently used in conjunction with HTS methods. 

These methods select molecules that are more likely to be drug candidates and should be 

considered when selecting hits.  
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Proteins are typically represented as static structures in experimental methods. On the other 

hand, proteins are highly dynamic in nature, and protein dynamics play an important role in their 

functions. Computational modeling of proteins' flexibility is of great interest, and several ensemble-

based methods in structure-based drug discovery have emerged [201]. Molecular dynamics 

simulations are frequently used to generate target ensembles that can then be used in molecular 

docking [201].  

 

Hybrid structure-based and ligand-based methods are also gaining popularity.  These combined 

(ligand-based and structure-based) drug discovery methods are appealing because they can 

enhance the benefits of both methods while also improving the protocols. [202,203]. CADD has 

had a significant impact on developing various therapeutics that are currently being used to treat 

patients. Despite its successes, CADD faces some challenges, including the accurate 

identification and prediction of ligand binding modes and affinities. The phenomenon of drug 

polymorphism is one of the most difficult aspects of drug discovery [204]. Drug polymorphism 

occurs when a drug has multiple forms that are chemically identical but structurally different. This 

can have a significant impact on the success of a drug. Solubility, stability, and dissolution rates 

of different polymorphic forms of a drug with different solid-state structures can differ. Drug 

polymorphism can have an impact on drug bioavailability, efficacy, and toxicity. If a different 

polymorphic form of the same drug is administered, one polymorphic form responsible for a 

specific drug effect may differ. It is possible to characterize drugs with different polymorphic forms 

using techniques such as spectroscopy.  

 

Protein-protein interactions (PPIs) present yet another difficulty in drug discovery. PPIs play a role 

in a variety of cellular processes and biological functions that have been linked to disease. As a 

result, small molecule drugs targeting PPIs are essential in drug discovery [205]. The 

development of therapeutics that can either disrupt or stabilize these interactions is of interest.  

However, designing inhibitors that can directly interrupt PPIs is complex. Most drugs are designed 

to target a specific binding site on a protein of interest. Protein–protein-interacting surfaces, on 

the other hand, have more extensive interfaces and are more exposed. As a result, their binding 

sites are frequently poorly defined. Finding the sites that can be targeted for PPI inhibition is thus 

difficult and crucial.  
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The field of CADD is constantly evolving, with advancements being made in all areas. Scoring 

functions, search algorithms for molecular docking and virtual screening, hit optimization, and 

assessment of ADME properties of potential drug candidates are among the areas of focus. With 

the current successes, computational methods have a promising future in assisting in discovering 

many more therapeutics.  

 

Finally, the advancement of AI, along with its remarkable tools, is constantly aimed at reducing 

challenges faced by pharmaceutical companies, affecting the drug development process as well 

as the overall lifecycle of the product, which might explain the rise in the number of start-ups in 

this sector [194]. The current healthcare sector is confronted with many complex challenges, 

such as rising drug and therapy costs, and society requires significant changes in this area. 

Personalized medications with the desired dose, release parameters, and other required aspects 

can be manufactured according to individual patient need using AI in pharmaceutical product 

manufacturing [206]. Using the latest AI-based technologies will reduce the time it takes for 

products to reach the market, but it will also improve product quality and overall safety of the 

manufacturing process and provide better resource utilization and cost-effectiveness, highlighting 

the importance of automation [207]. 
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Abstract 

 

CD44 promotes metastasis, chemoresistance, and stemness in different types of cancer and is a 

target for the development of new anti-cancer therapies. All CD44 isoforms share a common N-

terminal domain that binds to hyaluronic acid (HA). Herein, we used a computational approach 

to design new potential CD44 antagonists and evaluate their target-binding ability. By analyzing 

30 crystal structures of the HA-binding domain (CD44HAbd), we characterized a subdomain that 

binds to 1,2,3,4-tetrahydroisoquinoline (THQ)-containing compounds and is adjacent to residues 

essential for HA interaction. By computational combinatorial chemistry (CCC), we designed 

168,190 molecules and compared their conformers to a pharmacophore containing the key 

features of the crystallographic THQ binding mode. Approximately 0.01% of the compounds 

matched the pharmacophore and were analyzed by computational docking and molecular 

dynamics (MD). We identified two compounds, Can125 and Can159, that bound to human 

CD44HAbd (hCD44HAbd) in explicit-solvent MD simulations and therefore may elicit CD44 

blockage. These compounds can be easily synthesized by multicomponent reactions for activity 

testing and their binding mode, reported here, could be helpful in the design of more potent CD44 

antagonists. 
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Introduction 

 

CD44 is a transmembrane glycoprotein that functions as a receptor for the glycosaminoglycan 

hyaluronic acid (HA), an integral component of the extracellular matrix [1,2]. CD44 is expressed 

on multiple cells, including embryonic stem cells and differentiated cells, mediating cellular 

functions such as adhesion, homing, migration, and extravasation [1,2]. CD44 transcript can 

undergo alternative splicing, generating multiple isoforms of CD44, but all of them conserve intact 

the HA-binding domain (HAbd) and, therefore, can be activated by HA [3]. 

 

CD44 expression correlates with unfavorable clinical outcomes in multiple types of cancer [4–8]. 

CD44 activation by HA in cancer cells induces transcriptional and epigenetic changes that 

stimulate signaling pathways controlling invasiveness and metastasis, chemoresistance, and 

stemness [9–11]. For instance, in breast cancer cells, HA binding to CD44 induces epithelial–

mesenchymal transition, which increases cell migration and invasive capacity [12], and promotes 

survival under detached conditions during the development of metastasis [13]. Moreover, CD44 

is expressed in cancer stem cells that survive chemotherapy in models of glioblastoma [14], 

breast [15], pancreatic [16], colorectal [17], and prostate [18] cancer. Consistent with its key 

role in cancer progression, CD44 silencing impairs chemoresistance, clonogenicity, 

tumorigenicity, and/or metastasis [19–21]. Therefore, blockage of HA-binding to CD44 has been 

proposed as a potential therapeutic strategy for cancer. 

 

The CD44HAbd is in the N-terminal end of the extracellular region of the receptor. Structural 

analysis of murine CD44HAbd crystals showed that only 13 residues along a shallow groove 

mediate HA-binding [22]. The residues Arg41, Tyr42, Arg78, Tyr79 in hCD44HAbd (Arg45, 

Tyr46, Arg82, Tyr83 in mCD44HAbd) have been previously described as essential for HA-binding 

by directed mutagenesis experiments or crystal analysis [23,24]. Given the lack of an obvious 

druggable pocket in the HA-binding site, small molecule inhibitors that interact with allosteric sites 

within the CD44HAbd have been developed [24–27]. However, those compounds bind to 

CD44HAbd in the high micromolar or even low millimolar range, limiting further applications. 

Therefore, there is a need for new CD44 antagonists with improved affinity, efficacy, and 

physicochemical properties for future effective translation to the clinic. 

Herein we designed and evaluated the binding of new potential CD44 antagonists using an in 

silico strategy. We identified that small molecules sharing a 1,2,3,4-tetrahydroisoquinoline (THQ) 
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motif are frequently co-crystallized with CD44HAbd in a subdomain adjacent to the residues that 

are essential for HA-binding. By computational combinatorial chemistry (CCC), we generated 

libraries including more than 168,000 THQ-containing molecules. The new molecules (i) could be 

easily synthesized by multicomponent reactions, (ii) are diverse, and (iii) display drug-like 

physicochemical properties. We selected a subset of 163 candidates matching the key features 

of the reported THQ binding mode for further analysis by computational docking. The nine 

candidates with the highest frequency of poses reproducing the reported THQ binding mode were 

analyzed by molecular dynamics (MD). Our results allowed the identification of two compounds 

predicted to stably bind to hCD44HAbd in an aqueous solution. Those compounds may be useful 

as CD44 antagonists, and the information of their binding mode can be employed as the basis for 

the design of new bioactive molecules that target CD44. 

 

Materials and Methods 

 

Sequence and Structural Alignments 

Human and murine CD44 binding-domain (hCD44HAbd and mCD44HAbd, respectively) crystal 

structures were retrieved from the Protein Data Bank (PDB). All structures were aligned using 

UCSF Chimera 1.14 [28] and the A chain of the entry 1UUH as reference. RMSD was calculated 

for alpha-carbons, backbone, and all atoms. Sequence alignments were performed using the 

pairwise2 module of Biopython 1.78 [29]. For small-molecule atom-based alignment and 

comparison, a python tailored-made script was created employing the Cheminformatics Toolbox 

RDKIT (http://www.rdkit.org, accessed date 25 February 2021) and the Pymol 2.4 API (PyMOL 

Molecular Graphics System, Schrödinger, LLC). The script is available 

at https://github.com/AngelRuizMoreno/CD44_antagonist (accessed date 25 February 2021). 

 

The 3D Pharmacophore Modeling 

The 3D pharmacophoric model was generated by using 21 mCD44HAbd crystal structures 

containing small molecules with a THQ motif (Table S1) and the Pharmit server [30]. The most 

relevant molecular features were chosen by visual inspection, and their 3D coordinates in the 

mCD44HAbd pocket were set using the threshold of RMSD < 0.5 Å among THQ atoms. 
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Combinatorial Computational Chemistry 

The creation of compound libraries by the CCC approach was carried out using Reactor 20.17 

from ChemAxon (http://www.chemaxon.com, accessed date 25 February 2021). The Ugi 

Tetrazole and Ugi 3 component reactions were selected as synthesis routes to generate 

compounds synthetically accessible by MCR. For the CCC experiments, libraries of building 

blocks were made by searching highly diverse and low-cost commercially available starting 

materials using the sci-finder platform (https://scifinder.cas.org). The building blocks library 

consisted of 32 substituted 1,2,3,4-THQ, 4 aldehydes, and 657 isocyanides. 

 

Cheminformatic Analysis 

The resulting compounds from CCC were stored in two different libraries according to their 

synthesis origin. For comparison, the DrugBank dataset was included in the cheminformatic 

analysis. For each library, we computed tSNE, NPR, PCA, and Ro5. The tSNE analysis was 

computed using the Tanimoto similarity among the MACCS keys for each molecule using RDKIT; 

then, the tSNE calculation was conducted using Scikit learn 0.23.1 [31], implementing two 

components and a perplexity value of 50. After tSNE analysis, a silhouette-based k-means 

clustering was performed using Scikit learn 0.23.1 [31]. Similarly, the PCA was performed using 

Scikit learn and employing ten selected non-redundant molecular descriptors of 30 different 2D 

and 3D molecular descriptors, which were computed using RDKIT. The NPR analysis was carried 

out by calculating the NPR1 and NPR2 descriptors for the molecules. Finally, the Ro5 analysis 

was performed by calculating the molecular weight, LogP, number of hydrogen bond donors and 

acceptors, and TPSA. 

 

The 3D Pharmacophoric Matching 

We generated 20 energetically favorable conformers for each compound within our working 

libraries by using the Mcnf module of Moloc [32]. All the conformers were aligned against the 

THQ-atoms and pharmacophore using the Pharmit server [30]. The best conformers were 

selected using an RMSD threshold of 0.5 Å against the pharmacophoric model descriptors. 

Finally, a local optimization was performed using the mCD44HAbd surface using Moloc [32,33], 

followed by visual inspection. The molecules that after local optimization kept the 3D 

pharmacophoric matching (RMSD < 0.5 Å) were selected for further studies. 
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Molecular Docking 

According to the identity and RMSD values, we found a very high similarity between all hCD44bd. 

Therefore, we choose the first hCD44bd crystal reported (1UUH). Regarding the mCD44HAbd 

our data also indicated a very high similarity among all available structures. Nonetheless, for 

docking experiments, we focused on the mCD44HAbd containing THQ-molecules, and we 

choose the crystal 5BZM, which contains a THQ-molecule displaying all molecular features 

according to our pharmacophoric model. 

 

For the validation of the molecular docking protocol, the crystal structure of mCD44HAbd (5BZM) 

was used as the receptor and 21 co-crystallized THQ-containing molecules as ligands. For virtual 

screening, proteins hCD44HAbd (1UUH) and mCD44HAbd (5BZM) were employed as receptors, 

and the 163 molecules selected by pharmacophore filtering as ligands. Secondary dockings were 

carried out into additional pockets identified Fpocket v3.0 [34] in ligand-free hCD44HAbd 

(1UUH), HA-bound mCD44HAbd (2JCR), or THQ-containing molecule mCD44HAbd (5BZM). 

Proteins were prepared by removing co-crystallized waters, solvent molecules, and adding 

charges and hydrogens using Chimera 1.14 [28]. Ligands were prepared by adding explicit 

hydrogens and tautomeric states at pH 7.4. and generating 3D coordinates with Standardized 

19.20.0 (http://www.chemaxon.com, accessed date 25 February 2021). For virtual screening, 

docking was performed into hCD44HAbd and mCD44HAbd within a sphere with 8 Å of radius 

and center in the Thr27 or Thr31, respectively. Secondary dockings were carried out using as 

reference the coordinates of each additional pocket identified. For each ligand, 50 runs of the 

genetic algorithm were performed for the conformational search. Each pose was evaluated 

employing the PLP Chemscore scoring function established in the GOLD software from the 

Cambridge Crystallographic Data Center (CCDC) [35]. For each compound, the best 25 poses 

were saved for analysis. Finally, hierarchical clustering analysis of the poses was performed using 

Scipy 1.5.2 [36]. 

 

Molecular Dynamics 

The MD simulations were carried out using Gromacs 5.0.4 [37]. Selected candidates and 

hCD44HAbd (1UUH) were parameterized using the CGenFF and CHARMM36 force field, 

respectively, through the CHARMM-GUI (http://www.charmm-gui.org/, accessed date 25 

February 2021) [38]. The systems were built by adding TIP3P water molecules to the ligand-

hCD44HAbd complexes, neutralizing ions, and establishing periodic boundary conditions (PBC) 
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by using the multicomponent assembler of the CHARMM-GUI. Before production, the systems 

were minimized and then equilibrated under an NVT assembly. During the production phase, an 

NPT assembly was performed at 310.15 K for 100 ns saving velocities, energy, and positions 

every ten ps. Water molecules displacement was computed by quantifying the number of water 

molecules within a 6 Å radius sphere covering the THQ-binding pocket, every frame of the 

simulation. Analysis of ligand-target interactions was carried out by a python tailored-made script 

(https://github.com/AngelRuizMoreno/CD44_antagonist, accessed date 25 February 2021) 

implementing MDAnalysis [39] and PLIP [40]. 

 

Interactions Free Energy Calculations 

Full-length candidate-hCD44HAbd trajectories were employed for free energy calculations using 

the molecular mechanics energies combined with the Poisson–Boltzmann surface area 

continuum solvation (MM/PBSA) [41] by g_mmpbsa v1.6 package [42]. Computation of the 

potential energy in vacuum, polar solvation energy, and non-polar solvation energy were 

performed to calculate the average binding energy. Per-residue energetic decomposing and 

maps were created to show the contribution of each residue to the binding energy. 

 

Results 
 

Identification of a Target Subdomain within the CD44HAbd and Generation of a THQ-Based 

Pharmacophore 

Aiming to identify relevant regions for drug design, we compared the 30 crystal structures 

available in Protein Data Bank (PDB) that comprise the HA-binding domain of human (three 

structures) or mouse (27 structures) CD44 (Table S1). The three human structures correspond 

to the apo form of CD44HAbd. For mCD44HAbd, 2JCP represents the apo-CD44HAbd, three 

structures are co-crystallized with HA (2JCQ, 2JCR, and 4MRD), and the rest are co-crystallized 

with molecules weighting 100–250 Da. Within the structures containing small molecules, 21 of 

them are co-crystallized with compounds containing the THQ motif. Sequence identity analysis 

showed 100% identity among all hCD44HAbd, 99–100% among mCD44HAbd, and 86–88% 

between hCD44HAbd and mCD44HAbd (Figure S1A). Due to the high identity among 

CD44HAbd structures, we compared all of them in a structural analysis. The root mean square 

deviation (RMSD) profiles for alpha-carbons and full atoms showed the higher deviations on some 

residues previously reported as essential for HA-binding by direct mutagenesis experiments 

(Arg41, Tyr42, Arg78, and Tyr79) in hCD44HAbd [23] (Figure S1B). 
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Analysis of the 21 structures co-crystallized with THQ-containing small molecules identified that 

all these ligands bind to a pocket contiguous to the HA-binding domain (Figure 1A). Their binding 

drives a shift in multiple residues of mCD44HAbd, including some of the key residues participating 

in HA-binding, namely, Arg45, Arg82, and Arg155 (Figure 1B). Alignment of THQ-composing 

atoms showed that the binding mode is highly conserved among the 21 crystals analyzed (Figure 

1C). Thus, we model a pharmacophore from the co-crystallized molecules containing the THQ 

substructure. The generated model included four pharmacophoric descriptors—aromatic, two 

hydrogen bond donors, and a positively charged ion (Figure 1D). 

 

Figure 1. Generation of a 1,2,3,4-tetrahydroisoquinoline (THQ)-based pharmacophore. (A) CD44HAbd (white surface) 

has a subdomain where the THQ-containing molecules can bind (blue) and partially overlaps with the region containing 

the key residues for CD44–HA binding (Arg45, Tyr46, Arg82, and Tyr83-orange-). HA is shown in pink. (B) Spatial 

positions of the lateral chain of residues Asn29, Glu41, Gly44, Arg45, Arg82, and Arg155 from mCD44HAbd in the 

HA-bound form (residues shown as beige sticks; HA in pink) vs. the form bound to a THQ-containing molecule (residues 

shown as grey sticks; ligand in blue). Dashes represent the residue shifts between both states. (C) Structural alignment 

and root mean square deviation (RMSD) comparison of the THQ scaffold (orange) of the molecules co-crystallized with 

mCD44HAbd. (D) Pharmacophore model generated using THQ-containing molecules as a template. Purple sphere: 

aromatic; yellow sphere: hydrogen bond donor; white sphere: merged hydrogen bond donor and positively charged 

ion. A molecule with the THQ substructure is included (blue) to show the interacting residues in CD44 (grey sticks) and 

its proximity to residues essential for HA-binding (orange sticks). 
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Generation of THQ-Containing Libraries 

To identify new compounds with the potential capability to interfere with the CD44–HA binding, 

we employed CCC to generate two libraries of compounds that include the THQ scaffold. To 

facilitate the synthesis of our compounds in subsequent research, we decided to use 

multicomponent reactions (MCR) synthesis routes. Considering the characteristics of the THQ-

containing small molecules co-crystallized with mCD44HAbd, we implemented the Ugi four-

component tetrazole synthesis [43,44] and Ugi three-component reaction [45] for our CCC 

experiments. For each MCR route, we obtained 84,096 different compounds (Scheme 1). 

 

Scheme 1. CCC strategy for the generation of the test libraries. 

 

Cheminformatic Analysis of CCC Compounds 

In order to explore the chemical diversity and physicochemical properties of the designed 

compounds, we employed a series of cheminformatic analyses, calculating 30 different 2D/3D-

shape and physicochemical molecular descriptors. For comparison, we also studied the 

compounds within DrugBank Database 5.0.10, a library of 1542 FDA-approved small molecules 

[46]. The diversity analysis of 1500 randomly sampled compounds of each library, using t-

distributed stochastic neighbor embedding (tSNE) employing Molecular ACCess System 

(MACCS) keys [47], showed that the compounds from the tetrazole and Ugi libraries display 

similar structural diversity to the compounds inside DrugBank. The K-means clustering showed 
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that compounds from the CCC and DrugBank libraries distribute similarly on five out of six 

clusters, whereas the sixth cluster was enriched in DrugBank small molecules (Figure 2A). 

 

Figure 2. Characteristics of the generated libraries. (A) t-distributed stochastic neighbor embedding (tSNE) chart of 

structural diversity analysis for the compounds generated by Ugi three-component reaction (Ugi) or Ugi four-

component tetrazole synthesis (Tetrazole). For comparison, a database containing FDA-approved molecules was 

included (DrugBank). (B) Normalized principal moments ratio (NPR) analysis. (C) Principal components analysis (PCA) 

for molecular and physicochemical descriptors. (D) Lipinski’s rule of five (Ro5) analysis, which included molecular 

weight (MolWt), logarithmic partition coefficient (LogP), number of hydrogen bond donors (NumHDonors) and 

acceptors (NumHAcceptors), and the topological polar surface area (TPSA). A gray line represents each compound, 

and the density indicates the frequency of compounds. 

 

A normalized principal moments ratio (NPR) analysis was conducted to assess the molecular 

shape distribution of compounds. The results showed that the minimum energy conformers of the 

compounds from the three libraries presented similar 3D shapes, predominantly rod- and disk-

shaped, with only a few compounds displaying a spherical shape (Figure 2B). We also performed 

a principal components analysis (PCA) employing non-redundant molecular descriptors selected 

by their correlation (Figure S2). PCA showed that the compounds in CCC-generated libraries 

possess similar molecular descriptors and physicochemical properties to those of the DrugBank 

Database, displaying a dense accumulation of the compounds at the origin of the principal 

components (PCs), PC 1 and PC2. Topological polar surface area (TPSA) and logarithmic 

partition coefficient (LogP) were the primary descriptors, correlating positively with PC1 and PC2 

and negatively with PC2, respectively (Figure 2C). 
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Finally, the extended Lipinski’s rule of five (Ro5) analysis showed that most newly designed 

compounds comply with the physicochemical properties required for oral use [48]. Interestingly, 

the CCC-generated libraries displayed a more homogeneous distribution inside the extended Ro5 

than the group of compounds in DrugBank (Figure 2D). 

 

Virtual Screening 

To identify new compounds with the theoretical ability to bind CD44, we generated expanded 

libraries containing 20 energetically favorable conformers for each compound within the CCC-

generated libraries, retrieving 3,363,840 conformers. The expanded libraries were screened by 

alignment to the pharmacophore, followed by local optimization in CD44HAbd and visual 

inspection. We identified 864 conformers from 163 unique compounds that matched the selection 

criteria (Figure 3A). Only those molecules were employed for the subsequent experiments. 
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Figure 3. Virtual screening of THQ-containing molecules as potential CD44 antagonists. (A) The compounds within the 

CCC-generated libraries were sequentially filtered using the depicted strategy. (B) RMSD analysis comparing the THQ 

position in crystals vs. the poses obtained by docking of 163 unique compounds to human or mouse CD44HAbd. (C) 

Analysis of the frequency of poses with RMSD < 2 Å allowed the selection of nine candidates (orange dots). (D) 

Structure of the nine candidates selected by virtual screening with the THQ motif highlighted in blue. 

 

The docking protocol employed for filtering was validated by docking the 21 THQ-containing 

molecules co-crystallized with mCD44HAbd into protein 5BZM. We observed that the crystal pose 

was more frequently reproduced in compounds with smaller substituents on the THQ motif (Figure 

S3A) Thus, additional analysis of candidates considered only the position of the THQ atoms. 

 

The 163 candidates were docked against hCD44HAbd and mCD44HAbd for comparison. For 

each candidate/receptor pair, the docking scores of 25 poses were analyzed (Figure S4). The 

docking poses were compared to the coordinates of THQ crystalized on mCD44HAbd since none 

of the available human crystal structures contained THQ-derived compounds. We focused on the 

compounds showing docking poses matching the crystallized THQ atoms with RMSD < 2 Å 

(Figure 3B). We selected the compounds with the highest frequency of matching poses, ranging 

from 8/50 to 34/50 (Figure 3C). For the nine selected molecules (Figure 3D and Table S2), we 

assessed the THQ-binding site selectivity by docking the compounds into four/five additional 

pockets using three relevant forms of the receptor: apo-hCD44HAbd, HA-bound mCD44HAbd, 

and THQ-containing molecule mCD44HAbd. Except for the candidate (Can) 142, all molecules 

were predicted to bind the region of interest with better or similar affinity than other pockets 

(Figure S5). We then performed pose clustering analysis (Figure S6) to identify the best pose for 

molecular dynamics (MD) simulations. 

 

Molecular Dynamics and Free Energy Calculation 

We performed solvent explicit MD simulations to characterize the binding of the selected 

candidates to hCDHA44. The apo-hCD44HAbd was included as a control. Our analysis focused 

on the THQ binding site reported for mCD44HAbd (Figure 4A). By quantifying the water 

molecules displacement in the selected region, we identified that candidate Can58, Can133, 

Can141, Can142, and Can150 left the cavity during the simulation. Furthermore, Can58, 

Can142, and Can150 moved from the binding site at the early steps of the MD simulation. On the 

other hand, three compounds, (Can125, Can140, and Can159) remained on the binding site 

during the 100 ns of simulation and maintained a constant number of local water molecules 
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(Figure 4B). Interestingly, the global backbone RMSD analysis of the systems with those three 

candidates showed a different profile than the one generated by apo-CD44HAbd (Figure 4C) or 

by systems with other candidates (Figure S7). Additionally, a shift on some residues was observed 

on the root mean square fluctuation (RMSF) profile generated for Can125 (Figure 4D). 

 

Figure 4. Molecular dynamics (MD) analysis identified Can 125 as a potential CD44 antagonist. (A) Spatial 

representation of the analyzed pocket in hCDHAbd. Inset shows the lateral chains of residues reported as essential for 

HA-binding (orange sticks) or those that mediate the interaction with the THQ-containing compounds employed for 
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pharmacophore modeling (blue sticks). (B) Water molecules displacement analysis for the nine candidates shown 

in Figure 3D. (C) Pairwise backbone RMSD matrix along 100 ns of MD simulation from systems including candidates 

with stable binding to hCD44HAbd. The unliganded protein (apo-CD44) and the system with Can58 are included for 

comparison. (D) Alpha-carbon RMSF analysis for the systems presented in C. 

 

 

The frequencies of molecular interactions generated by Can125, Can140, and Can159 were 

studied during the whole simulation; Can58 was considered in the analysis for comparison (Figure 

S8). As expected from the water analysis, Can58 showed a low frequency of interactions in the 

THQ binding site, which included water bridges and hydrogen bonds with Arg150 and Glu75 

(Figure 5A,B). Of the candidates studied by MD, Can125 formed the highest number of 

interactions, the most frequent were hydrogen bonds with Arg41 and Glu37, Van der Waals 

interactions with Arg150, Arg78, and Thr27, and water bridges with Arg78 and Glu37 (Figure 

5A,C). Can140 showed Van der Waals interactions with residues Arg150, Asn25, and Phe74 

predominantly, but it was also able to form water bridges with Arg78 and Glu37 (Figure 5A,D). 

Can159 showed a high frequency of π-cation, and hydrogen bonds interactions with Arg150, and 

water bridges with Arg78, and Arg150. Moreover, the Can159 also displayed the frequent 

formation of Van der Waals interactions with Asn25 (Figure 5A,E). 
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Figure 5. Identification and importance of residues mediating compound binding. (A) Types of interactions that support 

stable candidate/hCD44HAbd interactions and their frequency. Note that Can58, presented here for comparison, left 

the binding site during the simulation. (B–E) The 3D molecular interactions of a representative frame from MD simulation 

of the complexes between Can58 (B), Can125 (C), Can140 (D), and Can159 (E) with hCD44HAbd (gray sticks). (F) 
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Per-residue energy decomposition for Can125. Most positive values correspond to His35 and Glu37, and most negative 

values to Asn25, Thr27, Arg41, and Arg150. 

 

Calculation of the binding free energy (Table 1) showed that Can140 has lower binding energy 

than Can125 and Can159, with the electrostatic energy as the component that contributes most 

to these differences. Nevertheless, Can140 showed large energy fluctuations during the 

simulations (Figure S9), suggesting a possible rearrangement of the binding pose during the 

experiment. In contrast, Can125 and Can159 showed stable energetic profiles (Figure S9). Per-

residue energetic decomposition (Figure 5F and Figure S10) revealed that Can125 binding to 

hCD44HAbd is supported by energetically favorable interactions with residues essential for HA-

binding (Arg41 and Arg78) or residues selected in the pharmacophore modeling (Arg150). 

Together, these observations suggest that Can125 is the most promising compound for biological 

evaluation. 

Table 1. Average free energy calculated from MD simulations (mean ± standard deviation). 

 

Compound Van der Waals 

Energy 

Electrostatic 

Energy 

Polar Solvation 

Energy 

SASA Energy Binding Energy 

Can58 −33.871 ± 35.190 −18.447 ± 29.906 47.592 ± 66.887 −4.667 ± 4.853 −9.393 ± 41.581 

Can125 −116.512 ± 15.988 −52.356 ± 23.296 123.555 ± 27.579 −13.962 ± 1.252 −59.274 ± 17.744 

Can140 −96.931 ± 36.947 −128.983 ± 66.843 106.522 ± 90.455 −12.078 ± 4.022 −131.470 ± 41.310 

Can159 −99.395 ± 18.056 −34.928 ± 25.315 112.733 ± 40.928 −11.318 ± 1.938 −32.908 ± 17.750 

 

Discussion 

 

Due to the essential physiological and pathological roles of CD44, several crystal structures of its 

HAbd have been solved, either in the unligated form (apo) or in complex with HA. Our structural 

analysis of the crystals available at PDB corroborated the previously identified shifts in residues 

participating in HA-binding, including Arg41, Tyr42, Arg78, and Tyr79 in hCD44HAbd, and Arg45, 

Tyr46, Arg82, and Tyr83 in mCD44HAbd [22–24,49]. We found the shifts in Arg41 and Arg78 as 

particularly important for drug design because (i) the shift in Arg41 has been identified as a trigger 

for the conversion of high (active) to low (inactive) affinity conformations of CD44HAbd [22] and 

(ii) both residues are close to a pocket that binds to small molecules with the THQ motif and suffer 

conformation changes induced by ligand binding. 
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The THQ-binding pocket has been employed for the development of molecules that display a 

similar affinity for human or mouse CD44HAbd (ranging from 0.4 µM to 6.9 µM for hCD44HAbd, 

and 0.5 µM to 11.2 µM mCD44HAbd) [24]. Thus, we used 21 murine crystals containing THQ-

based molecules for developing a pharmacophore that contained the key interactions mediating 

the binding of those compounds to mCD44HAbd and hypothesized that the model could be used 

in the identification of new antagonists for the human version of the receptor. 

 

By using MCR-based CCC, we also generated libraries of easily synthesizable compounds that 

contain the THQ substructure. MCR are one-pot reactions in which two or more starting materials 

are used simultaneously; thus, most of the atoms from the initial building blocks are incorporated 

into the final product of the reaction [50,51]. The Ugi four-component tetrazole synthesis [43,44] 

and Ugi three-component reaction [45] are well described, easy to perform, and have been 

suggested as synthesis methods for diverse drug-like molecules [51]. Additionally, we selected 

building blocks that are commercially available at low-cost, which will allow compound synthesis 

and activity evaluation in further studies. Chemoinformatic characterization of the generated 

databases showed that the compounds are highly diverse but contain similar structural and 

physicochemical characteristics to those of marketable molecules. The DrugBank Database 

drugs frequently adopt rod- and disc-shapes [52] and comply with Lipinski’s Ro5 [48,53]. The 

compounds within our CCC-generated libraries predominantly displayed these shapes, due to 

the high predominance of non-cyclic molecules [52,54], and have drug-like physicochemical 

characteristics. Molecules with the THQ substructure have been identified as nicotinic [55] or 

muscarinic [56] receptor antagonists, in addition to inhibitors of the angiotensin-converting 

enzyme [57]. Thus, the databases reported here may be useful starting points for identifying new 

compounds with those activities. 

 

A robust exploration of the conformational space allowed the selection of 163 unique candidates 

that matched with the pharmacophoric model. To overcome the lack of structural information 

regarding the binding mode of THQ-containing molecules to hCD44HAbd, we investigated the 

binding mode of the candidates in hCD44HAbd and mCD44HAbd by a docking protocol that was 

able to reproduce the crystallographic binding mode of most co-crystallized molecules with an all-

atoms RMSD threshold < 3Å. We identified nine candidates that reproduced the THQ 

crystallographic pose with an RMSD < 2Å and high frequency. A similar strategy, using a THQ-

based pharmacophore for screening identified potential anticonvulsant compounds [58]. 
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MD in explicit solvent further characterized the binding capability of the best nine candidates from 

virtual screening. We applied this method considering that the effects of solvation play a key role 

in forming molecular interactions in ligand–protein complexes. Thus, simulations employing 

explicit solvent allow the study of the most realistic and detailed level of physical chemistry of 

solvation [59]. We found that only three candidates (Can125, Can140, and Can159) remained 

bound to the THQ binding site during the entire MD simulation. In contrast, the Can142 left the 

THQ binding site at an early stage of the MD simulations; this observation might correlate with 

the fact that this candidate also showed higher docking scores for other pockets in CD44HAbd 

than the THQ-binding pocket (Figure S5). 

 

Moreover, the candidates that remained bound during all simulations induced drastic decreases 

in the RMSD values of the hCD44HAbd backbone compared with those of the apo structure. The 

ligand-induced transition to a less flexible conformation of the protein can modulate its activation 

and improve both the compound’s affinity and residence time [60,61]. Hence, a reduction in the 

target’s conformational dynamics is a desirable characteristic of a drug-like molecule. 

 

Although Can125, Can140, and Can159 displayed molecular interactions with residues involved 

in the HA-binding, including some reported as essential, only Can125 and Can159 reproduced 

the interactions predicted by the pharmacophore. Per-residue energetic decomposition 

corroborated that residues at the THQ-binding pocket support the binding of these two 

candidates to hCD44HAbd. However, only Can125 originated an RMSF profile that diverged from 

the unligated hCD44HAbd; specifically, it induced fluctuations in residues Arg41 and 120–126. 

The ligand-induced shift on Arg41 was different from the one identified on the crystal structures 

containing HA, which is considered essential for the transition from inactive to the active state in 

CD44 [22]. The changes in residues 120–126, which comprise a loop adjacent to the THQ-

binding pocket, may participate in target constraint since they do not contribute to the ligand-

binding energy. We hypothesize that the conformational changes induced by Can125, especially 

on Arg41, may impede the binding of the HA to hCD44HAbd. 

On the other hand, Glu37 contributed negatively to the binding energy of Can125, which may be 

caused by the method employed for energy calculations. Calculations performed in implicit 

solvent offer a fast approach for binding energy assessment but are not yet well parameterized 

for complex problems that consider the presence of all solvent molecules [59]. Thus, our 
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calculations may be underestimating the energetic contribution of water bridges and hydrogen 

bonds formed between the side chain of Glu37 and the methyl alcohol of Can125. Moreover, it is 

also possible that the proximity between opposite hydrogen bond acceptors (the carboxylate of 

Glu37 and the oxygen in the acetamide group of Can125) represents an unfavorable energetic 

contribution. This finding represents an opportunity to improve the chemical features of potential 

antagonists of CD44 to be proposed in future studies. 

 

We did not assess the possible effect of the best candidates in the binding of other CD44 ligands, 

as aggrecan, osteopontin, collagen, or CD74 [3,62,63], given the lack of corresponding structural 

data. However, we found that the THQ-binding site was able to allocate the best-ranked poses of 

Can125 and Can159 among all CD44HAbd pockets, suggesting a better affinity for this site over 

other regions of CD44HAbd. Thus, we speculate that these compounds may elicit competitive 

inhibition only for ligands with binding sites overlapping with that of HA, such as aggrecan [64]. 

On the other hand, we do not have evidence to propose that binding sites outside the CD44HAbd 

could be affected by the candidates, although the compounds restricted the conformational 

dynamics of CD44HAbd. 

 

Conclusions 

 

Our experiments demonstrate that the compounds Can125 [3-hydroxy-N-(3-hydroxybenzyl)-2-

(5-methyl-3,4-dihydroisoquinolin-2(1H)-yl)propenamide] and Can159 [2-(1-((1H-indol-5-

yl)methyl)-1H-tetrazol-5-yl)-2-(7-amino-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-ol] bind with 

high theoretical affinity to the murine and human structures of CD44HAbd and stabilize the 

conformational dynamics of the protein. Therefore, those compounds may elicit a blocking effect 

on HA-binding. 
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Supplementary Information 

 
Table S1. mCD44HAbd crystal structures employed for 3D pharmacophore modeling 

 

PDB Resolution Year Reference 

4MRE 1.58 Å 2014 [24] 

4MRF 1.55 Å 2014 [24] 

4MRG 1.69 Å 2014 [24] 

4NP2 1.75 Å 2014 [24] 

4NP3 1.61 Å 2014 [24] 

5BZC 1.95 Å 2016 To be published 

5BZE 1.31 Å 2016 To be published 

5BZF 2.77 Å 2016 To be published 

5BZG 2.19 Å 2016 To be published 

5BZH 1.95 Å 2016 To be published 

5BZI 1.32 Å 2016 To be published 

5BZG 1.40 Å 2016 To be published 

5BZK 1.40 Å 2016 To be published 

5BZL 1.23 Å 2016 To be published 

5BZM 1.25 Å 2016 To be published 

5BZN 1.23 Å 2016 To be published 

5BZO 1.22 Å 2016 To be published 

5BZP 1.23 Å 2016 To be published 

5BZQ 1.20 Å 2016 To be published 

5BZR 1.15 Å 2016 To be published 

5BZS 1.50 Å 2016 To be published 

5BZT 1.25 Å 2016 To be published 

 

 

Figure S1. A) Comparison of the primary sequences of human (h) and mouse (m) CD44 HA-binding domain 

(CD44HAbd) available at PDB. B) RMSD calculated for selected ligand-free hCD44HAbd (apo) vs. HA-bound 

mCD44HAbd crystals (all structures co-crystallized with HA are murine). Two regions with significant structural 

changes associated with HA binding are indicated with arrows in graphs and colored in ribbons structure. 
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Figure S2. Correlation matrix of the molecular descriptors from the 168,190 compounds contained in our CCC-

generated libraries. The matrix was employed for the selection of the non-redundant descriptors included in PCA 

presented in Figure 2.  

 

Figure S3. Validation of the docking protocol employed for candidate selection. RMSD of docking poses vs. crystal 

pose of 21 THQ-containing molecules. Molecules are identified by the PDB code in which they appear as ligands and 

are ordered from low (left) to high (right) molecular weight. Dashed line indicates the threshold considered for analysis. 
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Figure S4. Ligand efficiency, calculated from docking scores, for the 163 unique candidates matching our 3D 

pharmacophore. The 25 best poses on mCD44 (A) and hCD44 (B) were analyzed. Values of the candidates selected 

for further analysis (see Figure 3) are labeled in orange. 
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Table S2. SMILES codes and formal names of the nine candidates presented in Figure 3D. 

 
Code SMILES Name 

Can58 OCC(C(N[C@@H](C1O)OCC(C1O)O)=O)N(C2)CCC3=C2

C=CC=C3 

2-(3,4-dihydroisoquinolin-2(1H)-yl)-3-hydroxy-

N-((2R)-3,4,5-trihydroxytetrahydro-2H-pyran-

2-yl)propanamide 

Can125 CC1=CC=CC2=C1CCN(C2)C(C(NCC3=CC=CC(O)=C3)=

O)CO 

3-hydroxy-N-(3-hydroxybenzyl)-2-(5-methyl-

3,4-dihydroisoquinolin-2(1H)-yl)propanamide 

Can133 CC1=CC=C(C(C)=C1)NC(C(CO)N2CCC3=CC=C(C=C3C

2)O)=O 

N-(2,4-dimethylphenyl)-3-hydroxy-2-(7-

hydroxy-3,4-dihydroisoquinolin-2(1H)-

yl)propanamide 

Can140 CNC1=CC=C(C=C1)CC2=CC=C(C=C2)NC(C(CN)N3CCC

4=CC=CC=C4C3)=O 

3-amino-2-(3,4-dihydroisoquinolin-2(1H)-yl)-N-

(4-(4-

(methylamino)benzyl)phenyl)propanamide 

Can141 OCC1=CC(NC(C(N2CCC(C=CC=C3N)=C3C2)CO)=O)=C

C=C1 

2-(8-amino-3,4-dihydroisoquinolin-2(1H)-yl)-3-

hydroxy-N-(3-

(hydroxymethyl)phenyl)propanamide 

Can142 CCCN1CCC(CC1)NC(C(CO)N2CCC3=CC=CC=C3C2)=O 2-(3,4-dihydroisoquinolin-2(1H)-yl)-3-hydroxy-

N-(1-propylpiperidin-4-yl)propanamide 

Can144 O=C(NC1=CC=C(C=C1)OC2=CC=CC=C2)C(CO)N3CCC

4=CC=CC=C4C3 

2-(3,4-dihydroisoquinolin-2(1H)-yl)-3-hydroxy-

N-(4-phenoxyphenyl)propanamide 

Can150 NCC(C1=NN=NN1C(C=C2C3=O)=CC=C2C(N3C)=O)N4C

C5=CC=CC=C5CC4 

5-(5-(2-amino-1-(3,4-dihydroisoquinolin-2(1H)-

yl)ethyl)-1H-tetrazol-1-yl)-2-methylisoindoline-

1,3-dione 

Can159 NC1=CC=C2C(CN(CC2)C(C3=NN=NN3CC4=CC=C5NC=

CC5=C4)CO)=C1 

2-(1-((1H-indol-5-yl)methyl)-1H-tetrazol-5-yl)-

2-(7-amino-3,4-dihydroisoquinolin-2(1H)-

yl)ethan-1-ol 
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Figure S5. Druggable pockets in apo-hCD44HAbd (A), HA-mCD44HAbd (B), and mCD44HAbd bound to a THQ-

containing ligand (C), as predicted by Fpocket. The THQ-binding site corresponds to pocket 2 (blue). The comparison 

of binding scores between pockets (tables at the right part of figures) allowed assessment of the candidates' selectivity 

for the region of interest. 
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Figure S6. Docking pose clustering for the nine candidates with the higher frequency of poses resembling the 

crystallographic THQ pose. Only non-redundant poses (threshold RMSD >0.2 Å) are shown. These analyses allowed 

the identification of the most probable starting poses for MD simulations.  
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Figure S7. Global backbone RMSD matrix along 100 ns of MD simulation, and the corresponding alpha-carbon RMSF 

analysis, from systems with candidates (Can) with poor binding stability. The unliganded apoprotein (apo-CD44HAbd) 

is included for comparison.  
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Figure S8. Frequency analysis of interactions employed for the generation of Figure 5A. Only interactions with frequency 

>2,000 are shown.  
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Figure S9. Energy calculations generated from MD simulations with candidates (Can) 125, 140, and 159. Can58 was 

employed as a negative control since it leaves the binding site during the simulation. 
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Figure S10. Per-residue energy decomposition for the MD-simulated binding of candidates (Can) 58 (A), 140 (B), and 

159 (C) to hCD44HAbd.  
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Abstract 

 

Macrocycles target proteins that are otherwise considered undruggable because of a lack of 

hydrophobic cavities and the presence of extended featureless surfaces. Increasing efforts by 

computational chemists have developed effective software to overcome the restrictions of 

torsional and conformational freedom that arise as a consequence of macrocyclization. Moloc is 

an efficient algorithm, with an emphasis on high interactivity, and has been constantly updated 

since 1986 by drug designers and crystallographers of the Roche biostructural community. In this 

work, we have benchmarked the shape-guided algorithm using a dataset of 208 macrocycles, 

carefully selected on the basis of structural complexity. We have quantified the accuracy, 

diversity, speed, exhaustiveness, and sampling efficiency in an automated fashion and we 

compared them with four commercial (Prime, MacroModel, molecular operating environment, 

and molecular dynamics) and four open-access (experimental-torsion distance geometry with 

additional “basic knowledge” alone and with Merck molecular force field minimization or universal 

force field minimization, Cambridge Crystallographic Data Centre conformer generator, and 

conformator) packages. With three-quarters of the database processed below the threshold of 

high ring accuracy, Moloc was identified as having the highest sampling efficiency and 

exhaustiveness without producing thousands of conformations, random ring splitting into two half-

loops, and possibility to interactively produce globular or flat conformations with diversity similar 

to Prime, MacroModel, and molecular dynamics. The algorithm and the Python scripts for full 

automatization of these parameters are freely available for academic use. 
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Introduction 

 

Macrocycles comprise a (hetero)cyclic core of at least 12 atoms, with molecular weight typically 

between 500 and 2000 Da. Ring sizes of 8−11 atoms and 3−7 atoms are classified as medium 

and small cycles. Although some naturally occurring rings contain up to 50 atoms, 14, 16-, and 

18-membered rings occur at a higher frequency [1]. Generally, they encompass a large variety 

of chemical structures that originate from macrocyclization of simple building blocks, for example, 

cyclopeptide [2], cycloalkanes, and cyclodextrins [3], or as a result of de novo total synthesis or 

semisynthetic routes [4]. Among their clinical applications as drugs, macrocycles are used in 

oncology (temsirolimus [5,6] and epothilone B derivatives [7,8]), as antibiotics (vancomycin, 

macrolides, and rifampicin), immunology (sirolimus and zotarolimus), and in dermatology 

(pimecrolimus) [9]. Other applications of macrocycles are in supramolecular chemistry (crown 

ethers [10], cryptands, catenanes, rotaxanes [11], and calixarenes). Recently, macrocycles have 

received growing attention in medicinal chemistry [12–15] because of their unique ability to 

disrupt protein−protein interactions [16], improve metabolic stability [17], and improve cellular 

permeability by conformational restriction [18–21] resulting in a higher oral bioavailability 

compared to noncyclic congeners. Although macrocycles are outside of Lipinsk’s rule of five, 

these molecules are able to bind proteins that are otherwise considered challenging because of 

their lack of hydrophobic cavities where functional groups can be anchored [22,23]. It has been 

estimated that nearly 25% of the ring atoms can contribute to the contact area with the protein 

surface through nonpolar contacts. Nevertheless, both ring atoms and peripherals/substituents 

show the same probability to match a hotspot, suggesting that ligand-based drug design of 

macrocycles should take into account these two components in order to identify potent binders 

[24]. We have recently described multiple scaffolds of artificial macrocycles which are readily 

synthesizable using multicomponent reaction chemistry (MCR) [25–30] and investigated the 

structural basis of macrocycles targeting PD1−PDL1, p53−MDM2, and IL17A receptor 

interactions [30–33]. Thus, we are highly interested in computational tools to rapidly screen 

conformational space of large virtual macrocycle libraries as a filter to synthesize bioactive 

compounds. To date, several benchmarks demonstrated the feasibility of algorithms with the aim 

of producing macrocycle conformations with enough accuracy and uniqueness for common 

computer-aided drug design (CADD) strategies, such as docking and pharmacophore screening 

[34]. Some of these algorithms are based on distance geometry (DG) [35], inverse kinematics 

[36], genetic algorithms [37], molecular dynamics (MD) simulations implementing either low 

frequency modes [38] or normal-mode search steps plus energy minimization [39], and, most 

recently, Monte Carlo multiple minimum/mixed torsional/low mode [40]. Generally, these software 
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programs are distinguished on the basis of the strategy adopted to generate conformations, 

systematic or stochastic. For example, molecular operating environment (MOE), MacroModel 

(MM), Cambridge Crystallographic Data Centre (CCDC) conformer generator, and experimental-

torsion DG with additional “basic knowledge” (ETKDG) belong to the stochastic search category. 

Nevertheless, a major issue with these techniques is the generation of large numbers of 

representative conformers. On the other hand, a problem related to systematic search methods 

is the constrained flexibility of the ring, which is often insufficiently sampled by rotating a single 

bond at a time. In contrast to noncyclic molecules, the change in a single bond rotation impacts 

all bonds in macrocycles. Developing methods for sampling macrocycle conformations or 

improving upon the currently existing methods without generating a large number of conformers 

is a key step in the exploration of macrocycles in drug discovery. The computational basis of finite 

Fourier transform of ring structures was developed in 1985 [41] and its first embedding within a 

specialized conformer generator for macrocycle conformational sampling was shown in the 

publication of Gerber and co-workers in 1988 [42]. Fourier representation of the atomic position 

for macrocycle sampling has the advantage of generating a number of conformations that depend 

solely on the number of atoms in the ring, with few other user defined parameters. In the original 

publication, the author assessed the extensive conformational space covered by the Moloc 

software by taking (E)-cyclodecene and s-cis/s-trans-caprolactam as two study cases, 

investigating the potential of their method in combination with NMR spectroscopy of a macrocyclic 

tetrapeptide as a third example. This resulted in an exhaustive set of low-energy conformations 

of macrocyclic systems generated automatically, reproducing the experimented observed 

conformations, including s-cis/s-trans-isomers and, finally, showing the potential application in 

modelling surface loops of proteins. Herein, we benchmark the Fourier-based algorithm using a 

database of 208 macrocycle crystal structures and compare the performances of Moloc with the 

commercial software Prime, MOE, MD, MM, and four open-access packages experimental- 

torsion DG with additional “basic knowledge” and with the minimization steps employing the 

Merck molecular force field (MMFF94s [43]) or the universal force field (UFF [44]), CCDC, and 

conformator. We systematically assess the accuracy, structural diversity, and speed. Moreover, 

concepts of exhaustiveness and sampling efficiency (SE) are introduced. The aim of our work is 

to identify software capable of producing diverse and accurate conformations for daily virtual 

screening (i.e., docking). Moreover, because significant conformational changes in total shape 

and volume guide the bioavailability of certain macrocycles [45], we believe that the application 

of this approach could efficiently identify generic shapes of membrane-permeating conformations. 

A summary of the different software and the theoretical principles behind their functionality are 

presented in Table 1. 
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Table 1. Free and commercial software for the conformation generation of macrocycles and their working principles 

 
Methodology Description Usage 

Moloc Macrocycle shapes are characterized by a selection of harmonics which occur in an 

approximate Fourier representation of the atomic coordinates of the rings [42]. 

Free 

 

Conformator Incremental construction of conformers with torsional angle assignment and a new 

deterministic cluster algorithm [46]. 

Free 

CCDC Ring template libraries to describe ring geometries using based on the wealth of 

experimental data in CSD. 

Commercial 

 

ETKDG Stochastic search method that utilizes dg together with knowledge derived from 

experimental crystal structures [47,48]. 

Free 

 

MOE Perturbation of an existing conformation along a md’ trajectory using initial atomic 

velocities with kinetic energy focused on the low-frequency vibrational modes and 

energy minimization [38]. 

Commercial 

 

Prime Ring splitting to create to two half rings that are sampled independently and 

recombined [49]. 

Commercial 

MD Desmond from Schrödinger Suite 2014-4 chosen as a baseline method (Maestro 

Desmond interoperability tools; Schrödinger: New York, NY, 2014). 

Commercial 

 

MM Brief md simulations followed by minimization and normal-mode search steps [39]. Commercial 

 

 

 

Materials and methods 

 

Dataset  

For a direct comparison of Moloc with the commercial and free software, we used the dataset of 

208 macrocycles of Sindhikara and co-workers [49], consisting of 130 crystal structures from the 

Cambridge crystallographic dataset [50], a subset of 60 structures from the Protein Data Bank 

(PDB [51]) selected by Watts and co-workers [39] accounting for diverse and challenging 

macrocyclic topologies (disulfide bridges, cross-linking amide bonds, and polycyclic rings, 

including cyclodextrins, polyglycines, cycloalkanes, and peptidic macrocycles) and 18 crystals 

from the Biologically Interesting Molecule Reference Dictionary (BIRD) dataset chosen on the 

basis of quality (low-temperature factors and/or resolution < 2.1 Å) and structural diversity. 

Further details about the full dataset composition can be found in the Supporting Information from 

Sindhikara and co-workers [49]. 
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Preparation of the Input Structures 

Nonbiased starting conformations were prepared by removing the initial crystallographic 

coordinates, the partial charges, and the explicit hydrogens. Processed structures were 

converted to isomeric SMILES, preserving the stereochemistry flags. The resulting SMILES codes 

were employed as input for conformational sampling by conformator, CCDC conformer 

generator, and ETKDG alone or in combination with the minimization steps employing the 

MMFF94s or UFF while for Moloc, a set of random three-dimensional (3D) structures were 

generated using Mol3d. 

 

Software Tested and Parametrization 

MOE, Prime, MM, and MD. Macrocycle sampling description and initial condition for Prime, MOE, 

MM, and MD can be found in the Methods section of Sindhikara and co-workers while the results 

of accuracy, diversity, and speed can be found in the Supporting Information [49]. 

 

Moloc is one of the first molecular modelling packages and has since been updated regularly in 

close collaboration with drug designers and crystallographers of the Roche biostructural 

community, encompassing numerous functions, such as conformational sampling, generation of 

3D pharmacophores [52], similarity analysis, peptide and protein modeling, modules for X-ray 

data handling, and ligand-based drug design. The generic Fourier description of the shape of the 

ring atoms is based on the generation of a series of harmonics [42]. Radial and axial deviations 

are then applied until a generic shape is found. Once it is identified, the algorithm starts to build 

a number of conformations that is proportional to the ring size. Geometric deviations, such as 

bond length and angles, are fixed by minimizing against the MAB force field [53]. In order to 

launch a sampling job, the “Mcnf” module was run in batch with the parameters “w0” and “c3” to 

initiate randomization of input atomic 3D coordinates and preserve the stereochemistry of both 

E/Z bonds and sp3 carbon, respectively. The selection of unique conformations is based on 

energetic (0.1 kcal/mol) and structural -0.1 Å root mean square deviation (RMSD) for cross-rigid 

body superimposition- thresholds. The conformations were kept within an energetic threshold of 

10 kcal/mol. A conformational job can be launched using either two-dimensional (2D) or 3D 

atomic coordinates that are generated using Mol3d. During the conformational sampling, inner 

symmetries and permutations are enumerated. The number of generic shapes used as a start 

guide for the generation of the conformers grows as the square of N(ln N) where N represents 
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the number of ring atoms. Finally, for assessment, the flexibility of the software, energetic 

threshold, and hydrogen bond term were activated for the conformational job. 

 

Conformator is a conformer generator focused on the enhancement of molecular torsion based 

on the assessment of torsion angles from the rotatable bonds. Conformator consists of a torsion 

driver enhanced by an elaborate algorithm for the assignment of torsion angles to rotatable bonds 

and a new clustering component that efficiently compiles ensembles by taking advantage of lists 

of partially presorted conformers. The clustering algorithm minimizes the number of comparisons 

between pairs of conformers that are required to effectively derive individual RMSD thresholds for 

molecules and to compile the ensemble. For this purpose, conformator features two conformer 

generation modes, “fast” and “best”, where “best” and “fast” focuses on the accuracy or speed 

of conformer search to generate conformers with the lowest RMSD values against a reference, 

respectively. Both modes attempt to ensure chemically correct bond angles and lengths as well 

as the planarity of aromatic rings and conjugated systems. After conformer generation, 

conformator performs a local optimization employing the macrocyclic optimization score which 

includes several well-known components from common force fields and some components 

specific to the optimization of macrocycles [46]. For optimal comparison of the software, we 

selected the “best” feature for macrocycle conformational sampling using the isomeric SMILES 

codes described above and requesting one thousand conformers per entry.  

 

CCDC Conformer Generator. Conformer generator from CCDC is a knowledge-based method 

that uses data derived from CSD libraries and heuristic rules. For instance, conformer generator 

uses rotamer libraries to characterize preferred rotatable bond geometries and ring template 

libraries to describe ring geometries. Conformations are sampled based on CSD-derived rotamer 

distributions and ring templates. A final diverse set of conformers, clustered according to 

conformer similarity, are returned. Each conformer is locally optimized in torsion space [48,54]. 

For this work, the input structures described previously were loaded into the CCDC conformer 

generator through the CSD Python application programming interface (API). Conformer 

generator runs a minimization using the Tripos force field prior to conformational sampling, for 

which one thousand conformers were requested for each entry. 

 

ETKDG Alone and with Minimization. RDKIT is an opensource toolkit for cheminformatics, 

comprising a wide variety of analysis and synthesis tools including similarity search, fingerprint 



82 
 

calculations, 2D and 3D descriptor calculation, and conformer generation 

(https://www.rdkit.org/). Currently, RDKIT can generate conformers using DG and an improved 

new method called ETKDG. The ETKDG algorithm is based on DG including experimental torsion 

angle termed experimental-torsion DG (ETDG) and “basic knowledge” (ETKDG) of molecular 

terms, including linear triple bonds and planar aromatic rings. The ETKDG method has been 

demonstrated to be more accurate in reproducing crystal structure conformations than DG alone. 

In addition, this algorithm has been recently optimized by the implementation of knowledge-based 

terms, preference for the trans-amide configuration, and the control of eccentricity from 2D 

elliptical geometry [48]. Thereby, we decided to explore the ETKDG approach for macrocycle 

sampling. Because ETKDG conformational sampling lacks any step of minimization, we ran 

minimization steps after the ETKDG conformational job using MMFF94s or UFF over 400 iterations 

per conformer in order to explore the minimization effect on macrocycle conformational sampling. 

We used the Python API of RDKIT to generate one thousand conformers per entry from the input 

structures. 

 

Comparison Parameters  

 

Exhaustiveness  

Not all the softwares compared exhaustively sampled conformational space; some of them were 

not able to generate the requested conformers for some of the input structures. For instance, no 

sampling was performed in the case conformator if the assignment of torsion angles to rotatable 

bonds failed for a specific structure because this is the flexibility determination method employed 

using such a software. Thus, we defined the term exhaustiveness as follows: 

 

𝐸𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
𝑁𝑢𝑚. 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑡𝑟𝑖𝑒𝑠
 

 

Accordingly, exhaustiveness values equal to 1 indicate full sampling of all entries in the dataset. 

Correspondingly, decreased exhaustiveness values indicate fewer entries sampled. 
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Accuracy  

Based on previous benchmarks of conformational sampling [38,39,46,49,55,56], we have used 

RMSD to quantify the accuracy of the conformers in reproducing the reported bioactive 

crystallographic coordinates. The lowest RMSD values between each conformational ensemble 

to the reference structure were calculated. Notably, we have quantified the ring atom accuracy 

(RMSDbackbone) in a separate manner from heavy atom accuracy (RMSDheavy atoms), as 

indicated in Figure 1. This is based on the recently described classification of contacts between 

the macrocycle and its target: side chain, peripheral functional groups, and backbone atoms to 

the receptor [24]. Typically, a relative RMSD cutoff below 2.0 Å is considered an acceptable 

accuracy [57]. However, because macrocycles are more complex and larger than small 

molecules, we considered an RMSDheavy atoms value up to 2.5 Å as reasonably accurate and 

RMSDheavy atoms values below 1.0 Å were treated as highly accurate. Finally, we used the 

cumulative function distribution (CDF) to evaluate the performance of the algorithm in sampling a 

specific percentage of the dataset below two RMSDbackbone threshold values 0.5 Å (highly 

accurate) and 1.0 Å (accurate). 

 

Diversity and SE 

In order to systematically assess the structural diversity of each conformational ensemble, we 

used torsional fingerprints (TFs) in a similar manner to Sindhikara and co-workers [49]. The 

unique conformers were identified using a torsional scan on multiple conformations of a truncated 

version of the molecule comprising only the macrocycle backbone. Correspondence between 

related molecules was assessed by atom mapping from a maximum common substructure 

analysis. Then, a comparison of the fingerprints between the conformers was calculated using 

the torsional fingerprint deviation (TFD) [58]. Conformers with unique fingerprints were identified 

and kept if TFD was nonzero. As a further descriptor for assessment of shape diversity, we used 

the span in the radius of gyration (RoG), which is defined as the difference between the highest 

and the lowest RoG conformers [59]. Aiming to establish a relation among the exhaustiveness 

and the capability of the software to generate unique conformers, we introduced the SE as: 

 

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝐸𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 (
𝑈𝑛𝑖𝑞𝑢𝑒 𝑇𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙 𝐹𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡𝑠

𝑁𝑢𝑚.  𝐶𝑜𝑛𝑓𝑜𝑟𝑚𝑒𝑟𝑠
) 
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SE values equal to 1 mean that each conformer represents a unique conformation within taking 

in account the number of entries sampled, while values close to 0 indicate high redundancy 

among conformers and/or lower exhaustiveness. 

 

Speed  

Time efficiency for each software was quantified by calculating the difference between the start 

and end time for conformer generation per entry. Batch scripts were generated for calculation of 

the time consumption for Moloc and conformator. Because of the usage of Python API for RDKIT 

and CCDC conformer generator, a tailored Python script was implemented in order to calculate 

the time consumption for CCDC conformer generator, ETKDG, and its further minimizations steps 

(UFF or MMFF94s). Moloc, conformator, and ETKDG alone or with minimization and CCDC 

conformer generator were run in a machine utilizing a 4-core Intel Xeon 3500 CPU-processor, 12 

GB RAM, and 25 GB of data storage in a 1 TB HDD. The speed of MOE, MM, Prime, and MD 

was retrieved from the Supporting Information of the Prime benchmark publication [49]. 

 

Statistical Analysis 

Data representation was carried out using the Python library matplotlib 3.1.1. [60] Statistical 

comparison of data was computed using a nonparametric Krustal−Wallis H-test among study 

groups using the stats module of SciPy [61]. All the p-values of the pairwise comparisons among 

the software can be found in the Supporting Information. 
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Figure 1. Example of separation of a 21-membered macrocycle into three atomic categories for the calculation of the 

RMSDbackbone and RMSDheavy atoms. Side chains, backbone, and heavy atoms are colored green, black, and blue, 

respectively. 

 

Results 

 

Exhaustiveness  

According to our observations from conformational sampling of macrocycles employing different 

software, some methods were incapable of sampling all entries into the database. Conformator 

resulted in the least exhaustive sampling (190 out of 208 entries). Although the ETKDG algorithm 

was able to generate conformers for all input structures, the subsequent minimization step using 

UFF or MMFF94s force fields resulted in less exhaustiveness than the ETKDG algorithm alone 

(197 out of 208). All the remaining software tested (Moloc, CCDC conformer generator, and 

ETKDG) or previously reported (Prime, MOE, MM, and MD) was able to generate conformers for 

all input structures (Table 3).  

 

Accuracy  

Figure 2 indicates that all the software can generate conformers with reasonable accuracy 

(RMSDheavy atoms < 2.5 Å) and MM, MOE, and Prime generated conformers with median 
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RMSDheavy atoms values below a threshold of 1.0 Å with no statistical difference among the 

methods (Table S1). Among the six other software tested in this work, ETKDG algorithm plus 

MMFF94s minimization and Moloc were able to generate conformers with the lowest median 

RMSDheavy atoms value. However, in contrast to ETKDG plus MMFF94s minimization (0.9471), 

Moloc retained superior exhaustiveness (1), indicating that it can generate reasonably accurate 

conformers across a complex and diverse dataset of macrocycle molecules. No statistical 

difference was found among all open-source methods, including CCDC conformer generator. 

Finally, MD showed a median RMSDheavy atoms value slightly higher for the highly accurate 

threshold, and statistical difference versus all the remaining private and open-access methods. In 

RMSDbackbone and CDF analysis, Figure 2A shows that Prime, MM, MOE, and CCDC 

conformer generator produced the highest accurate conformers (RMSDbackbone < 0.5 Å) with 

no statistical difference among these four methods (Table S2), returning a fraction of entries 

sampled for each method of 0.63, 0.67, 0.58, and 0.46, respectively (Figure 2B and Table 2).  

 
Table 2. Fraction of entries sampled below the two RMSDbackbone thresholds chosen as highly accurate (<0.5 Å) and 

accurate (<1.0 Å). 

Method <0.5 Å <1.0 Å 

Prime 0.63 0.9 

MM 0.67 0.9 

MOE 0.58 0.8 

MD 0.4 0.79 

Moloc 0.31 0.79 

Conformator 0.26 0.68 

CCDC 0.46 0.65 

ETKDG 0.19 0.72 

MMFF94s 0.27 0.78 

UFF 0.17 0.7 

 

In addition, our data indicate that all the remaining methods generated conformers below 1.0 Å. 

No statistical difference was observed among MD, Moloc, and ETKDG with MMFF94s, whose 

fraction of sampled entries was, respectively, 0.79 for the first two and 0.78. Such results indicate 

similar accuracy among these methods to reproduce the reference macrocycle backbone 

structure. Similarly, no statistical difference was found between Moloc and MMFF94s and both 

produced a similar fraction of entries sampled above the threshold (Moloc: 0.77, MMFF94s: 0.79). 
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Finally, comparison between conformator, ETKDG, and ETKDG plus UFF minimization did not 

show any statistical differences. A statistical difference was found when comparing conformator, 

ETKDG, and ETKDG plus UFF minimization versus Moloc or ETKDG plus MMFF94s minimization 

with a fraction of entries sampled being 0.68 for conformator, 0.72 for ETKDG, and 0.70 for 

ETKDG plus UFF minimization steps. However, among these last groups of methods, ETKDG is 

the most exhaustive followed by ETKDG plus UFF minimization and conformator. 

 

Figure 2. Crystal structure accuracies for each method displayed as (A) RMSDheavy atoms and (B) RMSDbackbone, 

respectively. (C) Normalized cumulative distribution function (CDFnorm). The accuracy threshold values, median, and 

outliers are presented as gray dots, red lines, and black contoured circles, respectively. 
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Diversity and SE  

Although all software was challenged with a one thousand conformers per entry request, not all 

of them succeeded in accomplishing the task, either retrieving fewer conformers per entry or 

unable to sample some, resulting in poor exhaustiveness. Among the methods studied, only MD 

and ETKDG succeeded in generating all conformers requested. Nevertheless, we compared the 

TFs of the conformers for each method in order to assess the number of unique conformers 

generated and, furthermore, we employed the exhaustiveness value to calculate the SE of each 

software. We identified Moloc and ETKDG followed by ETKDG plus minimization with either 

MMFF94s or UFF as the most efficient methods to perform conformational search of macrocycles 

(Table 3).  

Table 3. Summary table of the exhaustiveness and sampling efficiency, number of conformers, and torsional 

fingerprints. 

 

Method Exhaustiveness 
Unique Torsional 

Fingerprints (median) 

Number of conformers 

(median) 

Sampling 

efficiency 

Prime 208/208 =1 707 932 0.7586 

MM 208/208 =1 100 300 0.3333 

MOE 208/208 = 1 48 76 0.6316 

MD 208/208 = 1 59 1000 0.059 

Moloc 208/208 = 1 67 67 1 

Conformator 190/208 = 0.9135 246 338 0.6648 

ETKDG 208/208 = 1 1000 1000 1 

MMFF94s 197/208 = 0.9471 998 998 0.9471 

UFF 197/208 = 0.9471 535 535 0.9471 

CCDC 208/208 = 1 6 8 0.75 

 

On the contrary, although MD showed an exhaustiveness value of 1, it is also a highly redundant 

method generating only a median of 59 unique conformers across 1000 conformers retrieved, 

obtaining the lowest SE value (0.059) among all reported methods. In a similar fashion to MD, 

MM showed a low SE. Despite being a highly exhaustive methodology, the relation between the 

number of conformers generated and their uniqueness results in an SE of 0.333. Thus, Moloc and 

ETKDG are three times more efficient in macrocycle conformation sampling than MD. However, 

Prime (exhaustiveness: 1) was able to produce a median of 707 unique conformers for a median 

of 932 conformers, resulting in an SE of 0.7586. A similar behavior was observed for MOE, which 

obtained exhaustiveness equal to 1 and an SE of 0.6316. CCDC conformer generator showed an 
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SE of 0.7500 with the lowest number of unique conformers generated (Figure 3A) across all the 

software studied.  

 

Figure 3. Panel showing (A) box plot of number of the conformers and (B) TFs for each method. Graphical description 

of median and outliers is the same as in Figure 2. 

 

Figure 4A compares the results obtained from the span of RoG as a parameter to study the 3D 

conformational diversity of the conformers moving from a globular to a flat-shaped conformation 

(Figure 4B). Our data indicate that ETKDG algorithm plus MMFF94s minimization (1.13 Å) 

achieved the highest span in RoG with no statistical difference with Prime (1.02 Å) and ETKDG 

with UFF minimization (1.08 Å) (Table S4). On the other hand, the conformations produced by 

Moloc (0.86 Å) were proven to be statistically similar to MM (0.93 Å), MOE (0.74 Å), MD (0.85 

Å), conformator (0.87 Å), and ETKDG alone without minimization (0.82 Å). Finally, with a span in 

RoG of 0.15 Å, the conformers produced by CCDC conformer generator were identified as having 

the lowest diversity among all the software tested. 
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Figure 4. (A) Box plot of span RoG for each method and (B) example of a cyclic octapeptide61 in its globular (lowest 

RoG) and flat-like conformations (highest RoG) with intramolecular hydrogen bonds predicted with Moloc (red dotted 

lines). 

 

Speed  

Surprisingly, the speed of macrocyclic conformation generation differed dramatically between the 

software ranging from seconds to more than a day. This will have consequences for usage in 

virtual screening of large macrocycle libraries. Because sampling is carried out under similar 

conditions, comparisons allow analysis of the time required to accomplish the conformational 

task. The overall results of the computational speed are shown in Figure 5. With 2.6 s per entry, 

CCDC conformer generator outperformed the other software in time needed to finish a 

conformational job. On the other hand, MD was the slowest followed by conformator, which 

required 17.9 h. Prime, Moloc, and MOE produced conformations with a similar speed within 1 h 

with nonsignificant differences between MOE and Moloc (Table S5). More interestingly, we 

observed a statistical difference between ETKDG alone and UFF/MMFF94s resulting in a 

median of 35.1 s, 1.3 min, and 17.6 per entry.  
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Figure 5. Box plot showing the distribution of the speed ranges for each entry. The reader is referred to Figure 2 for the 

legend. Three significant threshold values were added to visualize the differences in the performance level in completing 

a conformation work, i.e., 1 min, 1 h, and 1 d. 

 

Study Cases  

In addition to the benchmark results described above, we report cases of effective accuracy in 

predicting the crystallographic coordinates of macrocycles using Moloc both in terms of lowest 

RMSDbackbone/ RMSDheavy atoms and in relation with the ring size. For convenience, we kept 

the same categories as previously reported [49], binning the database in three groups containing 

10−19, 20−29, and over 30 ring atoms, respectively. We referred to Prime as a comparative 

example among other commercial software. 

  

10−19-Ring-Sized Macrocycles  

10−19-ring-sized macrocycles represent a challenge in the context of organic synthesis because 

of the high energetic strain. Similarly, medium-sized rings suffer from increased ring strain over 

their 5- and 6- membered or macrocyclic congeners [62,63]. This can be quantitatively captured 

in deviations from ideal antiperiplanar conformations, transannular strain, and Pitzer strain 

components. Out of the total 208, 117 macrocycles belong to this class, including 30 from PDB, 

79 from CSD, and 8 from BIRD datasets. According to our findings, Moloc predicted the 

coordinates of ACOPUF (Figure 6A), a 12-ring-sized macro- cycle from the CSD database, with 

an RMSDbackbone of 0.07 Å -slightly better than Prime (0.12 Å)- and with less conformations 

(requiring only 93 for the former against 871 for the latter). In a similar fashion, Moloc predicted 

the bioactive conformation of cytochalasin D (Figure 6C), an 11- membered ring macrocycle from 

the PDB database, with a high accuracy (0.12 Å) employing only 9 conformers, whereas Prime 



92 
 

(0.15 Å) employed 185. BANROX (Figure 6B) and DOZWUL (Figure 6D) were two CSD 

macrocycles of 13- and 14-atom backbone, respectively, with an RMSDheavy atoms of 0.09 and 

0.10 Å. These data indicate that this software is highly accurate for medium-sized rings. In 

contrast to Prime, Moloc also proved to be superior in terms of the number of conformations, 

producing only 33 and 93 conformers rather than 95 for BANROX and 388 for DOZWUL, and 

accuracy with RMSDheavy atoms values of 0.44 and 0.41 Å for Prime.  

 

 

Figure 6. Examples of macrocycles having a flexibility of 10−19-atom backbone and indication by their dataset identifier 

(A−D). The atoms of the crystallographic structure to which the lower RMSD conformer has been aligned are colored 

in gray, whereas those of the conformer predicted using Moloc are in green. 

   

20−29-Ring-Sized Macrocycles 

This category includes 67 X-ray structures, 27 from PDB, 34 from CSD, and 6 from BIRD 

database. On the one hand, Moloc reproduced 7 entries with high accuracy (<0.5 Å) and 38 with 

accuracy <1.0 Å, with the best being DEMJAG10 (Figure 7A) and kabiramide C (Figure 7B), two 

macrocycles of 22 and 25 ring size from the CSD and PDB dataset, whose closest coordinates 

to the bioactive molecule were 0.13 and 0.17 Å RMSDbackbone, respectively. Despite producing 

789 and 172 conformations, Moloc remained superior to Prime, for which the closest coordinates 

for the two referred macrocycles were 0.82 and 0.35 Å, respectively (1000 conformations per 

entry). On the other hand, it is also interesting to assess the robustness of Moloc in generating 
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accurate conformations of the heavy atoms. In that respect, only 11 crystal structures resulted in 

an interval of RMSDheavy atoms < 1.0 Å mostly belonging to the CSD (10) with only one from the 

PDB dataset (Figure 7C). Among these macrocycles, it is noteworthy to mention WURVEL (Figure 

7D), a 27-membered ring entry from the CSD database, whose closest atomic coordinates (1.0 

Å) indeed were not dissimilar from those predicted using Prime (1.06 Å); nevertheless, Moloc 

produced 163 conformations while Prime produced 983.  

 

 

Figure 7. Examples of macrocycles having a flexibility of 20−29-atom backbone and their dataset identifier (A−D). The 

atoms of the crystallographic structure to which the lower RMSD conformer has been aligned are colored in gray, 

whereas those of the conformer predicted using Moloc are in green.   

 

>30-Ring-Sized Macrocycles 

Highly flexible macrocycles represent a challenge for every conformational algorithm, given the 

large number of rotatable bonds and possible values of torsional angles around the ring. Another 

problem is the number of replacements that attach to the ring and their degree of branching. In 

this subset, a total of 24 crystalline structures can be found and, specifically, 5 are cross-linked 

and another 5 are cyclopeptides that were originally included by the Prime developers in order to 

make the benchmark more challenging. Five macrocycles, all belonging to the CSD database, 

appeared in the list predicted with RMSDbackbone < 1.0 Å. Among them, Moloc predicted the 

crystallographic coordinates of OCERET (Figure 8A), a 35-atom backbone macrocycle, with an 
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RMSDbackbone of 1.04 Å with 168 conformations. On comparison, Prime performed slightly 

better with 0.83 Å but produced 957 conformations. Only SUMMOC (Figure 8B) and LENPEA 

(Figure 8C) were predicted below the threshold of 1.0 Å with values of RMSDheavy atoms of 0.74 

and 0.92 Å, respectively. In addition to the advantage of Moloc being able to handle large-sized 

macrocycles, we noticed a limitation of Moloc in the complexity of the functional groups expressed 

in terms of degree of branching. An example of this limit is shown in Figure 8D. The measured 

RMSDheavy atoms of (−)-rhizopodin (PDB: 2VYP), a potent actin-binding anticancer molecule 

[64], decreases from 6.444 to 1.49 Å upon pruning the lateral substituents. This evidence can be 

explained by the ability of Prime to randomly cleave the macrocycle and reconnect the two 

generated semiloops. 

 

 

Figure 8. Examples of macrocycles indicated by their dataset identifier (A−D). The atoms of the crystallographic 

structure to which the lower RMSD conformer has been aligned are colored in gray, whereas those of the conformer 

predicted using Moloc are in green.   

 

Intramolecular Interactions  

The ideal software is required to predict intramolecular interactions as it is generally appreciated 

that they play a pivotal role in defining both overall shape of a molecule [65] and the stabilization 

of the functional groups by masking or exposing them to the external environment [66]. This 

change regulates the passive membrane permeability of macrocycles which adopt a globular 
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shape while passing through the lipidic environment of the membrane and adopt a stretched 

conformation in the cytosol/ extracellular environment [45]. Knowledge of the chameleonic 

properties of macrocycles has recently expanded far beyond the historical case of ciclosporin A 

[67,68]. As exemplified by the crystal structures of cyclosporin A in chloroform (CSD ID P212121) 

and in the protein bound form (PDB ID: 2X2C [69]), the conformational change is followed by the 

formation of new intramolecular hydrogen bonds, underlying their role in the dynamics of binding. 

As can be seen in Figure 9A, the crystal structure of CUQYUI, the 24- atoms backbone of the 

non-cross-linked cyclopeptide has 4 internal hydrogen bonds (between N15 and O2, N16 and 

O2, and O6 and N11 as well as one transannular interaction between N12 and O10). Moloc 

successfully predicted three of these internal hydrogen bonds with an RMSDheavy atoms of 1.365 

Å and, most notably, matched the lowest global minimum among the 38 local minima, with a 

potential energy of 5.33 kcal/mol. 3WNF-ACE (Figure 9B) is a 20-atom backbone hexacyclic 

peptide whose binding affinity for HIV-1 integrase was measured in the low millimolar range by 

surface plasmon resonance and HSQC-NMR while the binding mode with the target was 

confirmed by X-ray crystallography [70]. Visual inspection of the cocrystal structure revealed the 

presence of two internal hydrogen bonds between N35 and O13, and N10 and O38 and two 

transannular interactions, between O34 and N27, and O2 and N10. Moloc was able to predict 

three of these four interactions with reasonable accuracy (RMSDheavy atom = 1.945 Å) and a 

local minimum with a potential energy of 11.13 kcal/mol. YIWHOB01 (Figure 9C) is a 30-atom 

backbone non-cross-linked artificial macrocycle used as a charge transfer system in the field of 

supramolecular chemistry [71]. Visual inspection of the CSD structure revealed the presence of 

a π-stacking interaction between the pyridine and phenyl rings. Again, Moloc predicted the 

conformation with the bipyridinium units being parallel to the phenyl ring with an RMSDheavy atom 

of 1.642 Å and a potential energy of 9.846 kcal/mol, despite minor deviations at the dioxoaryl 

moiety. 
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Figure 9. Panel showing the intramolecular interactions predicted using Moloc (green sticks) for (A) CUQYUI, (B) 

3WNF-ACE, and (C) YIWHOB0 alongside with the RMSDheavy atoms calculated for the hydrogen bond weight applied 

in the MAB force field. Hydrogen bonds, π- stacking, and aromatic hydrogen bonds are, respectively, colored as red, 

blue, and orange dotted lines while the crystal structure atoms are represented as gray sticks.   

 

User-Defined Energy Threshold for Improved Accuracy and Diversity  

In a standard Moloc conformational job, the structures are only kept if their energy is less than 10 

kcal/mol above the lowest-energy conformation. Such an energetic cutoff is typical for many other 

conformational software. However, Prime sets the cutoff to 100 kcal/mol. Thus, we have 

quantified the diversity and the accuracy at 100 kcal/mol and chose 4MNW and 4KEL, two 

cyclopeptides, cross-linked macrocycles with 42-atom backbone. Based on our data (Table S6), 

no improvement over the diversity was observed independently from the chosen threshold 

because the number of unique fingerprints for 4MNW (192) and 4KEL (290) remained 

unchanged. However, when the energy threshold was increased to 100 kcal/mol, Moloc 

produced new conformers with expanded globularity because the span RoG increased from 

1.179 to 1.660 Å for 4KEL and from 1.041 to 1.704 Å for 4MNW. Additionally, we observed a 

marginal improvement in both the ring and the heavy atom structure accuracies: −0.42 Å/−0.23 
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Å (4MNW) and −0.22 Å/−0.08 Å (4KEL) at 20 kcal/mol and −0.83 Å/−0.76 Å (4MNW) and −0.25 

Å/−0.39 Å (4KEL) at 100 kcal/mol (Figure S2A). As the number of conformations for both cases 

exponentially increased (Figure S2B), the global minimum energy of the most accurate conformer 

of 4MNW displays an increase in the potential energy by 6 and 15 kcal/mol, whereas for 4KEL, 

the equivalent values were 8 and 5 kcal/mol (Figure S2C, D).  

 

Discussion 

  

Computational screening of large virtual macrocycle libraries is an effective way to prioritize 

compounds for expensive and time-consuming synthesis in the laboratory. We have recently 

described convergent and short syntheses of macrocycles using MCR. One synthesis consisted 

of a short two-step assembly of macrocycles from cyclic anhydrides, diamines, oxo components 

(aldehydes and ketones), and isocyanides. Based on commercial availability of the building 

blocks, a very large chemical space is spanned: 20 (cyclic anhydrides) × 20 (diamines) × 1000 

oxo components × 1000 isocyanides = 400 million macrocycles. Computational generation of 

conformers for such a large chemical space requires fast and optimized software. Therefore, in 

this manuscript, we have benchmarked Moloc versus available commercial and freeware for their 

performance as defined by accuracy, speed, exhaustiveness, diversity, and SE. Our results 

confirmed that Prime, MM, and MOE possess higher accuracy in reproducing both the heavy 

atoms and ring coordinates of the crystallographic macrocycle references. According to our 

results, conformational sampling with ETKDG algorithm could be improved by subsequent 

minimizations steps with MMFF94s but not UFF. This finding could be related to the existence of 

out-of-plane bending and dihedral torsion parameters to planarize certain types of delocalized 

trigonal N atoms applied by the MMFF94s force field, thus providing a better match to the 

reference crystal structures. However, UFF contains basic parameters for all types of atoms on 

hybridization and connectivity and thereby is able to parameterize the restricted patterns of 

dihedral angles and rotatable bonds, both present in macrocycles.44 Nevertheless, these data 

lead us to suggest that the implementation of minimization steps employing specific force fields 

after conformational sampling of macrocycles would lead to improvements of sampling. For 

instance, the OPLS-2005 in Prime or MAB force field in Moloc represent the most accurate 

commercial and open software, respectively. Such an evidence could allow further analysis to 

study the effect of different force fields to improve macrocycle sampling. On the other hand, we 

show that the use of DG methods as ETKDG could be improved to generate conformers closely 

related to the crystal structures. In this sense, a modification to the ETKDG algorithm for 
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macrocycle sampling has been recently published by the developer team of RDKIT and will be 

available in the upcoming RDKIT release 2020.03.47 Along with a restriction in search space for 

macrocycles, the new implementations in ETKDG will include additional torsional-angle potentials 

to describe small aliphatic rings and adapt the previously developed potentials for acyclic bonds 

to facilitate the sampling of macrocycles. Nevertheless, because of the novelty of this algorithm, 

more testing is needed to evaluate its capability in diverse and challenging macrocycle datasets, 

such as those presented in this work. MD was performed only under solvated conditions49 with 

no major improvement in generating high-quality conformers according to the SE value. However, 

other reported MD-based approaches using different simulation conditions have reported the 

importance of solvation for the generation of bioactive conformations of macrocycles [72]. An 

enhanced sampling method has been reported using MD simulations that resulted in a reliable 

method to reproduce the experimentally determined structure of three macrocycles [73]. 

Nevertheless, the major drawback for MD-based methods relies on its low scalability of large and 

diverse macrocycle datasets. As a result, such methods can be an option when working with a 

limited number of macrocyclic structures but not for virtual screening approaches such as Prime, 

MM, Moloc, ETKDG, or other software reported here. Although CCDC conformer generator was 

one of the most efficient software for conformer generation in terms of speed and exhaustiveness, 

it suffers a low rate of conformational sampling exploration as only one single conformer was 

generated for 37 structures. The most noticeable exception relies on 76 cases where the 

RMSDbackbone values were unrealistically lower than 0.1 Å and hence equal to the 

crystallographic reference. This behavior could be explained by a bias in the sampling of entries 

from CSD: the CCDC conformer generator assigns the crystallography coordinates prior to 

conformation sampling. The CCDC conformer generator uses bond lengths and valence angles 

taken from CCDC Mogul and one of its best strengths consists in the use of dynamic rotamer 

libraries that are automatically updated with new data inside of CCDC [74,75]. However, although 

CCDC conformer generator has implemented strategies to deal with conformer generation of 

rings as set preclustered templates for isolated, fused, spiro-linked, and bridged ring systems 

[75], there is no specific method regarding macrocyclic conformers yet described. For instance, 

in rings for which no template is obtainable from Mogul data, the templates are generated on the 

fly using rotamer distributions for cyclic bonds [74,75]. If ring generation fails and no template 

structure can be generated, the ring conformation from the 3D input structure is used. According 

to our results, the conformational sampling with CCDC conformer generator for the CSD entries, 

bond lengths, and valence angles were taken from CCDC Mogul retrieving conformers with 

conformations close to the crystal structures. Thus, for the macrocycles not included in CSD 

database, the conformers were generated either from an on-the-fly template assignment or using 
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the input coordinates. This could explain the lowest number of conformers generated per entry 

and the reduced number of unique TFs. Furthermore, the span in RoG values from CCDC 

conformer generator suggests a tendency to retain conformations with higher compaction in 

comparison with any other methods for macrocycle conformational sampling described here, thus 

omitting possible extended states. Taking these results together, the restricted usage of CCDC 

conformer generator within the macrocycle conformational sampling could lead to poor results in 

terms of conformational space exploration or even a lack of conformers, suggesting that this tool 

is useful only to generate conformers for small molecules or for the assignment of crystallographic 

coordinates to macrocycle structures. Overall, our analysis indicated conformator as the lowest 

efficiency conformational sampling software tested in this work. This tool showed one of the lowest 

exhaustiveness values among the studied methods, just below that of MD. The accuracy of 

conformator reproducing the macrocycle backbone is also the lowest and is also one of the 

slowest conformational sampling methods generating structures with the lowest span in RoG of 

all methods tested. Nevertheless, the authors of conformator have tested this algorithm employing 

49 different macrocyclic structures [46]. These evidence suggest that the use of conformator 

could be restricted to small-to-medium macrocycles. Further analysis and testing are needed to 

assess the feasibility of conformator in generating conformers for a dataset containing large and 

complex structures. Furthermore, this software produces conformations that differ from each 

other by rotation of one single bond at a time which may limit its use to macrocycle with few 

rotatable bonds. As for Moloc, we are indeed aware that reproducing the accuracy of all heavy 

atoms, as our RMSDheavy atoms data demonstrate, represents its main limitation. However, we 

would like to emphasize that one of the main challenges in the conformational analysis of 

macrocycles is the accuracy of ring atoms. Based on our RMSDbackbone data, Moloc has a 

similar accuracy to the negative control (MD) and MD, Moloc, and ETKDG alone or in combination 

with MMFF94s, implying that it can be used as a valid alternative to these two methodologies to 

produce conformations with a similar accuracy. Most importantly, Moloc retains good 

exhaustiveness, SE, and economy in terms of least numbers of conformers to generate high 

quality conformers without requiring 1000 or more conformers for the exhaustive exploration of 

the chemical space, saving computational resources and avoiding redundancy in the conformers 

generated, suggesting this software as an acceptable alternative to Prime, MM, and MD for 

sampling. One major drawback of Moloc is that it relies on the number of symmetry elements 

within the macrocycle structure needed for the sampling. This is particularly evident in the case 

of POGLIH, a macrocycle from the CSD, for which 5 days were necessary to complete the 

conformational sampling. Indeed, the enumeration of topological symmetries is intended to avoid 

the counting of identical conformations that vary only by altered atomnumbering (e.g., 180° 
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rotation of a phenyl ring in the structure). Such enumeration takes an (exponentially) increasing 

time in accordance with the number of symmetry elements. For POGLIH, all 8 phenyl rings can 

be rotated, and methyl groups can be exchanged, as well as oxygen in the sulfates. In addition, 

the whole structure has a twofold symmetry. All in all, there are over 32,000 symmetry elements 

present, meaning that the same conformation may occur 32,000 times indicating that a threshold 

or restricted search of symmetries and their calculation could improve the speed of sampling. 

Another limitation of Moloc consists in sampling macrocycles with complex side chains: this has 

been seen in rhizopodin (PDB: 2VYP), a potent actin-binding anticancer agent.64 Aiming to 

understand the relation between the accuracy and the side-chain complexity, we first trimmed 

the two 15-atom-branched symmetrical side chains of rhizopodin and subsequently sampled 

again the macrocycle (Figure S1). As a result, we observed an improvement of heavy atom 

accuracy (from 6.27 to 2.17 Å) and an increased number of conformers (increasing from 62 to 

205). Nevertheless, several parameters allow the user a full control of the output ensembles, 

making Moloc a flexible piece of software for the molecular modeling of macrocycles. Our data 

indicate that the number of ensembles can be interactively controlled by applying either by energy 

thresholds (parameter “e”) or hydrogen bound weight (parameter “h”) term in the batch mode, 

allowing the enumeration of globular or flat conformations, the identification of intramolecular 

hydrogen bonds, and potentially predicting the most accurate ones in nonpolar environments. 

Taken altogether, these applications of Moloc indeed represent a “nice-to-have” tool in the 

molecular modeling toolkit of permeable macrocycles. Not lastly, the user can decide whether to 

apply a final energy minimization after conformational sampling followed by the addition of 

hydrogens to heteroatoms by invoking the parameter “q1”. As a result, Moloc returns all the 

energetic components calculated by MAB per conformer produced, bonds, valence angles, 

torsions, pyramidalities, 1−4 repulsion, van der Waals interactions, hydrogen bonds, and polar 

repulsion. To our knowledge, recent algorithms were published with already built-in protocols 

including the maximum ensemble size, RMSD or energy thresholds, and further constrains such 

as NMR data, enforcement of the chirality, geometry check before sampling, and application of a 

filter to retain the conformers according to a certain R value of the crystal structures 

[38,46,49,76]. MM presents indeed the advantage of tuning several parameters such as 

electrostatic treatment and possibility to choose two different force fields (OPLS-2005 or 

MMFF94s) [39]. In the case of open-access software, such as ETKDG, recently, new 

improvements were released in order to favor certain interactions or orientation angles [48]. 

Additionally, we would like to point out that CCDC conformer generator as well as ETKDG and 

conformator are knowledge-based systems with pre-existing rotational libraries of small-medium 

rings. This implies that if a test set entry is derived from the CSD, it will have prior information and 
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make use of these coordinates. Nevertheless, CSD entries were retained in knowledge-based 

systems. Finally, a possible strategy to improve the accuracy of complex macrocycles could be 

the implementation of further shape constrains accounting for the crystallographic packing forces 

because most of the macrocyclic crystal structures are flattened in a high-energy level 

conformation. Additional improvement of Moloc should also consider the flexibility of the complex 

side chains because the current version of the algorithm starts the identification of the first generic 

shape from a polar coordinate of a circle with an acceptable degree of accuracy and time.  
 

Conclusions  

 

In this work, we have benchmarked the shape-guided algorithm using a dataset of 208 

macrocycles from Prime publication, carefully selected on the basis of structural complexity (e.g., 

ring size, cyclopeptide/aliphatic, cross-linkings) and we have quantified accuracy, diversity, 

speed, exhaustiveness, and SE with four conformational commercial (Prime, MM, MOE, and MD) 

and five open-access (ETKDG, MMFF94s, UFF, CCDC, and conformator) software packages. A 

Python script to streamline the whole data collection of these parameters has been written ad 

hoc. The results of our benchmark are summarized in Table 4. Although Prime, MM, MOE, and 

MD remained the most accurate software tested in this paper in reproducing macrocycle heavy 

atoms, Moloc retained the same exhaustiveness. However, Moloc stood out for the highest SE in 

producing an acceptable number of conformations per entry and three-quarters of the database 

were processed with high accuracy (RMSDbackbone < 1.0 Å). Interactive control of the hydrogen 

bond terms allows the enumeration of globular and flat conformers and prediction of 

intramolecular interaction in a nonpolar solvent. However, the structural accuracy of Moloc is 

hampered by long-branched side chains. In that respect, side chain pruning in the batch mode 

with “Mdfy”, a built-in module within Moloc, and subsequent reattachment to the ring could be an 

option for future improvement. Surprisingly, minimization with UFF and MMFF94s managed to 

produce macrocycles with the most diverse shapes in terms of RoG, suggesting these types of 

software as a valid free alternative for the prediction of the most likely shape that the macrocycles 

can adopt in their bulk environment, for example, the cellular membrane or water. Follow-up 

studies could include modifications to ETKDG algorithm or the use of force field minimization in 

order to predict the X-ray structure. For instance, the evaluation of ETDKG conformational 

sampling was combined with OPLS- 2005 and/or MAB as minimization methods.  
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Table 4. Summary Table of the Benchmark 

 

Method Prime MM MOE MD Moloc conformator ETKDG MMFF94s UFF CCDC 

RMSDheavy atoms (Å) 0.878 0.655 0.765 1.052 1.910 1.990 2.165 1.793 2.083 2.067 

RMSDbackbone (Å) 0.396 0.383 0.417 0.562 0.652 0.801 0.743 0.668 0.766 0.476 

N of conformations 972 300 76 1000 67 338 1000 998 535 8 

TF 707 100 48 59 67 338 1000 998 535 8 

span RoG (Å) 1.02 0.93 0.74 0.85 0.86 0.87 0.82 1.13 1.08 0.15 

exhaustiveness 1.00 1.00 1.00 1.00 1.00 0.91 1.00 0.95 0.95 1.00 

SE 0.76 0.33 0.63 0.06 1.00 0.66 1.00 0.95 0.95 0.75 

speed 9.8 min 3.9 h 31.1 min 3.1 d 38.9 min 17.9 h 35.1 s 1.3 min 17.6 s 2.6 s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



103 
 

Supplementary information 

 
Table S1 summary of the pairwise Krustal-Wallis H-test calculated for the median of RMSD heavy atoms computational 

sampling methods reported. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, ns: not significant. 

 

Comparison p-value statistical significance 

Conformator_vs_CCDC 0,1231 ns 

Conformator_vs_ETKDG 0,4009 ns 

Conformator_vs_MMFF94s 0,5512 ns 

Conformator_vs_UFF 0,344 ns 

ETKDG_vs_CCDC 0,0507 ns 

ETKDG_vs_MMFF94s 0,1264 ns 

ETKDG_vs_UFF 0,967 ns 

MD_vs_CCDC 0,0011 ** 

MD_vs_Conformator <0,001 *** 

MD_vs_ETKDG <0,001 *** 

MD_vs_MMFF94s <0,001 *** 

MD_vs_Moloc <0,001 *** 

MD_vs_UFF <0,001 *** 

MMFF94s_vs_CCDC 0,2774 ns 

MMFF94s_vs_UFF 0,1002 ns 

MOE_vs_CCDC <0,001 *** 

MOE_vs_Conformator <0,001 *** 

MOE_vs_ETKDG <0,001 *** 

MOE_vs_MD 0,0057 ** 

MOE_vs_MMFF94s <0,001 *** 

MOE_vs_Moloc <0,001 *** 

MOE_vs_UFF <0,001 *** 

Macromodel_vs_CCDC <0,001 *** 

Macromodel_vs_Conformator <0,001 *** 

Macromodel_vs_ETKDG <0,001 *** 

Macromodel_vs_MD <0,001 *** 

Macromodel_vs_MMFF94s <0,001 *** 

Macromodel_vs_MOE 0,9174 ns 

Macromodel_vs_Moloc <0,001 *** 

Macromodel_vs_UFF <0,001 *** 

Moloc_vs_CCDC 0,3281 ns 

Moloc_vs_Conformator 0,3895 ns 

Moloc_vs_ETKDG 0,111 ns 

Moloc_vs_MMFF94s 0,833 ns 

Moloc_vs_UFF 0,1025 ns 

Prime_vs_CCDC <0,001 *** 
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Prime_vs_Conformator <0,001 *** 

Prime_vs_ETKDG <0,001 *** 

Prime_vs_MD 0,0091 ** 

Prime_vs_MMFF94s <0,001 *** 

Prime_vs_MOE 0,738 ns 

Prime_vs_Macromodel 0,2048 ns 

Prime_vs_Moloc <0,001 *** 

Prime_vs_UFF <0,001 *** 

UFF_vs_CCDC 0,0474 * 

 

 
Table S2 summary of the pairwise Krustal-Wallis H-test calculated for the median of RMSDbackbone computational 

sampling methods reported. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, ns: not significant. 

 
Comparison p-value statistical significance 

Conformator_vs_CCDC <0.001 *** 

Conformator_vs_ETKDG 0.6258 ns 

Conformator_vs_MMFF94s 0.0102 * 

Conformator_vs_UFF 0.6885 ns 

ETKDG_vs_CCDC <0.001 *** 

ETKDG_vs_MMFF94s 0.0269 * 

ETKDG_vs_UFF 0.8099 ns 

MD_vs_CCDC 0.0287 * 

MD_vs_Conformator <0.001 *** 

MD_vs_ETKDG <0.001 *** 

MD_vs_MMFF94s 0.0103 * 

MD_vs_Moloc 0.0615 ns 

MD_vs_UFF <0.001 *** 

MMFF94s_vs_CCDC 0.0023 ** 

MMFF94s_vs_UFF 0.0136 * 

MOE_vs_CCDC 0.3210 ns 

MOE_vs_Conformator <0.001 *** 

MOE_vs_ETKDG <0.001 *** 

MOE_vs_MD <0.001 *** 

MOE_vs_MMFF94s <0.001 *** 

MOE_vs_Moloc <0.001 *** 

MOE_vs_UFF <0.001 *** 

Macromodel_vs_CCDC 0.7173 ns 

Macromodel_vs_Conformator <0.001 *** 

Macromodel_vs_ETKDG <0.001 *** 

Macromodel_vs_MD <0.001 *** 

Macromodel_vs_MMFF94s <0.001 *** 

Macromodel_vs_MOE 0.7203 ns 
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Macromodel_vs_Moloc <0.001 *** 

Macromodel_vs_UFF <0.001 *** 

Moloc_vs_CCDC 0.0034 ** 

Moloc_vs_Conformator 0.0018 ** 

Moloc_vs_ETKDG 0.0036 ** 

Moloc_vs_MMFF94s 0.4101 ns 

Moloc_vs_UFF 0.0016 ** 

Prime_vs_CCDC 0.5943 ns 

Prime_vs_Conformator <0.001 *** 

Prime_vs_ETKDG <0.001 *** 

Prime_vs_MD <0.001 *** 

Prime_vs_MMFF94s <0.001 *** 

Prime_vs_MOE 0.9361 ns 

   

 
Table S3 summary of the pairwise Krustal-Wallis H-test calculated for the torsional fingerprint median of the 

computational sampling methods reported. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, ns: not significant. 

 

Comparison p-value statistical significance 

Prime_vs_Macromodel <0.001 *** 

Prime_vs_Moe <0.001 *** 

Prime_vs_MD <0.001 *** 

Prime_vs_Moloc <0.001 *** 

Prime_vs_Conformator <0.001 *** 

Prime_vs_ETKDG <0.001 *** 

Prime_vs_MMFF94s <0.001 *** 

Prime_vs_UFF 0.4048 ns 

Prime_vs_CCDC <0.001 *** 

Macromodel_vs_Moe <0.001 *** 

Macromodel_vs_MD <0.001 *** 

Macromodel_vs_Moloc <0.001 *** 

Macromodel_vs_Conformator <0.001 *** 

Macromodel_vs_ETKDG <0.001 *** 

Macromodel_vs_MMFF94s <0.001 *** 

Macromodel_vs_UFF <0.001 *** 

Macromodel_vs_CCDC <0.001 *** 

Moe_vs_MD 0.6715 ns 

Moe_vs_Moloc 0.1801 ns 

Moe_vs_Conformator <0.001 *** 

Moe_vs_ETKDG <0.001 *** 

Moe_vs_MMFF94s <0.001 *** 

Moe_vs_UFF <0.001 *** 
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Moe_vs_CCDC <0.001 *** 

MD_vs_Moloc 0.5448 ns 

MD_vs_Conformator <0.001 *** 

MD_vs_ETKDG <0.001 *** 

MD_vs_MMFF94s <0.001 *** 

MD_vs_UFF <0.001 *** 

MD_vs_CCDC <0.001 *** 

Moloc_vs_Conformator <0.001 *** 

Moloc_vs_ETKDG <0.001 *** 

Moloc_vs_MMFF94s <0.001 *** 

Moloc_vs_UFF <0.001 *** 

Moloc_vs_CCDC <0.001 *** 

Conformator_vs_ETKDG <0.001 *** 

Conformator_vs_MMFF94s <0.001 *** 

Conformator_vs_UFF 0.0029 ** 

Conformator_vs_CCDC <0.001 *** 

ETKDG_vs_MMFF94s <0.001 *** 

ETKDG_vs_UFF <0.001 *** 

ETKDG_vs_CCDC <0.001 *** 

MMFF94s_vs_UFF <0.001 *** 

MMFF94s_vs_CCDC <0.001 *** 

UFF_vs_CCDC <0.001 *** 

   

 
Table S4 summary of the pairwise Krustal-Wallis H-test calculated for the medians’ span radius of gyration across the 

computational sampling methods reported. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, ns: not significant. 

 
Comparison p-value statistical significance 

Prime_vs_Macromodel 0.0334 * 

Prime_vs_Moe <0.001 *** 

Prime_vs_MD 0.0014 ** 

Prime_vs_Moloc 0.0040 ** 

Prime_vs_Conformator 0.0056 ** 

Prime_vs_ETKDG 0.0016 ** 

Prime_vs_MMFF94s 0.5699 ns 

Prime_vs_UFF 0.7871 ns 

Prime_vs_CCDC <0.001 *** 

Macromodel_vs_Moe 0.0050 ** 

Macromodel_vs_MD 0.2322 ns 

Macromodel_vs_Moloc 0.3995 ns 

Macromodel_vs_Conformator 0.4621 ns 

Macromodel_vs_ETKDG 0.3470 ns 

Macromodel_vs_MMFF94s 0.0071 ** 
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Macromodel_vs_UFF 0.0201 * 

Macromodel_vs_CCDC <0.001 *** 

Moe_vs_MD 0.0837 ns 

Moe_vs_Moloc 0.0805 ns 

Moe_vs_Conformator 0.0258 * 

Moe_vs_ETKDG 0.0171 * 

Moe_vs_MMFF94s <0.001 *** 

Moe_vs_UFF <0.001 *** 

Moe_vs_CCDC <0.001 *** 

MD_vs_Moloc 0.8531 ns 

MD_vs_Conformator 0.5334 ns 

MD_vs_ETKDG 0.5983 ns 

MD_vs_MMFF94s <0.001 *** 

MD_vs_UFF 0.0013 ** 

MD_vs_CCDC <0.001 *** 

Moloc_vs_Conformator 0.8084 ns 

Moloc_vs_ETKDG 0.9065 ns 

Moloc_vs_MMFF94s 0.0011 ** 

Moloc_vs_UFF 0.0036 ** 

Moloc_vs_CCDC <0.001 *** 

Conformator_vs_ETKDG 0.8560 ns 

Conformator_vs_MMFF94s <0.001 *** 

Conformator_vs_UFF 0.0027 ** 

Conformator_vs_CCDC <0.001 *** 

ETKDG_vs_MMFF94s <0.001 *** 

ETKDG_vs_UFF <0.001 *** 

ETKDG_vs_CCDC <0.001 *** 

MMFF94s_vs_UFF 0.7612 ns 

MMFF94s_vs_CCDC <0.001 *** 

UFF_vs_CCDC <0.001 *** 

   

Table S5 summary of the pairwise Krustal-Wallis H-test calculated for the medians’speed across the computational 

sampling methods reported. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, ns: not significant. 

 
Comparison p-value statistical significance 

Prime_vs_Macromodel ≤0.001 *** 

Prime_vs_Moe ≤0.001 *** 

Prime_vs_MD ≤0.001 *** 

Prime_vs_Moloc ≤0.001 *** 

Prime_vs_Conformator ≤0.001 *** 

Prime_vs_ETKDG ≤0.001 *** 

Prime_vs_MMFF94s ≤0.001 *** 
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Prime_vs_UFF ≤0.001 *** 

Prime_vs_CCDC ≤0.001 *** 

Macromodel_vs_Moe ≤0.001 *** 

Macromodel_vs_MD ≤0.001 *** 

Macromodel_vs_Moloc ≤0.001 *** 

Macromodel_vs_Conformator ≤0.001 *** 

Macromodel_vs_ETKDG ≤0.001 *** 

Macromodel_vs_MMFF94s ≤0.001 *** 

Macromodel_vs_UFF ≤0.001 *** 

Macromodel_vs_CCDC ≤0.001 *** 

Moe_vs_MD ≤0.001 *** 

Moe_vs_Moloc 0.5522 ns 

Moe_vs_Conformator ≤0.001 *** 

Moe_vs_ETKDG ≤0.001 *** 

Moe_vs_MMFF94s ≤0.001 *** 

Moe_vs_UFF ≤0.001 *** 

Moe_vs_CCDC ≤0.001 *** 

MD_vs_Moloc ≤0.001 *** 

MD_vs_Conformator ≤0.001 *** 

MD_vs_ETKDG ≤0.001 *** 

MD_vs_MMFF94s ≤0.001 *** 

MD_vs_UFF ≤0.001 *** 

MD_vs_CCDC ≤0.001 *** 

Moloc_vs_Conformator ≤0.001 *** 

Moloc_vs_ETKDG ≤0.001 *** 

Moloc_vs_MMFF94s ≤0.001 *** 

Moloc_vs_UFF ≤0.001 *** 

Moloc_vs_CCDC ≤0.001 *** 

Conformator_vs_ETKDG ≤0.001 *** 

Conformator_vs_MMFF94s ≤0.001 *** 

Conformator_vs_UFF ≤0.001 *** 

Conformator_vs_CCDC ≤0.001 *** 

ETKDG_vs_MMFF94s ≤0.001 *** 

ETKDG_vs_UFF ≤0.001 *** 

ETKDG_vs_CCDC ≤0.001 *** 

MMFF94s_vs_UFF ≤0.001 *** 

MMFF94s_vs_CCDC ≤0.001 *** 

UFF_vs_CCDC ≤0.001 *** 
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Fig.S1 Crystal structure of rhizopodin (magenta sticks) bound to two protein units of actin (green and cyan surface 

representation). Water and polyethylene glycol molecules were removed for clarity of visualization. Chloride atoms area 

represented as green spheres. 
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Table S6 Summary table of the parameters of Moloc at 100 kcal/mol energy threshold in comparison with commercial 

software. Nconf= number of conformations. 

 
Entry Method N conf TF backbone TF RoG (Å) RMSD heavy atoms (Å) RMSD backbone (Å) MinEnergy 

4MNW_conf1 

Moloc 846 53 192 1.70 5.541 2.561 28.50 

Prime 7 7 7 1.50 5.107 2.045 74.64 

MM 207 98 98 1.05 5.118 2.475 0.00 

MOE 11 11 11 0.93 5.245 2.547 124.78 

MD 1000 528 528 1.64 4,646 2.263 17.35 

4KEL_conf1 

Moloc 802 52 200 1.66 3.740 2.037 45.36 

Prime 290 290 290 1.44 3.170 1.861 34.25 

MM 361 140 140 0.88 4.241 2.394 25.88 

MOE 4 3 3 0.25 4.649 2.685 39.29 

MD 1000 476 476 1.07 4.114 2.065 0.00 

 

 

Fig.S2 Box plots showing the effects of different energy thresholds (10, 20 and 100 kcal/mol) over the (A) accuracy, 

(B) number of conformations and (C) local energy minimum. (D) Structural alignment between the lowest RMSD heavy 

atom conformer produced by Moloc (green stick) and the observed crystal structure (grey sticks) alongside with their 

PDB ID. 
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Abstract 

 

Molecular docking is a useful and powerful computational method for the identification of potential 

interactions between small molecules and pharmacological targets. In reverse docking, the ability 

of one or a few compounds to bind a large dataset of proteins is evaluated in silico. This strategy 

is useful for identifying molecular targets of orphan bioactive compounds, proposing new 

molecular mechanisms, finding alternative indications of drugs, or predicting drug toxicity. Herein, 

we describe a detailed reverse docking protocol for the identification of potential targets for 4-

hydroxycoumarin (4-HC). Our results showed that RAC1 is a target of 4-HC, which partially 

explains the biological activities of 4-HC on cancer cells. The strategy reported here can be easily 

applied to other compounds and protein datasets.   
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Introduction 

 

Molecular docking was first described by Kuntz in 1982 [1]. To date, it has become a central tool 

in virtual drug screening, given its ability to predict ligand–target interaction. Molecular docking 

comprises two major tasks. First, the sampling algorithm predicts the many conformations that 

the ligand can assume within the pocket of interest (referred as poses). Then, a scoring function 

predicts the binding affinity between ligand and receptor for each pose. The generated binding 

poses are then ranked based on their binding affinity scores [2]. Ideally, the top-ranked pose 

should correspond to the ligand-binding mode present in nature. On the other hand, scoring 

functions are usually employed for ranking and filtering large databases of compounds in 

structure-based virtual screening. The highest-ranked ligands have the best binding affinity 

scores and, thus, can be considered lead compounds [3].  

 

An additional application of molecular docking is the identification of potential molecular targets 

of orphan bioactive compounds; this strategy is called reverse docking. In contrast to the 

traditional molecular docking approach, reverse docking is used to identifying potential receptors 

for a given ligand among a large number of structures. Because of that, reverse docking can be 

used to discover targets for existing drugs, natural compounds, and novel molecules. 

Consequently, reverse docking allows the identification of the molecular mechanism of a 

substance with an unknown target, the finding of alternative indications of drugs (repurposing), 

or the prediction of adverse drug reactions or toxicity [4]. 4-Hydroxycoumarin (4-HC) has 

antimetastatic and antineoplastic activities in preclinical models of melanoma [5–7] (Fig. 1a). To 

identify the potential targets that mediate the reported effects of 4-HC, we performed reverse 

docking between 4-HC and a human protein dataset (Fig. 1b) retrieved from the Research 

Collaboratory for Structural Bioinformatics Protein Data Bank (rcsbPDB— https://www.rcsb.org/-

). This example allows the explanation of the process of setting up a reverse docking experiment.  
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Figure 1. Reported effects of 4-HC and strategy for target identification. (a) 4-HC disorganizes the actin cytoskeleton 

in melanoma cells and has antimetastatic activity in a murine melanoma model. However, the target mediating these 

effects of 4-HC is unknown. (b) Proposed screening for identification of potential targets of 4-HC by reverse docking. 

 

Materials  

Computational Workstation  

A computer with at least four available cores. For generation of data presented here, we used two 

Central Processor Units (CPUs) model Intel® Xeon® W3503 with two cores each (see Note 1), 

12 GB of Random-access Memory (RAM), and 2 TB of Hard Drive (HD) (see Note 2) running 

Linux Ubuntu 16.04 Long Term Stable (LTS) for 64 bits architecture (see Note 3).  

 

Python Environments Manager (See Note 4)  

Miniconda3 for creation, management, and installation of python packages. It can be downloaded 

from https://docs.conda.io/en/ latest/miniconda.html. 
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Molecular Docking Software 

 GOLD from the Cambridge Structural Database suite 2019 (CSD suite 2019) of the Cambridge 

Crystallography Data Centre (CCDC) through the Python Application Programming Interface 

(Python API) on Python 2.7 (see Note 5).  

 

Bioinformatics and Cheminformatic Tools  

1. Conda packages of MDtraj 1.9.1 [8] and PBDFixer 1.5 [9] for automation of protein 

preparation. They are available at http://mdtraj.org/1.9.3/ and https://github.com/ 

pandegroup/pdbfixer.  

2. Command line installation of Fpocket 3.0 [10] for the identification of protein pockets in the 

protein dataset. Fpocket can be downloaded from http://fpocket.sourceforge.net/.  

3.The Graphic User Interface (GUI) of MarvinSketch and Standardizer for ligand drawing and 

preparation, available at ChemAxon (http://www.chemaxon.com).  

4. Conda package of Pymol 2.3.1 (https://pymol.org/2/), available at 

https://anaconda.org/schrodinger/pymol.  

5. Conda package of OpenBabel 2.4.1 [11], which can be downloaded from 

https://anaconda.org/openbabel/openbabel.  

6. Protein-Ligand Interaction Profiler (PLIP) [12] server (https://projects.biotec.tu-

dresden.de/plip-web/plip/index).  

 

Analysis Tools Working on Python 3.6 1  

1. Conda package of Scipy 1.3.0 [13], an open-source software for mathematics, science, and 

engineering available at https:// www.scipy.org/.  

2. Conda package of The Macromolecular Transmission Format (MMTF) [14] downloadable at 

https://anaconda.org/condaforge/ mmtf-python.  

3. Conda package of BioPython 1.72 [15], which contains freely available tools for biological 

computation. Available at https:// biopython.org/.  
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Methods  

 

Generation of Protein Structures Database  

The protein dataset of this example was built accordingly to the following advanced search 

parameters into rcsdPDB (see Note 6): – Experimental Method: X-ray. – Molecule: Protein. – 

Organism: Homo sapiens (only). – X-ray Resolution: 0–2.5 A ° . – Sequence identity: 90%. Our 

search retrieved 4757 biological assemblies of proteins that were downloaded as pdb format files 

to generate the protein dataset analyzed. 

Setting Up the Software and Conda Environments  

These procedures aim to install the tools that will be used in the protocol. At the end of these 

steps, all the software will be ready to start the ligand and protein preparations and the docking 

procedure.  

 

1. Download and install Fpocket 3.0, MarvinSketch, and Standardizer according to the developer 

instructions.  

2. Download and install the Miniconda3 installer for the proper platform.  

3. Create two Python environments for docking and analysis, respectively by typing into the 

terminal:  

(a) $conda create -n Docking python=2.7.  

(b) $conda create -n Analysis python= 3.6.  

 

For further info about environment activation and management of packages, see Note 4.  

 

Inside of Docking environment, install the CSD suite 2019 from CCDC, including GOLD. Follow 

the developer instructions for installation. Then install Mdtraj 1.9.1 and PDBFixer 1.5. by typing 

into the terminal:  

(c) $conda install -c omnia mdtraj = 1.9.1 pdbfixer = 1.5  

 

Inside of the Analysis environment, install OpenBabel, Pymol, and all the tools listed on Analysis 

Tools Working on Python 3.6 1 subheading typing:  
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(d) $conda install -c openbabel openbabel.  

(e) $conda install -c schrodinger pymol.  

(f) $conda install scipy.  

(g) $conda install -c conda-forge mmtf-python.  

(h) $conda install -c anaconda biopython.  

 

Protein Dataset Preparation for Reverse Docking Assays (See Note 7)  

These steps will prepare each protein structure and store the corresponding information in new 

files. Once completed, the whole dataset of proteins will be ready for being employed in molecular 

docking. Figure 2a shows the differences in a protein from the dataset after preparation.  

1. Activate and use the Analysis environment. Remove solvent molecules (water, ions, dimethyl 

sulfoxide, glycerol, etc.) and cocrystallized ligand(s) by using the remove_solvent() function of 

Mdtraj and removeHeterogens() of PDBfixer, respectively.  

2. Complete the peptidic chain and replace nonstandard residues (i.e., selenomethionine (MSE) 

to methionine (MET)) by using the functions findNonstandardResidues() and 

replaceNonstandardResidues() from PDBFixer.  

3. Find and add the missing residues and atoms with PDBfixer using findMissingResidues(), 

findMissingAtoms(), and addMissingAtoms(). 

4. Add the missing hydrogens for protein structures at pH 7.4 utilizing the function and variable 

addMissingHydrogens(7.4) on PDBfixer.  

5. Assign partial charges using assign_partial_charges() from the Protein module of the CSD 

suite.  

6. Save the prepared protein in mol2 and pdb file formats by employing the write() function from 

the MoleculeWriter module of CSD suite (such files will be used later). For instance, files can be 

named pdbCode_prep.mol2 and pdbCode_prep.pdb, where pdbCode would be the PDB entry 

number of the structure in rcsbPDB.  
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Ligand Building and Preparation for Reverse Docking (See Note 8)  

The goal of this procedure is obtaining the optimized 3D structure of the ligand(s) for docking 

experiments (i.e., including explicit hydrogens for pH 7.4, and the properly aromaticity 

perception).  

1. Use MarvinSketch GUI to draw the ligand. The structure of 4-HC was generated from the 

SMILES code OC1=CC(=O)C2=CC=CC=C2O1. Alternatively, the option “Structure- >Name to 

Structure” can be used by typing 4-hydroxycoumarin.  

2. On MarvinSketch, select the 4-HC and perform a pH-dependent protonation analysis utilizing 

“Calculations > Protonation > pKa” and the default settings. Figure 2b shows the optimized 

structure of 4-HC and the results obtained in protonation analysis. Note that the ionic form of 4-

HC is prevalent at pH 7.4, whereas the percentage of the neutral species is almost zero. Because 

of that, we worked with the ionic formof 4-HC with SMILES code [O-]C1=CC(=O) OC2 = 

CC=CC=C12.  

3. Using the SMILES code, save the ionic form of the 4-HC in a new file called 4-HC.mol2 using 

“File > Save As” on MarvinSketch.  

4. Open Standardizer and use the 4-HC.mol2 file as input. Click “Next” and select the molecule 

standardization options “Add Explicit Hydrogens” and “Aromatize” (order is important). Click 

“Next” and save the file as 4-HC_standarized.mol2.  

5. Activate the Analysis environment and use OpenBabel 2.4.1 to optimize the molecule using 

the MMFF94s forcefield by typing into the terminal: (a) obminimize -ff MMFF94s -sd -n 2500 -c 

0.00001 -cut -rvdw 6.0 -rele 10.0 -pf 10 4-HC_standarized.mol2 > 4- HC_ready.mol2, where 

obminimize is the module of OpenBabel for energy minimization; -ff MMFF94s is the forcefield to 

use for optimization; -sd is the steepest descent algorithm;- n 2500 is the number of steps; -c 

0.00001 is the convergence criteria; -cut enables the cutoff; -rvdw 6.0 is the cutoff for the Vander 

Walls distance; -rele 10.0 is the electrostatics cutoff; -pf 10 is the frequency to update the 

nonbonded pairs; and 4-HC_standarized.mol2 > 4- HC_ready.mol2 corresponds to the input and 

output file, respectively (see Note 9).  
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Figure 2. Proteins and ligand preparation for docking. (a) Structure of a model protein before and after preparation. 

Preparation must consider the removal of co-crystallized molecules (i.e., solvents), the building of missing loops, and 

the proper protonation state of the residues. (b) Preparation of 4-HC. Ligand preparation must include the analysis of 

the prevalence of the molecule at defined pH (green line) and selection of proper protonation and tautomeric state. The 

3D energetically optimized geometry of 4-HC is shown on the right. 

 

Protein Pocket Search for Reverse Docking  

1. Utilize Fpocket 3.0 to find the pocket for each the pdbCode_prep. pdb file. Type in the terminal: 

$fpocket -F input_file.txt -v 500. Where input_file.txt is a text file in which each line contains the 

path to each pdbCode_prep.pdb file of the prepared protein dataset, and -v 500 is the number of 

Monte-Carlo iterations for the calculation of the pocket volume. The result of this run will be saved 

in a new folder for each protein-containing (among other things) the 3D coordinates of the pockets 

plus the protein structure in a pdb file and a txt file with several descriptors including the pocket 

volume (see Note 10).  

2. Use Pymol inside of the Analysis environment (either using the GUI or by python programming) 

to extract the coordinates of pockets with a volume higher or equal to 150 Å 3 into a mol2 file for 

each protein. For instance, pdbCode_PocketNum.mol2. These files include all relevant pockets 

for one protein. Pockets smaller than 150 Å 3 are too small to allocate the 4-HC and, thus, are 
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irrelevant for this experiment. The generated mol2 files will be used as references for the reverse 

docking; therefore, their number corresponds to the number of dockings to perform. For this 

example, the number of references is approximately 50,000.  

 

Reverse Docking  

1. Activate the Docking environment to set up the reverse docking. Import the module Docker () 

from the CSD suite 2019 to initialize the GOLD docking engine.  

2. Establish the following Docker() settings for the docking of the 4-HC into each protein using 

the reference coordinates of pockets:  

(a) receptor =add_protein_file (‘pdbCode_prep.mol2’).  

(b) reference=MoleculeReader (‘pdbCode_pocketNum. mol2’).  

(c) BindingSiteFromPoint(receptor,reference.centre_of_- geometry(),6); where 6 is the 

number of Å to extend the pocket centre.  

(d) Fitness_funtion = ‘plp’; which means using PLPchemscore function for docking 

scoring.  

(e) autoscale=10.0; recommended value for High Throughput Screening (HTS).  

(f) add_ligand_file(‘4-HC_ready.mol2’,10); where 10 refers to the number of best-scored 

poses requested as docking result.  

(g) output_file = ‘pdbCode_pocketNum.mol2’. For a clearer reference about the 

establishment of settings in a Pythonic way, see Fig. 3 (see Note 11).  

3. Run the docking, which will generate a mol2 file for each pocket reference 

(pdbCode_pocketNum.mol2 from output_file variable). Such files contained the ten best-scored 

poses of 4-HC and thus were used for analysis.  
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Figure 3. Python programming workflow for reverse docking using GOLD. The image shows a general script to establish 

the reverse docking settings through a python programming script in order to run the molecular docking using the 

Python API of GOLD. 

 

Analysis of Docking Results  

1. Active the Analysis environment containing the python libraries Scipy, MMTF, and BioPython.  

2. Use the docking results to generate a table with the entry number of the protein and the highest 

score value (best docking result) for each evaluation.  

3. Visualize such data in a probability distribution plot and select the potential targets among the 

proteins with a higher docking score. We selected as candidates 67 proteins with docking scores 

_55 (Fig. 4a). This cutoff value corresponds to the average docking score + 3.5 SD.  

4. Generate a new table containing the entry name of the best docking results and their score. 

Use the MMTF python library to extract the sequence of each pdbCode using the function 

entity_list and add such data into a new column in the table.  

5. For all entries into best docking results table, perform an all vs. all sequence alignment using 

the function alignment_- score = pairwise2.align.globalxx(target, reference, score_ only ¼ True) 

of BioPython library and calculate the identity percentage as follows:  

%𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 =
𝐴𝑙𝑖𝑔𝑚𝑒𝑛𝑡 𝑠𝑐𝑜𝑟𝑒

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 𝑥 100 

 

6. The result must be a matrix of size N _ N; where N is the number of entries in best docking 

results (67 for our example), and each data inside the matrix must be the % identity for each 

target vs. reference sequence alignment.  
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7. Analyze the matrix with the identity percentage values using the Single-Linkage Hierarchical 

Clustering (SLHC) algorithm to identify protein clusters from best docking results by using the 

functions inside of the Scipy module scipy.cluster.hierarchy. Then, sort the x and y axis of the 

matrix according to the hierarchical map and create a heatmap of the matrix. Further analysis 

may include a UniProt (https://www.uniprot.org/) search to identify Gene Ontology (GO) 

annotations for the best docking proteins.  

 

Figure 4b shows the hierarchical clustering and identity heatmap for 4-HC potential targets. 

Clusters of proteins with high identity can be identified, suggesting that a common 

structure/domain could be mediating ligand–protein interaction. Our analysis identified a cluster 

of proteins with GO annotations that match the previously reported experimental evidence [5–7]. 

We focused on such group and selected the protein RAC1 (PDB code 4GZL), which participates 

in the control of the actin cytoskeleton organization as the best target candidate.  

 

Figure 4. Distribution of probability and Single-Linkage Hierarchical Clustering of reverse docking results. (a) The best 

pose scores for each ligand–pocket pair showed a normal distribution. We considered as potential targets of 4-HC the 

proteins with docking scores _ mean + 3.5 SD (red line). (b) Potential targets were analyzed by SLHC based on their 

identity. We identified a protein cluster with actin cytoskeleton organization function (red square). 

  

8. Generate a protein–ligand interaction map for the best docking pose of 4-HC in RAC1 (4GZL). 

For such purpose, use Pymol inside the Analysis environment to create a 4-HC-RAC1 complex 

using the 4GZL_1.mol2 file from dockingResults_Folder, and 4GZL_prep.mol2 file from 
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prepProteins_Folder, corresponding to docking poses of 4-HC and RAC1, respectively. Save the 

#1 pose and the protein into a Complex.pdb file. Use this file to create the interaction map by the 

PLIP server, listed on Subheading 2.4, item 6. The binding mode of 4-HC to RAC1 (4GZL) is 

shown if Fig. 5. This result generates a new hypothesis about the mechanism of action of 4-HC.  

 

 

Figure 5. Interaction map of 4-HC with RAC1 (4GZL). Analysis of docking best results and SLHC indicated that RAC1 

(white sticks) could be a potential target for 4-HC (green sticks) by forming several hydrogen bonds (orange dashed 

lines), a perpendicular π-staking (red dashed line), and hydrophobic interactions (magenta dashed line).  

 

Notes  

1. Most of docking algorithms and software are optimized for running even in low-specs 

computers. However, recent versions of docking programs, such as GOLD [2], support running 

in parallel through the Python API. Because of that, reverse docking experiments can be 

performed in multicore machines, as supercomputers or clusters.  

2. The amount of data generated in virtual HTS experiments require enough available space into 

Hard Drive (HD) or Solid-state Drive (SSD). In our example, the total space of the workstation 

employed for running the example was 2 TB, and the space utilized for protein dataset, pockets, 

ligand, docking results, and analysis was 11.9 GB.  

3. Several of the tools employed in this method have been developed for running into Windows, 

Mac OS, and Linux, but we strongly advise to use a Linux based OS (e.g., Ubuntu or Debian) 

because it improves software stability. We worked in Linux operative system Ubuntu 16.04.  
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4. Many of the tools required on this protocol will be managed by Miniconda3. Moreover, most of 

the tasks described in methods were automatized by using Python 2.7 and Python 3.6 

programming. For more info about Miniconda3 visit https:// 

docs.conda.io/projects/conda/en/latest/, and for Python visit https://www.python.org/.  

5. Further information about GOLD can be found at https:// www.ccdc.cam.ac.uk/solutions/csd-

discovery/components/ gold/. We employed GOLD due to its versatility and accuracy [16]. 

However, this protocol can be adapted for running using another molecular docking software. For 

instance, running a reverse docking using AutoDock Vina can be achieved by Bourne-again shell 

(BASH) scripting on Linux OS or through the Graphic User Interface (GUI) [17]. The CSD suite 

containing GOLD can be employed either by GUI or using the Python API. For more info about 

available platforms, installation, and usage, visit https://downloads.ccdc.cam.ac.uk/docu 

mentation/API/installation_notes.html.  

6. Protein dataset definition is a key task of reverse docking because it depends on the question 

aimed to address. For instance, the dataset should only include kinases if the hypothesis is that 

the compound (or series of compounds) can bind to kinases. A different dataset should be used 

for evaluating the ability of a compound to bind to proteins of a specific pathogenic 

microorganism. Independently of the characteristics that define the dataset, structural information 

of the proteins can be retrieved by searching into public databases as rcsbPDB or PDBe 

(https://www.ebi.ac.uk/pdbe/), both members of the Worldwide Protein Data Bank (wwPDB -

https://www.wwpdb. org/-). Additional sources of structures available for reverse docking can be 

found in ref. 18 [18].  

7. Alternatively, protein preparation can be achieved using GUIs as Dock Prep module of Chimera 

[19], which may be easier for users with less programming background. Whatever the approach 

selected for protein preparation; the steps are the same.  

8. Ligand structures could come from various sources. This method describes the building of a 

ligand from zero. However, existing databases with molecules from different sources and 

chemical identity. For example, the ZINC15 database (https:// zinc15.docking.org/) which 

contains millions of molecular structures that can be used for in silico experiments.  

9. Docking software cannot handle all of the file formats available to represent molecules. Thus, 

the user must select the proper file format for the docking software to be used. When working in 

GOLD, the recommended file format for proteins and ligands is mol2.  

10. Identification and extraction of protein pockets allow the selection of druggable pockets. 

Fpocket can also search the pockets in the context of cocrystallized ligands. This option is useful 
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if only known binding sites will be analyzed. Please note that running docking of a ligand over all 

the protein surface is not recommended because most docking software were not created for 

such purpose.  

11. Different docking software packages employ different sampling algorithms and score 

functions to find and evaluate ligand– protein interactions. The parameters established in Fig. 3 

are the criteria to reproduce this experiment using GOLD, but it does not represent a python 

script. It must be considered just as an example to create an automatized python script for 

docking running. For other GOLD score functions and setting, visit 

(https://www.ccdc.cam.ac.uk/support-and resources/support/search?q=Scoring%20function). 

The use of other software than GOLD or different settings could rise to different results.  
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Abstract 
 

The rapid growth of COVID-19 cases is causing an increasing death toll and paralyzing the world 

economy. De novo drug discovery takes years to move from idea and/or pre-clinic to market, and 

it is not a short-term solution for the current SARS-CoV-2 pandemic. Drug repurposing is perhaps 

the only short-term solution, while vaccination is a middle-term solution. Here, we describe the 

discovery path of the HCV NS3–4A protease inhibitors boceprevir and telaprevir as SARS-CoV-

2 main protease (3CLpro) inhibitors. Based on our hypothesis that α-ketoamide drugs can 

covalently bind to the active site cysteine of the SARS-CoV-2 3CLpro, we performed docking 

studies, enzyme inhibition and co-crystal structure analyses and finally established that 

boceprevir, but not telaprevir, inhibits replication of SARS-CoV-2 and mouse hepatitis virus 

(MHV), another coronavirus, in cell culture. Based on our studies, the HCV drug boceprevir 

deserves further attention as a repurposed drug for COVID-19 and potentially other coronaviral 

infections as well. 
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Introduction 

 

Since emerging in Wuhan, China, in December 2019, the coronavirus (CoV) disease 2019 

(COVID-19) epidemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) has progressed rapidly into a pandemic [1]. COVID-19 is characterized by fever, cough, 

fatigue, shortness of breath, pneumonia, and other respiratory tract symptoms, and in many 

cases progresses to death [1–3]. As of August 30, 2020, there have been more than 25 million 

confirmed cases, and more than 830.000 deaths reported worldwide. Moreover, COVID-19 is 

making an immense negative impact on the world's economy and has become a huge societal 

burden [4].  

 

SARS-CoV2 is an enveloped, non-segmented, positive-sense RNA virus that is part of the 

order Nidovirales, in the CoV virus family, which is broadly distributed in humans and other 

mammals [5,6]. SARS-CoV-2 is classified into the beta-CoV genera. Recent studies highlighted 

that SARS-CoV-2 genes share >80% nucleotide identity and >89% nucleotide similarity with 

SARS-CoV genes [7–9]. Upon cell entry, two polypeptides, pp1a and pp1ab, are produced by 

the host translation machinery directly from the CoV genome [10,11]. These two polypeptides 

self-cleave proteolytically into 11 and 16 individual non-structural (nsp) proteins, respectively, that 

are essential for viral replication [12]. CoV encode either two or three proteases that are involved 

in the self-cleavage of pp1a and pp1ab. They are the papain-like protease (PLpro), present with 

nsp3, and the 3C-like proteinase (3CLpro) or Mpro, localized in nsp5 [13]. Most CoV encode two 

PLpros within nsp3, except the gamma-CoV, SARS-CoV, Middle East respiratory syndrome 

coronavirus (MERS-CoV) and SARS-CoV-2 [13,14]. Importantly, 3CLpro plays a critical role in 

CoV replication and unlike structural/accessory protein-encoding genes, displays a considerable 

similarity between members of CoV, in particular beta-CoV [10,11]. Therefore, it is a promising 

target for the discovery and the development of a pan-anti-CoV inhibitor [6,15].  

 

We investigated FDA-approved drugs with electrophile warheads for their potential to inhibit the 

SARS-CoV-2 proteases (Fig. 1A). Both proteases are cysteine proteases. The great majority of 

cysteine protease inhibitors function by a covalent mechanism where the nucleophilic sulfhydryl 

forms an (ir)reversible bond with an electrophilic warhead (α-ketoamide, for instance) of the 

inhibitor (Fig. 1B). Such covalent inhibitors have several advantages, including an increased 

ligand efficiency, overcoming competition with native ligands and less recurrent dosing due to 

sustained duration of action [16]. Thus, we focused our attention on subgroups of drugs, e.g. 

https://pubs.rsc.org/en/content/articlehtml/2021/md/d0md00367k#imgfig1
https://pubs.rsc.org/en/content/articlehtml/2021/md/d0md00367k#imgfig1
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electrophiles such as α-ketoamides and nitriles, which potentially can undergo a covalent 

modification of the active site cysteine of SARS-CoV-2 proteases. Our first finding was that nitrile 

containing gliptins are potential SARS-CoV-2 protease inhibitors [15]. Here, we report that α-

ketoamide hepatitis C virus (HCV) protease inhibitors are also inhibitors of SARS-CoV-2 3CLpro 

(Fig. 1C). In particular, we present the finding of boceprevir and telaprevir as 3CLpro SARS-CoV-

2 inhibitors, suggested by docking studies, supported by biochemical and co-crystal structure 

analyses, and finally provide evidence that boceprevir, but not telaprevir, inhibits viral replication 

in cellular assays assessing the replication of mouse hepatitis virus (MHV), also a beta-CoV, and 

SARS-CoV-2. 

 

 

Figure 1. Hypothesis-driven illustration of α-ketoamide HCV NS3–4A protease inhibitors as covalent SARS-CoV-2 

3CLpro inhibitors. A) Crystal structure of SARS-CoV-2 3CLpro (PDB ID 6LU7, grey surface presentation) highlighting 

the active site (red box) and the catalytic Cys145 (yellow). The catalytic dyad His41 and Cys145 are shown as stick 

presentation. B) Schematic mechanism of the addition of an electrophilic drug onto the active site Cys145 involving the 

His41 base. C) 2D structures of the marketed HCV drugs boceprevir and telaprevir, highlighting with a yellow circle the 

electrophilic α-ketoamide groups. 

 

https://pubs.rsc.org/en/content/articlehtml/2021/md/d0md00367k#imgfig1
http://xlink.rsc.org/?pdb=6LU7
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Methods 

 

Chemicals and reagents 

Boceprevir, telaprevir and bafilomycin A1 were obtained from Advanced Chemblocks Inc, Combi-

Blocks and Sigma-Aldrich, respectively, and dissolved in dimethyl sulfoxide (DMSO, Sigma-

Aldrich) at concentration of 100 mM, 100 mM and 200 μM, respectively. Boceprevir and telaprevir 

were stored at 4 °C, and bafilomycin at −20 °C. 

 

Molecular docking 

The methodology for covalent docking was performed as reported. Briefly, the crystal structure 

of SARS-CoV-2 3CLpro (PDB ID 6LU7) was used as a receptor, and boceprevir and telaprevir as 

ligands. Protein was prepared by removing co-crystallized waters, solvent molecules, and adding 

charges and hydrogens using Chimera 1.14 [17]. Isomeric SMILES codes for ligands were 

retrieved from PubChem and prepared for docking by setting the absolute stereo flags, adding 

explicit hydrogens and tautomeric states at pH 7.4. 3D coordinates were generated with 

Standardized 19.20.0 (http://www.chemaxon.com). For covalent docking, the sulfur atom of the 

reactive Cys145 of 3CLpro was used as the linker to form the covalent bond. For each ligand, 50 

runs of genetic algorithm for the conformational search were performed and each pose was 

evaluated employing the PLP Chemscore scoring function using the GOLD software from the 

Cambridge Crystallography Data Center (CCDC) [18].  

 

Cloning, protein expression and purification 

An E. coli codon-optimized gene encoding SARS-CoV-2 3CLpro was purchased from Eurofins 

Genomics (Fig. S1). The gene was subcloned into the pET-28a(+) vector using NcoI and XhoI 

restriction enzymes (NEB). Initial tests showed that the resulting C-terminal 6His-tag was reducing 

enzymatic activity so in order to be able to obtain a native C terminus, PCR was performed with 

specific primers GCA GGT CTC GAG AGG CCC CTG AAA CGT AAC GCC GC (5′ → 3′) and 

CGC AAG CCC ATG GCG GC (5′ → 3′) to introduce a human Rhinovirus 3C protease (HRV 

3Cpro) compatible cleavage site on the C terminus (SGVTFQGP). The PCR product was then 

digested and cloned into the pET-28a(+) vector using NcoI and XhoI. 
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The resulting pET-28a-3CLpro plasmid was transformed into competent BL21 Star (DE3) E. coli 

strain and a single colony was used to inoculate 20 ml of Luria–Bertani (LB) medium, 

supplemented with 50 μg/ml kanamycin and 35 μg/m chloramphenicol, before growth at 37 °C. 

After 16 h, the preculture was added to 2 l of LB medium (supplemented with 50 μg/ml kanamycin 

and 35 μg/ml chloramphenicol) and incubated at 37 °C in a shaking incubator (180 rpm). 

Expression of the fusion protein was induced by addition of 0.5 mM isopropyl-1-β;-D-

thiogalactopyranoside (abcr chemicals) when the culture OD600 reached 0.6. At this point, the 

culture was transferred to an 18 °C shaking incubator (180 rpm) and after an overnight 

incubation, the bacteria were harvested by centrifugation at 4000g for 20 min. Pellets were 

resuspended in lysis buffer (50 mM Tris-HCl, pH 8, 300 mM NaCl, 10 mM imidazole, 20 μg/ml 

DNAse 1, 0.4 mg/ml lysozyme), lysed by sonication (50% amplitude, 2 s on/15 s off, for 5 min) 

and then clarified by centrifugation at 50 000g for 45 min. The supernatant was loaded on a 5 ml 

HiTrap HP column (GE Healthcare), washed with 5 column volumes of washing buffer (50 mM 

Tris-HCl, pH 8, 300 mM NaCl, 25 mM imidazole) and subsequently eluted in the elution buffer (50 

mM Tris-HCl, pH 8, 300 mM NaCl, 250 mM imidazole). His-tagged HRV 3Cpro was added to the 

eluted fraction (1 : 10 w/w) and this mixture was dialyzed overnight at 4 °C against 50 mM Tris-

HCl, 1 mM TCEP, 300 mM NaCl, to remove the imidazole and cleave the C-terminal 6xHis tag. 

Reverse nickel-NTA purification was then performed to elute untagged SARS-CoV-2 3CLpro, 

which was then further purified by size-exclusion chromatography (SEC) using a HiLoad 16/60 

S200 (GE Healthcare) equilibrated with the SEC buffer (20 mM HEPES, pH 7.5, 50 mM NaCl). 

Finally, the purified SARS-CoV-2 3CLpro was concentrated to 5 mg/ml in a Vivaspin centrifugal 

concentrator (molecular weight cut-off (MWCO) 10 kDa, Sartorius). 

 

Crystallization and structure determination 

Initial apo seed crystals were obtained by the sitting drop vapour diffusion method at 18 °C with 

drops consisting of 0.5 μl protein solution (5 mg/ml) and 0.5 μl reservoir solution (0.2 M potassium 

sodium tartrate tetrahydrate, 0.2 M lithium acetate, 20% PEG 3350). These initial SARS-CoV-2 

3CLpro crystals were used to make a seed stock using the Glass Seed Bead™ kit (Hampton). To 

obtain co-crystals of SARS-CoV-2 3CLpro with inhibitors, a pre-incubation co-crystallization 

protocol was followed. Briefly, protein at 0.5 mg/ml was incubated with 300 μM compound at 4 

°C overnight. After centrifugation at 20 000g for 10 min to remove aggregates and precipitates, 

the protein solution was concentrated in a Vivaspin centrifugal concentrator (MWCO 10 kDa, 

Sartorius) to 5 mg/ml and an additional 300 μM compound was added and left to incubate at 4 

°C for 3 h. After centrifugation, the pre-incubated protein solutions were used to obtain co-crystals 
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by the sitting drop vapour diffusion method [19]. For boceprevir the best crystals were grown in 

drops containing 1.5 μl pre-incubated protein solution (5 mg/ml), 1 μl reservoir solution (100 mM 

MES pH 6.75, 16% (w/v) PEG 6000, 5% (v/v) DMSO, 300 μM boceprevir) and 0.5 μl seed stock 

(diluted 1 : 500). For telaprevir, the best crystals were grown in drops containing 1.5 μl pre-

incubated protein solution (5 mg/ml), 1 μl reservoir solution (100 mM MES pH 6.75, 18% (w/v) 

PEG 6000, 5% (v/v) DMSO, 300 μM telaprevir) and 0.5 μl seed stock (diluted 1 : 500). The cryo-

protectant solution consisted of reservoir solution supplemented with 25% (v/v) glycerol. 

 

X-ray diffraction data was collected on beamline P11 of the Deutsches Elektronen-Synchrotron 

(DESY) (Hamburg, Germany) at 100 K. Data integration and scaling was performed using XDS21 

and Aimless [20] from the CCP4 software suite [21]. The DIMPLE software in CCP4 was used to 

obtain the solved structures, utilizing a previously solved SARS-CoV-2 3CLpro structure (ligand 

stripped) as the reference model (PDB: 6LU7). The DIMPLE output models were then subjected 

to iterative cycles of model building with COOT and refinement with REFMAC [22,23]. The 

structures were deposited into the PDB (6ZRT and 6ZRU for telaprevir and boceprevir, 

respectively). Data collection and refinement statistics can be found in Table S1. Similar 

structures were deposited by other groups (6XQS, 7C7P, 6WNP) during the course of this 

project. 

 

3CLpro enzymatic assay 

The in vitro 3CLpro enzymatic assay to assess compound inhibition was setup following a 

published protocol for SARS-CoV 3CLpro [24], with slight modifications. Briefly, a continuous 

kinetic FRET assay was used to measure SARS-CoV-2 3CLpro activity, against the substrate 2-

aminobenzoyl-SVTLQSG-Tyr (NO2)-R (Genscript). The cleavage of the FRET substrate was 

monitored by measuring the increase in fluorescence in a FLUOstar Omega platereader (BMG 

labtech) at excitation and emission wavelengths of 330 nm and 420 nm, respectively. Total 

volume for the assay was 200 μl, containing 250 nM SARS-CoV-2 3CLpro and 100 μM substrate 

in the assay buffer (100 mM potassium phosphate, pH 8, 3% DMSO). The reaction was monitored 

for 15 min immediately after adding the FRET substrate. Initial rates were calculated via linear 

regression, using the first 2 min of the reaction. To determine the inhibitory activity of the 

compounds, the enzyme was incubated with 12 different concentrations of compound (20 nM – 

400 μM telaprevir, 5 nM – 100 μM boceprevir) for 1 h at 25 °C, followed by initial rate 

determination. Dose response curves and IC50 values were obtained using the Prism8 software 

https://pubs.rsc.org/en/content/articlehtml/2021/md/d0md00367k#cit21
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by plotting the initial rates against inhibitor concentration and performing non-linear regression. 

The initial rates were normalized to controls, control without enzyme (100% inhibition) and control 

without compound (0% inhibition). All measurements were performed in triplicate. 

 

Cell culture and the cytotoxic assay 

The African green monkey Vero E6 cell line (ATCC CRL-1586), kindly provided by Gorben Pijlman 

(Wageningen University, Wageningen, the Netherlands) and the mouse LR7 cell line were 

maintained in Dulbecco's minimal essential medium (DMEM) (Gibco), high glucose supplemented 

with 10% fetal bovine serum (FBS) (Lonza), 100 U/ml penicillin, and 100 U/ml streptomycin. Cells 

were mycoplasma negative and maintained at 37 °C under 5% CO2. 

For the cytotoxic assay, LR7 or Vero E6 cells were seeded in 96-well plates at a density of 1 × 

104 cells per well and cultured in DMEM containing 10% FBS at 37 °C under 5% CO2 for 24 h, 

followed by addition of serial dilutions (0–500 μM) of the tested drugs. Cells were allowed to grow 

for 8 h at 37 °C and proliferation was analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) method. Briefly, the medium was removed before to add 100 

μl of 0.5 mg/ml MTT solution (Sigma-Aldrich) and incubate cells at 37 °C for 4 h. Then 100 μl of 

DMSO were added and incubated for 30 min to solubilize the formazan crystals. Absorbance of 

each well at OD490 was measured using a GloMax-Multi Detection System (Promega) and cell 

survival percentage was calculated as OD490 of the sample/OD490 of the control. 

 

Virus stocks and titration 

MHV strain A59 was propagated in LR7 cells in DMEM and the virus titer was determined on LR7 

cells and the culture infectious dose (TCID50) units per ml of supernatant were calculated 

according to the Reed–Muench method [25]. The SARS-CoV-2 strain/NL/2020 was obtained 

from European Virus archive global (EVAg-010V-03903). For virus production, Vero E6 cells were 

infected at a multiplicity of infection (MOI) of 1 and 48 h post infection (p.i.) supernatants 

containing progeny virions were harvested, centrifuged, aliquoted and stored at −80 °C. The virus 

was passaged twice after receiving it from EVAg and passage 2 virus was used for subsequent 

experiments. Titration was performed using plaque assay on Vero E6 cells. Briefly, Vero E6 cells 

were seeded at a density of 1.3 × 105/ml in 12-well plates. Next day, cells were infected for 2 h 

with 10-fold serial dilutions of samples following which, cells were overlaid with 1 : 1 mixture of 

2% agarose (Lonza) and 2X MEM medium (Gibco). On day 3, plaques were fixed using 10% 
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formaldehyde (Alfa Aesar) and stained using crystal violet (Sigma-Aldrich). Titers were calculated 

and reported as plaque-forming units (PFU) per ml. 

 

Antiviral assays 

For MHV infections, LR7 cells were seeded at a density of 1 × 105 cells per well in 12-well plates 

with a 10 mm diameter coverslip in it in DMEM containing 10% FBS, before to remove the medium 

and infect cells with MHV in DMEM at MOI 1. The inoculum was removed after 1 h, cells washed 

twice with 1x PBS (137 mM NaCl, 10 mM phosphate pH 7.4, 2.7 mM KCl) and fresh DMEM 

medium containing 2% FBS added. The tested drugs were added after another 1 h in the new 

medium and the cells were collected at 8 h p.i. Specifically, the cover slips were removed and 

fixed with 4% paraformaldehyde. After permeabilization using 0.2% Triton X-100 and subsequent 

blocking with PBS buffer containing 1% fetal calf serum, viral non-structural protein (nsp)2 and 

nsp3 were detected using the anti-nsp2/nsp3 antiserum, a kind gift from Susan Baker [26], 

followed by incubation with secondary antibody conjugated to Alexa-488 (Life Technologies). 

Fluorescence signals were captured with a Leica sp8 confocal microscope (Leica) and the 

nsp2/nsp3-positive cells were counted as infected cells. The cells in the 12 wells plates, in 

contrast, were harvested in 100 μl of 2× sample buffer (65.8 mM Tris–HCl, pH 6.8, 26.3% 

glycerol, 2.1% SDS and 0.01% bromophenol blue) for 30 min on ice, sonicated for 1 min and 

boiled. Equal protein amounts were separated by SDS-PAGE and after western blot, proteins 

were detected using specific antibodies against MHV N protein (a kind gift from Stuart Siddell, 

University of Bristol, UK [27]) and β-actin (Merck Millipore), and with secondary antibody 

conjugated to Alexa-488 (Life Technologies). Fluorescence signals were analyzed Odyssey 

imaging system (LI-COR) and signal intensities were normalized and quantified using the ImageJ 

software (NIH). 

 

For SARS-CoV-2 infections, Vero E6 cells were seeded at a density of 6 × 104/well in 24 well 

plates in DMEM containing 10% FBS. Next day, plates were transferred to a Biosafety level 3 

(BSL3) facility and replaced with 200 μl of DMEM medium containing 2% FBS and the virus 

inoculum (MOI 1). Following 2 h adsorption at 37 °C, virus inoculum was removed, after which 

cells were washed twice and replaced with DMEM media containing 10% FBS in combination 

with increasing concentrations of compounds or the equivalent volumes of DMSO as the control. 

Supernatants were harvested at 8 h p.i. and titrated using plaque assay and data were normalized 

to the non-treated control. In contrast, cells were washed with ice-cold PBS and lysed with TRIzol 
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reagent (Sigma) according to the manufacturer's instructions. First-strand cDNA was synthesized 

by using Moloney murine leukemia virus (M-MLV) reverse transcriptase and oligo (dT) (both from 

Invitrogen). Real-time PCR was performed using an CFX connect Thermocycler (Bio-Rad). The 

expression levels of SARS-CoV-2 nsp3 gene (forward primer: 5′-

GCCTATACAGTTGAACTCGGT; reverse primer: 5′-CAATGCCCAGTGGTGTAAGT) were 

normalized to that of GAPDH (forward primer: 5′-AGCCACATCGCTCAGACAC; reverse primer: 

5′-GCCCAATACGACCAAATCC) according to the comparative cycle threshold method used for 

quantification as recommended by the manufacture's protocol. 

 

Statistical analyses 

Statistical significances were evaluated using the two-tailed heteroscedastic t-test before 

calculating the p-values. Individual data points from each independent experiment were used for 

the calculation of the significance. 

 

Results and discussion 

 

Molecular docking of α-ketoamides onto 3CLpro 

Based on the understanding of the molecular mode-of-action of drugs on their receptors, we 

initially computationally investigated approved drugs for their potential covalent interaction with 

the proteases of SARS-CoV-2, as a repurposing approach [28]. Drug families that attracted our 

attention were nitrile-containing gliptins and α-ketoamide bearing HCV NS3–4A protease 

inhibitors. Approved HCV NS3–4A protease inhibitors work through different mechanisms. N-

Acylsulfonamides, e.g., danoprevir, inhibit the protease through a non-covalent mechanism, 

whereas α-ketoamides, e.g., boceprevir, forms a covalent bond with the active site serine. 

Therefore, only α-ketoamide HCV NS3–4A protease inhibitors were considered in our study as 

they interact covalently with the SARS-CoV-2 3CLpro. Computational docking of several HCV 

inhibitors, i.e., boceprevir, telaprevir and narlaprevir, into SARS-CoV-2 3CLpro indeed showed 

promising electrostatic and shape complementarity for the formation of a covalent bond between 

the active site Cys145 and the α-ketoamide group of these molecules and an overall 

complementary fit into the enlarged binding pocket. Amongst the three docked HCV NS3–4A 

protease inhibitors, boceprevir showed the highest ligand efficiency and was predicted to be 

superior to telaprevir and narlaprevir (Table S2). However, we could not further examine 

narlaprevir further because we did not have access to this molecule. None of the HCV NS3–4A 
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protease inhibitors, however, docked in the second SARS-CoV-2 protease PLpro with 

appreciable affinity. 

 

Figure 2 shows the best docking poses of boceprevir and telaprevir. Interestingly, our docking 

results showed that the covalent bond and the α-ketoamide moiety could be stabilized by the 

formation of hydrogen bonds with the His41 and Gly143. These results encouraged us to perform 

further studies to assess the use of boceprevir and telaprevir as potential inhibitors of SARS-CoV-

2 3CLpro. 

 

 

Figure 2. Docking of Boceprevir and Telaprevir onto SARS-CoV-2 3CLpro. The binding site of SARS-CoV-2 3CLpro 

(gray surface) with computationally docked Boceprevir (green sticks) and Telaprevir (orange sticks). The amino acids 

of the catalytic dyad are highlighted: Cys145 in yellow and His41 in blue sticks. 

 

In vitro 3CLpro enzymatic inhibition by boceprevir and telaprevir 

Encouraged by the promising docking results, we determined whether boceprevir and telaprevir 

could inhibit the enzymatic activity of 3CLpro. For this, we took advantage of an established 

fluorescence resonance energy transfer (FRET) assay [24]. SARS-CoV-2 3CLpro was 
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recombinantly expressed and purified, and using the FRET substrate 2-aminobenzoyl-SVTLQSG-

Tyr(NO2)-R, the cleavage of this reporter peptide by 3CLpro was monitored. The IC50 of each 

compound was determined as described in Methods. 

 

Boceprevir showed promising inhibition of 3CLpro with an IC50 of 1.59 μM (Fig. 3A). Telaprevir, 

in contrast, showed weak inhibition of cleavage activity, reaching 100% inhibition at 200 μM with 

an IC50 of 55.72 μM (Fig. 3B). These results, in agreement with the in silico predictions, indicate 

that boceprevir is a better inhibitor of 3CLpro. 

 

Figure 3. Boceprevir and Teleprevir are 3CLpro inhibitors. Inhibition of cleavage activity of SARS-CoV-2 3CLpro in the 

presence of increasing concentrations of A) Boceprevir and B) Telaprevir.  

 

Crystal structures of SARS-CoV-2 3CLpro with boceprevir and telaprevir 

In order to better understand how boceprevir and telaprevir inhibit the SARS-CoV-2 3CLpro and 

why their inhibitory activities differ, we determined the co-crystal structures of these drugs with 

3CLpro. The crystal structure of SARS-CoV-2 3CLpro in complex with boceprevir was solved to 

2.1 Å in space group C2 (Fig. S2 -PDB ID 6ZRU-). The asymmetric unit consists of a single 

monomer of SARS-CoV-2 3CLpro, but the active dimer is formed by a second molecule of SARS-

CoV-2 3CLpro, which is related by crystallographic symmetry (Fig. S2B). Each monomer consists 

of three domains, domain I (residues 8–99), domain II (residues 100–183) and domain III (201–

303), with the substrate-binding site, including the Cys145–His41 catalytic dyad, being located in 

a cleft between domains I and II.31,32 The substrate-binding site is made up of four conserved 

subsites: S1′, S1, S2 and S4. 

 

https://pubs.rsc.org/en/content/articlehtml/2021/md/d0md00367k#imgfig3
https://pubs.rsc.org/en/content/articlehtml/2021/md/d0md00367k#imgfig3
https://pubs.rsc.org/en/content/articlehtml/2021/md/d0md00367k#cit31
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The electron density map clearly shows boceprevir bound in the 3CLpro active site (Fig. S2A‡) 

where the carbonyl of the electrophilic α-ketoamide forms a 1.8 Å covalent bond with the sulphur 

of the catalytic Cys145, forming a S,O-acetale. The oxygen of the α-ketoamide forms important 

hydrogen bonds with the main chain amides of Cys145 and Gly143, occupying the oxyanion hole, 

and the hydroxyl group, resulting from the covalent addition to the α-ketoamide, forms a hydrogen 

bond with the sidechain of His41, which all stabilize the conformation. The cyclobutylmethyl group 

of boceprevir is positioned shallowly into the S1 pocket, angling up and away. The main chains of 

His164 and Glu166 form hydrogen bonds with the amide bonds on the main chain of boceprevir. 

The dimethyl-3-aza bicycle moiety inserts deeply into the S2 pocket, making extensive 

hydrophobic contacts with His41, Met49, Met165, Asp187, Arg188 and Gln189 (Fig. 4A and B).  

 

Figure 4. Boceprevir and Telaprevir binding to SARS-CoV-2 3CLpro. A) The Boceprevir (green sticks) and C) Telaprevir 

(orange sticks) binding sites showing the interactions with the key residues (white sticks). Hydrogen bonds are shown 

as blue lines, hydrophobic interactions as gray dashed lines. B) Schematic diagram of Boceprevir–3CLpro and D) 

Telaprevir-3CLpro interactions, made using Ligplot [29]. Green dashed lines represent hydrogen bonds, red curved 

lines indicate hydrophobic interactions. 

 

https://pubs.rsc.org/en/content/articlehtml/2021/md/d0md00367k#fn2
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The tert-butyl group is relatively solvent exposed, displaying only minor hydrophobic interactions 

with the sidechain of Glu166. Finally, the tert-butyl urea group orients deep into the S4 pocket, 

with the urea group being stabilized by several hydrogen bonds with the main chain oxygen of 

Glu166 and the tert-butyl undergoing hydrophobic interactions with the sidechains of Met165, 

Gln192, Leu167 and Pro168. 

 

We compared the best pose from the virtual docking of boceprevir with our co-crystal structure 

PDB: 6ZRU, resulting in a root mean square deviation (RMSD) over all atoms of 1.47 Å, exhibiting 

almost perfect matching of the α-ketoamide warhead and sulfur atom comprising the covalent 

bond. The crystal structure of SARS-CoV-2 3CLpro in complex with telaprevir was solved at 2.1 

Å resolution in space group C2 (Fig. S3 -PDB ID 6ZRT-). The electron density map clearly shows 

telaprevir bound in the 3CLpro active site (Fig. S3A) and it is very similar to the boceprevir–3CLpro 

complex (Fig. S2A). The α-ketoamide from telaprevir forms a covalent adduct in the same 

orientation as boceprevir and is stabilized by the same hydrogen bonds with Cys145, Gly143 and 

His41. However, telaprevir contains a cyclopropyl substituent on the ketoamide nitrogen, 

potentially providing steric and conformational hindrance for the α-ketoamide to orient itself in the 

S1′ pocket, making covalent adduct formation less effective. The propyl moiety of telaprevir 

protrudes deeper into the S1 site compared to the cyclobutylmethyl group of boceprevir, 

displacing an ordered water molecule present in the S1 site of the 3CLpro–boceprevir complex 

that is absent in the telaprevir complex (Fig. S2A and S3A). Similarly, to boceprevir, the main 

chain amides of telaprevir form hydrogen bonds with the backbone atoms of His614, Glu166 and 

Gln189. 

 

The bicyclic moiety of telaprevir orients into the S2 pocket, making hydrophobic contacts with 

Arg188, Gln192 and Met165 (Fig. 4C and D). However, the penetration into the pocket is not as 

deep as the dimethyl-3-aza bicycle of boceprevir and the hydrophobic contacts are not as 

extensive. The tert-butyl group of telaprevir takes the same orientation as the corresponding 

group of boceprevir and is relatively solvent exposed, making only minor hydrophobic contacts 

with the sidechain of Glu166. The last difference is at the S4 pocket, where telaprevir has a 

cyclohexyl group, displaying hydrophobic interactions with Met165, Leu167 and Gln192, oriented 

deeply into the S4 pocket, followed by a relatively solvent exposed pyrazinamide moiety extending 

out of the active site, making only minor van der Waals interactions with Pro168, Thr190 and 

Ala191 (Fig. 4C and D). In contrast, boceprevir has the tert-butyl urea group that is fully located 

in the binding site. 
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We compared our virtual docking against our co-crystal structure PDB: 6ZRT. The best docked 

pose of telaprevir exhibited a RMSD value of 1.22 Å over all atoms against the crystal pose. The 

docking showed the highest deviation on the 2-pyrazine carboxamide moiety, indicating flexibility 

of this functional group when binding to 3CLpro, in line with the relatively high solvent exposure 

observed in the crystal structure. On the other hand, the orientation of the α-ketoamide warhead 

of the docked pose was nearly identical to the crystal pose(s), including the stabilizing hydrogen 

bonds with Cys145, His41, His164 and Gly143 (Fig. 4C and D). 

 

As of now, apart from our released crystal-structures, other published and not published 3CLpro 

structures containing boceprevir [30–32] and telaprevir [31,33,34] are available. The other 

available boceprevir–3CLpro complex structures show highly similar binding poses to ours (Fig. 

S4A). Interestingly, the high-resolution structures (6WNP, 7K40, 7C6S and 7BRP) show a well-

ordered water molecule coordinating an interaction between the amide group of the α-ketoamide 

and the backbone oxygen of Thr26 through hydrogen bonds. This water molecule is not present 

in the released 3CLpro – telaprevir structures, with the cyclopropyl group likely displacing it (Fig. 

S4B). Additionally, an overlay of available telaprevir structures shows conformational flexibility of 

the propyl moiety that is located in the S1 pocket, seemingly displacing the ordered water 

molecule in some structures (6ZRT, 7K6D) but not in others (7K6E, 7C7P and 6XQS). The 

pyrazinamide moiety of telaprevir also shows multiple conformations among the crystal structures. 

 

Boceprevir and telaprevir in beta-CoV infections 

Next, we tested whether boceprevir and telaprevir inhibited beta-CoV replication in cells. To this 

aim, we first perform a cytotoxic assay in the Vero E6 and LR7 cell lines to determine the maximal 

non-toxic concentration of these compounds that could be used in cells. Using the MTT method, 

we found out that the maximal non-toxic concentration of these drugs in these cell lines was 72.5 

μM for both (Fig. 5A). To minimize the chance of possible side effects we decided to use a 

concentration of 40 μM of boceprevir and telaprevir for further cell studies. 
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Figure 5. Boceprevir and Telaprevir in beta-CoV infections. A) The cytotoxicity of Boceprevir and Telaprevir in LR7 and 

Vero E6 cell lines. Cells were treated with the indicated doses of Boceprevir and Telaprevir for 6 h. Cell viability was 

subsequently measured using the MTT assay. All the MTT values were normalized to the 0.1% DMSO-only treatment, 

which represents 100% cell viability. B) LR7 cells were infected with MHV at MOI 1 for 2 h before adding 40 µM 

Boceprevir, 40 µM Telaprevir or 0.1% DMSO (ctrl) for another 6 h. Controls were cells not exposed to MHV (mock) or 

incubated with both MHV and 400 nM bafilomycin A1 (BafA1), which blocks virus cell entry. Proteins were separated 

by SDS-PAGE and western blot membranes probed with an antibody against either MHV N protein or GAPDH (top 

part). The N protein expression in each sample was quantified and normalized to the GAPDH signal. Results are 

expressed relative to the ctrl (low part). C) Cells treated as in panel B were processed for immunofluorescence using 

antibodies against MHV nsp2 and nsp3 proteins, and DAPI staining. The number of infected cells was subsequently 

determined. D) LR7 cells were infected with MHV at MOI 1 for 2 h before adding the indicated concentrations of 

Boceprevir for another 6 h. Cells treated with DMSO only (ctrl), BafA1-treated cells and cells not inoculated with MHV 

(mock) were used as controls. N protein levels were then examined as in panel B. E) Cells were treated as in panel D 

before statistically evaluating the percentage of infected cells by immunofluorescence as in panel C. F) Vero E6 cells 

were inoculated with SARS-CoV-2 at MOI 1, and treated with 40 µM Boceprevir at the same time or after 2h. At 8 h 

p.i., cell supernatants were collected and the number of produced infectious viral particles was determined using a 

plaque assay. Cells treated with DMSO only (ctrl), BafA1-treated cells and cells not inoculated with SARS-CoV-2 

(mock) were used as controls. Results are expressed relative to the ctrl. G) Vero E6 cells were infected with SARS-

CoV-2 at MOI 1 for 2 h before adding the indicated concentrations of Boceprevir for another 6h. Cells were lyses and 

the replication of SARS-CoV-2 was measured by assessing the expression levels of the mRNA encoding for nsp3 by 

RT-PCR and normalizing to those encoding for GAPDH. Cells treated with DMSO only (ctrl), BafA1-treated cells and 

cells not inoculated with SARS-CoV-2 (mock) were used as controls. Results are expressed relative to the ctrl. H) 

Culture supernatants of the samples analyzed in panel G were examined by plaque assay as in panel F. Results are 
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expressed relative to the ctrl. All data are represented as mean ± standard deviation of at least three independent 

experiments. Student T test was used to evaluate statistical differences and a p value ≤ 0.05 was considered significant 

with *p ≤ 0.05, **p ≤ 0.01 and ***p ≤ 0.001. 

 

As a first analysis, we explored the antiviral effect of the two compounds in LR7 cells infected with 

mouse hepatitis virus (MHV), a model beta-CoV. We opted to add boceprevir and telaprevir 2 h 

p.i. The reason behind this choice was twofold. First, a specific inhibitor of 3CLpro should be able 

to block the viral replication, thus after virus cell entry has occurred. Second, a positive outcome 

of this approach would indicate that the compound can also be used to treat infected cells, 

something relevant from a therapeutic point of view. Thus, LR7 cells were infected with MHV at 

MOI 1 as described in the Methods section, and 40 μM boceprevir or 40 μM telaprevir were 

added 2 h p.i. The incubation was continued for an extra 6 h before processing the cells for either 

western blot (WB) with anti-MHV N protein antibodies, to assess viral protein production, or 

immunofluorescence (IF) with anti-nsp2/nsp3 antibodies, to determine the number of infected 

cells. As a positive control, we used bafilomycin A1, an inhibitor of the lysosomal H+-ATPase that 

increases the pH in the compartments of the endolysosomal system, blocking the cell entry of 

multiple viruses including CoV. This drug was therefore added at the same time as the virus 

inoculum and as expected, showed a strong reduction of MHV replication in both WB and IF 

readouts (Fig. 5B and C). The same assays also revealed that 40 μM telaprevir has no antiviral 

effect, but rather promoted the MHV infection (Fig. 5B and C). In contrast and seemingly in line 

with the results of the in vitro 3CLpro enzymatic assay, treatment with 40 μM boceprevir showed 

a significant inhibition of both MHV N protein production and the percentage of infected cells, to 

an extent similar to bafilomycin A1 treatment. 

 

Next, we investigated whether the antiviral effect of boceprevir is dose-dependent, which would 

confirm its specificity. As shown in Fig. 5D and E, LR7 cells infected with MHV were treated with 

boceprevir at concentrations from 4 nM to 40 μM, with a serial dilution factor of 10. Interestingly, 

MHV N protein production was decreased by boceprevir in a dose-dependent manner, with a 

reduction of approximately 90% at a concentration of 40 μM and still of 40% at 4 nM, in 

comparison to the DMSO-treated infected cells (Fig. 5D). The dose-dependent inhibition of MHV 

replication by boceprevir was confirmed by determining the percentage of infected cells. This 

number was reduced by approximately 75% in cells subjected to 40 μM boceprevir and still by 

approximately 25% in those incubated with 40 nM, in comparison to the mock-treated infected 

cells (Fig. 5E). Altogether, the results show that boceprevir can efficiently inhibit MHV infection. 
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Then, we turned to SARS-CoV-2. Vero E6 cells were infected with SARS-CoV-2 at MOI and 

treated with 40 μM boceprevir at 2 h p.i. At 8 h p.i., cell culture supernatants were collected to 

titrate the progeny virus by plaque assay. We also added 40 μM boceprevir at the time of virus 

infection, to explore whether this could further enhance the observed effects of this compound. 

As shown in Fig. 5F and G, 40 μM boceprevir added at 2 h p.i. reduced the virus egression by 

approximately 50%, while its addition at the same time as the inoculum decreased virus progeny 

of approximately 75%. 

 

While preparing our manuscript, an article appeared also showing that boceprevir can inhibit 

SARS-CoV-2 infection, and in this study the antiviral effects were started to be observed at a 

concentration of 1 μM. Thus, we infected Vero E6 cells with SARS-CoV-2 and at 2 h p.i., added 

boceprevir at concentrations ranging from 0.1 to 100 μM, with a serial dilution factor of 10. At 8 

h p.i., cell culture supernatants were collected for the plaque assay while cells were lysed to 

extract the RNA and quantify viral replication by real-time PCR. This latter assay showed that 100 

μM boceprevir effectively inhibited viral gene expression while 10 μM showed a decrease of 

approximately 50% (Fig. 5F and G). A lower concentration of boceprevir had no antiviral effect. 

Using the plaque assay, we only could observe a significant inhibition of SARS-CoV-2 egression 

only with the 100 μM boceprevir (Fig. 5H). Taken altogether, our results show that boceprevir has 

an evident antiviral effect against beta-CoV at concentrations ranging from 40–100 μM, but the 

working concentrations might be varying between different beta-CoV. 

 

Discussion 

 

We described the structural basis of the interaction of the HCV NS3–4A protease inhibitors 

boceprevir and telaprevir with the SARS-CoV-2 3CLpro and established that α-ketoamide HCV 

NS3–4A protease inhibitors can inhibit SARS-CoV-2 3CLpro. This is surprising since the two 

enzymes are evolutionary unrelated. The HCV NS3–4A is a serine protease depending on a 

catalytic triade, while SARS-CoV-2 is a cysteine protease with a catalytic dyad. Moreover, the 

substrate specificity of the two proteases is different and thus the shape and the electrostatic of 

the substrate pockets. We showed the added value of using computational docking in the 

identification of these drugs that could potentially be repurposed, displaying highly similar docking 

poses to the crystal structures. We showed that the HCV NS3–4A protease inhibitors boceprevir 

(and to a lesser extent telaprevir) are inhibitors of the SARS-CoV-2 3CLpro in vitro, with 

boceprevir also showing potent inhibition of viral replication in vivo. As seen in the co-crystal 
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structures, there are differences in subsite binding that could explain the increased inhibitory 

activity of boceprevir compared to telaprevir. Though the mode of inhibition of these two 

compounds with respect to the covalent adduct formation with the catalytic Cys145 is the same, 

the divergence mainly lies in the interactions with the S1′, S2 and S4 subpockets (Fig. 4, 6 and 

S4). Since covalent complex formation is dependent on the formation of an initial non-covalent 

precomplex, these distinctions could explain the difference in inhibitory potency. Boceprevir binds 

deeper into the S2 pocket and makes more extensive hydrophobic interactions than telaprevir. 

Additionally, in recently released, higher resolution structures of boceprevir, a well-ordered water 

molecule is shown to coordinate an interaction with the amide group of the α-ketoamide and the 

backbone oxygen of Thr26 through hydrogen bonds [32,35,36] (Fig. S4A), potentially stabilizing 

the covalent conformation. This interaction is absent in the telaprevir structures due to the 

cyclopropyl moiety occupying that space (Fig. S4B). Finally, telaprevir shows higher 

conformational flexibility in the S1 pocket and in the location of its pyrazinamide group. The less 

favorable interactions, coupled with higher degrees of conformational flexibility could explain the 

lower inhibitory potency of telaprevir in comparison to boceprevir. 

 

 

Figure 6. Alignments of Binding Modes of Boceprevir and Telaprevir. The SARS-CoV-2 3CLpro (gray surface) in 

complex with Boceprevir (green sticks) and Telaprevir (orange sticks). The residues od the catalytic dyad as shows in 

yellow surface for Cys145, and blue surface for His41. 

 

Another α-ketoamide HCV NS3–4A protease inhibitor, narlaprevir also showed promising docking 

results, however, it could not be tested in vitro or in cell culture since it was not accessible to us. 

While preparing this manuscript, another research group published the discovery of the HCV 

NS3–4A protease inhibitor boceprevir as a 3CLpro inhibitor of SARS-CoV-2 [28]. Although our 
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study confirmed in gross their findings, it also reached some different conclusions. In particular 

we describe the co-crystal structure of boceprevir and 3CLpro, leading to a sound basis of 

understanding of the molecular interaction of the drug with the receptor. Our measured enzyme 

inhibition and cellular viral replication are higher than the ones reported in the previous study. The 

differences might be explained by a different time point of addition of boceprevir, and other details 

such a culture medium, and virus stock. Additionally, we found that not only boceprevir but also 

the FDA-approved telaprevir from the same drug class of HCV NS3–4A protease inhibitors, 

inhibits the 3CLpro in vitro. We describe here for the first time the molecular basis of the 3CLpro 

inhibition by telaprevir. The anti-SARS-CoV-2 mode-of-action of both drugs rely on the presence 

of an α-ketoamide moiety. Thus, we propose that the approved α-ketoamide HCV NS3–4A 

protease inhibitors boceprevir, telaprevir and possibly also other members of this family (e.g., 

narlaprevir) are promising COVID-19 repurposing candidates. While the potency of the herein 

proposed repurposed drugs in an in vivo setting are unknown, they deserve further attention as 

potential treatments for COVID-19 patients. Boceprevir, in particular, is safe for humans and is 

on the market since 2011 for the treatment of HCV infections and showed a limited number of 

side effects. Moreover, pharmacokinetics and pharmacodynamics in humans are well known 

[37]. The human plasma exposure of boceprevir was measured as Cmax 1.72 μg/ml, whereas 

Cmin 0.08 μg/ml, which is in the similar range as the herein reported cellular viral replication 

inhibition of 40 μM (21 μg/ml) [38]. Another potential application of this drug is based on the good 

potency for MHV, showing that it may represent an effective pan-anti-CoV inhibitor. It is well 

established that CoV infect farm animals. Thus, these compounds could be relevant for the cattle 

industry and possibly for future CoV epidemics. 
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Supplementary information 

 
Fig S1. Sequence SARS-CoV-2 3CLpro ordered from Eurofins 

 

CCATGGCGGCCGTACTGCAATCAGGTTTTCGCAAAATGGCGTTTCCATCGGGAAAA

GTCGAAGGCTGCATGGTTCAGGTTACATGTGGGACAACCACGCTGAATGGCCTGT

GGTTGGATGATGTGGTGTATTGTCCTCGTCACGTTATCTGCACAAGCGAAGATATGC

TGAATCCGAACTATGAGGACTTGCTGATTCGGAAATCCAATCACAACTTTCTGGTGC

AAGCGGGTAACGTGCAGTTACGCGTAATCGGCCATTCGATGCAGAACTGTGTGCT

GAAACTGAAAGTGGACACCGCGAATCCCAAAACCCCGAAATACAAGTTCGTCCGT

ATTCAACCAGGGCAGACCTTTAGCGTCCTCGCATGCTATAACGGCAGTCCGAGTG

GTGTGTATCAGTGTGCGATGCGTCCGAACTTCACCATCAAAGGCTCCTTTCTGAAC

GGGTCGTGTGGTAGCGTAGGCTTCAACATCGACTACGATTGCGTTAGCTTTTGCTA

CATGCATCACATGGAATTGCCGACTGGTGTCCATGCCGGTACTGATCTGGAAGGCA

ACTTCTATGGTCCCTTTGTTGATCGTCAGACCGCCCAAGCAGCGGGTACCGATACC

ACCATTACCGTGAATGTGCTCGCTTGGTTATATGCGGCTGTGATCAATGGAGATCG

CTGGTTTCTGAATCGCTTCACGACCACGCTTAACGACTTCAATCTCGTCGCAATGAA

GTACAACTACGAACCTCTGACTCAGGATCATGTGGATATTCTGGGTCCGTTATCTGC

TCAGACGGGCATTGCCGTACTGGACATGTGCGCCTCACTGAAGGAGTTACTGCAG

AACGGGATGAATGGACGCACGATTTTGGGCTCTGCACTTCTTGAGGACGAATTCAC

TCCGTTTGATGTTGTCCGCCAATGCAGCGGCGTTACGTTTCAGCTCGAG 
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Table S1. Data collection and refinement statistics 

 

Data collection 
SARS-CoV-2 Mpro - Boceprevir 

(PDB ID: 6ZRU) 

SARS-CoV-2 Mpro - Telaprevir 

(PDB ID: 6ZRT) 

Space group I 1 2 1 C 1 2 1 

Cell dimensions   

a, b, c (Å) 113.76, 53.53, 45.88 109.68, 54.99, 47.93 

α, β, γ (°) 90.00, 101.52, 90.00 90.00, 101.42, 90.00 

Completeness (%) 100.0 (100.0) 99.3 (98.5) 

Rmerge 0.040 (0.702) 0.050 (0.549) 

<I/σ(I)> 23.9 (2.8) 22.1 (3.8) 

Redundancy 6.8 (7.0) 6.4 (6.7) 

Refinement   

Resolution 44.96 – 2.10 (2.16 – 2.10) 47.03 – 2.10 (2.16 – 2.10) 

No. reflections 15173 (1131) 15497 (1130) 

Rwork / Rfree 0.188 / 0.215 0.199 / 0.237 

No. Atoms   

Protein 2340 2340 

Ligand/Ion 45 53 

Water 23 45 

B-Factors (Å2)   

Protein 55.27 43.07 

Ligand/Ion 61.67 48.25 

Solvent 45.28 42.31 

RMS deviations   

Bond lengths (Å) 0.009 0.009 

Bond Angles (°) 1.654 1.594 

 

 

 

Table S2. Best pose docking results of HCV NS3-4A protease inhibitors 

 

Ligand PLPChemscore Ligand Efficiency 

Boceprevir 125.94 3.31 

Telaprevir 162.25 3.25 

Narlaprevir 95.84 1.92 
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Figure S2. Electron density of Boceprevir. A) Magnified view of the substrate binding pocket (surface representation) 

with subsites S1’, S1, S2 and S4 indicated. Boceprevir is shown as green sticks, enmeshed by the 2Fo-Fc map 

contoured at 1.0 σ. Cys145 in yellow surface and His41 in blue surface. B) Cartoon representation of the biological 

assembly (homodimer) of SARS-Cov-2 3CLpro covalently bound to Boceprevir presented as green sticks. Protomer A 

is pink, protomer B is purple. 

 

 

Figure S3. Electron density of Telaprevir. A) Magnified view of the substrate binding pocket (surface representation) 

with subsites S1’, S1, S2 and S4 indicated. Telaprevir is shown as orange sticks, enmeshed by the 2Fo-Fc map 

contoured at 1.0 σ. Cys145 in yellow surface and His41 in blue surface.  B) Cartoon representation of the biological 

assembly (homodimer) of SARS-Cov-2 3CLpro covalently bound to Telaprevir, presented as orange sticks. Protomer 

A is pink, protomer B is purple.  
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Figure S4. Structural alignment of available crystal poses of 3CLpro-Boceprevir and Telaprevir complexes. A) Overlay 

of the reported SARS-CoV-2 3CLpro (white surface) structure in complex with Boceprevir (6ZRU) and 5 available 

crystals (7K40, 7C6S, 6XQU,7BRP and 6WNP). The Boceprevir molecules are represented as sticks (6ZRU solid green 

sticks, 7K40 slate sticks, 7C6S cyan, 6XQU light magenta,7BRP deep teal and 6WNP warm pink), Cys145 is shown 

as a yellow surface and Thr26 as sticks. Waters are represented as spheres. The water mediated hydrogen bond 

between Thr26 and Boceprevir (6WNP) is indicated with dashed lines. B) Overlay of the reported SARS-CoV-2 3CLpro 

(white surface) structure in complex with Telaprevir (6ZRT) and 4 available crystals (7C7P, 7K6E, 7K6D and 6XQS). 

The Telaprevir molecules are represented as sticks (6ZRT solid green sticks, 7C7P yellow sticks, 7K6E slate, 7K6D hot 

pink and 6XQS teal), Cys145 is shown as a yellow surface and Thr26 as sticks. Waters are represented as spheres. 
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Summary of the thesis and perspectives 

Drug discovery is a process that aims to identify drug candidates by a thorough evaluation of the 

biological activity of small synthetic molecules or biomolecules. The modern drug discovery 

process includes identifying the disease to be treated and its unmet medical need; selecting a 

druggable molecular target and validating it; developing in vitro assays followed by a high 

throughput screening of compound libraries to identify hits towards the target; and hit optimization 

to generate lead compounds with adequate potency and selectivity towards the biological target 

in vitro, and that demonstrate efficacy in animal models. Subsequently, the lead compounds are 

further optimized to improve their potency and pharmacokinetics before moving forward with the 

clinical development. Computational strategies are now necessary tools for speeding up the drug 

discovery process. The use of computational approaches during specific stages of the drug 

discovery process, ranging from earliest stages to the application of Artificial Intelligence (AI) is 

described in Chapter 1. 

Moreover, with the increasing availability of computational power, there has been a huge 

improvement in the speed and reliability of techniques for protein modeling, chemical space 

exploration, and biological target selection and validation. As a result of the introduction of AI and 

Machine Learning (ML) algorithms, current and future efforts are focused on making more precise 

predictions about the biological effects of drug candidates. Calculations of binding affinity, the 

evaluation of protein target conformational changes, potential off-target binding effects and the 

bioavailability modeling are just a few examples of how computational approaches support drug 

discovery. 

The use of in silico methodologies for the design of potential drugs for biological validation targets 

is demonstrated in Chapter 2. The chapter details a in silico workflow for the identification of 

potential high-affinity antagonists of CD44, ranging from a structural analysis of the target to the 

analysis of ligand-protein interactions by means of molecular dynamics (MD). CD44 is a target for 

the development of new anti-cancer therapies, since it promotes metastasis, chemoresistance 

and stemness in various types of cancer. A common N-terminal domain found on all CD44 

isoforms binds to hyaluronic acid (HA). We have identified a subdomain that binds to 1,2,3,4-

tetrahydroisoquinoline (THQ)-containing compounds, and that is adjacent to HA interaction 

residues by means of analyzing 30 crystal structures of the HA-binding domain (CD44HAbd). We 

have generated a new library of 168,190 molecules with the THQ motif by computational 

combinatorial chemistry (CCC), and we have compared their conformers to a pharmacophore 

containing the key features of the crystallographic THQ binding mode. About 0.01 percent of the 
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compounds matched the pharmacophore, and were studied through computational docking and 

MD. In explicit-solvent MD simulations, we have found two compounds, Can125 and Can159, 

that bound to human (h) CD44HAbd, and thus may elicit the CD44 blockage. These compounds 

can be easily synthesized for activity testing using multicomponent reactions (MCR), and the 

binding mode reported here could aid in the development of more potent CD44 antagonists. 

In Chapter 3, we have tested the shape-guided algorithm on a dataset of 208 macrocycles that 

were carefully chosen based on their structural complexity. Macrocycles are used to target 

proteins that are otherwise difficult to target due to a lack of hydrophobic cavities and extended 

featureless surfaces. Increasing efforts by computational chemists have resulted in the 

development of effective software to overcome the torsional and conformational restrictions 

imposed by macrocyclization. Since 1986, drug designers and crystallographers in the Roche 

biostructural community have been constantly updating Moloc, which is an efficient algorithm with 

a focus on high interactivity. We have quantified the accuracy, diversity, speed, exhaustiveness, 

and sampling efficiency of the dataset in an automated fashion, and we have compared them with 

four commercial packages (Prime, MacroModel, molecular operating environment and MD) and 

four open-access packages (the experimental-torsion distance geometry, with additional “basic 

knowledge” alone and with the Merck molecular force field minimization or the universal force 

field minimization, the Cambridge Crystallographic Data Centre conformer generator, and the 

conformator). Moloc displayed the highest sampling efficiency and exhaustiveness without 

producing thousands of conformations or random ring splitting into two half-loops. Besides, Moloc 

displayed the ability to produce highly accurate globular or flat conformations in a similar fashion 

as Prime, MacroModel and MD for 75 % of the studied dataset of macrocyles. These findings will 

allow further in silico evaluations of macrocycles as potential bioactive compounds. Further, we 

have identified the characteristics that need to be improved for the development of new tools for 

macrocycle sampling and design, such as those based on machine learning in order to predict 

the macrocycle conformations. 

In Chapter 4, we describe a detailed reverse docking protocol for the identification of potential 

targets for 4-hydroxycoumarin (4-HC). Molecular docking is a useful and powerful computational 

method for the identification of potential interactions between small molecules and 

pharmacological targets. The ability of one or a few compounds to bind a large dataset of proteins 

is assessed in silico in reverse docking. This strategy is useful for identifying molecular targets of 

orphan bioactive compounds, discovering alternative drug indications (repurposing), and 

predicting drug toxicity. Our findings have revealed that RAC1 is a target of 4-HC, which helps to 

explain some of the biological effects of 4-HC on cancer cells. The strategy described in this 
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chapter can easily be applied to other compounds and protein datasets overcoming bottlenecks 

in molecular docking protocols, particularly in reverse docking approaches.  

Lastly, Chapter 5 demonstrates how computational methods and experimental results can be 

used to repurpose compounds that could be used as treatments for COVID-19. The HCV NS3–

4A protease inhibitors boceprevir and telaprevir were discovered in this chapter as SARS-CoV-2 

main protease (3CLpro) inhibitors. We focused on the repurposing of drugs against SARS-CoV-

2 because COVID-19 cases are rapidly increasing, resulting in an increasing mortality, and 

paralyzing the global economy. In contrast to de novo drug discovery, which takes years to go 

from concept to pre-clinical to commercialization, drug repurposing may constitute a short-term 

solution. In order to select those drugs with high probability of being active against 3CLpro, we 

have performed a covalent docking analysis. The selected drugs were assessed in enzyme 

inhibition assays and co-crystalized with the target to corroborate the hypothesis that α-

ketoamide drugs can covalently bind to the active site cysteine of the SARS-CoV-2 3CLpro. 

Finally, we have established that boceprevir, and not telaprevir, inhibits the replication of SARS-

CoV-2 and the mouse hepatitis virus (MHV), another coronavirus, in cell culture. According to our 

findings, the HCV drug boceprevir should be tested clinically for COVID-19 or other coronaviral 

infections. 

Summarizing, these chapters show the importance, application, and limitations of computational 

methods in the state-of- the-art drug design process. 
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Samenvatting van het proefschrift en perspectieven 

Geneesmiddelenontdekking is een proces dat tot doel heeft kandidaat-geneesmiddelen te 

identificeren door een grondige evaluatie van de biologische activiteit van kleine synthetische 

moleculen of biomoleculen. Het moderne medicijnontdekkingsproces omvat het identificeren van 

de te behandelen ziekte en de onvervulde medische behoefte; het selecteren van een 

‘medicijnbaar’ moleculair doelwit en het valideren ervan; het ontwikkelen van in-vitro-analyses 

gevolgd door een screening met een hoge verwerkingscapaciteit van verbindingsbibliotheken, 

om treffers naar het doelwit toe te identificeren; en hit-optimalisatie, om leidende verbindingen te 

genereren met voldoende potentie en selectiviteit gericht op het biologische in-vitrodoel, en die 

werkzaamheid aantonen in diermodellen. Vervolgens worden de leidende verbindingen verder 

geoptimaliseerd, om hun potentie en farmacokinetiek te verbeteren, alvorens verder te gaan met 

de klinische ontwikkeling. Computationele strategieën zijn nu noodzakelijke hulpmiddelen om het 

ontdekkingsproces van geneesmiddelen te versnellen. Het gebruik van computationele 

benaderingen tijdens specifieke fasen van het medicijnontdekkingsproces, reikend van de 

vroegste stadia tot de toepassing van kunstmatige intelligentie (AI), wordt beschreven in 

Hoofdstuk 1. 

Daarnaast is er, met de toenemende beschikbaarheid van rekenkracht, een enorme verbetering 

gekomen in de snelheid en betrouwbaarheid van de technieken voor eiwitmodellering, verkenning 

van de chemische ruimte, en biologische doelselectie en -validatie. Ten gevolge van de invoering 

van algoritmen voor AI- en Machinaal Leren (ML), zijn de huidige en toekomstige inspanningen 

gericht op het maken van nauwkeurigere voorspellingen omtrent de biologische effecten van 

kandidaat-geneesmiddelen. De berekeningen van bindingsaffiniteit, de evaluatie van 

conformationele veranderingen van het eiwitdoelwit, van potentiële off-target bindingseffecten en 

de modellering van biologische beschikbaarheid zijn slechts enkele voorbeelden van hoe 

computationele benaderingen de ontdekking van geneesmiddelen bevorderen. 

Het gebruik van in-silicomethodologieën voor het ontwerpen van potentiële geneesmiddelen voor 

biologische validatiedoelen wordt getoond in Hoofdstuk 2. Het hoofdstuk detailleert een in-

silicowerkstroom voor de identificatie van potentiële CD44-antagonisten met een hoge affiniteit, 

reikend van een structurele analyse van het doelwit tot de analyse van ligand-eiwitinteracties door 

middel van moleculaire dynamica (MD). CD44 is een doelwit voor de ontwikkeling van nieuwe 

antikankertherapieën, omdat het metastase, chemoresistentie en ‘stamachtigheid’ bij 

verschillende soorten kanker in de hand werkt. Een gemeenschappelijk N-terminaal domein dat 

op alle CD44-isovormen wordt aangetroffen, bindt aan hyaluronzuur (HA). We hebben een 
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subdomein geïdentificeerd dat bindt aan verbindingen die 1,2,3,4-tetrahydro-isochinoline (THQ) 

bevatten, en dat grenst aan HA-interactieresiduen door middel van een analyse van 30 

kristalstructuren van het HA-bindende domein (CD44HAbd). We hebben een nieuwe bibliotheek 

opgebouwd van 168.190 moleculen met het THQ-motief door middel van computationele 

combinatorische chemie (CCC), en we hebben hun conformers vergeleken met een farmacofoor 

die de belangrijkste kenmerken van de kristallografische THQ-bindingsmodus bevat. Ongeveer 

0,01 procent van de verbindingen kwam overeen met de farmacofoor, en werd bestudeerd door 

middel van computationeel koppelen en MD. In MD-simulaties met expliciete oplosmiddelen 

hebben we twee verbindingen gevonden, Can125 en Can159, die aan menselijk (h) CD44HAbd 

bonden, en die dus de CD44-blokkering kunnen veroorzaken. Deze verbindingen kunnen 

gemakkelijk gesynthetiseerd worden voor het testen van activiteit met behulp van 

multicomponent-reacties (MCR), en de hier gerapporteerde bindingsmodus zou kunnen helpen 

bij de ontwikkeling van krachtigere CD44-antagonisten. 

In Hoofdstuk 3 hebben we het vormgestuurde algoritme getest op een dataset van 208 

macrocylische verbindingen die zorgvuldig gekozen werden op basis van hun structurele 

complexiteit. Macrocylische verbindingen worden gebruikt om eiwitten te ‘targeten’ die anders 

moeilijk te bereiken zijn vanwege een gebrek aan hydrofobe holtes en uitgestrekte, karakterloze 

oppervlakken. Toenemende inspanningen van computationele scheikundigen hebben tot de 

ontwikkeling geleid van effectieve software om de door de macrocyclisatie opgelegde torsie- en 

conformationele beperkingen te overwinnen. Sinds 1986 hebben geneesmiddelenontwerpers en 

kristallografen in de biostructurele Roche-gemeenschap van Moloc voortdurend bijgewerkt. 

Moloc is een efficiënt algoritme met een focus op hoge interactiviteit. We hebben de 

nauwkeurigheid, diversiteit, snelheid, volledigheid en bemonsteringsefficiëntie van de dataset op 

een geautomatiseerde wijze gekwantificeerd, en we hebben ze vergeleken met vier betalende 

pakketten (Prime, MacroModel, moleculaire werkomgeving en MD) en vier open access-

pakketten (de experimentele torsie- en afstandsgeometrie, met alleen aanvullende “basiskennis" 

en met de minimalisatie van het moleculaire krachtveld van Merck of de minimalisatie van het 

universele krachtveld, de conformer generator van het Cambridge Crystallographic Data Center, 

en de conformator). Moloc vertoonde de hoogste graad van bemonsteringsefficiëntie en van 

volledigheid zonder duizenden conformaties of willekeurige ringsplitsing in twee halve lussen te 

produceren. Bovendien toonde Moloc het vermogen om zeer nauwkeurige bolvormige of platte 

conformaties te produceren op een manier die vergelijkbaar is met die van Prime, MacroModel 

en MD voor 75% van de bestudeerde dataset van macrocylische verbindingen. Deze bevindingen 

zullen verdere in silico-evaluaties van macrocylische verbindingen als potentiële bioactieve 

verbindingen mogelijk maken. Verder hebben we de kenmerken geïdentificeerd die verbeterd 
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moeten worden voor de ontwikkeling van nieuwe instrumenten voor de bemonstering en het 

ontwerp van macrocylische verbindingen, zoals die op basis van machinaal leren, om de 

conformaties van macrocylische verbindingen te voorspellen. 

In Hoofdstuk 4 beschrijven we een gedetailleerd protocol voor achterwaartse koppeling ter 

identificatie van potentiële doelwitten voor 4-hydroxycoumarin (4-HC). Het moleculair koppelen 

is een nuttige en krachtige rekenmethode voor de identificatie van mogelijke interacties tussen 

kleine moleculen en farmacologische doelwitten. Het vermogen van een of enkele verbindingen 

om een grote dataset van eiwitten te binden, wordt in silico beoordeeld in achterwaartse 

koppeling. Deze strategie is nuttig voor het identificeren van moleculaire doelwitten van bioactieve 

‘weesverbindingen’, het ontdekken van alternatieve medicijnindicaties (herbestemming) en het 

voorspellen van geneesmiddeltoxiciteit. Onze bevindingen laten zien dat RAC1 een doelwit is van 

4-HC, wat helpt om enkele van de biologische effecten van 4-HC op kankercellen te verklaren. 

De strategie die in dit hoofdstuk wordt beschreven, kan gemakkelijk toegepast worden op andere 

verbindingen en datasets van eiwitten, om zo knelpunten in protocollen voor moleculaire 

koppelingen te overwinnen, met name in de aanpak via de achterwaartse koppeling. 

Tot slot laat Hoofdstuk 5 zien hoe computationele methoden en experimentele resultaten gebruikt 

kunnen worden om een herbestemming te geven aan verbindingen die gebruikt zouden kunnen 

worden ter behandeling van COVID-19. De HCV NS3–4A proteaseremmers boceprevir en 

telaprevir werden in dit hoofdstuk ontdekt als ‘hoofdprotease’(3CLpro)-remmers van SARS-CoV-

2. We hebben ons gericht op de herbestemming van geneesmiddelen tegen SARS-CoV-2, omdat 

de COVID-19-gevallen snel aan het toenemen zijn, wat leidt tot een groeiend sterftecijfer en wat 

de wereldeconomie lamlegt. In tegenstelling tot een de novo geneesmiddelenontdekking, die er 

jaren over doet om van het concipiëren tot de preklinische fase en dan tot de commercialisering 

over te gaan, kan de herbestemming van medicijnen een kortetermijnoplossing vormen. Om die 

medicijnen te selecteren die hoogstwaarschijnlijk actief zijn tegen 3CLpro, hebben we een 

covalente koppelingsanalyse uitgevoerd. De geselecteerde geneesmiddelen werden beoordeeld 

in enzymremmingstests en co-gekristalliseerd, met de bedoeling om de hypothese te bevestigen 

dat α-ketoamide-geneesmiddelen covalent kunnen binden aan de cysteïne van de actieve site 

van de SARS-CoV-2 3CLpro. Tot slot hebben we vastgesteld dat boceprevir, en niet telaprevir, 

de replicatie in celkweek remt van SARS-CoV-2 en het muizenhepatitisvirus (MHV), een ander 

coronavirus. Volgens onze bevindingen zou het HCV-medicijn boceprevir klinisch getest moeten 

worden voor COVID-19 of andere coronavirusinfecties. 
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Kortom kunnen we zeggen dat deze hoofdstukken het belang, de toepassing en de beperkingen 

laten zien van computationele methoden in het state-of-the-artontwerpproces van 

geneesmiddelen. 
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