
Enhanced Clustering Analysis Pipeline for
Performance Analysis of Parallel

Applications

Author: Kaveh Mahdavi
Advisor: Prof. Jesús Labarta Mancho

A THESIS SUBMITTED IN FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Doctor per la Universitat Politècnica de Catalunya
Departament d’Arquitectura de Computadors

Barcelona 2022

Abstract

Clustering analysis is widely used to stratify data in the same cluster when they are
similar according to the specific metrics. We can use the cluster analysis to group
the CPU burst of a parallel application, and the regions on each process in-between
communication calls or calls to the parallel runtime. The resulting clusters obtained
are the different computational trends or phases that appear in the application.
These clusters are useful to understand the behavior of the computation part of the
application and focus the analyses on those that present performance issues.

Although density-based clustering algorithms are a powerful and efficient tool to
summarize this type of information, their traditional user-guided clustering methodol-
ogy has many shortcomings and deficiencies in dealing with the complexity of data,
the diversity of data structures, high-dimensionality of data, and the dramatic increase
in the amount of data. Consequently, the majority of DBSCAN-like algorithms have
weaknesses to handle high-dimensionality and/or Multi-density data, and they are
sensitive to their hyper-parameter configuration. Furthermore, extracting insight from
the obtained clusters is an intuitive and manual task.

To mitigate these weaknesses, we have proposed a new unified approach to replace
the user-guided clustering with an automated clustering analysis pipeline, called En-
hanced Cluster Identification and Interpretation (ECII) pipeline. To build the pipeline,
we propose novel techniques including Robust Independent Feature Selection, Feature
Space Curvature Map, Organization Component Analysis, and hyper-parameters
tuning to feature selection, density homogenization, cluster interpretation, and model
selection which are the main components of our machine learning pipeline. This
thesis contributes four new techniques to the Machine Learning field with a particular
use case in Performance Analytics field.

The first contribution is a novel unsupervised approach for feature selection on
noisy data, called Robust Independent Feature Selection (RIFS). Specifically, we
choose a feature subset that contains most of the underlying information, using the
same criteria as the Independent component analysis. Simultaneously, the noise is
separated as an independent component.

The second contribution of the thesis is a parametric multilinear transformation
method to homogenize cluster densities while preserving the topological structure
of the dataset, called Feature Space Curvature Map (FSCM). We present a new
Gravitational Self-organizing Map to model the feature space curvature by plugging

the concepts of gravity and fabric of space into the Self-organizing Map algorithm
to mathematically describe the density structure of the data. To homogenize the
cluster density, we introduce a novel mapping mechanism to project the data from
the non-Euclidean curved space to a new Euclidean flat space.

The third contribution is a novel topological-based method to study potentially
complex high-dimensional categorized data by quantifying their shapes and extracting
fine-grain insights from them to interpret the clustering result. We introduce our
Organization Component Analysis (OCA) method for the automatic arbitrary cluster-
shape study without an assumption about the data distribution.

Finally, to tune the DBSCAN hyper-parameters, we propose a new tuning
mechanism by combining techniques from machine learning and optimization domains,
and we embed it in the ECII pipeline.

Using this cluster analysis pipeline with the CPU burst data of a parallel application,
we provide the developer/analyst with a high-quality SPMD computation structure
detection with the added value that reflects the fine grain of the computation regions.

Acknowledgements

I feel profound gratitude while expressing my sincere thanks to my supervisor Jesus
Labarta for his guidance and support throughout my Ph.D. I am immensely grateful
to him for offering critical feedbacks on my ideas, and thorough discussions. His
guidance helped me in all the time of research and writing of this thesis. I could not
have imagined having a better advisor and mentor for my Ph.D. study.

I am thankful to the Barcelona Supercomputing Center for funding my Ph.D.
studies without which this work would not have been possible. I am also thankful to
Nuria Sirvent for providing an excellent administrative support during my Ph.D.

I would like to thank all the members of the Performance Tool team for making
these places delightful and rewarding to work. I feel lucky to be a part of these excellent
stimulating intellectual environments. My sincere thanks also goes to Judit Gimenes.

I am thankful to my wife for reading an earlier draft of thesis and for upgrading
the language. I express my profound gratitude to her support and compassionate
behaviour which has always been a continuous source of comfort and strength for me.

Contents

List of Figures viii

List of Abbreviations xiii

I Introduction and Related Work 1

1 Introduction 2
1.1 Motivation . 2
1.2 Objective . 5
1.3 Contributions . 7
1.4 Thesis Organization . 9
1.5 Publication . 10

2 Performance Analysis Field 11
2.1 Description . 12
2.2 The Performance Data . 13
2.3 Dispatched Data . 14

2.3.1 Application Profile . 14
2.3.2 Event Traces . 15

2.4 Performance Analysis Tools . 16
2.4.1 Profile based tools . 17
2.4.2 Trace-file based tools . 20
2.4.3 Performance Analytics . 25

2.5 Cluster Analytics . 29

3 Introduction to Clustering Analysis Pipeline and Components 33
3.1 Cluster Analysis . 34

3.1.1 Centroid-based clustering . 34
3.1.2 Hierarchical clustering . 36
3.1.3 Density-based clustering . 37
3.1.4 Evaluation Metrics . 40

3.2 Machine Learning Pipeline . 43
3.2.1 Machine Learning Pipelines 43

v

Contents

3.2.2 Hyperparameters Tuning . 45
3.2.3 Unsupervised Machine Learning Pipeline 46

3.3 Feature Selection . 47
3.3.1 Foundations of Feature Selection 48
3.3.2 Feature selection methods . 49

3.4 Feature Transformation . 54
3.4.1 Individual Feature Transformation 55
3.4.2 Multi-Feature Transformation 57

3.5 Clustering Result Interpretation . 60

II New Techniques to Enhance the Clustering Analysis 62

4 New Unsupervised Feature Selection Technique for Noisy Data 63
4.1 Introduction . 63
4.2 Related Works . 65
4.3 Background . 66

4.3.1 Independent Component Analysis (ICA) 66
4.3.2 Oblique Rotation. 67

4.4 RIFS Algorithm Description . 68
4.4.1 Computational Complexity Analysis 69

4.5 Empirical Study . 70
4.5.1 Parameter Selection . 70
4.5.2 Data Sets . 70
4.5.3 Study of Unsupervised Cases 71
4.5.4 Study of Supervised Cases . 75

5 New Method to Homogenize the Density 78
5.1 Introduction . 78
5.2 Related work . 80
5.3 The problem of multi-density . 82
5.4 Background . 83

5.4.1 Self-organizing map . 84
5.4.2 Multilinear Transformation . 85

5.5 Feature Space Curvature Map . 87
5.5.1 Feature Space Curvature Modeling 88
5.5.2 Curvature Map . 90

5.6 Application of FSCM in the Real Data 93
5.6.1 Datasets . 93
5.6.2 Evaluation Metric . 94
5.6.3 Experiment Setup . 95
5.6.4 Clustering Results . 97
5.6.5 Complexity Analysis . 98

vi

Contents

6 New Method for Extracting Insights from the Shape of Cluster 101
6.1 Introduction . 101
6.2 Related work . 104
6.3 Background and Notation . 105
6.4 Organization Component Analysis . 107
6.5 Application of OCA in the Real Data 110

6.5.1 Parameter Selection . 111
6.5.2 Evaluation Quality of the Map 111
6.5.3 Identifying Spatial Patterns of Wilderness Sub-area. 111
6.5.4 Diagnosing Performance Bottleneck in HPC Applications. . . 115

7 Enhanced Cluster Identification and Interpretation Pipeline 120
7.1 Background and Motivation . 120

7.1.1 The Limitation of the DBSCAN 122
7.2 ECII Pipeline Architecture . 125

7.2.1 Hyperparameter Optimization 126
7.2.2 Evaluation Metrics . 128
7.2.3 Components Interaction . 129

7.3 Practical Uses to Application Analysis 133
7.3.1 GROMACS . 133
7.3.2 Computation Bursts and Enhanced Cluster Analysis 133
7.3.3 Application Analyses . 134

8 Conclusion 149
8.1 Feature Selection for Noisy Data . 149
8.2 Extracting Insights from the Shape of Cluster 150
8.3 Homogenizing the Clusters Density 150
8.4 Enhanced Cluster Identification and Interpretation Pipeline 151
8.5 Future Work . 152

Bibliography 154

vii

List of Figures

2.1 Example of the flat profile produced by gprof. 17
2.2 Example of the call profile produced by gprof. 18
2.3 Example of the call profile produced by hpcviewer. 19
2.4 Example of the scatter plot of the Completed Instructions counter

produced by HPCTOOLKIT’s hpcviewer, from HPCTOOLKIT manual
[40]. 19

2.5 Scalasca Cube workflow. 20
2.6 TAU’s ParaProf 3D profile window 20
2.7 TAU’s ParaProf Callsite profiling and tracing. 21
2.8 TAU’s ParaProf 3D communication window. 21
2.9 Master timeline of VAMPIR trace analyzer. 22
2.10 A Kiviat chart mode of VAMPIR trace analyzer. 22
2.11 Paraver time-line window. 23
2.12 hpcviewer example showing Flat a view. 23
2.13 Vampir summary windows. 24
2.14 Paraver statistics windows. 25
2.15 EXPERT overall architecture. Figure adapted from [46]. 27
2.16 Example of PerfExplorer cluster analysis. 30
2.17 Example of PerfExplorer correlation analysis. 30
2.18 A Paraver time-line and profile showing information related to a cluster

analysis . 31

3.1 kmeanflow . 35
3.2 Example of hierarchical clustering: clusters are consecutively merged

with the most nearby clusters. The length of the vertical dendogram-
lines reflect the nearness. 36

3.3 DBSCANflow . 38
3.4 KNN plot for choosing epsilon in DBSCAN algorithm. 39

viii

List of Figures

3.5 Kneedle algorithm for online knee detection. (a) depicts the smoothed
and normalized data, with dashed bars indicating the perpendicular
distance from y = x with the maximum distance indicated. (b) shows
the same data, but this time the dashed bars are rotated θ = 45
degrees. The magnitude of these bars correspond to the difference
values used in Kneedle. (c) shows the plot of these difference values
and the corresponding threshold values. The knee is found at x = 0.22
and is detected eps = 0.55, from [83]. 40

3.6 A standard Machine Learning pipeline, from [91]. 44
3.7 Generic Filter base Feature Selection Algorithm. 51
3.8 Generic Wrapper feature selectors algorithm. 53

4.1 Gaussian noisy versions of the image sample from COIL20 data set
with different σ2. From left to right σ2 is: 0, 0.1, 0.4 and 0.7. 64

4.2 Clustering performance vs. the number of selected features on YALE. 72
4.3 Clustering performance vs. the number of selected features on Isolet. 73
4.4 Clustering performance vs. the number of selected features on USPS. 73
4.5 Clustering performance vs. the number of selected features on COIL20. 73
4.6 The noise level vs. the number of selected feature that is needed to

achieve the 95% of clustering performance with all features. 74
4.7 Classification accuracy vs. the number of selected features on YALE. 75
4.8 Classification accuracy vs. the number of selected features on Isolet. . 76
4.9 Classification accuracy vs. the number of selected features on USPS. . 76
4.10 Classification accuracy vs. the number of selected features on COIL20. 76
4.11 The noise level vs. the number of selected feature that is needed to

achieve the 95% of classification accuracy with all features. 77

5.1 The stars (distinguished by colors) bend space-time (grid), and the
gravitational force among the stars (black lines) can be described by
space-time curvature. 79

5.2 A bilinear transformation enables us to represent the arbitrary shaped
quadrilateral as a rectangle. 86

5.3 Application of FSCM on a multi-density 2D dataset Synt10 containing
ten clusters. (a) A scatter plot of clusters with varied densities. The
legend shows the size/µ(x(1), y(2))/σ per cluster, the colors represent
the data original labeling and the red lines draw the initial FSF. (b)
shows the FSC model that is computed with our FSCM method. Note
that the red lines show the deformation of the FSF. (c) scatter plots the
data (a) projected by applying our transformation through model (b).
As a result, the diversity of the clusters’ density scaled appropriately
to achieve a better density-based clustering performance. 87

ix

List of Figures

5.4 Data point transformation between a bent FSC (a) and a regular FSF
(b) based on the Multilinear Mapping in R2. 92

5.5 Comparison of 3D original histogram (a) of dataset Syn10, previously
shown in Fig.5.3a, and the homogenized density (c) by our FSCM
method, subsequently their DBSCAN clustering results (b) and (d).
Without applying FSCM, DBSCAN ends up merging the three blobs
in the top right into a single one in order to be able to identify some
cluster point in the sparse blob on the left. FSCM as a preprocessing
step to DBSCAN allows to better identify the overall structure of the
data. 94

5.6 Application of FSCM-DBSCAN on the Wifi dataset and the original
datasets in R2. 99

5.7 Application of FSCM-DBSCAN on the Breast dataset and the original
datasets in R2. 100

6.1 Clusters of diverse shapes in R2 . 102
6.2 Application of OCA to spatial pattern indicator from the Covertype

dataset cluster C3, which is a part of our empirical study. The
Horizontal_distance_to_hydrology and Elevation are selected active
features. (a) shows the locations of the data points (green) and the
weighted graph that is embedded in the SOM topology space. (b) The
blue points are representing the SOM neurons, while the red and blue
lines are major and minor axis, respectively. The rest of the items are
described in the section IV in details. 107

6.3 Comanche Peak Wilderness Area, visualizations of the clustering result
(DBSCAN eps = 0.15, minPts = 30). 111

6.4 Application of OCA to Covertype dataset cluster C1; (a) shows the
data points and the SOM embedded graph.(b) The red and blue dashed
arrows represent first and second Organization Component, respectively.112

6.5 Application of PCA to Comanche Peak Wilderness detected sub-areas
C1. The larger the value of the contribution is, the more the feature
contributes to the components. 114

6.6 Performance data extracted from STREAM benchmark execution
(OMP_threads_number = 40 , Loop_size = 9M) , visualizations of
the clustering result (DBSCAN eps = 0.015, minPts = 6). 116

6.7 Application of OCA to STREAM dataset cluster C1; (a) shows the
locations of the data points and the weight vectors.(b) The blue points
are representing the SOM neurons, while the red and blue dashed
arrows represent first and second Organization component, respectively.116

6.8 STREAM benchmark, the plots are shown the contour plots of the mean
value of IPC and INS, versus the log(loop size) and the OMP_threads_number.118

x

List of Figures

6.9 STREAM benchmark, the plots present the contour plots of illustrative
feature’s Directional Sequence Similarity with the major organization
component, versus the log(loop size) and the OMP_threads_number.
The red dashed lines show the threshold of three hierarchical levels of
caches (32kB, 1MB and 33MB) receptively. 119

7.1 The result of a survey of how data scientists spend their time [245] . . 121
7.2 Example of dataset of varies density across the feature space. 125
7.3 ECII pipeline architecture. 129
7.4 Time-lines of different performance hardware counter metrics of GRO-

MACS application executed with 64 tasks. 135
7.5 The existing approach to tune the DBSCAN hyper-parameters [73]. (a)

The sorted 16-dist graph was obtained from the GROMACS application.
The blue dots represent the distance to the 16th nearest neighbor for
each point in the dataset. We use it to compute the different eps values.
(b) The search space to select the optimal eps value. 136

7.6 Cluster analysis of GROMACS application using DBSCAN clustering
algorithm over Completed Instructions and IPC. Due to the use of a
restrictive eps (lower bound) value, the detected structure is noisy. . . 136

7.7 A second cluster analysis of GROMACS application using the DBSCAN
cluster algorithm over Completed Instructions and IPC. Selecting a
higher value of eps by Grid search produces a coarser grain detection,
showing an SPMD structure. 137

7.8 Our ECII approach to tune the DBSCAN hyper-parameters over the
Completed Instruction and IPC. (a) The sorted 4-dist and 64-dist graph
was obtained from the GROMACS application. The blue and red curve
represent the distance to the 4th and 64th nearest neighbor for each
point in the dataset. We use it to compute the different configuration
of the eps and minPts values. (b) The hyper-parameters search space
to select the optimal eps value which is a 2D gird. 138

7.9 The result of our ECII approach to tune the DBSCAN hyper-parameters
over the Completed Instruction and IPC. The X − axis, Y − axis, and
Z − axis represent the eps, minPts, and Average Silhouette Width
values respectively. The red dashed cycle indicates the optimal hyper-
parameter configuration. 139

7.10 Computation structure detection of GROMACS application by applying
DBSCAN cluster algorithm with and without the hyper-parameters
tuning over the Completed Instruction and IPC. 140

xi

List of Figures

7.11 Clustering scatter plot of GROMACS application using clustering
algorithm over Completed Instructions and IPC (a), and its view over
Completed Instructions and L1_Rat (b). The blue and black boxes
highlight clouds of points that can be divided into isolated groups, and
the red box highlight the clouds of points that can be detected as an
isolated group by changing the feature subset. Note that the coloring
is identical. 142

7.12 Clustering scatter plot of GROMACS application by using the DBSCAN
cluster algorithm result over Completed Instructions and L1_Rat with
the parameters minPts = 4 and eps = 0.0106. 142

7.13 Computation structure detection of the GROMACS application, using
DBSCAN cluster algorithm over Completed Instructions and L1_Rat
with the parameters minPts = 4 and eps = 0.0106. 143

7.14 Application of the FSCM on the GROMACS application, and using the
DBSCAN cluster algorithm over Completed Instructions and L1_Rat
on projected new feature space. 144

7.15 Computation structure detection of GROMACS application by applying
DBSCAN (minPts = 4, eps = 0.0106) clustering algorithm over
Completed Instructions and L1_Rat on the FSCM’s homogenized
feature space. 145

7.16 Histograms of Locality_L2 and L1_Rat for Cluster 1 in GROMACS
application. The patterns of both metrics are almost identical. 148

xii

List of Abbreviations

AI Artificial Intelligence

BMU Best Matching Units

CDF Cumulative Distribution Function

DBI Davies-Bouldin Index

DNA Deoxyribonucleic Acid

DBSCAN . . . Density-Based Spatial Clustering of Applications with Noise

ECII Enhanced Cluster Identification and Interpretation

FPGA Field-Programmable Gate Array

FSC Feature Space Curvature

FSCM Feature Space Curvature Map

FSF Feature Space Fabric

GIS Geographic Information System

GPGPU General-Purpose Graphics Processing Unit

GSOM Gravitational Self-organizing Map

HPC High-Performance Computing

HWC Hardware Counters

ICA Independent Component Analysis

INS Completed Instructions

IPC Instructions per Cycle

kNN k-Nearest Neighbors

MDCU Mean Distance to the Closest Unit

ML Machine Learning

MPI Message Passing Interface

NMI Normalized Mutual Information

NNMF Non-negative Matrix Factorization

OCA Organization Component Analysis

xiii

List of Abbreviations

OPTICS . . . Ordering points to identify the clustering structure

PCA Principal Component Analysis

RBF Radial Basis Function

RIFS Robust Independent Feature Selection

RRG Regular Rectangular Grid

SI Silhouette Index

SOM Self-organizing Map

SPMD Single Program, Multiple Data

XAI Explainable Artificial Intelligence

xiv

Part I

Introduction and Related Work

1

1
Introduction

Contents
1.1 Motivation . 2
1.2 Objective . 5
1.3 Contributions . 7
1.4 Thesis Organization . 9
1.5 Publication . 10

In this thesis, we present novel techniques to improve the performance of clustering
analysis workflow. In principle, the work was mainly focused on enhancing the

clustering analysis, and guiding non-experts to easily build robust solutions for
characterizing the performance of parallel applications which usually run on high-
performance computing (HPC) systems. It turns out later our research outcomes are
generally beneficial in the machine learning domain. Therefore, a particular emphasis
of our research is placed on proposing generic machine learning techniques to boost the
clustering analysis performance. This chapter presents the motivation for this research
and introduces the challenges faced by using traditional Performance Analytics tools.
Lastly, this chapter details the list of contributions made by this research to the
machine learning literature, as well as the thesis organization.

1.1 Motivation

In the modern world, super-computing is used to approach many of the most important
questions in science and technology, including the mathematical modeling for complex

2

1. Introduction

physical phenomena or designs. The mentioned modeling is such as climate and
weather, the evolution of the cosmos, nuclear reactors, new chemical compounds
(especially for pharmaceutical purposes), cryptology, and other applications. They can
all leverage the massively parallel machines known as supercomputers; however, we
need to be careful to use these machines effectively. With the use of multi-core, many-
core processors, GPGPUs, deep cache structures, and FPGA accelerators, getting the
optimal performance out of such machines becomes increasingly difficult.

On the one hand, the applications that run on these kinds of machines also have
many factors that affect their performance. To take advantage of the huge amount
of computing power available, the applications must first be parallel. Essentially,
a parallel application is an application where parts of its code can be executed
at the same time, concurrently, producing partial results that later combine to
solve a given problem. In practice, the design and implementation of these parallel
applications involve many elements that affect the performance: The sequential
algorithms implemented, the distribution of the data used, the communication patterns
of the different parallel parts, etc.

High-performance computing (HPC) application developers must take into account
this huge number of factors to know and understand how their applications behave
on the machine to tune their codes for achieving the "optimum" performance on
super-computing platforms. Therefore, the developers are still required to digitize
the performance anomalies to design a balanced HPC system. Those anomalies
can lead to performance degradation by premature job terminations and wasted
compute cycles. Common examples of anomalies include orphan processes leftover
from the previous jobs consuming system resources [1], firmware bugs [2], memory
leaks [3], CPU throttling for thermal control [4], and resource contention [5, 6]. These
anomalies apparent themselves in system logs, hardware counters, or resource usage
data. Consequently, they need the performance analysis techniques to mine these
data for diagnosing the performance anomalies and their root causes. Although the
existing methods can often identify the core grain anomalies, they are still too manual
and intuitive. Thus we are interested in exploring what causes a performance loss
and where it happens in the code automatically.

In general, the Performance Analysis processes the data and demonstrates various
metrics of performance at the level of the program, the functions, the source lines,
and the instructions. These metrics can include clock profiling, hardware counter,
synchronization delay, memory allocation, MPI tracing, etc. The Performance Analysis
tools can also display the raw data in a graphical format as a function of time. The
traditional Performance Analysis tool usually can help developers to improve the
performance of their applications by producing performance profiles. However, these

3

1. Introduction

traditional approaches of performance analysis are still an iterative process consisting
of observing the behavior of the application to hypothesize the possible bottlenecks
that affect its performance and finally turn these hypotheses to improvements in the
application restarting the process to validate them. As a result, the difficulty involved
in the process of diagnosing and fixing performance bottlenecks since this process is
time-consuming and requires a significant amount of guesswork. Furthermore, the
static code and profile analyses are often insufficient for identifying the root causes.

On the one hand, to detect performance anomalies and determine the associated
root causes, HPC experts typically monitor system behavior by continuously collecting
system logs along with hardware performance counters and resource usage data
such as available network link bandwidth and CPU utilization. Hundreds of metrics
collected from thousands of nodes at frequencies suitable for performance analysis
generated during an application execution are huge: up to millions of performance
events per second, [7]. As HPC systems grow in size and complexity, it is becoming
dramatically impractical to analyze this data manually. Thus, it is essential to
have tools that automatically identify the performance anomalies through advanced
data analysis techniques.

On the other hand, Data Analytics is the process of systematically applying statisti-
cal and machine learning techniques to draw useful information, have conclusions, and
inductive inferences from raw data. Performance Analytics is Data Analytics applied to
performance analysis data. As presented in the next chapter, there are works included
in the different analysis toolkits under the umbrella of this term. In general, many
existing performance analysis toolkits offer simplistic manipulations of the performance
data. Although First-order statistics such as average or standard deviation are often
used to summarize the values of a given performance metric, hiding in some cases
interesting facts available from the raw data since they are very limited techniques.

Considering the necessity to summarize the information in a more intelligent
way than profiles do, [8] found cluster analysis can be better suited. As defined in
[9], clustering is the partitioning of a data set into subsets (clusters), so that the
data in each subset (ideally) share some common trait often proximity according to
some defined similarity measure. Indeed, it is a classification and not an aggregation
of the information. As a result, clustering analysis can identify different latent
trends in the data. That is the main characteristic of clustering to overcome
the intrinsic weakness of the profiles. Although in [8], they show that density-
based clustering techniques are successful and powerful tools to analyze the parallel
application performance, the existing density-based clustering algorithms involve
lots of arbitrary decisions to provide the best solution including feature selecting,
density homogenizing, and noise isolating.

4

1. Introduction

Furthermore, it turns out that many well-performed clustering results cannot
be turned into profound insights easily since the process of making clusters is a
generic mathematically oriented process. But, it lacks the intuition and domain
knowledge that is often required to interpret and drill down into the algorithmic
results. Therefore, there is a need to develop a machine learning pipeline that enables
non-experts to conveniently apply the clustering analysis and extracts insight from
the result with minimum human supervision.

To consider everything, firstly we need to apply the needed preprocessing steps on
a given massive, noisy, and inhomogeneous performance counter dataset to enhance
the clustering analysis to optimize its algorithmic performance. Secondly, we have to
apply the clustering (e.g. DBSCAN) algorithm by the best-tuned hyper-parameter
configuration. Finally, we need to provide a mathematical methodology to extract
insight from the obtained clusters, which represents the main motivation of this
thesis. Consequently, our main objective is how to improve the clustering analysis
process to extract fine-grain insight from enormous amount of high dimensional, noisy,
and varied density data, and also how to decipher and present the clustering result
mathematically in an understandable way to the non-experts.

1.2 Objective

In general, traditional performance analysis toolkits offer simplistic manipulations of
the performance data. First-order statistics such as average or standard deviation are
used to summarize the values of a given performance metric, hiding in some cases
interesting facts available from the raw data. Thus, we acknowledge that the Cluster
Analysis technique is a more powerful and efficient tool to summarize the information
according to given criteria that is then a necessity. Due to the complexity of data, the
diversity of data structures, high-dimensionality of data, and the dramatic increase
in the amount of data, traditional user-guided clustering methodology have many
shortcomings and deficiencies in dealing with the problem. Therefore, we motivated
to replace the user-guided clustering with an automated clustering analysis pipeline.

The automated pipelines are designed to make the clustering analysis process more
accurate, standardized, and faster. However, the adoption of these methods is still
limited by the lack of appropriate data preparation, dimensionality reduction, and
intuitive result interpretation methods that would allow non-expert users to readily
interpret automatically generated clusters. To address these issues, we developed an
automated enhanced cluster identification, and interpretation (ECII) pipeline providing
robust cluster analysis and actionable insights extracting tools for potentially huge
and high-dimensional data and, in particular, performance analysis data.

5

1. Introduction

In pursuit of this objective, we consider that enhanced clustering analysis techniques
are necessary so here we introduce the techniques we propose in this field.

Select most Relevant Feature to Reduce the Dimensionality

The feature subset that we use to build our machine learning models has a significant
influence on the algorithmic performance we can achieve. Irrelevant or unimportant
features can negatively impact model performance. The Feature Selection is an
automatic or manual process to select those features that mostly contribute to our
final output in which we are interested in. However, in unsupervised learning scenarios,
selecting features is a much harder problem, due to the lack of class labels that
would facilitate the search for relevant features. Furthermore, almost all traditional
unsupervised feature selection methods are not robust against the noise in samples.
For that reason, we need an unsupervised approach for feature selection on noisy data.

Homogenize the Multi-density Clusters

The majority of density-based clustering algorithms can not perform properly when
data expose very different densities through the feature space. These algorithms
implicitly presume that all clusters almost have the same density so they normally
use global parameters. Consequently, they are often biased towards finding dense
clusters in front of sparse ones. Therefore, we need to transform the original dataset
into the new feature space where the clusters have approximately the same density
while all inter-cluster regions become globally low-density.

Interpret the Result of Clustering Mathematically

In general, the process of identifying clusters is a generic mathematically oriented
process but lacks the intuition and domain knowledge that is often required to interpret
and drill down into the algorithmic results. Although many approaches have been
proposed in the literature aiming at interpreting the clustering results, most of these
methods are intuitive which makes it difficult to separate the definition of the clusters
from the perception of an end-user and even to automatize them. Accordingly, we
need a new general method to extract insight from clustering results. The mentioned
method should be automated and assumption-free, and it should not be dependent
on any particular clustering algorithm.

Tune Hyper-parameters to Optimize the Clustering Model

Among different types of clustering methods, the density-based method has advantages
as it does not limit itself to the shapes of clusters. Almost all of the existing density-
based clustering algorithms require input parameters that are hard to determine but

6

1. Introduction

have a significant influence on the clustering result. Hyperparameter tuning is the
process of determining the right combination of hyperparameters that maximizes the
model performance. Manual hyperparameter tuning approach involves experimenting
with different sets of hyperparameters i.e. each trial with a set of hyperparameters
will be performed manually by the user. However, manual hyper-parameters tuning is
a tedious process since there can be many trials, and keeping track can prove costly
and time-consuming. On the other hand, automated hyperparameter tuning utilizes
existing algorithms to automate the process. Our objective is to use the leveraging
of some popular automated hyperparameter optimization methods to optimize our
aforementioned clustering analysis pipeline.

Design and Implement an Enhance Clustering Analysis Pipeline

The two fundamental questions in the clustering analysis process are to find the
number of clusters and their compositions. The density-based clustering algorithms,
such as DBSCAN [10], exist to answer the prior problem. Although several density-
based clustering methods, such as OPTICS [11], proposed for the latter problem, they
are facing difficulties in meeting the requirements of data preparation, automation,
simplicity, and efficiency. This thesis focuses on developing a simple and efficient
density-based clustering pipeline that aims to generate nearly optimal clusters for
the given datasets automatically.

1.3 Contributions

As a summary of this chapter, we want to emphasize that the thesis introduces four new
techniques in the machine learning field, with the target of improving the clustering
analysis. Furthermore, we integrate those techniques as an enhanced cluster analysis
pipeline to automatically extract the fine grain insight from the performance counter
data. More precisely, we present the new feature selection, density homogenizing, and
hyper-parameter tuning techniques to improve the clustering analysis for detecting
the computational structure and a novel cluster shape analysis technique to extract
insight about the data and, in particular, performance analysis data.

In this work, we present the following original contributions:

Design and Validation of a New Feature Selection Algorithm to Refine
the Clustering Quality

We propose a new unsupervised approach for feature selection on noisy data, called
Robust Independent Feature Selection (RIFS). Specifically, we try to choose a feature
subset that contains most of the underlying information, using the same criteria as

7

1. Introduction

the Independent component analysis (ICA). Simultaneously, the noise is separated
as an independent component. The isolation of representative noise samples is
achieved using factor oblique rotation whereas noise identification is performed
using factor pattern loading.

Design and Validation of a New Density Homogenization Algorithm to
Refine the Clustering Quality

We propose a parametric multilinear transformation method to homogenize cluster
densities while preserving the topological structure of the dataset. The transformed
clusters have approximately the same density while all inter-cluster regions become
globally low-density. In our method, the feature space is locally bent by dense
data point concentrations the same way as stars bend the space-time dimensions in
the Theory of Relativity. We present a new Gravitational Self-organizing Map to
model the feature space curvature by plugging the concepts of gravity and fabric of
space into the Self-organizing Map algorithm to mathematically describe the density
structure of the data. To homogenize the cluster’s density, we introduce a novel
mapping mechanism to project the data from a non-Euclidean curved space to a
new Euclidean flat space. Specifically, this mechanism transfers the basis vectors
instead of the feature vectors to guarantee the continuity of the mapping function
and optimize the computation cost of the algorithm. As a result, our method can
efficiently and explicitly homogenize the density of any dataset globally to then apply
existing clustering algorithms without modification.

Design and Validation of a New Cluster Shape Analysis Technique to
Mathematically Interpret the Clustering Result

To fulfill the necessity of automatically extracting insight for the clusters, we propose
a novel topological-based method to study potentially complex high-dimensional
categorized data by quantifying their shapes and extracting fine-grain insights about
them to interpret the clustering result, call Organization Component Analysis. It can
mathematically study the arbitrary cluster-shape without an assumption about the
data distribution. Our method explores a topology-preserving map of a data cluster
manifold to extract the main organizational structure of a cluster by leveraging the
self-organizing map technique. To do this, we represent the self-organizing map as a
graph. We introduce organization components to geometrically describe the shape
of clusters and their endogenous phenomena. Specifically, we propose an innovative
way to measure the alignment between two sequences of momentum changes on the
geodesic path over the embedded graph to quantify the extent to which the feature is
related to a given component. As a result, we can describe variability among stratified
data, correlated features in terms of the lower number of organization components.

8

1. Introduction

Design and Validation of a New Hyper-Parameter Tuning Techniques to
Improve the DBSCN Algorithmic Performance

We propose a new technique to automatically tune the DBSCAN hyper-parameter
(eps, minPts). We introduce a new approach to define a relatively small and more
feasible 2D search space, where each dimension represents the eps and minPts, and
each point in the search space is a vector with a specific value for each hyper-parameter
value. We use the Exhaustive Grid Search and Randomized Parameter Optimization
[12] methods to search for optimum hyper-parameter configuration over the search
space. To evaluate the goodness of a clustering model, we use the Average Silhouette
Width (ASW) [13] as the cluster validation index.

The Introduction of a AutoML Pipeline to Enhance the Clustering Anal-
ysis Performance and Demonstration of its Suitability on Computation
Structure Detection

To improve the quality of the clustering analysis and focus on producing an automated
unsupervised clustering algorithm, we implement an enhanced cluster identification
and interpretation (ECII) end-to-end construct pipeline that orchestrates the flow of
data into, and output from, the clustering models. It includes raw data input, data
preparation, feature selection, tuning the model hyper-parameters, and extracting
insight from the output.

1.4 Thesis Organization

The rest of this book has the following chapters. Chapter 2 contains a discussion of
the previous work in the parallel performance field including the major work in the
Performance Analytics field. Chapter 3 contains a discussion of the previous work in
the machine learning including machine learning pipeline and its main components
such as data transformation, feature selection, and clustering result interpretation. In
Chapter 4, we present our new Robust independent Feature Selection algorithm that
can identify the most relevant feature subsets in noisy and unlabeled data, that we
use to automatically reduce the dimensionality of the potentially high-dimensional
data. Chapter 4 introduces our Feature Space Curvature Map method that we
propose to homogenize the cluster density which is important to enhance the density-
based clustering algorithm to categorize the varied density data. In Chapter 6, we
present a novel topological-based method to extract insight from the clustering result.
This method enables us to interpret the result of clustering mathematically by the
explanation of internal variability of each cluster. Chapter 7 present an Enhanced
Cluster Identification and Interpretation (ECII) pipeline that we propose to conduct

9

1. Introduction

automatic cluster analyses on the potentially huge and high-dimensional data as it
is being integrated. In this chapter, we also demonstrate the usefulness of the ECII
pipeline using it to analyze an state-of-the-art application. Chapter 8 offers overall
conclusions drawn from our thesis and outlines the research direction for future work
based on the ideas and results presented in this thesis.

1.5 Publication

[14] Mahdavi, K., Labarta, J., & Gimenez, J. (2019, November). Unsupervised
Feature Selection for Noisy Data. In International Conference on Advanced
Data Mining and Applications (pp. 79-94). Springer, Cham.

[15] Mahdavi, K., Labarta, J., & Gimenez, J. (2021, July). Organization
Component Analysis: The method for extracting insights from the shape
of cluster. In 2021 International Joint Conference on Neural Networks (IJCNN)
(pp. 1-10). IEEE.

[16] Mahdavi, K., Labarta, J., & Gimenez, J. (2022, July). Feature Space
Curvature Map: A Method To Homogenize The Density. In 2022
International Joint Conference on Neural Networks (IJCNN) (pp. 1-10). IEEE.

10

2
Performance Analysis Field

Contents
2.1 Description . 12
2.2 The Performance Data . 13
2.3 Dispatched Data . 14

2.3.1 Application Profile . 14
2.3.2 Event Traces . 15

2.4 Performance Analysis Tools 16
2.4.1 Profile based tools . 17
2.4.2 Trace-file based tools . 20
2.4.3 Performance Analytics . 25

2.5 Cluster Analytics . 29

In this chapter, we describe several generic and basic concepts about performance
analysis that are widely used throughout this document. We start by presenting a

taxonomy of the state-of-the-art performance tools and the challenges they face in
the analysis of large-scale applications. Next, we describe the Clustering Analysis as
a typical Performance Analytic to extract useful insight from a large amount of data.

Parallel performance analysis is a process that starts by extracting the raw
performance data that will be later analyzed to determine the application structure. In
this context, we want to distinguish three important aspects that compose the whole
process: when the analysis is done; the data used to characterize the performance;
and finally, the different methods, techniques, and applications analyze this data
to draw the conclusions.

11

2. Performance Analysis Field

2.1 Description

Performance analysis is a multidisciplinary subject that has been adopted in system
and software development which involves measurement capabilities, simulation, and
system modeling. The importance of performance analysis is threefold:

• There may be performance bugs as there are logical bugs, so if performance is
important it should be debugged by measurement.

• When designing new or improved systems or programs, a good understanding of
the performance of the base system is needed for avoiding future performance
bugs.

• To avoid spending resources on fixing obvious, but minor, inefficiencies rather
than searching for the real reasons for the poor performance.

Performance analysis tools are pieces of software that help to measure and deliver
comprehensive details of the application behavior on a given system. The details
provide several metrics associated with the application structure and the underlying
execution. A performance tool helps its users (hereafter, analysts) to understand the
unknown behavior of the application. In addition, these tools compare the collected
measurements against a theory, model, or even previous executions and ultimately help
with fixing performance bugs in the application that they consider worth mending.

When it comes to analyzing the application performance on a system, the analyst
may explore the performance from the application or the system point of view.
This distinction brings two different types of analyses as one part can be changed
while the other remains immutable during the experimentation to achieve the proper
comparative analyses. On the one hand, it is possible to consider the software as a
fixed part and so explore the processor design space for the purposes of improving
forthcoming processor generations by applying architectural simulations. On the other
hand, the software developer (or the analyst) may need to tweak the application
somehow to take the maximum profit of an immutable system. The scope of this
thesis focuses on the latter approach in which developers execute their application on
a system and need to adapt the software to the underlying processor.

Concerning the performance tools, different aspects help to classify them. The
first classification scheme depends on how data are stored and presented to the user.
Performance tools either store time-stamped metrics begetting a time-series stored in
a trace-file, or summarize all the measurements with the consequent space savings,
but almost lose time-dependent issues. A secondary way to classify performance tools
refers to the mechanism used for executing the monitors (or probes): instrumentation

12

2. Performance Analysis Field

and sampling. Instrumentation refers to the ability to inject monitors to specific
application locations. Therefore it provides accurate metrics to these regions of code.
On the other hand, sampling takes advantage of mechanisms to periodically invoke
monitors so that the results are statistical inferences of the application behavior. While
some of the tools expose the captured metrics with minimal or no manipulation, some
tools process the metrics by applying additional mechanisms and extract conclusions
automatically without major intervention from the analyst.

This chapter covers most of the topics relating to the performance analysis tools.
First, we describe the performance data and its acquisition mechanism. Second,
there will be an extended summary of a variety of state-of-the-art tools, discussing
their design points and presenting the reports they provide to the analyst. The
summary of the tools will also include the investigation of many techniques to
evaluate metrics automatically to ease the analyst’s experience. A section will then
follow with a detailed dissertation of the existing Performance Analytics methods.
Finally, there is a brief discussion about applied clustering techniques to extract
insight from the performance data.

2.2 The Performance Data

To understand the behavior of a parallel application on a given machine, we need
to measure different elements that reflect its performance. The most simple and
recurrent element measured is the application execution time. Undoubtedly, the
execution time is a good indicator of the application performance, and in most cases
it is the objective value to minimize.

In the performance analysis scenario, it is also common to use time, but a finer grain,
for example measuring the time spent on each application subroutine. To perform
these measurements, we can make use of the timing mechanisms provided by the
operating system (OS), for example, the programmable interval timers. Furthermore,
this example points to a second performance metric: the application code location.
Location information is required to relate the metrics to the application source code.
This location can be a single position where the measurement is taken. It accessed
via the Program Counter (PC) of the CPU, or the call path, which includes the
list of active subroutines in the application. We can also use libunwind [17] to
determine their source code location.

Performance hardware counters (HWC) values are unique metrics to understand
the behavior of the application in a given hardware. Hardware counters are available
in almost all modern processors and count micro-architectural events, for example the
total cycles elapsed or the number of instructions executed. Hardware vendors provide

13

2. Performance Analysis Field

the hardware and software interface to access these counters, but the PAPI [18] library,
a homogeneous application programming interface to access the counters in most of
the hardware, is the most common way to read them. More recently, due to the need
to better understand new hardware, we can also find performance hardware counters
in other components beyond CPUs, such as the Infiniband network hardware [19] or
the Nvidia CUDA GPUs [20]. In both cases, the counters are also available via PAPI.

The metrics regarding the parallel programming model are varied, as well as
the mechanisms to access them. For example, in the message-passing applications
the ones we analyze in this thesis, it is normal to gather the number of messages
sent or received, the size of these messages, etc. In this case, if the application uses
MPI, we have available the MPI profiling interface (PMPI) [21] to intercept the MPI
calls and extract these values. In some other cases, access to the run-time of the
programming models requires more sophisticated mechanisms, as detailed in the next
section when talking about instrumentation.

Apart from this list, there are a variety of metrics to evaluate specific performance
elements (I/O, power consumption, etc.). It is not the aim of this section to
present every performance metric available, but those are commonly available in
most performance toolkits.

2.3 Dispatched Data

There is a classical difference of opinion over how to dispatch and store the information
whether application profiles or event traces. Consequently, the way the information
is stored partially determines the kind of available analyses.

2.3.1 Application Profile

An application profile is a summation of a metric, or a set of metrics, that characterizes
an application-level abstraction. A typical example of a flat profile is the number of
calls and the time spent in each application subroutine. In the process of summation,
the temporal component information regarding when the data was collected is lost.

gprof [22] is the classic tool for profiling sequential codes. This tool relies on
compiler-assisted instrumentation to define the bounds of the application subroutines
and the POSIX timers and signaling to take the samples. It generates partial call
graph profiles, more detailed profiles that express the caller-called relationships
across the application subroutines.

OpenSpeedshop [23] and the HPCTOOLKIT [24] extend gprof capabilities fo-
cusing on parallel applications. Both can manage the information generated by all

14

2. Performance Analysis Field

tasks/threads involved in a parallel application, to present a single profile. In addition,
they provide the ability to profile not only application subroutines but also basic
blocks of code, or even single individual source code lines.

gprof, OpenSpeedshop, and HPCTOOLKIT heavily rely on sampling mechanisms
to perform the data acquisition. On the other hand, TAU [25] from the University of
Oregon provides a profiling toolkit based on instrumentation mechanisms to enable
the user to have control of what is going to be profiled, including MPI run-time
accesses and performance hardware counters. TAU also gathers phase profiles, partial
profiles extracted at different stages of the application execution. In TAU, the
phases are defined by the user and can be understood as the logical steps in the
application evolution, for example, the different time steps in a weather forecast
simulation. The phase profiles provide an approach to observing the time-varying
behavior of an application.

The Scalasca toolkit [26] also offers the collection of regular profiles with metrics
from MPI, OpenMP, and hardware counters using instrumentation. In this toolkit
ecosystem, we also find an interesting effort gathering time-series call-path profiles
[27], call-graph oriented version of the previously mentioned phase profiles.

2.3.2 Event Traces

An event trace is the collection of all information gathered during the application
execution, consisting of a log or trace file, of the actions that a parallel application
performed. These actions are assumed as time-stamped events, including the entry
and exit to the subroutines or to the parallel libraries used. It also includes values of
the hardware counters, or the call-path that lead to the point of interest. Typically,
the generation of event traces relies on instrumentation packages to define the points
of interest, but we can also find sample traces. Event traces offer a highly detailed
view of the performance, at the cost of high storage space requirements. They are
especially interesting to analyze the time-varying behavior of the application, and
lost information when using profiles.

In general, almost all parallel performance analysis toolkits offer the extraction of
event traces as the base for further analysis. For example, the BSC Tools package, the
toolkit used in this thesis, is based on Paraver trace [28]. This trace is a structured
text file whose main characteristic is that it is semantic-free: the contained events are
essentially timestamped key/value pairs. A complimentary (optional) file is responsible
for linking the semantics to the contained tuples in the trace file.

Extrae is the instrumentation and sampling tools of the BSC Tools package that
collects metrics from several parallel and accelerator run-times (such as MPI, OpenMP,

15

2. Performance Analysis Field

CUDA, OpenCL, OmpSs, among others) that generates Paraver trace-files, although
other tools have created their own trace-file translators into Paraver format.

As a part of the Score-P initiative [29], the analysis toolkits Scalasca, Vampir [30],
Periscope and TAU decided to adopt the Open Trace Format version 2 (OTF2) [31], the
second generation of the Open Trace Format [32]. OTF2 is structured in a collection of
multiple binary files accessible via an API. The main concern in the design of this trace
is the scalability: the trace format definition includes a series of encoding techniques to
reduce its size [33], and the access API uses techniques to reduce the memory footprint.

As mentioned before, there are also some efforts to produce sample traces. As an
alternative to the regular traces whose events are associated with instrumentation
points, sample traces contain a series of time-stamped samples taken regularly during
the execution. The information in each sample mainly includes the call-path, to
correlate to application source code and performance metrics, such as the hardware
counters. We find an early approach to the generation of sample traces inside the Sun
Studio Performance Tools (now Oracle Studio) [34]. Recently, the HPCTOOLKIT
and the BSC Tools also added sample traces on their toolkit ecosystems, [35] and [36]
respectively. It is interesting to highlight that the addition of samples to the Paraver
trace described in [36] did not imply any modification of the trace format.

2.4 Performance Analysis Tools

The performance analysis tools need to answer two major questions that analysts face
when studying an application. What are the nature of the performance inefficiencies
and where are they located within the application? The performance tools describe
the application performance behavior using either summary (profiles) or detailing
variations in performance across time (trace-files). The profiles apply first-order and
second-order statistics (such as mean, min, max, and variance) to the measurements
captured to simplify the metrics provided to the analyst. The tools that use trace files
allow expressing the variability of performance issues exposing sequence of metrics
as well as multi-modal behavior.

In a postmortem scenario, once the data has been collected, the analysis step
starts by exploring the gathered information manually or assisted to detect patterns
or trends. The mentioned patterns and trends can reflect anomalies or performance
losses in the application behavior and correlate them with the possible causes.

At this point, we distinguish between two different elements of the analysis itself.
The first is how the information is presented to the analyst to make the analysis
process understandable and manageable. The second is the collection of available

16

2. Performance Analysis Field

Performance Analytics techniques, i.e. the different techniques developed to automate
the processing of the raw data to detect anomalies and correlations.

Data presentation is a key element of the analysis process. The way the information
is offered to the analyst defines, to some extent, the possible observations and
hypotheses they could make about the performance achieved by the application.
Undoubtedly, the way data is emitted imposes a series of restrictions or opportunities
on its presentation.

2.4.1 Profile based tools

Application profiles are an explicit example of this data manipulation at once. The
different first-order statistics measurements are taken during the execution such as
the sum or the average at the selected application-level abstraction (subroutines,
application phases, etc.). Using profiles, the exploration of unusual situations can be
done easily. For example, sorting the total time spent in the different subroutines
will point us to where the hot-spots are. The weak point of the profiles is that the
aggregation hides the potential variability across the instances accounted. However, it
is a great idea to look at the performance initially as the profiles are a good choice.

In general, profiles are presented as human-readable plain text files. The text is
indented to categorize the elements accounted for more easily. The elements are sorted
concerning one of the metrics used to focus the analysis. In Figure 2.1 we can see a
flat profile produced by gprof. It contains the different metrics calculated for each
subroutine. The right-most column is sorted by the percentage of total application
time spend and in the left-most column each subroutine is represented. The rest
of the metrics includes the exclusive/inclusive times (time inside the subroutine
excluding or including the calls it makes) and the number of calls. The call-graph
profile in Figure 2.2 contains similar metrics, but the right-most column presents the
caller-called relationship using the indentation. These call-graph profiles generated
by gprof can also be visualized in an interactive GUI, using a tree representation,
with the IBM’s Xprofiler [37].

Figure 2.1: Example of the flat profile produced by gprof.

17

2. Performance Analysis Field

Figure 2.2: Example of the call profile produced by gprof.

In contrast to the simple plain-text document, we find tools such as the hpcviewer
[38], an evolution of the HPCVIEW [39], which is the profile visualization tool of
the HPCTOOLKIT. The hpcviewer is a GUI that offers a clean presentation of the
different metrics gathered in the HPCTOOLKIT profiles, with the ability to link
the metrics with the source code, shown in Figure 2.3, or present the metrics using
charts for better comprehension, shown in Figure 2.4.

Scalasca’s CUBE [41] visualizer has an original way to visualize and interact with
profiles. The main display of this GUI is divided into three parts (see Figure 2.5). The
left part shows the different metrics gathered; the central part is the code location;
and the right part shows the system location, i.e. the accounting of each metric in
the physical hardware. Thanks to the coloring, the user can see the severity of a
given metric i.e. low, regular, or high values quickly.

Finally, ParaProf [42], the profile analysis tool of the TAU package, offers similar
functionality to the hpcviewer, in the areas of source code correlation and the
generation of the different chart types. In Figure 2.6, we can see an example of a 3D
profile presentation of the most time-consuming application subroutines, including the
MPI primitive calls. In Figure 2.7, we can see another example of profiling and tracing
for MPI_Ranks. Figure 2.8 shows a ParaProf communication matrix among the
senders and receivers where the colors represent the message size. In addition, ParaProf
is also capable of comparing profiles obtained from different executions of the same
application. For this purpose, TAU uses their PerfDMF [43], a framework to manage
profiles from different executions using a database that eases the comparison of profiles.

18

2. Performance Analysis Field

Figure 2.3: Example of the call profile produced by hpcviewer.

Figure 2.4: Example of the scatter plot of the Completed Instructions counter produced
by HPCTOOLKIT’s hpcviewer, from HPCTOOLKIT manual [40].

19

2. Performance Analysis Field

Figure 2.5: Scalasca Cube workflow.

Figure 2.6: TAU’s ParaProf 3D profile window

2.4.2 Trace-file based tools

As opposed to the profiles, event traces have greater potential to detect elements at
a finer granularity, as they keep track of all the actions performed by the analyzed
application, including their spatial and temporal distribution of them. On the other
hand, traces require more effort both in the manipulation and the exploration to
detect the anomalies and correlate them to the root causes.

To aid the analyst, there are available several interactive GUIs such as Vampir
[30], Paraver, or the hpctraceviewer. In terms of exploration, all these tools provide
a unique visualization which is impossible to obtain when using the profiles. A
timeline is a representation where the available information in the trace is organized
in a bi-dimensional plot applications abstractions such as tasks or threads versus
time, and colored according to a metric.

20

2. Performance Analysis Field

Figure 2.7: TAU’s ParaProf Callsite profiling and tracing.

Figure 2.8: TAU’s ParaProf 3D communication window.

Figure 2.9 contains an example of the Vampir master timeline, presenting an
OTF trace. In this case, the Y-axis represents the processes of a message-passing
application. The coloring indicates the subroutine executed. We can also observe
black lines that represent the point-to-point messages passed between the different
processes. In the top left part of the window, we can see a general view of the whole
trace. Being the main time-line is just a zoom of the central part. Furthermore, we
can use the Kiviat mode to show the accumulated time per function, see 2.10.

In Figure 2.11 we can see an example of the Paraver timeline. In this example,
the metric selected was the Instructions per Cycle (IPC), derived from the Completed

21

2. Performance Analysis Field

Figure 2.9: Master timeline of VAMPIR trace analyzer.

Figure 2.10: A Kiviat chart mode of VAMPIR trace analyzer.

Instructions and Total Cycles hardware counters present on the trace. The coloring is a
gradient from light green (low IPC) to dark blue (high IPC). Paraver traces also contain
point-to-point message information. These are depicted as yellow lines in the timeline.

Finally, Figure 2.12 contains a window of the hpctraceviewer. In this case, since
the presented sample trace does not have information regarding the point-to-point
communications, the timeline does not include communication lines. On the other
hand, the bottom part of the window presents the depth of the call path obtained
on each sample of the trace.

Even though the time-line representation is useful to explore the time distribution

22

2. Performance Analysis Field

Figure 2.11: Paraver time-line window.

Figure 2.12: hpcviewer example showing Flat a view.

of raw (or derived) metrics at different levels of granularity using zooming, there are
limitations to this representation. First, current screen resolutions limit the amount
of data that can be presented by the human eyes’ bandwidth. Second, there is a
biological limit to distinguish the differences of the color hue. These limitations imply
that the representation requires a big effort in processing the input data to render
how each pixel of the bitmap is filled. For example, a single pixel of the screen may
represent more than one object or a wide range of time, so an algorithm is required
to decide how to depict the actual value. For example, non-linear renderings of the
data ranges are used to clarify the representation of the presented different values.

To overcome these constraints, the trace analyzers, mainly Vampir and Paraver,
also include a set of features to manipulate the available information in the event
trace. In the case of Vampir, it offers a battery of predefined summaries that include
the generation of flat-profiles, Figure 2.13a, and also massage size summary, see Figure

23

2. Performance Analysis Field

(a) Function summary.

(b) Message Summary

Figure 2.13: Vampir summary windows.

2.13b. Paraver also includes a profiling view but extends the regular summation
with the ability to freely combine different metrics available, to detect the possible
correlations across them. For example, Figure 2.14a shows MPI statistics, to know
the load balance, parallel efficiency, etc. For instance, the load balancing is of great
importance when utilizing multiple processors as efficient as possible. Adding more
processors creates a noticeable amount of synchronization overhead. Therefore, it
is only beneficial if there is enough work present to keep all processors busy at the

24

2. Performance Analysis Field

same time. In Figure 2.14b, we can see a complex histogram of the duration of the
computational chunks to study the load balance. Even though these two tools differ
in the features to combine performance metrics, both can compute a wide range of
statistics, similar to profiles: sums, averages, standard deviations, etc.

(a) MPI call profile.

(b) Metrics combination histogram of useful duration.

Figure 2.14: Paraver statistics windows.

2.4.3 Performance Analytics

As a summary of the previous section, we can conclude that the application profiles
provide a coarse-grain knowledge of the application but do not require big expertise
when looking for possible hot-spots. So, when going into detail, event traces are
necessary, at the cost of requiring big expertise to manipulate the available information

25

2. Performance Analysis Field

to detect the performance problems and correlate them to their causes. The goal
of Performance Analytics is to join the best of both worlds. In other words, to be
able to get the deep insight provided by event traces without requiring the expertise
to manipulate the huge amount of information.

The Performance Analytics are the techniques that translate the expert knowledge
into algorithms or methodologies to be able automatically extract the most valuable
information about applications performance. In general, these techniques rely on the
search patterns or trends that characterize the performance losses. The search can
be done at different granularities and at the different levels of abstraction obtaining
the different analysis results.

2.4.3.1 Inference Systems

A methodology widely exploited is the use of a rule-based inference system to detect
the well-known problems of parallel applications, [44]. An example of a rule can be:
“IF the time spent by a task waiting to send a message is bigger than x because the
partner task has not executed the receive operation THEN late receiver problem
detected”. Usually, the rules include a severity value, indicating the importance of
the detected problem in the performance of the whole application.

As a part of the Scalasca toolkit, EXPERT [45–47] is a sequential postmortem
rule-based system to identify the wait states in message-passing applications. Figure
2.15 presents the EXPERT overall inference systems architecture. In this work, the
set of rules of known wait states, i.e. when the application is wasting time without
advancing in the resolution of the problem, is defined using the EARL script language
and applied to the performance metrics stored in OTF traces. As a result, EXPERT
generates profiles that can be visualized in CUBE. In the profiles, EXPERT accounts
for the occurrences of each problem in the knowledge-based on each of the subroutines.
Further research on the EXPERT system includes a parallel implementation [48]
and an extension of the rule-based in [49] to track the root cause of the wait states
detected, i.e. those regions or points in the application that later provoke wait
states when application communicates.

KappaPI [50] and KappaPI 2 [51], are two versions of the same rule-based tool with
the difference that KappaPI includes the set of rules hard-coded, while KappaPI 2
brings the user the possibility of writing his own rules, using the APART Specification
Language (ASL) [52]. This language has been adopted in some of the rule-based due to
its power to easily express performance problems. An interesting feature of both tools is
the recommendation system, which shows possible solutions to the detected problems.

The SCALEA toolkit [53] also provides similar features to the Scalasca toolkit,
with the support of a multi-experiment environment based on database storage as

26

2. Performance Analysis Field

Figure 2.15: EXPERT overall architecture. Figure adapted from [46].

PerfDB. Aksum [54, 55] makes use of the data extraction mechanisms provided by
SCALEA to implement its rule-based system. In this case, the ruleset used has to
be specified in JavaPSL, a Java version of the previously mentioned ASL.

While all works mentioned above do postmortem analysis, there are also two major
works of rule-based online analysis. The first one is the Performance Consultant
Module, part of the Paradyn [56, 57]. Periscope [58, 59] is essentially a Paradyn
clone, with the possibility of define custom rules using ASL.

The Paradyn Parallel Performance Tools project [56] opened the direction of
intelligent selection of performance data leveraging a technique called dynamic
instrumentation [60].

Paradyn is a performance tool which relies on run-time performance analysis, rather
than recording a complete trace of the whole execution. The user can select which
performance metrics they wish to view. Additionally, it also provides a bottleneck
search algorithm named the Performance Consultant (PC), that automatically searches
for a set of known performance problems. This algorithm uses the W3 model to

27

2. Performance Analysis Field

guide the bottleneck search, which attempts to answer why, where and when the
application is performing poorly. This is an iterative process of formulating hypotheses
and refining them based on the performance data being collected. For example, if
a routine performing synchronization operations is taking up a large amount of
time, the hypothesis of ExcessiveSyncTime will be formulated, and instrumentation
will be dynamically inserted into that routine in order to collect more specific data
that helps to find the specific causes or to reject the initial hypothesis. The PC
periodically gathers performance data from every process and decisions about how
the bottleneck search progress is taken centrally.

The instrumentation can be achieved through rewriting tools like Dyninst [61].
DynInst is an instrumentation library that allows us to modify the application by
injecting code at specific locations. With the instrumentation capabilities of DynInst,
we can instrument different parallel programming runtimes as OpenMP, CUDA
accelerated applications, and MPI applications.

Periscope [59] is an online profile that automatically searches for bottlenecks based
on previous optimization experts’ knowledge. Periscope offers several bottleneck
analyses depending on the application type and the architecture where the application
runs including load imbalance, excessive time MPI time due to several reasons, spent
time in OpenMP exclusion regions and so. The results of Periscope are integrated
into Eclipse through a plugin that helps to associate the obtained metrics with the
source code in a single environment

2.4.3.2 Pattern Recognition

Other interesting methods to add intelligence to the analysis rely on the fact that
parallel applications usually have a repetitive structure to detect patterns in application
phases. For example, Casas et. al. [62] applies signal processing techniques to Paraver
traces to detect coarse-grain iterations of the application algorithms. The resulting
tool produces a summary of the application defined by the patterns found. It also
generates partial traces containing only the repetitive patterns, orders of magnitude
smaller than the original, that can be used for later analysis in the detail.

Freitag et. al. [63] presents the Dynamic Periodicity Detector (DPD) an online
analyzer of OpenMP parallel function patterns used in the BSC Tools performance
data extraction library, Extrae. It uses the stream of OpenMP parallel function
identifiers to detect repetitive sequences on the subroutine calls, to generate smaller
Paraver traces where the repetitive sequences had been compressed.

A third work project in pattern recognition can be found in [64]. In this case,
the recognition is done at visualization time in a Vampir module. This approach
tries to solve the problem of visualizing large amounts of data, showing the repetitive

28

2. Performance Analysis Field

patterns on the trace as “boxes” on a timeline view. The pattern detection is based
on Compressed Complete Call Graphs (cCCG) [65] that optimizes the application
of call tree representation to save space.

2.5 Cluster Analytics

In this dissertation, we place our emphasis on enhancing the cluster analysis techniques.
These techniques whose target is to classify elements into groups have also been
exploited previously in the performance analysis area, but with different objectives.

Nickolayev et al. [66], based on [67], proposes the application of the K-means
clustering algorithm in an online analysis to determine the similarities among processors
involved in parallel application execution. The authors use coarse-grain granularity
metrics such as processor idle or running times to describe the behavior of each
processor. The work was developed as a part of the Pablo Performance Environment,
with the target of reducing the event traces generated. Instead of flushing the
performance data of all processors, the output trace just includes the metrics of a
representative processor per cluster detected, reducing the output data up to 4.5 times.

In [68], Ahn and Vetter develop a deep statistical analysis of event traces containing
processor performance hardware counters that characterize application subroutines.
In this work, hierarchical clustering and K-means clustering are used to determine
the similarity across the processes, MPI tasks, and OpenMP threads, at the level
of subroutines. The authors demonstrate the utility of clustering to automatically
distinguish master-slave patterns of the processes and also application algorithm
structural patterns such as the organization of the processes depending on the
problem decomposition. Furthermore, the authors use other multivariate statistical
methods, Principal Components Analysis (PCA) [69] and Factor Analysis [70], to
highlight the high correlations between some of the performance counters. These two
techniques are useful to select those metrics that provide more information, reducing
the dimensionality of the collected data.

The framework PerfExplorer [71], developed as a part of the TAU toolkit, offers
similar features to [68] with major emphasis on describing the detected clusters, see
Figure 2.16. In PerfExplorer, K-means and hierarchical clustering, PCA, Factor
Analysis, and Correlation Analysis are applied to profiling information stored in a
PerfDMF database, which includes a wide variety of metrics, from high-level idle
or running times to low-level processor hardware counters. For example, Figure
2.17 shows a correlation analysis result. As in [68], the clustering algorithms are
used to find the parallel processes, both MPI tasks, and OpenMP threads, behave
similarly. The major contribution of this work is the correlation of the groups found

29

2. Performance Analysis Field

with the profiling information available, which provides the analyst with a clear
understanding of the behavior of the clusters. Furthermore, PerfExplorer implements
a rich GUI to navigate through this information.

Figure 2.16: Example of PerfExplorer cluster analysis.

Figure 2.17: Example of PerfExplorer correlation analysis.

In [72], they found a different use of the cluster. The goal of the work is also to
reduce the information, in this case, the instructions needed for an accurate micro-
architectural simulation, but the characterization tries to find similar application
phases. The execution phases are regions of 100 million instructions. The used
metrics to characterize them are basic block vectors, uni-dimensional vectors that

30

2. Performance Analysis Field

account for how many times each of the basic blocks of the application has been
executed in the given region. The authors demonstrate that K-means can correctly
distinguish the application phases and that simulate a set of representatives, not
just the centroid, to provide high-quality simulations.

In [8], they demonstrate the suitability of density-based cluster algorithms, specifi-
cally DBSCAN, when characterizing the computation structure of parallel applications.
They show that this kind of algorithm surpasses the clustering algorithms based on
K-Means when grouping performance hardware counters (HWC) data, and work more
effectively than hierarchical clustering algorithms because they do not require user
interaction. As an example, Figure 2.18 presents a Paraver time-line and profile
showing information related to a cluster analysis.

(a) Time-line distribution of discovered clusters.

(b) Duration histogram of the clusters per appli-
cation task.

Figure 2.18: A Paraver time-line and profile showing information related to a cluster
analysis

Subsequently, they propose the Aggregative Cluster Refinement [73] algorithm
to improve the quality of the structure detection by focusing on producing a purely
unsupervised cluster algorithm. It is the combination of a density-based algorithm

31

2. Performance Analysis Field

and a hierarchical algorithm that maximizes the quality of a score. Using the Cluster
Sequence Score, the Aggregative Cluster Refinement can detect SPMD computation
regions in message-passing parallel applications at different levels of granularity.

32

3
Introduction to Clustering Analysis

Pipeline and Components

Contents
3.1 Cluster Analysis . 34

3.1.1 Centroid-based clustering 34
3.1.2 Hierarchical clustering . 36
3.1.3 Density-based clustering . 37
3.1.4 Evaluation Metrics . 40

3.2 Machine Learning Pipeline 43
3.2.1 Machine Learning Pipelines 43
3.2.2 Hyperparameters Tuning 45
3.2.3 Unsupervised Machine Learning Pipeline 46

3.3 Feature Selection . 47
3.3.1 Foundations of Feature Selection 48
3.3.2 Feature selection methods 49

3.4 Feature Transformation . 54
3.4.1 Individual Feature Transformation 55
3.4.2 Multi-Feature Transformation 57

3.5 Clustering Result Interpretation 60

In this chapter, we describe several generic and basic concepts about machine
learning that are widely used in this document. We describe a typical clustering

analysis workflow and the common challenges to apply it. Then, we touch on the
overall benefits of the Machine Learning Pipeline to automatically build an optimized
machine learning model without requiring high expertise to manipulate a large amount
of information and introduce the relevant algorithms and techniques for each step

33

3. Introduction to Clustering Analysis Pipeline and Components

of the model development workflow. Finally, we explain how the main goals of this
thesis align with the current state-of-the-art and put the presented work in context.

Applied machine learning is typically focused on finding a single model that
performs well or best on a given dataset. Effective use of the model will require
appropriate preparation of the input data including feature selection, feature extraction,
transformations, etc, and hyperparameter tuning of the model.

Collectively, the linear sequence of steps required to prepare the data, tune the
model, and transform the predictions is called the modeling pipeline. Modern machine
learning approaches build the pipeline to codify and automate the workflow which
produces a machine learning model.

In this chapter, we present a brief introduction to clustering analysis algorithms
and the needed machine learning techniques which are required to fully understand
the technical contributions of this thesis.

3.1 Cluster Analysis

Cluster analysis consists of assigning a set of objects into groups as the clusters. The
objects assigned to the same cluster are similar in terms of a distance or dissimilarity
metric. In this thesis, these objects are d-dimensional points where each dimension is
a performance metric. The used distance measure is the Euclidean Distance.

This clustering task can be implemented in different ways obtaining a wide set of
distinct clustering algorithms. Surveys by P. Berkhin [74] and by Xu and Wunsch [75]
review a high number of these algorithms, but in this section, we focus on algorithm
families most commonly used in HPC tools.

3.1.1 Centroid-based clustering

In the centroid-based clustering algorithms family, the resulting clusters are represented
by a central vector, which can be part of the data set (a medoid) or not (a centroid).
The rest of the objects in the data set are assigned to the nearest cluster center.

K-means [76] algorithm is the classic example of the centroid-based clustering
algorithm. It divides the whole set of data points in k clusters Cj. Each cluster
is represented by the mean value (or weighted average) cj, the centroid. The
sum of discrepancies between a point and its centroid is used as an objective
function in the iterative optimization schema. The usual distance to minimize
is the Euclidean distance.

The algorithm requires the user to supply the desired number of clusters k. The
optimization schema is composed of three simple steps:

34

3. Introduction to Clustering Analysis Pipeline and Components

• Compute the centroids. In the first iteration, they can be computed randomly
or by several other methods. In further iterations, the centroids are the mean
value of the points assigned to each cluster.

• Compute the distances of each point to all the centroids.

• Assign the points to the closest centroid, to minimize the discrepancies.

When each iteration is finished, the algorithm checks if there has been any
change in the points assigned to each cluster. If the clusters have not changed,
the algorithm finishes.

Figure 3.1 illustrates this process. The first plot 3.1a is the election of initial
centroids, the round shaped points. Plots 3.1b and 3.1c are the iterative nucleus
of the algorithm, where points are assigned to their nearest centroid and then the
centroids are updated. The algorithm converged when objects assigned to each cluster
do not change in two consecutive iterations, plot 3.1d.

(a) Step 1: generation
of initial centroids).

(b) Step 2: assign points
to closest centroid.

(c) Step 3: recompute
the centroids.

(d) End: Convergence
state.

Figure 3.1: A graphical example of K-means algorithm using k = 3. After generating the
initial centroids in Step 1, points of the data set are assigned to the closest one on Step 2,
and centroids are recomputed on Step 3. Steps 2 and 3 are executed until the algorithm
converges.1

The selection of k is one of the major drawbacks of K-means/medoids algorithms
as it is not always possible to guess how many different clusters are presented in
the data set. The algorithm X-means [77] tackles this problem by applying the
Bayesian Information Criteria (BIC) that evaluates the quality of clusters in terms
of how well they represent Gaussian distributions. X-means iteratively executes
K-means increasing the value of k, verifying on each iteration if the resulting clusters
increase the BIC score.

The equivalent algorithm but using the medoids which is called K-medoids being
Partition Around Medoids (PAM) [78] the reference implementation.

1https://en.wikipedia.org/wiki/K-means_clustering

35

https://en.wikipedia.org/wiki/K-means_clustering

3. Introduction to Clustering Analysis Pipeline and Components

By far, centroid-based algorithms are the most widely used clustering algorithms.
The major advantage of these algorithms is the easy implementation and also its
fast execution. Unfortunately, these algorithms lack some important aspects: they
are not robust against outliers and are assumed a hyper-spherical structure of the
data distribution.

3.1.2 Hierarchical clustering

The target of hierarchical [79], also called connectivity-based clustering, is the
construction of a hierarchy of individuals in a data set. This hierarchy is represented
as a dendrogram, a tree where the leaves are the individuals and the root represents
the whole data set. Intermediate nodes represent the groups of two or more individuals
whose height concerning the leaves expresses the value of a linkage metric required
to conform such a group. This linkage metric is based on a dissimilarity function
and can be computed in different ways: single linkage uses the minimum value of the
dissimilarity metric between two points/groups; or average linkage, the average of the
distance; full linkage uses the maximum value of the dissimilarity metric.

Figure 3.2 contains an example of a small data set, the resulting dendrogram
obtained with a single linkage of the Euclidean distance, plot 3.2a. Points A and
B, and C and E, have the same distance, so they merge at the same height in the
dendrogram. Next, the group of A and B merges with C at slightly higher height.
The rest of the dendrogram expresses a merge of the group formed D, E, F. Finally
the whole data set is merged at the top level.

Figure 3.2: Example of hierarchical clustering: clusters are consecutively merged with the
most nearby clusters. The length of the vertical dendogram-lines reflect the nearness.

The strategy to build the dendrogram results in two types of hierarchical clustering:
aggregative, a bottom-up approach, merging the individuals/groups from leafs to

36

3. Introduction to Clustering Analysis Pipeline and Components

root; or divisive, a top-down approach, separating the individuals/groups from the
root to the leafs.

To obtain a data partition in a hierarchical clustering, it is required to perform a
horizontal cut at some height in dendrogram. In Figure 3.2 there is an example of two
different partitions: plot 3.2c shows a partition obtained by cutting the dendrogram at
the height marked by blue doted-line; analogously, plot 3.2d corresponds to the clusters
obtained by cutting at the heights marked by green doted-line. We can see that a cut
close to the leaves produces a big number of clusters more compact. In contrast, a
cut close to the root of the dendrogram produce less clusters with more variability.

Opposite to the centroid-based clustering, where the algorithms generate Gaussian
clusters around a centroid/medoid, hierarchical clustering does not assume the
underlying model of the data. In other words, the construction hierarchy of the
individuals according to the dissimilarity metric is orthogonal to how the individuals
are distributed. On the other hand, deciding which level of the dendrogram is
expressing the most valuable division of the data to perform the cut is a hard
task. This problem worsens when dealing with large data sets due to difficulty to
depict and analyze the dendrogram.

3.1.3 Density-based clustering

Density-based clustering algorithms are partition algorithms, as K-means, but they
share some features with connectivity-based clustering. The aim of density-based
clustering is to group points which are linked by a particular connectivity property
and their density is big enough to be considered as a real cluster. These algorithms
are widely used in the image recognition area.

DBSCAN [80], Density-Based Spatial Clustering of Applications with Noise, is
a classic example of density-based algorithm. The inputs of DBSCAN are two
parameters, the radius Epsilon (eps or ε) and minimum number of points (minPts).
This algorithm is based on two basic definitions:

1. A point p is directly density-reachable from a point q if their distance is less or
equal to eps, and the eps-neighbourhood of q (neighbours in a distance less or
equal than eps) is greater or equal to minPts. This relation is not symmetric.

2. Two points p and q are density reachable if there is a sequence p1, ..., pn, where
p = p1, q = pn, and each pi + 1 is directly density-reachable from pi.

3. Two points p and q are density connected if there is a point o such that both p
and q are density reachable from o.

37

3. Introduction to Clustering Analysis Pipeline and Components

The resulting clusters obtained by DBSCAN are those subsets Ci of the data
where all points in the subset are mutually density connected. The points that
do not fall in a cluster are considered noise. Note that the definitions lead to two
types of points inside a cluster: core points, inner points in a cluster that serves to
fulfill the density connectivity across all points in the cluster, and border points, in
the edges of the cluster, from where there are no directly density-reachable points
available. These definitions are clarified with Figure 3.3: red points are the core
points of the cluster formed by red and blue points; blue points are border points;
the colored circumferences are the range of the ε-neighbourhood; red points are a
noise point that does not belong to the cluster.

Figure 3.3: A single DBSCAN cluster with Core, Border, and Noise Points. Blue points
are border points. The black points are core points, and the red point are a noise point.2

As hierarchical clustering, density-based clustering algorithms do not do any
considerations about the data structure or model. In addition, there are robust
against outliers and noise. An important disadvantage is the lack of interpretability
of the resulting clusters.

3.1.3.1 Estimate the Epsilon

As previously mentioned, we must provide a value for epsilon which defines the
maximum distance between two points. In [81] they describe an approach for
determining the appropriate value for eps. They find a suitable value for epsilon by
calculating the average distance to the k nearest neighbors for each data point of the
dataset, sorting and plotting the results. Then they look where the change is most
pronounced (think of your knee angle) and select that distance as epsilon.

2https://www.mdpi.com/2071-1050/11/17/4718

38

https://www.mdpi.com/2071-1050/11/17/4718

3. Introduction to Clustering Analysis Pipeline and Components

To find the knee of the curve, first define the line connecting the first and last
points of the curve, see the dashed black line in Figure 3.4a. The ordinate of the
point on the sorted k-dist graph, and the furthest point from the line defines epsilon,
see the green arrow in Figure 3.4a .

In [82] they use MinNumPoints and MaxNumPoints to set a range of k-values
for which epsilon is calculated. Then they use the averaged eps value as the overall
estimated eps. The points below this threshold belong to a cluster, while points
above this value are identified as noise by DBSCAN. Figure 3.4a shows the k-NN
search curves and the estimated epsilon, and Figure 3.4a shows the clusters which
are identified by averaged estimated eps value.

(a) Plot of the estimate epsilon. (b) Plot the clusters (minPts = 6, eps = 3.62)

Figure 3.4: KNN plot for choosing epsilon in DBSCAN algorithm.

The Kneedle [83] algorithm can identify the point with the greatest absolute dis-
tance from its neighbors by applying more sophisticated schemes than aforementioned
techniques. It is based on the notion that the point of maximum curvature in a
dataset (the knee) is approximately the point in a curve that are local maxima. If
the curve is rotated θ degrees clockwise about (xmin, ymin) through the line formed
by the points (xmin, ymin) and (xmax, ymax) [83].

Figure 3.5 depicts how Kneedle algorithm works for data points drawn from the
curve y = −1/x + 5 where x ∈ [0, 1]. Note that we assume that the curves under
consideration have negative concavity. For curves with consistently positive concavity
(e.g., forming “elbows” rather than knees), such as k nearest neighbors graph, it is
trivial to invert the graph by replacing each yi with ymax − yi and xi with xmax − xi .

Although they are semi-automatic approaches for estimating the eps, DBSCAN
is still sensitive to the selected minPts range. The minPts value should be set
using domain knowledge and familiarity with the data set. There is no automatic

39

3. Introduction to Clustering Analysis Pipeline and Components

Figure 3.5: Kneedle algorithm for online knee detection. (a) depicts the smoothed and
normalized data, with dashed bars indicating the perpendicular distance from y = x with
the maximum distance indicated. (b) shows the same data, but this time the dashed bars
are rotated θ = 45 degrees. The magnitude of these bars correspond to the difference
values used in Kneedle. (c) shows the plot of these difference values and the corresponding
threshold values. The knee is found at x = 0.22 and is detected eps = 0.55, from [83].

way to determine the minPts value for DBSCAN in the literature. However, we
present a stochastic general guideline for mathematically choosing the optimal minPts
and subsequently eps value.

3.1.4 Evaluation Metrics

In general, clustering validation can be categorized into two classes, external clustering
validation, and internal clustering validation. In this thesis, we focus on internal
clustering validation, which is the method we should use when there is no ground
true label of data.

Let C = {c1, c2, ..., cq} denote a set of non-overlapping and non-empty clusters
where ∀i 6=j(ci ∩ cj = ∅) and ci 6= ∅. If the ground truth labels are not known or
the supplementary variable is not available, we can evaluate how well the clustering
has been performed by several metrics.

3.1.4.1 Calinski-Harabaz Index (CHI)

The Calinski-Harabaz [84] index also known as the Variance Ratio Criterion, is the
ratio of the sum of between-clusters dispersion and of inter-cluster dispersion for all
clusters, the higher the score, the better the performances.

The Calinski-Harabaz index CHI(q) for q cluster calculated:

CHI(q) = tr(Bq)
tr(Wq)

× n− q
q − 1 (3.1)

Where tr(Bq) is the trace between the group dispersion matrix and tr(Wq) is the
trace of the within cluster dispersion matrix defined by:

40

3. Introduction to Clustering Analysis Pipeline and Components

Wq =
q∑
i=1

∑
x∈ci

(x− Ci)(x− Ci)T (3.2)

Bq =
q∑
i=1

ni(Ci − CE)(Ci − CE)T (3.3)

Where n is the number of points in our dataset, ci, Ci and ni are the set of points
in cluster, the center of cluster and the number of points in cluster ith respectively.
The CE denotes the overall centroid of the dataset.

The score is higher when clusters are dense and well separated, which relates
to a standard concept of a cluster and the score is fast to compute. But there is
one issue with CHI. It is generally higher for convex clusters than arbitrary shaped
clusters like those obtained through DBSCAN. In a convex cluster, you can draw a
straight line from any point in the cluster to any other point in the cluster without
leaving the cluster. For example, a U -shaped cluster would not be convex since you
could not draw a straight line from one end of the U to the other without leaving
the cluster and crossing across empty space. Consequently, in the case of DBSCAN,
it is not significant as well as another index in the compression since DBSCAN can
identify the arbitrary shaped clusters.

3.1.4.2 Davies-Bouldin Index (DBI)

The Davies-Bouldin index [85] signifies the average similarity between clusters, where
the similarity is a measure that compares the distance between clusters with the
size of the clusters themselves. A lower Davies-Bouldin index relates to a model
with better separation between the clusters.

The DBI is defined as the average similarity between each cluster ci ∈ C and its
most similar cj ∈ C. In the context of this index, the similarity is defined as follows:

Rij = si + sj
dij

(3.4)

Where si denotes the average distance between each point of cluster ith and the
centroid of that cluster which is also known as a cluster diameter, and the dij denotes
the distance between cluster centroids i and j.

Then the Davies-Bouldin index is defines as:

DBI(q) = 1
q

q∑
i=1

max
i 6=j

Rij (3.5)

Although, the index is computed only based on quantities and features inherent
to the dataset, its usage of centroid distance limits the distance metric to Euclidean

41

3. Introduction to Clustering Analysis Pipeline and Components

space. DBI is also higher for convex clusters than arbitrary shaped clusters like
those obtained through DBSCAN. Consequently, in the case of DBSCAN, it is not
significant as well as another index in the compression since DBSCAN can identify
the arbitrary shaped clusters.

3.1.4.3 Silhouette Index (SI)

The Silhouette index [86] is a ratio-type index that is based on silhouette values for
every entity xi measuring how well xi fits into the cluster to which it is assigned,
by comparing the within-cluster cohesion, based on the distance to all entities in
the same cluster, to the cluster separation:

SI(xi) = b(xi)− a(xi)
max(b(xi), a(xi))

(3.6)

Where a(xi) is the distance of xi to its own cluster, which is defined as the average
distance of xi to all the other data points in its own cluster h as:

a(xi) =

n∑
j=1

wjhdE(xi, xj)

nh − 1 , i 6= j (3.7)

where dE(i, j) is the squared Euclidean distance, and nh is the number of data
points in the cluster h. wjh is the indicator function, which equals to 1 when xi is
in ch and 0 when xi is not in ch. b(i) is the distance of xi to its closest neighbouring
cluster, which is defined as the average distance of xi to all the data points in its
closest neighbouring cluster as:

b(xi) = min
h6=l

n∑
j=1

wjldE(xi, xj)

nl

 (3.8)

As a result, SI(xi) ∈ [−1, 1]. If SI(xi) is around zero, the entity could be assigned
to another cluster without making cluster cohesion or separation any worse. A
negative SI(xi) suggests that xi’s cluster assignment is damaging to cluster cohesion
and separation, whereas an SI(xi) closer to 1 means the opposite. We can then
quantify the validity of the whole clustering by the Silhouette index, defined as:

SI = 1
n

∑
i∈X

SI(xi) (3.9)

In [8], particularly in the parallel performance analysis scenario, they made an
analogy between the sequences of different actions a parallel Single Program Multiple

42

3. Introduction to Clustering Analysis Pipeline and Components

Data (SPMD) application performs and biological sequences such as DNA or proteins.
Then, they use Multiple Sequence Alignment algorithm to quantitatively measure
how the application follows the SPMD pattern which called SPMDiness. They
introduce the Cluster Sequence Score as an score that evaluates the SPMDiness of a
computation structure characterization obtained by using a cluster analysis. This score
is also applicable to evaluate the SPMDiness of any other structural characterization.
However, it is useful for in the parallel performance analysis scenario.

The literature indicates that there is no sole cluster validity index with a clear
advantage over the others in every case [87]. However, the Silhouette width index has
performed well in many comparative experiments [88, 89]. The Silhouette index can
work with any distance measure. In the present work, we use the average Silhouette
Coefficient as an evaluation metric to tune the DBSCAN hyperparameters throughout
our machine learning pipeline. We apply the Silhouette index by using general
Minkowski distances including the Euclidean and Manhattan distances, in line with
using general Minkowski distances in our method. Furthermore, we use the Silhouette
index instead of SPMDiness to keep the generality of our pipeline.

3.2 Machine Learning Pipeline

In general, the objective of Machine Learning and artificial intelligence to automate
tasks and take better decisions. Building machine intelligence starts from Machine
Learning concepts to implementing and building models and using them in the
real world. Machine intelligence can be built using non-traditional or toiler-made
computing components. A machine learning pipeline is a way to codify and automate
the workflow it takes to produce a machine learning model. Machine learning pipelines
consist of multiple sequential steps that do everything from data extraction and
preprocessing to model training and deployment. In this section, we introduce an
end-to-end Machine Learning pipeline based on the CRISP-DM [90] model, which
will help us enhance and automatize the cluster analysis process by building machine
intelligence using a structured process.

3.2.1 Machine Learning Pipelines

A Machine Learning pipeline will mainly consist of elements related to data retrieval
and extraction, preparation, modeling, evaluation, and extracting insight. Figure
3.6 shows a high-level overview of a standard Machine Learning pipeline with the
major phases highlighted in their blocks.

The major steps in the pipeline are briefly mentioned here:

43

3. Introduction to Clustering Analysis Pipeline and Components

Figure 3.6: A standard Machine Learning pipeline, from [91].

• Data retrieval: is mainly data collection, extraction, and acquisition from various
data sources and data stores.

• Data preparation: In this step, we preprocess the data, clean it, wrangle it, and
manipulate it as needed. Initial exploratory data analysis is also carried out.
The next steps involve extracting, engineering, and selecting features from the
data.

– Data wrangling: Mainly concerned with data processing, cleaning, munging,
wrangling, and performing initial descriptive and exploratory data analysis

– Feature engineering and transformation: Here, we extract important
features from the raw data and even create or engineer new features
from existing features which implies a certain objective preconception of
solution. Furthermore, data features often need to be transformed (e.g.
normalized, scaled, etc.) to prevent Machine Learning algorithms from
getting biased.

– Feature selection: often we need to select a subset of all available features
based on feature importance and quality.

• Modeling: In the process of modeling, we usually feed the data features to a
Machine Learning method or algorithm and train the model, typically to optimize
a specific cost function of a predictive model or generalize the representations
learned from the data by a descriptive model.

• Model evaluation and tuning: Built models are evaluated and tested on the
validation datasets and, based on metrics like accuracy, F1 score, and others,
the model performance is evaluated. Models have various parameters that are
tuned in a process called hyperparameter optimization to get models with the
best and optimal results.

44

3. Introduction to Clustering Analysis Pipeline and Components

• Monitoring and interpreting: Selected models are used to extract insights and
are constantly monitored based on their predictions and results.

3.2.2 Hyperparameters Tuning

Hyperparameter tuning takes advantage of the process to test different hyperparameter
configurations when training your model. It can give you optimized values for
hyperparameters, which maximizes your model’s predictive accuracy.

3.2.2.1 Hyperparameters

Hyperparameters contain the data that govern the training process itself. The
model parameters are optimized by the training process: you run data through the
operations of the model, evaluate the model goodness of fit, and adjust until you
find the best values. Note that the goodness of fit of a model explains how well it
matches a set of observations. Hyperparameters are tuned by running the whole
training job, looking at the aggregate accuracy, and adjusting. In both cases, you are
modifying the composition of your model in an effort to find the best combination
to handle your problem.

Machine learning models also have parameters, which are the internal coefficients
set by training or optimizing the model on a training dataset. Parameters are different
from hyperparameters. Parameters are learned automatically; hyperparameters are
set manually to help guide the learning process.

3.2.2.2 Hyperparameter Optimization

As such, it is often required to search for a set of hyperparameters that result in the
best performance of a model on a dataset. This is called hyperparameter optimization,
hyperparameter tuning, or hyperparameter search.

Without an automated technology for hyperparameter tuning, you need to make
manual adjustments to the hyperparameters throughout many training runs to arrive at
the optimal values. Hyperparameter tuning makes the process of determining the best
hyperparameter settings easier and less tedious. An optimization procedure involves:

• Search space: that is a volume to be searched where each dimension represents a
hyperparameter and each point represents one model configuration. Guesswork
is necessary to specify the min and max values for each hyperparameter.

• Validation Matrices: These are tied to ML tasks. In the lecturer exist several
matrices to evaluate the supervised algorithms and some evaluation matrices
for unsupervised algorithms. For example, the performance of classification of
the binary class is measured using Accuracy, AUROC, and Log-loss.

45

3. Introduction to Clustering Analysis Pipeline and Components

• Evaluation Mechanism: These are tied to ML tasks. In the lecturer, several
matrices exist to evaluate the supervised algorithms and some matrices for
unsupervised algorithms. For example, the performance of classification of the
binary class can measured by using Accuracy, AUROC, and Log-loss. Also the
performance of clustering can measured by Calinski-Harabaz Index, Davies-
Bouldin Index, and Silhouette Index.

• Hyperparameters search: Grid search picks out a grid of hyperparameter values
and evaluates all of them, and Random search randomly values a random
sample of points on the search space if the search space is large [92]. It is
more efficient than grid search. Smart hyperparameter tuning algorithms, such
as Bayesian Optimization [93] and Evolutionary Optimization [94], picks a
few hyperparameter settings, evaluates the validation matrices, adjusts the
hyperparameters, and re-evaluates the validation matrices.

3.2.3 Unsupervised Machine Learning Pipeline

Tuning hyperparameters for unsupervised learning problems is difficult in general since
labels are not available, choosing a criterion for evaluation and in general, a method
for selecting hyperparameters is not easy. However, the success of most clustering
methods depends heavily on the correct choice of the involved hyperparameters.

Specifically, the clustering algorithm hyperparameter tuning is a considerable
challenge when applying a clustering solution to real-world problems. Multiple
iterations and considerable domain knowledge is often required to find an optimal
algorithm configuration, and the process is often long and tedious [95]. In supervised
problems, where ground truth is available, hyperparameter tuning is often automated,
however, automated hyperparameter tuning requires accurate and objective evaluation
metrics. As evaluating clustering algorithms is a considerable problem, completely
automated methods of hyperparameter tuning for clustering algorithms often rely
on internal evaluation metrics [96, 97], or having some ground truth labels available
for external evaluation metrics [98, 99], which moves the problem into the semi-
automated space.

However, these methods of evaluation are often flawed, and cannot comment on
the quality of the clusters developed for the use case. Internal methods measure the
cluster quality with similarity metrics and tend to be biased towards particular types
of clustering algorithms [100]. Another method of evaluation is through meta-criteria,
such as stability and statistical significance, which can be useful in determining the
quality of a clustering algorithm but less so in comparing the results of multiple
algorithms. In [100], they asserted that clustering algorithms cannot be evaluated

46

3. Introduction to Clustering Analysis Pipeline and Components

independently of the context in which they will be used. Domain-specific evaluation can
be highly subjective and often requires significant time and resources to perform. As the
effect of hyperparameters on clustering results cannot be described through a convex
function, an exhaustive grid search is required to find the optimal hyperparameters
[96]. For an individual to manually perform an exhaustive grid search and evaluate
all of the possible results would be a time-intensive and cumbersome process.

We introduce a framework for automated hyperparameter tuning of clustering
problems, using mean silhouette score as an internal metric [13] and exhaustive
grid search [101]. The contribution of this dissertation is that a framework for
the automated hyperparameter tuning of a clustering problem is presented and
evaluated on a real-world clustering problem in the specific domain of performance
analysis for HPC programs.

3.3 Feature Selection

The advent of high-dimensional data has brought unprecedented challenges to machine
learning researchers, making the learning task more complex and computationally
demanding. The term high dimensionality is applied to a database that presents one
of the following characteristics: (a) the number of samples is very high; (b) the number
of features is very high, or (c) both the number of samples and features are very high.

When dealing with high-dimensional data, learning algorithms can degenerate
their performance due to over-fitting, learned models decrease their interpretability as
they are more complex, and finally speed and efficiency of the algorithms decline in
accordance with size. Machine learning can take advantage of feature selection methods
to be able to reduce the dimensionality of a given problem. Feature selection is the
process of detecting the relevant features and discarding the irrelevant and redundant
ones, intending to obtain a small subset of features that describes properly the given
problem with a minimum degradation or even improvement in performance [102].

Since feature selection maintains the original features, it is especially useful
for applications where the original features are important for model interpreting
and knowledge extraction [103].

In the case of unsupervised learning, there are some issues and limitations that are
made important "Irrelevant feature removing": degrade learning quality; consume more
memory, computational time, and the visualization lifetimes. With an appropriate
feature subset selection, we can archive those limitations.

The feature selection step becomes more important when unsupervised learning
(Clustering) is used in high-dimensional data. The cluster structure of interest
to domain experts can often be best described using a subset of attributes. The

47

3. Introduction to Clustering Analysis Pipeline and Components

inclusion of other attributes can degrade clustering performance and complicate cluster
interpretation. Compared to methods based on all the variables, a superior feature
selection method consistently yields more accurate estimates of the number of clusters,
such as more parsimonious clustering models and easier visualization of results.

In this dissertation, we are interested in the feature selection approach for cluster
analysis. Most clustering methods assume all features to be equally important for
clustering, or in other words, they do not distinguish among different features. This
is one of the reasons why most clustering algorithms may not perform well in the
face of high-dimensional data. The appropriate feature helps in creating clusters
while an inappropriate feature may not help in creating clusters and, on contrary;
it might be efficient the clustering algorithms adversely by blurring the clusters.
Unimportant features are noisy or irrelevant and can be removed to reduce the data
size for more efficient clustering. To continue, we address the methods of selecting
a subset of important features.

This chapter will present the foundations of feature selection, as well as a description
of some existing feature selection methods.

3.3.1 Foundations of Feature Selection

Feature selection can be defined as the process of detecting the relevant features
and discarding the irrelevant and redundant ones to obtain a subset of features that
describes properly the given problem with a minimum degradation of performance.
It has several advantages [103]:

• Improving the performance of the machine learning algorithms.

• Data understanding, gaining knowledge about the process and perhaps helping
to visualize it.

• General data reduction, limiting storage requirements and perhaps helping in
reducing costs.

• Feature set reduction, saving resources in the next round of data collection or
during utilization.

• Simplicity, the possibility of using simpler models and gaining speed.

48

3. Introduction to Clustering Analysis Pipeline and Components

3.3.1.1 Feature relevance

Intuitively, it can be determined that a feature is relevant if it contains some
information about the latent data structure. More formally, we can classify fea-
tures into three disjoint categories, namely, strongly relevant, weakly relevant, and
irrelevant features [104].

The strong relevance of a feature indicates that the feature is always necessary;
it cannot be removed without affecting the machine learning model quality. Weak
relevance suggests that the feature is not always necessary but may become necessary
for an optimal subset at certain conditions. Irrelevance indicates that the feature
is not necessary at all. An optimal subset should include all strongly relevant
features, none of the irrelevant features, and a subset of weakly relevant features.
However, it is not given in the definitions which weakly relevant features should be
selected and which of them removed. Therefore, it is necessary to define feature
redundancy among relevant features.

3.3.1.2 Feature redundancy

A feature is usually considered redundant in terms of feature correlation [105]. It
is widely accepted that two features are redundant to each other if their values are
completely correlated, but it might not be so easy to determine feature redundancy
when a feature is correlated with a set of features. Consequently, a redundant feature
should be removed if it is weakly relevant when the feature has a Markov blanket
within the current set of features [106]. Since irrelevant features should be removed
anyway, they are excluded from this definition of redundant features.

3.3.2 Feature selection methods

Feature selection methods can be divided according to two approaches: individual
evaluation and subset evaluation [106]. Individual evaluation is also known as feature
ranking and assesses individual features by assigning them weights according to their
degrees of relevance. On the other hand, subset evaluation produces candidate feature
subsets based on a certain search strategy. Each candidate subset is evaluated by a
certain evaluation measure and compared with the previous best one concerning this
measure. While the individual evaluation is incapable of removing redundant features
because redundant features are likely to have similar rankings, the subset evaluation
approach can group the redundant features and then select the most relevant ones.
However, methods in this framework can suffer from an inevitable problem caused
by searching through all feature subsets required in the subset generation step, and
thus, both approaches are worth to be studied.

49

3. Introduction to Clustering Analysis Pipeline and Components

Aside from this classification, three major approaches can be distinguished based
upon the relationship between a feature selection algorithm an nd the inductive
learning method used to infer a model [103]:

• Filters, which rely on the general characteristics of training data and carry out
the feature selection process as a preprocessing step with independence of the
induction algorithm. This model is advantageous for its low computational cost
and good generalization ability.

• Wrappers, which involve a learning algorithm as a black box and consists of using
its prediction performance to assess the relative usefulness of subsets of variables.
In other words, the feature selection algorithm uses the learning method as a
subroutine with the computational burden that comes from calling the learning
algorithm to evaluate each subset of features. However, this iteration with the
classifier tends to give better performance results than filters.

• Embedded, which perform feature selection in the process of training and are
usually specific to given learning machines. Therefore, the search for an optimal
subset of features is built into the classifier construction and can be seen as a
search in the combined space of feature subsets and hypotheses. This approach
can capture dependencies at a lower computational cost than wrappers.

3.3.2.1 Filter methods

Filter methods are based on performance evaluation metrics calculated directly from
the data, without direct feedback from predictors that will finally be used on data
with the reduced number of features [103]. As mentioned above, these algorithms
are usually computationally less expensive than wrappers or embedded methods. In
general, it consists of algorithms that are built in the adaptive systems for data
analysis, see Figure 3.7.

Thabtah et al. [107] introduced an observed frequency-based feature selection
method called Least Lost (L2) to reduce the dimensionality of data by eliminating
noisy data from the datasets while maintaining a healthy classifier performance. It is a
simplified and in-built approach that involves the ranking of each variable in ascending
order based on the L2 distance between observed and expected variables and class
labels. The scores are computed based on the observed and expected probabilities of
the available features. Tests conducted using datasets from the University of Irvine
Repository (UCI) reported that L2, when applied in the preprocessing phase, results
in fewer features being obtained. When these are further processed by a machine
learning algorithm, they derive competitive classifiers in terms of accuracy.

50

3. Introduction to Clustering Analysis Pipeline and Components

Figure 3.7: Generic Filter base Feature Selection Algorithm.

In [108], they proposed the redundant penalty between the feature mutual infor-
mation algorithm (RPFMI). It is a filter-based feature selection algorithm to identify
optimal features in terms of redundancy. It considers three factors to select the
features: the redundancy between features, the impact between selected features
and classes and the relationship between candidate features and classes. However,
it still needs the labels to select the features.

Gao et al. [109] introduced the dynamic change of selected feature (DCSF) which
takes dynamic information changes of the selected features with the class labels into
account in the feature selection process; this to yield more accurate and efficient results.
This novel model uses conditional mutual information between candidate features
and class labels to identify the most informative features; the other conventional filter
methods use mutual information to compute the relevancy of the candidate features
to the select optimal feature subset. The experimental results implied that DCSF has
the highest average classification accuracy of all the other compared methods.

Another filter mechanism presented in [110] which is quite unique. These authors
focus on selecting features based on their true rankings obtained by applying ReliefF
[111] and Fisher Score [112] rather than focusing on their mutual redundancies.
MIRFFS (Mutual Information, ReliefF, and Fisher Score), the proposed mechanism,
used differential evolution (DE) [113], as the search strategy and it has two parts:
one mechanism to be applied on single-objective problems and the other on multi-
objective problems.

In [114], they introduced multivariate relative discrimination criterion (MRDC),
a filter-based feature selection mechanism to enhance the performance of the text
classification process. This is accomplished by diminishing the dimensionality in feature
space using minimal-redundancy and maximal-relevancy (mRmR) [115]. MRDC
involves identifying the most relevant features using relative discrimination criterion

51

3. Introduction to Clustering Analysis Pipeline and Components

(RDC) [116]. Since RDC is not capable of classifying the irrelevant features, it utilizes
the Pearson correlation matrix to perform that task.

[117] used three robust filter methods in combination to produce a feature selection
mechanism (vectors of scores/V -score) to select the most relevant features of a given
dataset while eliminating the shortcomings and maximizing the advantages. They
used information gain [118], chi-squared statistic [119], and inter-correlation methods
(CFS) [120] together to stabilize each feature’s ranking score; they were able to reap
more accurate prediction results rather than when applying them individually.

OSFSMI (Online Stream Feature Selection Method based on Mutual Information)
and OSFSMI-k is another mutual information-based online streaming feature selec-
tion method, presented by [121], to distinguish between the most informative and
uninformative features. This is done by computing the correlation between features
and their relevancy, to the class labels where the number of instances increases
exponentially (for example, social networks, finance analysis applications, and traffic
network monitoring systems). The general framework followed by the proposed
OSFSMI model comprises two unique phases: online relevancy analysis to compute
the relevancy of each newly arriving feature, and online redundancy analysis to
estimate the effectiveness of each selected feature and eliminate any with effectiveness
below the average. OSFSMI-k is a modified version of OSFSMI, developed to address
the issues arising due to the continuously increasing nature of features. To end
this, OSFSMI-k keeps selecting the correlated features until the size of the selected
feature subset reaches a constant value (k).

In [122], they proposed a normalized mutual information feature selection (NMIFS),
to evaluate the relevancy and redundancy in the features of a given dataset. Researchers
have used three mutual information-based feature selection methods: Battiti’s mutual
information feature selector (MIFS), MIFS-U (Battiti, 1994), and min-redundancy
max-relevance (mRMR) [115] criteria to develop NMIFS by enhancing their strengths
and minimizing their weaknesses. They also present the Genetic algorithm, guided
by mutual in- formation for feature selection (GAMIFS), a hybrid version of both
the filter and wrapper methods that combines NMIFS and genetic algorithms to
fine-tune their performance.

3.3.2.2 Wrapper methods

The existing algorithms belonging to the wrapper model utilize a machine learning
algorithm (Generally classification) as a selection criterion. The algorithms of this
method are wrapped around the adaptive systems providing them subsets of features
and receiving their feedback (usually accuracy). These wrapper approaches are aimed
at improving, the results of the specific predictors they work with. The wrapper model

52

3. Introduction to Clustering Analysis Pipeline and Components

utilizes a machine-learning algorithm to evaluate the quality of selected features. Figure
3.8 shows the generic wrapper algorithm which starts to find a subset of features. Then,
it evaluates the machine-learning algorithm quality using the selected subset. Finally, it
repeats two previously aforementioned steps until they converge to the desired quality.

Figure 3.8: Generic Wrapper feature selectors algorithm.

Evaluating all possible subsets of features is impossible in high-dimensional datasets.
Therefore, a heuristic search strategy is adopted to reduce the search space. The
wrapper model is very computationally expensive compared to the filter model. Yet,
it produces better clustering since we aim to select features that maximize the quality
of the of the specific machine learning algorithm. It is still biased toward the used
clustering method. Different wrapper feature selection methods for clustering were
proposed by changing the combination of the search strategy and the utilized clustering
algorithm. The method proposed in [115] is an example of a wrapper that involves
maximum likelihood criteria and feature selection and the mixture of Gaussians as
a clustering method. Others use conventional clustering methods such as k-means
and any search strategy as feature selector [123].

Weka [124] provides the Wrapper SubsetEval method, which evaluates attribute
sets by using a learning scheme. Cross-validation is used to estimate the accuracy
of the learning scheme for a set of attributes. The algorithm starts with the empty
set of attributes and searches forward, adding attributes until performance does
not improve further.

However, they exhibit some limitations. The first, and probably one of the most
important deficits is the lack of a more extensive empirical evaluation of the methods
and, in particular, a comparison between filters and wrappers. A second shortcoming is
that many of these approaches are focused on classification, and there is no theoretical
or experimental evidence related to their behavior in clustering analysis. In this

53

3. Introduction to Clustering Analysis Pipeline and Components

thesis, we use the leveraging of the Independent Component Analysis to propose a
filter-based feature selection method for the clustering.

The wrapper method works usually associated with learning algorithms, or
specifically, predictive models in most cases. In [125, 126], the selected features firstly
train a predictive model and then are evaluated on a fixed validation set. Other criteria
like least square, spectral theory, and sparse regularize, have been recently proposed for
this problem [127]. Any feature selection method achieves a proportion of information
from the data. In this thesis, we have been interested in feature selection approach
for the unlabeled and noisy datasets, and particularly for the performance data.

3.3.2.3 Other approaches

There exist numerous papers and books proving the benefits of the feature selection
process [128, 129]. However, most researchers agree that there is not a so-called
“best method” and their efforts are focused on finding a good method for a specific
problem set. Therefore, the recent feature selection methods are constantly appearing
using different strategies: a) combining several feature selection methods, which could
be done by using algorithms from the same approach, such as two filters [130], or
coordinating algorithms from two different approaches, usually, filters and wrappers
[131, 132] b) combining feature selection approaches with other techniques, such as
feature extraction [133] or tree ensembles [134]; c) reinterpreting existing algorithms
[135], sometimes to adapt them to specific problems [136]; d) creating methods to
deal with still unresolved situations [137, 138] using an ensemble of feature selection
techniques to ensure a better behavior [139, 140]).

To confront the problem of the high dimensionality of data, feature selection
algorithms have become indispensable components of the learning process. Hence,
a correct selection of the features can lead to an improvement of the inductive
learner, either in terms of learning speed, generalization capacity, or simplicity
of the induced model.

3.4 Feature Transformation

Features that are on a continuous scale are subject to introduce the potential issues
that we may have to confront. Some of the problems that are prevalent with continuous
features can be mitigated through the type of model that we choose. For example,
models that construct relationships between the features and the response variable
that are based on the rank of the features values rather than the actual value, like
trees, are immune to features distributions that are skewed or to individual samples
that have unusual values (i.e., outliers). Other models such as K-nearest neighbors and

54

3. Introduction to Clustering Analysis Pipeline and Components

support vector machines are much more sensitive to features with skewed distributions
or outliers. Continuous features that are highly correlated with each other are another
regularly occurring scenario that presents a problem for some models but not for
others. Partial least squares, for instance, are specifically built to directly handle highly
correlated features. But models like multiple linear regression or neural networks
are adversely affected in this situation [141].

If we desire to utilize and explore the goodness-of-fit of more types of machine
learning models, the issues presented by the features need to be addressed by
transforming them in a useful way.

On the same hand, the majority of density-based clustering algorithms such as
DBSCAN fail to properly find clusters in data exposing different densities in various
regions of the feature space. This failure results from using a single global density
threshold on all the data points.

In this thesis, we propose a parametric multilinear transformation method to ho-
mogenize cluster densities while preserving the topological structure of the dataset. We
use this transformation to improve the goodness-of-fit of the density-based algorithms.

In this chapter, we will provide a brief background of transformation approaches
and illustrate how to handle continuous features with commonly occurring issues
including vastly different scales, follow a skewed distribution, contain a small number
of extreme values, etc. The techniques discussed thus far are unsupervised, meaning
that the objective of the dimension reduction is based solely on the features.

3.4.1 Individual Feature Transformation

There are a variety of modifications that can be made to an individual feature that
might improve its utility in a model. The first type of transformations to a single
feature discussed here are those that change the scale of the data.

The normal distribution has a fundamental role in the statistical literature since it
forms the basis of most of the statistical methods such as regression analysis, analysis
of variance, and t-test. Therefore, the validity of the related results necessitates
the agreement between the distribution of the observed data and this theoretical
distribution. In cases where this agreement deteriorates, which is common in real-life
datasets, transformation methods might be a practical remedy to secure it. The most
popular and commonly used method is the Box-Cox power transformation [142]. Since
its proposition, it has been applied in various fields. Some of the recent works include
Lee et al. [143], Gillard [144] and Sun et al. [145]. Box-Cox transformation mainly
applies a deterministic power function to the raw data by using the estimate of the
power transformation parameter, λ. Therefore, the estimation of λ is crucial. The

55

3. Introduction to Clustering Analysis Pipeline and Components

original proposal of the methodology [142] involved the maximum likelihood estimation
(MLE). Alternative methodologies included the works of Rahman and Pearson [146],
Osborne [147], and Dag et al. [148]. Whereas the first two studies proposed the
estimation of λ via two normality tests, specifically Shapiro-Wilk and Anderson-
Darling tests, respectively, the third one proposed simulating a single artificial and
non-informative co-variate and finding which linear regression model minimizes the
sum of squared error among several simple linear regression models. These studies
showed that the MLE of λ might be biased and inefficient.

Another important transformation to an individual feature is for features that have
values bounded between zero and one, such as proportions. The problem with modeling
this type of outcome is that model predictions might not be guaranteed to be within
the same boundaries. For data between zero and one, the logit transformation [149]
could be used. If x is the feature, the logit transformations is logit(p) = log(x/1− p).

This transformation changes the scale from values between zero and one to values
between negative and positive infinity. On the extremes, when the data are absolute
zero or one, a small constant can be added or subtracted to avoid division by zero.
Once model predictions are created, the inverse logit transformation can be used to
place the values back on their original scale. An alternative to the logit transformation
is the arcsine transformation [150]. This is primarily used on the square root of
the proportions (e.g., p̂ = arcsine(√p)).

Another common technique for modifying the scale of a feature is to standardize its
value in order to have specific properties. Centering a feature is a common technique.
The feature’s training set average is subtracted from the feature’s values. When
this is applied separately to each variable, the collection of variables would have a
common mean value (i.e., zero). Similarly, scaling is the process of dividing a variable
by the corresponding training set’s standard deviation. This ensures that variables
have a standard deviation of one. Alternatively, range scaling uses the training set
minimum and maximum values to translate the data to be within an arbitrary range
(usually zero and one). Again, it is emphasized that the statistics required for the
transformation (e.g., the mean) are estimated from the training set and are applied
to all data sets (e.g., the test set or new samples) [151].

These transformations are mostly innocuous and are typically needed when the
model requires the features to be in common units. For example, when the distance or
dot products between features are used (such as K -nearest neighbors or support vector
machines) or when the variables are required to be a common scale in order to apply
a penalty (e.g., the lasso or ridge regression), a standardization procedure is essential.

Another helpful transformation technique that can be used on data containing
a time or sequence effect is simple data smoothing. For example, a rolling average

56

3. Introduction to Clustering Analysis Pipeline and Components

can be used to reduce excess noise in the feature or outcome data before modeling.
For example, a running 5-point mean would replace each data point with the average
of itself and the two data points before and after its position. As one might expect,
the size of the moving window is important; too large and the smoothing effect can
eliminate important trends, such as nonlinear patterns.

A short-running median can also be helpful, especially if there are significant
outliers. When an outlier falls into a moving window, the mean value is pulled
towards the outlier. The median would be very insensitive to an aberrant value
and is a better choice. It also has the effect of changing fewer of the original data
points. In addition, other smoothers techniques can be used, such as smoothing
splines. However, the simplicity and robustness of a short-running median can be
an attractive approach to this type of data.

3.4.2 Multi-Feature Transformation

When creating new features from multiple features, there is a possibility of correcting
a variety of issues such as outliers or collinearity. It can also help reduce the
dimensionality of the feature space in ways that might improve performance and
reduce computational time for models.

Linear projection methods have been shown to effectively identify meaningful
projections of the original features. These methods are linear in the sense that they
take a matrix X of numeric features values and create new components that are linear
combinations of the original data. If there are n data points and m features, the
components could be denoted as the n×m matrix X̂ and are created using X̂ = XA

where the m × m matrix A is often called the projection matrix. The difference
between the projection methods is in how the projection values are determined.

Principal component analysis (PCA) [152] is still one of the most widely used linear
projection methods. Specifically, the objective of PCA is to find linear combinations
of the original features such that the combinations summarize the maximal amount
of variation in the original feature space. Simultaneously, the new PCA components
are required to be orthogonal (i.e., uncorrelated) to each other. The property of
orthogonality enables the feature space variability to be neatly partitioned in a
way that does not overlap.

PCA is a particularly useful tool when the available data are composed of one
or more clusters of features that contain redundant information (e.g., features that
are highly correlated with one another). An important side benefit of this technique
is that the resulting PCA scores are uncorrelated. This property is very useful
for modeling techniques (e.g., multiple linear regression, neural networks, support

57

3. Introduction to Clustering Analysis Pipeline and Components

vector machines, and others) that need the features to be relatively uncorrelated.
Although, Principal component analysis is an effective technique when features are
linearly correlated and when the resulting scores are associated with the response,
the orthogonal partitioning of the feature space may not provide a good predictive
relationship with the response, especially if the true underlying relationship between
the features and the response is non-linear.

kernel PCA [153] method uses a nonlinear basis expansion. The kernel PCA
approach combines a specific mathematical view of PCA with kernel functions and
the kernel ‘trick’ to enable PCA to expand the dimension of the feature space in
which dimension reduction is performed (not unlike basis expansions). For example,
we can directly expand a linear combination as a polynomial of degree d by using the
polynomial kernel. The RBF kernel is also known as the Gaussian kernel due to its
mathematical form and its relationship to the normal distribution. The radial basis
and polynomial kernels are popular starting points for kernel PCA.

Independent component analysis (ICA) [154] creates new components that are linear
combinations of the original features but does so in a way that the components are as
statistically independent from one another as possible. This enables ICA to be able
to model a broader set of trends than PCA, which focuses on orthogonality and linear
relationships. ICA methods need to meet the constraint of statistical independence
to maximize the “non-Gaussianity” of the resulting components. For example, the
fastICA [155] approach uses an information theory called negentropy to measure non-
Gaussianity. In practice, ICA should create components that are dissimilar from PCA
unless the features demonstrate significant multivariate normality or strictly linear
trends. Also, unlike PCA, there is no unique ordering of the components. It is common
to normalize and whiten the data before running the ICA calculations. Whitening,
in this case, means converting the original values to the full set of PCA components.
Also, the ICA computations are typically initialized with random parameter values
and the result can be sensitive to these values.

Non-negative matrix factorization [156] is another linear projection method that is
specific to features that are greater than or equal to zero. In this case, the algorithm
finds the coefficients of A such that their values are also non-negative (thus ensuring
that the new features have the same property). This approach is popular for text
data where features are word counts, imaging, and biological measures (e.g., the
amount of RNA expressed for a specific gene).

The method for determining the coefficients is conceptually simple: find the best
set of coefficients that make the scores as “close” as possible to the original data
with the constraint of non-negativity. Closeness can be measured using mean squared
error (aggregated across the features) or other measures such as the Kullback–Leibler

58

3. Introduction to Clustering Analysis Pipeline and Components

divergence [157]. The latter is an information-theoretic method to measure the distance
between two probability distributions. Like ICA, the numerical solver is initialized
using random numbers and the final solution can be sensitive to these values and
the order of the components is arbitrary

Autoencoders are computationally complex multivariate methods for finding
representations of the feature data and are commonly used in deep learning models
[158]. The idea is to create a nonlinear mapping between the original feature data and
a set of artificial features (that is usually the same size). These new features, which
may not have any sensible interpretation, are then used as the model features. While
this does sound very similar to the previous projection methods, autoencoders are very
different in terms of how the new features are derived and also in their potential benefit.

The spatial sign transformation takes a set of features and transforms them in
a way that the new values have the same distance to the center of the distribution
[159]. This approach is also referred to as global contrast normalization [160] and
is often used with image analysis to prevent images from having different levels of
contrast in different parts of images.

3.4.2.1 Summery

Numeric features, in their raw form, may or may not be in an effective form that
allows a model to find a good relationship with the response. For example, a
feature may be measured, but its squared version is what is truly related to the
response. Straightforward transformations such as centering, scaling, or transforming
a distribution to symmetry are necessary steps for some models to be able to identify
the predictive signal. Other transformations such as basis expansions and splines can
translate a feature in its original scale to nonlinear scales that may be informative.

Instead of expanding the feature space, it may be necessary to enrich the existing
feaster space. This can be accomplished using unsupervised techniques such as
PCA, ICA, or NNMF.

The way to explore nonlinear relationships between features and the response
is through the combination of a kernel function and PCA. This approach is very
computationally efficient and enables the exploration of much larger dimensional space.

Finally, autoencoders or the spatial sign transformation offer novel engineering
approaches that can harness information in unlabeled data or dampen the effect
of extreme samples.

59

3. Introduction to Clustering Analysis Pipeline and Components

3.5 Clustering Result Interpretation

Due to the ever-growing complexity of ML models and their use in increasingly
sensitive applications, it has become crucial to endow these models with the capability
to explain their predictions in a way that is interpretable for a human. Explainable
AI (XAI) has emerged as an important direction for machine learning, and excellent
results have been reported in selected tasks such as explaining the predictions of
popular DNN classifiers [161–165].

The emerging field of Explainable AI (XAI) has so far mainly focused on supervised
learning, in particular, deep neural network classifiers. In many practical problems,
however, the label information is not given and the goal is instead to discover the
underlying structure of the data, for example, its clusters. While powerful methods
exist for extracting the cluster structure in data, they typically do not answer the
question of why a certain data point has been assigned to a given cluster.

Some works explore ways of merging the clustering models and neural networks to
produce better and more flexible ML models. For example, deep clustering approaches
typically build a clustering objective on top of deep representations [166–170]. Other
models, in particular, the k-meansNet [171] design the neural network in a way
that simulates a clustering model so that the learned neural networks solution can
be interpreted as a clustering solution. Note that in all these works, the purpose
is more to enhance a basic clustering model by providing the flexibility of neural
network representation and training, whereas our work focuses on making existing
popular clustering algorithms explainable.

Another set of related works focuses on the problem of learning a good clustering
model, by identifying a subset of relevant features that support the cluster structure.
Some methods identify relevant features by running the same clustering algorithm
multiple times on different feature subsets [172]. Other approaches simultaneously solve
feature selection and clustering by defining a joint objective function to be minimized
[172]. While feature selection can identify the set of features required to represent
the overall cluster structure, our work builds up by identifying among those features
which ones are truly responsible for a given cluster or a given cluster assignment.

Further related works focus on quantitatively validating clustering solutions.
Examples of validation metrics are compactness / separation of clusters [173], cluster
stability under resampling / perturbations [174, 175], or purity, i.e. the absence of
examples with different labels in the same cluster [176]. Our work enhances the
validation of clustering models by producing human-interpretable feedback, a critical
step to identify whether cluster assignments are supported by meaningful features
or by what the user would consider being artifacts.

60

3. Introduction to Clustering Analysis Pipeline and Components

Lastly, user interfaces have been developed to better navigate cluster structures,
as they occur, e.g. in biology applications [177, 178]. Also, the use of prototypes
has been proposed to visualize deep image clustering models [168] or explain kernel
methods for property prediction of chemical compounds [179]. Although these works
produce useful and informative visualizations which may help to guide the process of
clustering, extracting information from visualization is intuitive and manual.

In this thesis, we bring a novel developed explanation capabilities to clustering,
a highly needed functionality, considering that in the first place one of the main
motivations for performing a clustering is knowledge discovery. Especially in high-
dimensional feature space, a clustering for knowledge discovery can only provide
a few prototypical data points for each cluster. Such prototypes, however, do not
reveal which features made them prototypical. Instead, we would like to let the
clustering model explain itself in terms of the very features that have contributed
to the cluster assignments. To the best of our knowledge, our work is the first-
ever attempt to systematically and comprehensively obtain such explanations by
exploring the cluster shape.

61

Part II

New Techniques to Enhance the
Clustering Analysis

62

4
New Unsupervised Feature Selection

Technique for Noisy Data

Contents
4.1 Introduction . 63
4.2 Related Works . 65
4.3 Background . 66

4.3.1 Independent Component Analysis (ICA) 66
4.3.2 Oblique Rotation. 67

4.4 RIFS Algorithm Description 68
4.4.1 Computational Complexity Analysis 69

4.5 Empirical Study . 70
4.5.1 Parameter Selection . 70
4.5.2 Data Sets . 70
4.5.3 Study of Unsupervised Cases 71
4.5.4 Study of Supervised Cases 75

In this chapter, we present our new Robust independent Feature Selection algorithm
that can identify the most relevant feature subsets in noisy and unlabeled data,
that we use to automatically reduce the dimensionality of the potentially high-
dimensional data.

4.1 Introduction

Data is often represented by high dimensional feature vectors in many areas, such
as face recognition, image possessing and text mining. In practice, not all features
are relevant and important to the learning task, many of them are often correlated,

63

4. New Unsupervised Feature Selection Technique for Noisy Data

Figure 4.1: Gaussian noisy versions of the image sample from COIL20 data set with
different σ2. From left to right σ2 is: 0, 0.1, 0.4 and 0.7.

redundant, or even noisy sometimes, which may result in adverse effects such as
over-fitting, low efficiency and poor performance. Moreover, high dimensionality
significantly increases the time and space requirements for processing the data.
Feature selection is one effective means to identify relevant features for dimension
reduction [180]. Once a reduced feature subset is chosen, conventional data analysis
techniques can then be applied.

From the perspective of label availability, feature selection algorithms can also
be classified into supervised feature selection and unsupervised feature selection.
Supervised feature selection methods, such as Pearson correlation coefficients [181],
Fisher score [182], and Information gain [183], are usually able to effectively select
good features since labels of training data, which contain the essential discriminative
information for classification that can be used. However, in practice, there is usually
no shortage of unlabeled data but labels are expensive. Hence, it is a great significance
to develop unsupervised feature selection algorithms which can make use of all
the data points. In this chapter, we consider the problem of selecting features in
unsupervised learning scenario which is more challenging task because of the lack of
label information that would guide the search for relevant features.

Another important factor which affects the performance of feature selection is
the consideration of outliers and noise. Real data is not usually ideally distributed
and outliers or noise often appear in the data, thus the traditional feature selection
approach may work well on clean data. However, it is very likely to fail in noisy
data sets. [184]. As an example, various types of noise are arisen during the image
transmission and acquisition that Gaussian noise is one of them. It means noisy image
pixel is the sum of the actual pixel value and a random Gaussian distributed noise value
[185]. Fig.(4.1) shows noisy versions of sample image from COIL20 1 data set with
different σ2 values. It can be seen that indeed, as the σ2 value increases, the picture
gets more and more ambiguous. In experimental part of this work we aim at applying
our robust feature selection on cropped data set by Gaussian noise with σ2 ≤ 0.7.

1http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html

64

4. New Unsupervised Feature Selection Technique for Noisy Data

In this chapter, we introduce a new unsupervised feature selection algorithm,
called Robust Independent Feature Selection (RIFS). We perform noise separation,
isolation and robust feature selection simultaneously to select the most important and
discriminative features for both unsupervised and supervised learning. Specifically,
our purposed method exploits the structure of the latent independent components of a
feature set and separates the noise as a component. By using independent component
analysis, RIFS suggests a principled way to measure the similarity between different
features and to rank each of them without label information. Thus, it imposes an
oblige rotation on the independent factor indicator matrix to isolate the noise.

The rest of the chapter is as follow: in Section 4.2, we present a brief review of
the related work. In section 4.3, the background techniques are briefly reviewed. Our
proposed method, which we name Robust Independent Feature Selection (RIFS), is
described in Section 4.4. The experimental results are illustrated in Section 4.5.

4.2 Related Works

Feature selection algorithms can be grouped into two main families: filter and wrapper.
Filter methods [127, 186] select a subset of features by evaluating statistical properties
of data. For wrapper methods [187], feature selection is wrapped in a learning algorithm
and the performance on selected features is taken as the evaluation criterion. Wrapper
methods couples feature selection with built-in mining algorithm tightly, which lead to
less generality and extensive computation. In this work, we are particularly interested
in the filter methods which are much more affordable.

The majority of the existing filter methods are supervised. Perhaps, Max variance
[188] is the simplest yet effective unsupervised assessing criterion for selecting features.
This measure principally projects the data points along the dimensions of maximum
variances. Although the maximum variance metrics detect features that are purposeful
for descriptive analysis, there is no reason to assume that these features must be
useful for discriminating between data in distinct classes.

The Principal Component Analysis (PCA) algorithm shares the same principle of
maximizing variance. Thus, some feature selection algorithms [189, 190] are available
for selecting the features by means of Principal Component Analysis. However, its
orthogonal constraint on the feature selection projection matrix is unreasonable since
feature vectors are not necessarily orthogonal with each other in nature.

Currently, the Laplacian Score algorithm [186] and its extensions [127, 191] have
been proposed to select features by leverage of manifold learning. Laplacian Score
algorithm utilizes a spectral graph to extract the local geometric structure of the data
then it selects feature subset which is mapped perfectly to the graph.

65

4. New Unsupervised Feature Selection Technique for Noisy Data

Another important factor which affects the performance of feature selection is
the consideration of outliers and noise. In reality, outliers and noise are corrupting
the distribution of the data, thus it is important or even necessary to consider noise
robustness for unsupervised feature selection. Zhai,[184] purposed RUFS method
which jointly performs robust label learning via local learning regularized robust
orthogonal non-negative matrix factorization and robust feature learning via joint l1,2-
norms minimization. A remarkable drawback of the algorithm is that its performance
is relatively sensitive to the number of selected features.

The intention of our work is to purpose an unsupervised feature selection technique
that can choose better features subset across a noisy data set; thereby, we are
proposing a hybrid algorithm to utilize feature selection along with the noises
separation and isolation.

4.3 Background
We consider the canonical problem of unsupervised feature selection is the following.
We use X to indicate a data set of N data points X = (x1, x2, ..., xN), xi ∈ RM .
The objective is to find a feature subset with size d which includes the majority
informative features. In preference to, the points [x′1, x′2, ..., x′N] mirrored in the
reduced d−dimensional space x′i ∈ Rd can perfectly maintain the original geometric
structure of data in M−dimensional space.

In the remaining part of this section, we discuss the main data mining techniques
that we utilize in our feature selection approach.

4.3.1 Independent Component Analysis (ICA)

To detect the latent structure of data, Independent Component Analysis (ICA)
[192] tries to unmix some different sources (includes noise) that have been collected
together. ICA is a statistical and computational technique for revealing the hidden
sources/components that underlie sets of random variables, measurements or signals.
The main ICA problem assumes that the observation X is an unknown linear mixture
A of the M ′ unknown sources S:

X = AS, X ∈ <M , A ∈ <M ′ , S ∈ <M ′×M

We assume that each component si of S is zero-mean, mutually independent
p(si, sj) = p(si)p(sj) and drawn from different probability distribution which is not
Gaussian except for at most one. The goal of ICA is to find an approximation W
(demixing matrix) of A−1 such that:

Ŝ = WX ≈ S

66

4. New Unsupervised Feature Selection Technique for Noisy Data

ICA is a generative model since the model describes how X could be generated from
A and S. ICA tries to find A by estimating the matrices of its SVD decomposition
A = UΣV T [193]. Ideally, W should be:

W = A−1 = V Σ−1UT

FastICA [194] is an algorithm that searches the optimal value of W , which estimates
the sources S by approximating statistical independence. The algorithm starts from an
initial condition, for example, random demixing weights w0. Then, on each iteration
step, the weights w0 are first updated by:

w0
+ = E{x(w0

Tx)3} − 3||w0||2w0

so that the corresponding sources become more independent, and then w0
+/norm

(normalized), so that w0 stays orthonormal. The iteration is continued until the
weights converge |w0

Tw0
+|≈ 1. The w0 is an optimal approximation of W .

Ŝ = w0X ≈ S (4.1)

When one tries to perform feature analysis of the data, each row of A can reflect the
data distribution on the corresponding hidden source. Thus, if the data is cropped
by noise, the noise is remarked as an independent source.

4.3.2 Oblique Rotation.

Preliminary result from a factor analysis is not easy to post-process (i.e. clustering,
classification). Simply, rotation has been developed not long after factor analysis to
help us to clarify and simplify the results of a factor analysis. Two main types of
rotation are used: orthogonal when the new axes are also orthogonal to each other,
and oblique when the new axes are not required to be orthogonal to each other. The
Promax [195] is an oblige rotation technique which has the advantage of being fast
and conceptually simple. Promax rotation has three distinct steps.

First, it extracts the Varimax [196] orthogonal rotated matrix ΛR = {λij}.
Second, a target matrix is contrived to power matrix P = (pij)p×m by raising the

factor structure coefficients to the power of Promax rotation k > 1,

pij =
∣∣∣∣∣∣ λij√

(∑m
j=1 λ

2
ij)

∣∣∣∣∣∣
k+1 (√∑m

j=1 λ
2
ij

λij

)

Finally, it uses the matrix P to rotate the original matrix X by two levels
approximation. Level one, it calculates the matrix L = (Λ′RΛR)−1Λ′RP . Then, it

67

4. New Unsupervised Feature Selection Technique for Noisy Data

normalizes the L by column to a transformation matrix Q = LD, where D =
1/
√
diag(L′L) is the diagonal matrix that normalizes the columns of L. So, the

preliminary rotated matrix is

fpromax−temp = Q−1fvarimax

by reason of, V ar(fpromax−temp) = (Q′Q)−1 and the diagonal elements do not equal 1.
Level two, the rotated matrix is modified by matrix C =

√
diag((Q′Q)−1) to

fpromax = Cfpromax−temp the rotated factor pattern is

ΛPromax = ΛRQC
−1 (4.2)

The coefficients in the rotated data is smaller, but the absolute distance between
them significantly increased. It improves the quality of posterior analysis (i.e.
clustering, classification).

4.4 RIFS Algorithm Description

In the this section, we will introduce our Robust Independent Feature Selection
(RIFS) algorithm.

First of all, the independent components are computed from the X. Let S be a
matrix whose rows are the independent decomposition vector of the matrix X and
V = [v1, v2, ..., vM], vi ∈ RM ′ is the columns of S. Each vector vi represents the
projection of the i′th feature (variable) of the vector X to the new dimensional space,
that is, the M ′ elements of vi correspond to the weights of the i′th factor on each axis
of the new subspace. The key observation is that features that are highly correlated
or have high mutual information will have extremely similar weight (changing the
sign has no statistical significance). On the two extreme sides, two independent
features have maximally separated weight vectors; while two fully correlated features
have identical similar absolute weights vectors.

Technically, the ICA method decomposes a multivariate data into independent
latent sources and white noise is an underlying source that is also drawn out as
an independent component by ICA. Let S = [s1, s2, ..., sm′], si ∈ RM be the rows
of S. The swn is representing white noise when the M elements of swn have much
the same absolute value with finite variance, because the white noise is randomly
having equal intensity at different features [197].

In order to isolate the noise, we use the Promax method to rotate the projected
feature vectors vis to RV = [rv1, rv2, ..., rvm], rvi ∈ RM ′ with power k. It forces the
structure of the factors loading to become bipolar that subsequently facilitates the

68

4. New Unsupervised Feature Selection Technique for Noisy Data

noise isolation from the main hidden sources. It quite mitigates the drawback of the
noise during discriminative analysis by uniforming the factors load of swn.

To find the best subset, we look for the profoundly cross-correlated features subset
by using the underlying factor structure of the RVi and k_mean. The features of
random vector X are clustered to C = [c1, ..., cd] when cj represents j′th cluster. We
consider selecting d feature from M feature candidates.

In continue, the centroid of any cluster is computed:

Cj = 1
mj

∑
rvi∈cj

rvi (4.3)

where mj is the size of j′th cluster.
Then, in any cluster the feature vectors rvi are ranked based on their similarity

with cluster centroid:

similarity(rvi, Cj) = rvi.Cj
‖rvi‖×‖Cj‖

(4.4)

Where values range between -1 and 1, where -1 is perfectly dissimilar and 1 is
perfectly similar.

We select the highest ranked rvi for each cluster as a corresponding vector and
the corresponding feature xi is chosen as an independent representative feature.
The selected features depute each cluster properly in terms of escalated spread,
independence and restoration.

We summarize the complete RIFS algorithm for feature selection in Algorithm (1).

4.4.1 Computational Complexity Analysis

The computational cost for the main steps of our algorithm can be computed as follows:

• The ICA computational cost is O(NM(1 + M)d′) where M is the number of
features/dimensions, N is the number of samples, and d′ is the number of
iterations in fastICA algorithm.

• The K-Means and Promax algorithms are utilized on just lower dimension
includingM points withM ′−dimensional vectors, so their computational costs
are negligible.

Therefor, where M ′ � N and d′ is customarily fixed as a constant 200, the total
computational cost of RIFS is roughly corresponding to the performance of fastICA.
So the total cost of our RIFS algorithm is O(NM(1 + M)d′).

69

4. New Unsupervised Feature Selection Technique for Noisy Data

Algorithm 1 : RIFS for Feature Selection
Require: N data points with M features;

d < M : the number of selected features ;
k : the power of Promax rotation;

Ensure: d selected features

1: Compute the Independent Components as discussed in Section 3.1. Let V =
[v1, v2, ..., vM], vi ∈ RM ′ contain feature decomposition vectors and M ′ is the
number of hidden independent components.

2: Rotate the V to RV as discussed in Section 3.2, with power coefficient set to k.
We get RV = [rv1, rv2, ..., rvM], vi ∈ RM ′ .

3: Isolate the noise swn.
4: Cluster the vectors rvi to d categories C = [c1, ..., cd] by K-Means algorithm. Let
Cj be the centroid of cluster cj according to Eq.(3).

5: Compute the similarity score for each feature vectors rvi according to Eq.(4)
6: Return the corresponding feature xi of the most similar feature vector rvi to the

cluster’s centroids for each d cluster.

4.5 Empirical Study
In this section, we have carried out several experiments to show the robustness,
efficiency and effectiveness of our proposed RIFS method for unsupervised feature
selection. The experiments consider both unsupervised (clustering) and supervised
(classification) study. In the experiments, we have compared the RIFS, Laplacian
Score and Maximum Variance. Laplacian Score and Maximum Variance are both
state-of-the-art feature selection algorithms (filter methods), so this comparison makes
possible to examine the efficacy of our proposed RIFS method.

4.5.1 Parameter Selection

Our RIFS has only one parameter, which is the k in performing the Promax rotation.
We carried out different experiments in order to estimate the optimum value of
k. RIFS achieves stable good performance with the k between 2 and 4 on all the
four data sets. When k is less than 2, the performance slightly decreases as the k
decreases. We assume k = 4 entire all experiments (both unsupervised and supervised
study), in order to bring into uniformity.

4.5.2 Data Sets

We used four real world data sets in our experiments. The basic statistics of these
data sets are outlined below in Table(4.1):

70

4. New Unsupervised Feature Selection Technique for Noisy Data

Table 4.1: Summary of four benchmark data sets

Data set Instance Feature Classes
YALE 165 1024 15

ISOLET 1560 617 26
USPS 9298 256 10
COIL20 1440 1024 20

• The first one is YALE2 face database which contains 165 grayscale images
in GIF format of 15 individuals. There are 11 images per subject, one per
different facial expression or configuration: center-light, w/glasses, happy, left-
light, w/no glasses, normal, right-light, sad, sleepy, surprised, and wink. The
original images are normalized (in scale and orientation) in order that the two
eyes have been aligned at the same level. Then, we have cropped the face area
into the final images for processing. The size of each cropped image is 32× 32
pixels, with 256 gray levels per pixel. Thus, each face image can be represented
by a 1024-dimensional vector.

• The second one is ISOLET3 spoken letter recognition data. It contains 150
subjects who spoke the name of each letter of the alphabet twice. The speakers
are grouped into sets of 30 speakers each, and are referred to as isolet1 through
isolet5. In our experimentation, we use isolet1 which consists 1560 examples
with 617 features.

• The third one is the USPS3 handwritten digit database. A famous subset
contains 9298 16× 16 hand written digit images in total.

• The fourth one is COIL203 image library from Columbia which contains 20
objects. The images of each object were taken 5 degrees apart as the object is
rotated on a turntable and each object has 72 images. The size of each image is
32× 32 pixels, with 256 gray levels per pixel.

4.5.3 Study of Unsupervised Cases

In this subsection, we apply our feature selection algorithm to clustering. The k-means
clustering is performed by using the selected features subset and compare the results
of both different algorithms and noise varieties.

2http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
3http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html

71

4. New Unsupervised Feature Selection Technique for Noisy Data

4.5.3.1 Evaluation Metric

We evaluate the clustering result by informative overlapping between the obtained
label of each data point using clustering algorithms and the label provided by the data
set. We use the normalized mutual information metric (NMI)[186] as a performance
measure. Let C indicate the set of clusters collected from the ground truth and C ′

obtained from a clustering algorithm. Their mutual information metric MI(C,C ′)
is defined as follows:

MI(C,C ′) =
∑

ci∈C,c′j∈C′
p(ci, c′j).log2

p(ci, c′j)
p(ci).p(c′j)

(4.5)

where p(ci) and p(c′j) are the probabilities that a data point arbitrarily selected
from the data set belongs to the clusters ci and c′j , respectively, and p(ci, c′j) is the
joint probability that the arbitrarily selected data point belongs to the clusters ci as
well as c′j at the same time. In our experiments, we use the normalized mutual
information NMI as follows:

NMI(C,C ′) = MI(C,C ′)
max(H(C), H(C ′)) (4.6)

where H(C) and H(C ′) are the entropies of C and C ′, respectively. It is easy to
check that NMI(C,C ′) ranges from 0 to 1. NMI = 1 if the two sets of clusters are
identical, and NMI = 0 if the two sets are independent.

4.5.3.2 Clustering Results

In order to randomize the experiments, we evaluate the clustering performance with
different number of clusters (K= 7, 11, 13, 15 on YALE; K = 3, 5, 7, 10 on USPS; K
=5, 10, 15, 20 on COIL20 and K = 10, 15, 20, 26 on ISOLET). For each given cluster
number K (except using the entire data set), 10 tests were conducted on different
randomly chosen clusters. Then, for each data set, the overall average performance

(a) Original data (No
noise)

(b) Gaussian noisy
(σ2 = 0.1)

(c) Gaussian noisy
(σ2 = 0.4)

(d) Gaussian noisy
(σ2 = 0.7)

Figure 4.2: Clustering performance vs. the number of selected features on YALE.

72

4. New Unsupervised Feature Selection Technique for Noisy Data

(a) Original data (No
noise)

(b) Gaussian noisy
(σ2 = 0.1)

(c) Gaussian noisy
(σ2 = 0.4)

(d) Gaussian noisy
(σ2 = 0.7)

Figure 4.3: Clustering performance vs. the number of selected features on Isolet.

(a) Original data (No
noise)

(b) Gaussian noisy
(σ2 = 0.1)

(c) Gaussian noisy
(σ2 = 0.4)

(d) Gaussian noisy
(σ2 = 0.7)

Figure 4.4: Clustering performance vs. the number of selected features on USPS.

as well as the standard deviation was computed over all tests with different cluster
number K. In each test, we applied different algorithms to select d features and applied
k-means for clustering. In order to initiate the k-mean starting point, we applied
the Hierarchical Clustering algorithm [198] then the obtained d clusters centroids are
used as k-mean starting points. In principal, we performed the above procedure on
clean data sets. Then, we added different Gaussian noise (σ2 = 0.1, 0.4, 0.7) to the
original data sets and repeated the above clustering producer. For each σ2 value,
10 random noise generated and tests executed, and both the average performance
and standard deviation recorded over these 10 tests.

Fig.(4.2,4.3,4.4 and 4.5) present the plots of clustering performance versus the

(a) Original data (No
noise)

(b) Gaussian noisy
(σ2 = 0.1)

(c) Gaussian noisy
(σ2 = 0.4)

(d) Gaussian noisy
(σ2 = 0.7)

Figure 4.5: Clustering performance vs. the number of selected features on COIL20.

73

4. New Unsupervised Feature Selection Technique for Noisy Data

(a) YALE (b) ISOLET (c) USPS (d) COIL20

Figure 4.6: The noise level vs. the number of selected feature that is needed to achieve
the 95% of clustering performance with all features.

Table 4.2: The proportion of features (# selected features/# all features%) that is needed
to achieve the 95% of clustering performance with all features.

Method No noise σ2 = 0.1 σ2 = 0.4 σ2 = 0.7 Average

YALE
RIFS 4.9± 3.8 12.7± 3.2 14.6± 3.7 21.5± 2.5 13.4

Laplacian Score 27.3± 2.3 30.3± 3.9 31.3± 5.1 61.5± 8.6 37.6
Max Variance 74.7± 1.1 76.2± 3.2 77.4± 3.1 79.1± 1.4 76.9

ISOLET
RIFS 8.1± 2.2 11.3± 3.1 11.3± 4.3 14.6± 4.4 11.3

Laplacian Score 11.3± 3.6 27.6± 11.2 37.3± 7.8 47.0± 9.0 30.8
Max Variance 27.6± 8.1 21.1± 6.2 24.3± 4.3 32.4± 11.1 26.3

USPS
RIFS 19.5± 1.7 27.3± 2.3 27.3± 1.8 35.2± 4.6 27.3

Laplacian Score 58.6± 8.1 66.4± 17.2 89.8± 9.8 100.0± 0.0 78.7
Max Variance 27.3± 5.2 43.0± 7.9 58.6± 15.1 82.0± 12.0 52.7

COIL20
RIFS 4.9± 3.3 6.8± 2.3 10.7± 5.1 16.6± 7.7 9.8

Laplacian Score 19.5± 8.8 19.5± 6.3 28.3± 9.1 50.0± 12.8 29.3
Max Variance 26.4± 5.4 23.4± 6.2 27.3± 8.7 40.0± 3.2 29.3

number of selected features d on ISOLET, USPS, COIL20 and YALE, successively,
without and with different level of Gaussian noises. As shown in the plots, our
proposed RIFS algorithm persistently surpasses both competitors on all the four
data sets and noise levels. From the plot (a) of each Fig.2 ∼ 5 (noise less), we can
see RIFS converges to the best result in double quick time, with approximately 50
features. Meanwhile, both other methods mostly require more than 100 features (in
average) to achieve 95% of the best result. When we add Gaussian noise with higher
standard variance, we need to select more features to achieve reasonable clustering
performance, as it can be seen in the plot (b ∼ c) of each Fig.2 ∼ 5. However, in
RIFS case, this trend is very slightly pronounced when the performance of the other
methods is reduced quickly by increasing the Gaussian noise standard variance, as it
can be seen in Fig.(4.6). It would be worth mentioning that, on the ISOLET data set,
our proposed RIFS algorithm performs strangely robust against the noise by selecting
few more features. For example, in σ2 = 0.4 case only 70 features are selected by
RIFS and the clustering normalized mutual information is 70.3%, which is almost
equal to the clustering result by using all the 617 features (71.7%). However, the

74

4. New Unsupervised Feature Selection Technique for Noisy Data

Max Variance and Laplacian Score perform comparably to one another on original
ISOLET data set but the Laplacian Score shows higher sensitivity to the noisy data.
On COIL20 data set the Max Variance and Laplacian Score perform comparably to
one another while Max Variance becomes obviously better than Laplacian Score On
USPS data set. On YALE data set, Laplacian Score completely performs better than
Max Variance, roughly, Max Variance does not have any function on YALE data set,
possibly, due to the fact that sample size is small. The most surprising aspect of
the result is that Max Variance slightly performs worse on original than data with
light noise (σ2 = 0.1) on COIL2 and ISOLET data sets.

The main objective of our experiment is to reduce the dimensionality of the data by
taking to account the robustness against the noise, in Table (4.2), we report the selected
feature proportion for achieving to at least 95% of the best clustering performance by
using all features for each algorithm and Gaussian noise standard variance. The last
column of each table records the average selected feature proportion over different
standard variance of Gaussian noise. As it can be seen, RIFS significantly outperforms
both other methods on all the four data sets. Laplacian Score performs the second best
on YALE data set. Max Variance performs the second best on USPS and ISOLET
data sets. Max Variance and Laplacian Score perform comparably to one another
on COIL20 data set. Comparing with the second best method, RIFS selects 24.2%,
15.0%, 25.4% and 19.5% less proportion of features in average for reaching to the at
least 95% of clustering performance with all features, when measured by normalized
mutual information on the YALE, ISOLET, USPS and COIL20 data sets, respectively.

4.5.4 Study of Supervised Cases

In this experiment, we examine the discriminating capability of the different feature
selection methods. The 1-Nearest Neighbor (1NN) classifier is used and we assume
that well-selected feature subset should yield more accurate classifier [191]. We
perform leave-one-out cross validation as follows: For each data point xi , we find

(a) Original data (No
noise)

(b) Gaussian noisy
(σ2 = 0.1)

(c) Gaussian noisy
(σ2 = 0.4)

(d) Gaussian noisy
(σ2 = 0.7)

Figure 4.7: Classification accuracy vs. the number of selected features on YALE.

75

4. New Unsupervised Feature Selection Technique for Noisy Data

(a) Original data (No
noise)

(b) Gaussian noisy
(σ2 = 0.1)

(c) Gaussian noisy
(σ2 = 0.4)

(d) Gaussian noisy
(σ2 = 0.7)

Figure 4.8: Classification accuracy vs. the number of selected features on Isolet.

(a) Original data (No
noise)

(b) Gaussian noisy
(σ2 = 0.1)

(c) Gaussian noisy
(σ2 = 0.4)

(d) Gaussian noisy
(σ2 = 0.7)

Figure 4.9: Classification accuracy vs. the number of selected features on USPS.

its nearest neighbor x′i . Let c(xi) be the class label of xi. The nearest neighbor
classification accuracy rate (AR) is thus defined as

AR = 1
N

N∑
i=1

δ(c(xi), c(x′i)) (4.7)

where N is the number of data points and δ(a, b) = 1 if a = b and 0 otherwise. All
results reported in this section are obtained by averaging the accuracy from 10 trials
of experiments. Fig. (7 ∼ 10) represent the plots of 1-nearest neighbor classification
accuracy rate versus the number of selected features. As it can be seen, roughly on
all the four data sets, RIFS at every turn goes one better than both other methods.

(a) Original data (No
noise)

(b) Gaussian noisy
(σ2 = 0.1)

(c) Gaussian noisy
(σ2 = 0.4)

(d) Gaussian noisy
(σ2 = 0.7)

Figure 4.10: Classification accuracy vs. the number of selected features on COIL20.

76

4. New Unsupervised Feature Selection Technique for Noisy Data

(a) YALE (b) ISOLET (c) USPS (d) COIL20

Figure 4.11: The noise level vs. the number of selected feature that is needed to achieve
the 95% of classification accuracy with all features.

Table 4.3: The average proportion of features (# selected features/# all features%) that is
needed to achieve the 95% of classification accuracy rate with all features.

YALE ISOLET USPS COIL20
RIFS 11.7 21.5 27.3 15.1

Laplacian Score 21.0 48.2 67.4 36.4
Max Variance 80.4 63.2 51.8 35.6

Almost identical to clustering or even better, RIFS converges to the best result
quickly on original (No noise) data set, with less than 90 features (in average) and it
shows strange robustness against the noises. For example in case of σ2 = 0.7, RIFS
selects approximately 100 more features in average to converge to the best result
on all data sets, as it can be seen in Fig.(11). Remarkably, on the USPS data set
with moderate additive Gaussian noise (σ2 6 0.4), RIFS consistently can achieve
95% of the best classification accuracy by using no more than 50 features. On this
data set, the Max Variance algorithm performs comparably to our algorithms and
much better than Laplacian Score, and Laplacian Score’s performance is defected
more by additive noise. On the COIL20 data set, the Laplacian Score and Max
Variance algorithms perform comparably to each other. On the ISOLET data set,
the Laplacian Score and Max Variance algorithms perform comparably to each other,
and Laplacian Score performs the worst. Surprisingly, on the YALE data sets, Max
Variance algorithm performs quite bad in both with and without noise, unless selecting
approximately 80% of features and Laplacian Score performs better on noisy data
with Gaussian noise σ2 = 0.7 than σ2 = 0.4, possibly, due to the fact that sample size
is small. The same as unsupervised study, in Table (3), we report the average (over
all Gaussian noise σ2 ∈ {0, 0.1, 0.4, 0.7}) selected feature proportion for achieving
to at least 95% of the best classification performance by using all features for each
algorithm. As it can be seen, RIFS achieves to the 95% of the best classification
performance with approximately two times less numbers of features than the second
best competitor on all data sets.

77

5
New Method to Homogenize the Density

Contents
5.1 Introduction . 78
5.2 Related work . 80
5.3 The problem of multi-density 82
5.4 Background . 83

5.4.1 Self-organizing map . 84
5.4.2 Multilinear Transformation 85

5.5 Feature Space Curvature Map 87
5.5.1 Feature Space Curvature Modeling 88
5.5.2 Curvature Map . 90

5.6 Application of FSCM in the Real Data 93
5.6.1 Datasets . 93
5.6.2 Evaluation Metric . 94
5.6.3 Experiment Setup . 95
5.6.4 Clustering Results . 97
5.6.5 Complexity Analysis . 98

In this chapter, we introduce our Feature Space Curvature Map method that
we propose to homogenize the cluster density which is important to enhance the
density-based clustering algorithm to categorize the varied density data.

5.1 Introduction

Density-based clustering algorithms are now widely used in a variety of applications,
ranging from agriculture [199], high energy physics [200], material sciences [201], social
network analysis [202] to molecular biology [203]. These approaches regard clusters

78

5. New Method to Homogenize the Density

as regions in the feature space in which the data points are dense and separated by
regions of low data point density (noise). However, they fail to properly find clusters
in data exposing different densities in various regions of the feature space. This failure
results from using a single global density threshold on all the data points.

We refer to Multi-density or varied densities clusters as the clusters in different
regions of the feature space that are formed in considerably different densities
[204]. Typically, density-based clustering algorithms require the user to specify the
parameters (typically one or few constants) that define the density-level thresholds,
as an input to the algorithm. Properly selecting the value of those parameters
becomes even more difficult when the data exposes a multi-density structure since a
single density threshold parameters that appropriately detect such structure would
be different in various regions of the feature space. Therefore, our main goal is to
introduce a new preprocessing method for homogenizing the density of data in order
to enable existing single density threshold algorithms to properly identify the actual
clusters structure throughout the whole feature space.

Figure 5.1: The stars (distinguished by colors) bend space-time (grid), and the gravitational
force among the stars (black lines) can be described by space-time curvature.

In analogy to the Theory of Relativity [205], the computation of distance between
objects changes when objects placed in a space introduce local curvatures in it. In
this work, we propose a method to map an originally euclidean feature space into
a non-euclidean one with local curvatures introduced by the presence of the data
points themselves. Projecting data points to their new coordinates in this transformed
space, we observe a more uniform density distribution and we show how traditional
clustering algorithms in this projected dataset result in significantly better capacity
to identify its structure. The key idea is that data clouds can bend the feature space
based on their density, which represents the density structure of the data.

79

5. New Method to Homogenize the Density

According to the Theory of Relativity, see Fig.5.1, the planets warp space-time,
and the standard quantized version of the theory includes massless gravitons delivering
the gravitational force. The space-time curvature is a quantity describing how the
local geometry of a subspace differs from the flat space around any single planet. In
our method, we assume that a data cluster bends the m-dimensional feature space
locally based on their shape and density; and we use this properties as a source
to model the data density structure.

In particular, our approach includes two main steps: first, we apply our new
Gravitational Self-Organizing Map (GSOM) method to compute the data density
structure by using the gravity force in terms of relationships between clusters rather
than distance. It computes the feature space bending with a correct topology preserving
map to present the potentially complex multi-density structure of the data. Second,
we apply our novel parametric multilinear transformation, using the GSOM map, to
project the data points to a new linearized and euclidean feature space with more
uniform density distribution. Any existing density-based clustering algorithm can
then be applied to the projected data to identify its clusters. This very often leads
to better clustering analysis performance than using original data, without applying
algorithmic changes to the clustering algorithm itself.

Note that the multilinear transformation is a spatial transformation which has
commonly been used in Mathematical Physics [206] and Graphics for video compression
[207]. The novelty of our approach is that we apply multilinear transformation to
map an originally euclidean feature space into a new euclidean space by a given
curvature model, in our case computed by the GSOM method; where the projected
data points show more uniform density distribution.

The rest of this chapter is organized as follows: The intuition and motivation of
the multi-density clustering analysis is presented along with an overview of related
work and methods in section 5.2. In section 5.3, the basic notions and the problem
of multi-density are defined. In section 5.4, the background techniques are briefly
reviewed. In section 5.5, our new Feature Space Curvature Map (FSCM) algorithm is
described. The experimental result of our FSCM method is illustrated in section 5.6.

5.2 Related work

Density-Based Clustering refers to the methods that detect clusters in the data based
on the idea that a cluster in a feature space is an adjacent region of concentrated
points, separated from other clusters by regions that are empty or sparse. DBSCAN
[208] computes the density of each data point by counting the existing data points
in its eps-neighbourhood. However, using a single eps can often not adequately

80

5. New Method to Homogenize the Density

characterize the datasets with clusters of very different densities. Several approaches
have been proposed to cope with this weakness.

Many efforts have been devoted to solving the varied densities problem by variants
of DBSCAN. The HDBSCAN(ε̂) [209] and OPTICS [11] address this issue by producing
the reachability plot to extract clusters. The reachability plot is a 2D plot, with
the ordering of the points as processed by these algorithms on the x − axis and
the reachability distance on the y − axis. As points associating to a cluster have a
low reachability distance to their nearest neighbor, the clusters appear as valleys in
the reachability plot. However, they are methods to visualize the cluster structures
without producing a clustering result explicitly. Thus, these methods manually need to
extract the clusters, with varying densities, from the reachability plot. Our approach
mathematically combines the strengths of statistical and topological methods to
eliminate the need for expert human visual analysis.

The VDBSCAN [210] and MSDBSCAN [211] partition a dataset into different
density level sets by statistical analytic, and then estimate eps for each density level
set, finally use DBSCAN clustering on each density level set with corresponding
eps and minPts to get clustering results. Although, they are not suitable for large
datasets since they require several passes of the data and consume high computational
time. Our method is more efficient since it is a preprocessing step which enables us
to carry out a single pass clustering. Moreover, it is scalable approach as it uses the
SOM-based iterative resampling schemes rather the whole dataset.

Recently, neighborhood-based density estimator approaches use local density
estimation to overcome the issues of varying densities. DP [212] instead of finding
core points uses a global threshold in the first step, it finds the density peak of
every cluster and then links the neighboring points of each peak to form a cluster.
LC-CFSFDP [213] and DPC-DBFN [214] improve the clustering performance of
CFSFDP by enhancing local density estimators based on a kNN graph and a fuzzy
neighbourhood measure, respectively. However, most of these algorithms face problems
in handling large datasets since they require high storage to keep the distance matrix.
In contrast, we use the GSOM to efficiently learn and build a density structure map of
data by preserving its neighboring relations since this structure requires significantly
lower storage than the distance matrix.

More recently, Density-ratio based scaling methods have also been applied to
handle the multi-density data. The density-ratio of a point is the ratio of two density
estimates which are calculated by using the same density estimator, but with two
different bandwidths. ReScale [215] enables a density-based clustering algorithm to
identify clusters with varied densities by rescaling the given dataset. Nevertheless,

81

5. New Method to Homogenize the Density

it rescales each individual feature independently and if a significant overlap exists
between clusters on some features, ReScale may become less effective.

Rather than rescaling on each individual feature, [216] proposes a new density-ratio
DScale method which rescales the pairwise distance as a multi-dimensional scaling,
such that points located at locally high-density areas have higher densities than points
located at locally low-density areas. However, DScale fails to be a globally valid CDF
(Cumulative Distribution Function) transformation for the entire dataset since it is
valid within the λ-neighbourhood of each data point which is treated independently.

Furthermore, CDF-TS [217] density-ratio method applies the same CDF transform
process as DScale with an additional “shift” to ensure that: (i) the transformed-
and-shifted dataset becomes approximately uniformly distributed in the scaled λ-
neighbourhood; and (ii) then we can use standard Euclidean distance to measure
distances between any two transformed-and-shifted points. These advantages are
not available in DScale which relies on a rescaled distance which is non-metric and
asymmetric. However, CDF-TS does not preserve potentially complex topological
structure of clusters since it still uses the CDF scaling. In contrast, our method
uses a novel parametric and global mapping function that preserves potentially
complex topological density structure.

The intention of our work is to present a novel generalized technique to homogenize
the density of adjacent clusters of varying density. Our method introduces analogies
between the data analysis domain and the Theory of Relativity in physics by using
the tensor calculus and a modified Self-Organizing Map method; Thereby, our FSCM
is a parametric, scalable, automated method and it does not depend on any particular
clustering algorithm. Especially, in our GSOM we use the SOM-based iterative
resampling schemes to optimize the computation cost and increase the efficiency
and scalability.

5.3 The problem of multi-density

In this section, we firstly provide a brief mathematical notation to use throughout
this chapter, then formalize the general weakness of existing density-based clustering
algorithms to stratify multi-density clusters.

We use X to indicate a dataset of n data points X = (x1, x2, ..., xn) where xi ∈ Rm.
Let pdf(x) and p̂df(x) stand for the true density of point x and its estimation based
on sample data respectively. Besides that, let N (x, ε) = {x′ ∈ X|d(x, x′) 6 ε} denote
the ε-neighbourhood of x, where d : Rm ×Rm → R is the euclidean distance function.

82

5. New Method to Homogenize the Density

Technically, the density-based clustering algorithms (e.g. DBSCAN [208]) use a
small ε-neighbourhood to estimate the pdf(x) as follows:

p̂df(x, ε) = |N (x, ε)|
nV(ε) (5.1)

where V(ε) is the volume of an m-sphere of radius ε [216].
Let C = {c1, c2, ..., cq} denote a set of non-overlapping and non-empty clusters

where ci ⊂ X, ∀i 6=j(ci ∩ cj = ∅) and ci 6= ∅. Let mi = argmaxx∈ci p̂df(x) and
pi = p̂df(mi) denote the data point with the mode (highest density) of cluster ci
and its corresponding peak density value respectively.

In [215], they present a condition to guarantee these density-based clustering
algorithms can identify all clusters in a dataset. The condition is that the estimated
density pi at the mode mi of each cluster is greater than the maximum of the minimum
estimated density along any path through p̂df which is linking any two modes:

min
i∈{1...q}

pi > max
j 6=k ∈{1...q}

gjk (5.2)

Where gjk is the highest of the minimum density along the path that links
clusters cj and ck.

This condition implies that a single density threshold τ must exist to fracture
all trajectories between the peaks by nominating the regions with density less than
τ to noise. Nevertheless, these density-based clustering algorithms fail to detect
all clusters when the peak density of some clusters is lower than a low-density
region between some other clusters.

In this chapter, we propose a parametric transformation which acts as a prepro-
cessing step to tackle this issue by projecting a given dataset X to X ′ that has a
more uniform density distribution and it also better fulfills this property. As a result,
it enables clusters with varied densities in the original space to be identified using
a single threshold in the transformed space, something that would be impossible
in the original space.

5.4 Background

In this section, we discuss an overview of two techniques that we leverage and extend
in our analytic approach. We firstly revisit the self-organizing map algorithm, then
we review the multilinear transformation technique.

83

5. New Method to Homogenize the Density

5.4.1 Self-organizing map

Kohonen’s Self-Organizing Map (SOM) [218] is one of the popular types of neural
network which preserves and retains an accurate representation of the topology
of the data space.

The SOM often arranges a set of neurons in a 2-D rectangular or hexagonal grid
T in size ς, to establish a discrete topological mapping of an input space X ∈ Rn×m.
Ω is the set of neuron indexes. The neurons are represented by a set of weight vectors
V = {v1, v2, ..., vς}, where vi is the weight vector associated with neuron i and is a
vector of the same dimension −m− of the input, ς is the total number of neurons,
and let ri be the location vector of neuron i on the grid. At the start of the learning,
all the weights are initialized to small random numbers. Then the algorithm repeats
next two steps until the map converges in order to preserve maximum topological
properties of the data on the map.

Each iteration t, it first chooses one random point x(t) of the dataset and selects
the winner neuron:

ν(t) = argmin
k∈Ω

‖x(t)− vk(t)‖ (5.3)

Then it updates the weights of the winner and its neighbors:

∆vk(t) = α(t)η(ν(t), k, t)[x(t)− vν(t)(t)] (5.4)

where the coefficient α(t) is termed the ’learning rate’ which is scalar-valued
and it decreases monotonically [218]:

α(t) = α0.e
−t
λα (5.5)

η is the neighborhood function which quantifies the propagation and decay of
the updates to the winner node on its neighbours through the grid topology. The
Gaussian form is often used in practice, specifically:

η(ν(t), k, t) = exp

[
−
‖rν(t) − rk‖2

2σ(t)2

]
(5.6)

Where σ(t) represents the effective range of the neighborhood radius around
ν(t). Like the learning rate, the neighborhood similarly decays with an exponen-
tial decay function:

σ(t) = σ0.e
−t
λσ (5.7)

where λα and λσ are the decay time constants.

84

5. New Method to Homogenize the Density

Note that the initial learning rate α0, radius σ0 and both time constants are
empirically chosen based on the application. In our work, we later present their
value in the section 5.5.

The "No Move" [15] criteria is widely used to detect convergence of the learning
mechanism. It considers stopping condition that defines no-improvement in SOM’s
status as no training samples change their best match unit in a complete iteration
of the training set. However, when we use "No Move" criterion, then there could
be a case where the weights kept oscillating between iterations, thus causing the
criterion is never met. Therefore, a iteration threshold is necessary to be selected
whether the SOM doesn’t converge.

Furthermore, "Mean Distance to the Closest Unit" (MDCU) criteria is the quan-
tization error of the SOM map [218] which is computed after the training process.
It calculates the average distance of the sample vectors to the node centroids by
which they are represented.

Finally, the SOM provides a topology preserving map [202] from input to output
spaces, which includes grid T and weight vectors V . For SOM training, the weight
vector associated with each neuron moves to become the center of a local group of
input vectors. The group i is represented by its centroid vector vi and the local
groups are connected via T.

In this work, we enhance the generic SOM technique to model the feature space
curvature by plugging the gravitation and fabric of space concepts into the standard
SOM, in analogy with Relativity theory, to model the density structure of dataset
and still describe the whole original feature space.

5.4.2 Multilinear Transformation

The multilinear transformation is a spatial transformation function which is locally
linear but the coefficients change across different regions of the space. In general, a
multilinear transformation functionM : Rm → Rm ofm variables is called am−linear
map. To represent it visually, we describe in details the bilinear transformation function
B : R2 → R2, which is the multilinear map of two variables [206].

In Fig.5.2, on the 2D Cartesian coordinate system, we have a quadrilateral (left
image) that we want to transform into a rectangle (right image). To interpolate each
point ρ on the arbitrary quad into ρ′ on the rectangle, we need to obtain a bilinear map
function which describes the entire point space enclosed by the quadrilateral [207].

We need to compute the function which transfers the quadrilateral into the
rectangle. We assume there are bilinear mapping functions Bx and By:

x = a1Bx(x, y) + a2By(x, y) + a3Bx(x, y)By(x, y) + a4

y = a5Bx(x, y) + a6By(x, y) + a7Bx(x, y)By(x, y) + a8
(5.8)

85

5. New Method to Homogenize the Density

Figure 5.2: A bilinear transformation enables us to represent the arbitrary shaped
quadrilateral as a rectangle.

Where a1...a8 are the transformation parameters. When we have the values of Bx
and By for four lateral points of the rectangle, we can compute the parameters by
solving two linear systems, each of four equations with four unknowns.

Let ~d1, ~d2, ~d3, ~d4 be the displacement vectors of the rectangle corners which upper
left one is point (x′0, y′0) and ~di = (dxi , d

y
i) = (xi − x′i, yi − y′i). We compute the

parameters a1...a8 of the bilinear transformation for these displacements as follows:

a1 = [(dx2 − dx1)(`2 − y′0) + y′0(dx4 − dx3) + `1`2] /`1`2

a2 = [(dx1 − dx3)(`1 + x′0) + x′0(dx4 − dx2)] /`1`2

a3 = [dx2 − dx1 + dx3 − dx4] /`1`2

a4 = x′0 + dx1 − a1x
′
0 − a2y

′
0 − a3x

′
0y
′
0

a5 = [(dy2 − dy1)(`2 − y′0) + y′0(dy4 − dy3)] /`1`2

a6 = [(dy1 − dy3)(`1 + x′0) + x′0(dy4 − dy2) + `1`2] /`1`2

a7 = [dy3 − dy1 + dy2 − d
y
4] /`1`2

a8 = y′0 + dy1 − a5x
′
0 − a6y

′
0 − a7x

′
0y
′
0

(5.9)

To obtain the Bx and By, we solve the Equation system 5.8 to represent the Bx
and By as a function of x and y. These functions are calculated as follows: we firstly
solve for Bx(x, y) from the first equation of the system:

Bx(x, y) =
(
x− a4 − a2By(x, y)
a1 + a3By(x, y)

)
(5.10)

Then, substituting this into the second Equation of system 5.8, rationalizing the
denominators and combining like powers of By(x, y), we find the following quadratic
equation that must be solved to get By(x, y):

ABy(x, y)2 +BBy(x, y) + C = 0 (5.11)

86

5. New Method to Homogenize the Density

Where:
A = a6a3 − a7a2

C = a8a1 − a5a4 + a5x− a1y

B = a8a3 − a7a4 + a6a1 − a5a2 + a7x− a3y

(5.12)

Finally, we choose the positive root of the quadratic Equation 5.11 for By(x, y)
as a feasible solution.

As a result, we obtain a bilinear map function which describes the entire point
space enclosed by the quadrilateral and lets us displace each point ρ on the arbitrary
quad into ρ′ on the rectangle continually. This transformation is likewise generalizable
to the multi-dimensional space, which is called multilinear transformation to map
a hyper-quadrilateral to a hyper-rectangle. Note that the equation system is no
longer linear; However, it can be solved quite easily by applying analytical solutions
such as Grobner bases [219].

(a) Raw Data Distribution (b) FSC Model of (a). (c) FSCM Projection of (a).

Figure 5.3: Application of FSCM on a multi-density 2D dataset Synt10 containing
ten clusters. (a) A scatter plot of clusters with varied densities. The legend shows the
size/µ(x(1), y(2))/σ per cluster, the colors represent the data original labeling and the red
lines draw the initial FSF. (b) shows the FSC model that is computed with our FSCM
method. Note that the red lines show the deformation of the FSF. (c) scatter plots the data
(a) projected by applying our transformation through model (b). As a result, the diversity
of the clusters’ density scaled appropriately to achieve a better density-based clustering
performance.

5.5 Feature Space Curvature Map

Our Feature Space Curvature Map (FSCM) method involves two main steps that
will be formally described in this section. First, we apply our new Gravitational
Self-Organizing Map (GSOM) method to compute the clusters density structure. It
computes the feature space bending with a correct topology preserving map to present
the potentially complex multi-density structure of the data. Second, we apply our
enhanced multilinear transformation, from the GSOM map to project the data points

87

5. New Method to Homogenize the Density

to the new euclidean feature space with more uniform density distribution. Note
that the original feature space is typically considered to be euclidean that classic
distances are defined on it. These steps perform a globally nonlinear transformation
of the dataset to which any existing density-based clustering algorithm based on
euclidean distances can be applied.

5.5.1 Feature Space Curvature Modeling

In the first step, we use a topological m-dimensional elastic mesh T to construct
the fabric of feature space as a smooth manifold with a Riemannian metric, while
covering the whole feature space. We call this mesh the Feature Space Fabric (FSF)
through this thesis. Then, we compute the Feature Space Curvature (FSC) model
where the concentrations of data points can bend the FSF dramatically while the
areas with less concentration just slightly bend it or leave it as locally euclidean.
The FSC presents the density structure of the data.

In order to be able to derive the FSC, we propose a new Gravitational Self-
Organizing Map (GSOM) algorithm. We train a GSOM network to learn the density
topology of the input data X, while still covering the whole feature space. To
plugging the concept of the gravity and fabric of space to the generic SOM, we
apply four key enhancements on it.

5.5.1.1 Initialization Method

For initializing the neurons in topological space T instead of random initialization,
we use an m-dimensional Regular Rectangular Grid (RRG). Let Ij be the grid
interval of the feature x(j) ∈ Rn:

Ij = [min(x(j))− h,max(x(j)) + h] (5.13)

where h is the marginal coefficient to create extra space around the grid where
h = 0.15 works well. Let ξ be the number of grid lines for each grid interval Ij where
ξ = m

√
ς and ξ ∈ Z3+. This RRG slices the entire feature space into subdivisions to

accurately capture and represent potentially complex local density structures of the
data. See Fig.5.3a, the red lines represent an initial 2D RRG.

5.5.1.2 Rigid Boundary

We modify the SOM algorithm to keep the boundary nodes rigid, during the weight
updating of the winner node and its neighbors, to avoid the crumpling and folding
the RRG. The node ω is boundary if it belongs to:

s = {ω ∈ Ω|∃j(v(j)
ω = min(Ij) ∨ v(j)

ω = max(Ij))} (5.14)

88

5. New Method to Homogenize the Density

where j ∈ [1, . . . ,m] and s ⊂ Ω. To keep rigid the boundary nodes, we replace
the Equation 5.4 with:

∆vk(t) =
0 if k ∈ s
α(t)η(ν, k, t)[x(t)− vν(t)] else

(5.15)

See Fig.5.3a, the black nodes at the sides of RRG represent boundary ones which
remain rigid after training, see Fig.5.3b.

5.5.1.3 Update Procedure

The Law of Universal Gravitation [205] states that every particle of matter in the
universe attracts every other particle with a force that is directly proportional to the
product of the masses of the particles and inversely proportional to the square of the
distance between them. In like manner, we propose a novel Gaussian neighborhood
function based on an assumed mutual force acting between all pairs of neurons, when
this force is varied for each pair of neurons based on their mass and the euclidean
distance between them. The mass of each neuron represents the number of times
which this neuron selected as winner neuron. Let µi(t) be the mass of the ith neuron
after step t where ∀i∈Ω(µi(0) = 1) at the initial state. Then, for each time t, the
mass of the winner neuron ν(t) is increased by one unit. Therefore, the winner will
be the neuron generating more gravitational attraction force to the selected point
instead of the closest neuron. For this purpose, we substitute the euclidean distance
with gravity force in both Equations 5.3 and 5.6 respectively:

ν(t) = argmax
k∈Ω

[
µk(t)

‖x(t)− vk(t)‖2

]
(5.16)

η(ν(t), k, t) = exp

[
F(ν(t), k, t)

2σ(t)−2

]
(5.17)

Where the mass of the presented input x(t) is equal to one and F(ν, k, t) is the
gravity force between node ν and k:

F(ν, k, t) = µν(t).µk(t)
‖rν − rk‖2 (5.18)

Fig.5.3b shows an example where the dense cluster C8 (orange), with big size
and small standard deviation, curved the FSC dramatically while the sparse one
C1 (yellow) only slightly bent it.

We empirically figure out the appropriate value for the time constants λα = 1000/α0

and λσ = 1000.σ0 by conducting several experiments. These values lead the GSOM
to generate the smooth FSC without crumpling and folding that is necessary for
the transformation step of our approach.

89

5. New Method to Homogenize the Density

There are two principal consequences of this gravitation-based function: (1)
the updated weight of neurons depend on both their distances and masses, which
guarantees the smoothness of the final FSC, and (2) the GSOM converges faster to
stable model when the massive neurons stabilize earlier than light mass neuroses
which arrange around them later on, in the same way as the stars in a galaxy.

5.5.1.4 Early Stopping Condition

In our approach, we use MDCU to learn convergence mechanism per each iteration
rather than calculate after the training process like the standard SOM. We compute
the MDCU(t) per each iteration t, as follows:

MDCU(t) = 1
n

n∑
i=1

min
k∈Ω
‖xi − vk(t)‖ (5.19)

It considers the stopping condition that defines the proper GSOM’s status as no
training samples reduces the overall MDCU. However, a more elaborate trigger is
required in practice since the training of the GSOM is stochastic that can be noisy.
Therefore, GSOM monitors the overall MDCU for a given number of consecutive
epochs in order to try to avoid falling into a local minima. Using this condition,
the training process is automatically stopped as soon as it successively sees no
reduction in MDCU metric over a given number of epochs E where E = 10 works
well based on our conducted experiments. We compute early stop function ES(t)
per each iteration t, as follows:

ES(t) = |{e ∈ E|MDCU(t− e)−MDCU((t− 1)− e)) ≤ 0}| (5.20)

where t > E and E = [0, . . . , E]. The training is stopped as soon as the
ES(t) is equal to E .

Note that the FSF modeling divides up the feature space into regular rectilinear
cells to capture the density structure of data, see Fig.5.4a. Although, the computed
FSC’s cells are not longer rectilinear but are irregular quadrilaterals, see Fig.5.4b.

As a result, by applying the GSOM on X, we obtain an m-dimensional irregular
grid T in size ς and V = [v1, v2, ..., vς], vi ∈ Rm, which accurately represents the
density structure of the clusters by preserving the topological structure of data. We
summarize the FSC modeling algorithm in Algorithm 2.

5.5.2 Curvature Map

In order to apply traditional density-based clustering algorithms which are designed for
euclidean spaces, we need to project the data from a non-Euclidean curved space FSC

90

5. New Method to Homogenize the Density

Algorithm 2 : Feature Space Curvature modeling
Input: n data points with m features;

σ0: The initial neighborhood size;
α0: The initial learning rate;
ξ: The number of grid lines;
E : The validation number of epochs;

Output: The grid T and the neurons V = [v1, v2, ..., vς];

1: Initiate RRG map T of size ξ. (Eq.5.13)
2: repeat

2.1: Select xi ∈ X randomly
2.2: Find the winner neuron ν(t) (Eq.5.16)
2.3: Update weight of the winner and its neighbors (Eq.5.17)
2.4: µν(t) = µν(t) + 1
2.5: Decrease the learning rate α(t) (Eq.5.5)
2.6: Decrease the neighborhood size σ(t) (Eq.5.7)
3: until ES(t) < E (Eq.5.20)
4: return T, V = [v1, v2, ..., vς]

to the new euclidean flat space. Our transformation mechanism reduces the density of
high-density regions intensively while it slightly reduces the density of low-density ones.

As euclidean space, it is described by orthogonal dimensions and its discretized
version can be represented by a rectangular grid FSF. The resulting FSC is described
by a deformed grid where the nodes in the original coordinate space now form irregular
quadrilaterals. Our data transformation method "relinearizes" the FSC considering
its original grid structure and performing a multilinear projection of each original
data point to the new euclidean grid space based on its position in its enclosing
irregular quadrilateral of the FSC.

Let U ′ = [u′1, .., u′ϕ] be the initial position of grid T cells in m-dimensional space,
where ϕ = (ξ − 1)m, u′i ⊂ V and |u′i|= 2m; and L = [`1, .., `m] stand for the side
sizes of each regular cells where `ι = |Iι|/(ξ − 1). In the same way, U = [u1, .., uϕ]
denotes the cells position in FSC when ui → u′i.

We begin by computing B = [β1, .., βϕ] a set of parametric transformation function
between FSC and FSF. For each cell uj ∈ U , we compute individual transformation
function βj by giving the displacement vectors ~D = [~d1, .., ~d2m] of the cell corners,
see section 5.4.2.

Then, for each xi ∈ X, we identify the cell uφ ∈ U which xi is located inside
it. In order to do that, we firstly find the Best Unit Match (BMU) ν(xi) by
applying Equation 5.3.

According to the T topology, the neighborhood N (ν(xi)) in Rm is split into 2m

cells. If the direct topological neighbors of the ν(xi) expresses by Θ = [θ1, .., θ2m]

91

5. New Method to Homogenize the Density

where θ ⊂ Ω. Then we can specify the uφ with ν(xi) and m lattice indicator points
in the neighborhood. Therefore, to single out the cell uφ ∈ U which xi is located
inside, we find the most similar lattice point l0 ∈ Θ to xi:

l0 = argmax
k∈Θ

(~P(xi). ~P(θk)) (5.21)

where ~P(θk) = ~vθk − ~ν(xi) is the position vector of the lattice point θk, similarly
~P(xi) = ~xi − ~ν(xi) is the position vector of xi. Then, to distinguish the source cell
uφ ∈ U , we complete the lattice indicator set as follows:

Lxi = {k ∈ Θ : ~P(l0). ~P(θk) 6 ~P(xi). ~P(θk)} (5.22)

After we get cell lattice indicator set Lxi , we could find the cell uφ easily since
we keep the grid topology T. Finally, for each xi ∈ X we apply the appropriate
multilinear transformation βφ(xi) to map it into the regular FSF.

(a) Wrapped FSC (b) Transformed by FSCM

Figure 5.4: Data point transformation between a bent FSC (a) and a regular FSF (b)
based on the Multilinear Mapping in R2.

Fig.5.4 shows a 2D grid example where its cells are represented by 22 corners.
Therefore, to map the wrapped FSC (Fig.5.4a) onto the regular FSF (Fig.5.4b), we
compute the transformation function Bj for each cell u′j, where ~dj1, ~dj2, ~dj3, ~dj4 are
the displacement vectors of cell corners. The ν(xi) is the BMU. The red and blue
arrows represent the position vectors of lattices and position vector of xi respectively.
The computed indicator set is Lxi = {θ4, θ3} where l0 = θ4. As a result, the cell u′φ
which xi is located inside (the thick block) is depicted with this lattice set. Finlay,
Bφ(xi) shows the transformer of xi after the applying mapping function Bφ : u′φ → uφ.
We summarize the Curvature Map algorithm in Algorithm 3.

92

5. New Method to Homogenize the Density

Algorithm 3 : Curvature Map
Input: n data points with m features;

The grid T and the neurons V = [v1, v2, ..., vς];
Output: Homogenized data X ′ = (x′1, ..., x′n), x′i ∈ Rm;

1: Compute the regular cell side size L = [`1, .., `m]
2: Compute the initial position of cells U ′ = [u′1, .., u′ϕ]
3: Compute the final position of cells U = [u1, .., uϕ]
4: for φ = 1 to ϕ do
5: Compute the displacement vectors ~D = [~d1, .., ~d2m]
6: Compute the map function Bφ : uφ → u′φ (Sec. IV-A)
7: end for
8: for i = 1 to n do
9: Find the BMU ν(xi) = argmink∈Ω‖xi − vk‖
10: Compute the indicator set Lxi of source cell uφ (Eq.5.22)
11: Find the source cell uφ
12: Compute the transformation x′i = βφ(xi)
13: end for
14: return X ′ = (x′1, ..., x′n)

5.6 Application of FSCM in the Real Data

In this section, we have carried out several experiments to show the efficiency and
effectiveness of our proposed FSCM method to overcome the weaknesses of existing
density-based clustering algorithms in diagnosing all clusters with varying densities.

5.6.1 Datasets

We used 10 real-world datasets from the UCI Repository1 and a synthetic datasets
Syn10, to validate the capability of our method in homogenizing multi-density dataset.
Table.5.1 outlines the basic properties of the datasets.

Syn10 is syntactic "hard distributed" 2-dimensional data that is generated by
sampling a mixture of 10 Gaussian distributions N(µ, σ). Therefore, this data set is
labeled and can be used to measure the quality of the different clustering approaches.
The statistics (size/µ(x(1), y(2))/σ) of each cluster was shown in Fig.5.3a. As shown
in the density plot Fig.5.5a, the clusters do not satisfy the clause stated in the
Equation 5.2. As a result, DBSCAN fails to precisely stratify the clusters. For
example, the 3 clusters at the top-right and other 3’s at bottom of the density plot
represent high density areas which DBSCAN is unable to separate them by applying
an appropriate global eps value, see Fig.5.5b.

1https://archive.ics.uci.edu

93

5. New Method to Homogenize the Density

(a) Synt10 Histogram
(b) Synt10 Scatter plot
Dbscan(eps =1.41,minPts =22)

(c) FSCM Synt10 Histogram
(d) FSCM Synt10 Scatter plot
Dbscan(eps =1.62,minPts =17)

Figure 5.5: Comparison of 3D original histogram (a) of dataset Syn10, previously shown
in Fig.5.3a, and the homogenized density (c) by our FSCM method, subsequently their
DBSCAN clustering results (b) and (d). Without applying FSCM, DBSCAN ends up
merging the three blobs in the top right into a single one in order to be able to identify some
cluster point in the sparse blob on the left. FSCM as a preprocessing step to DBSCAN
allows to better identify the overall structure of the data.

5.6.2 Evaluation Metric

We use the Overall F-measure denoted by “FScore” which is commonly used in the
literature to compare the quality of clustering result. FScore is computed by the
harmonic mean of precision score and recall score, and the overall FScore is the
unweighted average over all clusters:

FScore = 1
q

q∑
i=1

2PiRi

Pi +Ri

(5.23)

Where Pi and Ri are the precision score and the recall score of the cluster ci respec-
tively. The higher the value of FScore is, the better the clustering performance is.

94

5. New Method to Homogenize the Density

Table 5.1: Datasets properties

Dataset Points (n) Features (m) Classes (q)
Segment 2310 19 7
Wine 178 7 3
Wifi 2000 7 4
Iris 150 4 3
Breast 569 30 2
ForestType 523 27 4
Diabetes 768 8 2
Ecoli 336 7 8
Pendig 10992 16 10
ILPD 579 9 2
Syn10 1530 2 10

5.6.3 Experiment Setup

Our method, denoted here by FSCM, is compared with: both DScale and ReScale,
which consists of first using these scaling algorithms for data preprocessing, and then
implementing three state-of-the-art density-based clustering algorithms (DBSCAN,
OPTICS and DP) to partition the data.

Before the experiments began, we normalized each dataset by scaling each fea-
ture to [0,1] range by min-max normalization. To be able to visualize both our
methodology and the empirical result in 2D, we reduced the data dimensionality by
applying Principal Component Analysis (PCA). Then, we conducted the whole set of
experiments by taking into account the first two Principal Components. We apply
the Exhaustive Grid Search method to search the hyper-parameter space for the best
validation FScore. Table.5.2 specifies the parameters and their search space for each
algorithm. The search ranges of both ψ and η are as used by [216] where ψ is the
number of intervals to estimate and control the precision of f̂η. We implemented
entire set of algorithms used in our experiments in python.

Table 5.2: Parameters and their search ranges.

Algorithm Parameters & Search Range
DBSCAN ε ∈ [0, 2], minPts ∈ {1, 2, .., 25}
OPTICS ε ∈ [0, 2], minPts ∈ {1, 2, .., 25}
DP ε ∈ [0, 2], k ∈ {1, 2, .., 20}
ReScale ψ = 100, η ∈ {0.1, 0.2, ..., 0.5}
DScale η ∈ {0.1, 0.2, ..., 0.5}
FSCM ξ ∈ {3, .., 10}, α0 ∈ {0.005, 0.006, ..., 0.015},

σ0 ∈ {1, 1.1, ..., 2.0}

95

5.
N
ew

M
ethod

to
H
om

ogenize
the

D
ensity

Table 5.3: The best FScore for DBSCAN, OPTICS, DP, and their ReScale, DScale and FSCM versions. For each clustering algorithm,
the best performer in each dataset is boldfaced. Orig, PCA, ReS, and DS represent the Original algorithm, Principal Component Analysis,
ReScale, and DScale respectively.

DBSCAN OPTIC DP
Dataset Orig PCA ReS DS FSCM Orig PCA ReS DS FSCM Orig PCA ReS DS FSCM

Segment 0.59 0.62 0.62 0.61 0.70 0.69 0.69 0.67 0.70 0.74 0.78 0.78 0.77 0.80 0.85
Wine 0.64 0.65 0.86 0.80 0.91 0.76 0.78 0.84 0.88 0.91 0.93 0.98 0.95 0.96 0.97
Wifi 0.74 0.76 0.87 0.86 0.90 0.79 0.76 0.88 0.85 0.93 0.90 0.91 0.92 0.92 0.95
Iris 0.85 0.89 0.90 0.93 0.96 0.85 0.85 0.84 0.88 0.94 0.97 0.97 0.97 0.97 0.97
Breast 0.82 0.82 0.95 0.96 0.94 0.84 0.79 0.96 0.95 0.95 0.97 0.79 0.97 0.97 0.97
ForestType 0.27 0.32 0.51 0.48 0.49 0.29 0.51 0.64 0.52 0.61 0.69 0.75 0.83 0.70 0.80
Pima 0.43 0.46 0.48 0.64 0.72 0.65 0.65 0.65 0.66 0.70 0.62 0.64 0.66 0.67 0.71
Ecoli 0.37 0.42 0.40 0.54 0.53 0.44 0.50 0.57 0.50 0.51 0.48 0.53 0.55 0.63 0.61
Pendig 0.70 0.73 0.78 0.74 0.78 0.74 0.78 0.78 0.78 0.81 0.79 0.79 0.82 0.82 0.84
ILPD 0.41 0.42 0.42 0.56 0.57 0.47 0.47 0.47 0.57 0.54 0.60 0.60 0.63 0.62 0.63
Syn10 0.66 0.61 0.58 0.72 0.89 0.67 0.65 0.65 0.76 0.91 0.69 0.70 0.60 0.78 0.92

Average 0.59 0.60 0.67 0.71 0.77 0.65 0.68 0.72 0.73 0.78 0.77 0.78 0.79 0.81 0.85
Winner % 0.0 0.0 9.1 18.1 72.8 0.0 0.0 27.3 9.1 63.6 0.0 9.1 9.1 9.1 72.7

96

5. New Method to Homogenize the Density

5.6.4 Clustering Results

The results obtained in our experiments are shown in Table 5.3. The highest obtained
FScore values for each dataset-algorithm are highlighted in bold. The second last row
reports the average FScore. As we can see, our proposed FSCM method persistently
surpasses both competitors on all the three clustering algorithms. The highest
magnitude of improvement depicted for DBSCAN from 0.59 to 0.77. However, for
DP and OPTICS, the performance gap shrinks slightly since they are advanced
version of DBSCAN which are using multiple density thresholds to efficiently detect
cluster centers. Still FSCM increases the clustering performance of DP and OPTICS
significantly more than both ReScale and DScale.

The last row of Table 5.3 shows the proportional performance winner. It is
computed by the number of times a preprocessing method wins the performance
divided by total number of datasets for each clustering algorithm. By looking at the
first five columns, we see that FSCM-DBSCAN outperforms the other two methods
in a large majority, 8 out of 11, of the datasets (in many cases by a large margin);
while FSCM-OPTICS and FSCM-DP are the performance winner on 7 and 9 out of
11 datasets, respectively. In the only three datasets where FSCM does not perform
best (Breast, ForestType and Ecoli), its FScore values are very close to the “winner”.

In case of Syn10, our FSCM remarkably improves the clustering performance of all
existing algorithms, probably because the data is generated from a mixture of Gaussian
sources. For example, in Fig.5.5c we present the histogram of the homogenized Syn10
by applying our FSCM. The mapping yields that both three sets of clusters in the
top-right and bottom of original space (corresponding to the two high density reigns,
see Fig.5.5a) are expanded and segregated in the new space with valleys appearing
between them. As a result, the densities at the peaks of different clusters are closer
after this mapping. Thereafter, we could efficiently stratify 10 distinct clusters which
correspond to the actual generative model for the data by using DBSCAN, see Fig.5.5d.
However, ReScale fails to increase clustering performances on this dataset since it is
just using one-dimensional scaling. Furthermore, the DScale moderately increased
the FScore values of DBSCAN, OPTICS and DP about 0.06, 0.09 and 0.09 unit
respectively, since it still depends on a rescaled distance. On the other hand, our
FSCM method significantly improved FScore values of DBSCAN, OPTICS and DP
from 0.66, 0.67 and 0.69 to 0.89, 0.92 and 0.92, respectively.

In Fig.5.6 and Fig.5.7, we compare the DBSCAN clustering quality on two original
WiFi and Breast datasets and their transformation due to FSCM. They show that
both the transformed datasets are stratified more efficiently than the original data
by DBSCAN. For the WiFi dataset, see Fig.5.6, plot(a) shows the original data with

97

5. New Method to Homogenize the Density

original labeling, including four distinct classes, and the embedded FSC computed
by FSCM. As we can see that the Class_2 (red) is dense while the Class_1 (pink)
is sparse. As shown in plot (b), DBSCAN just identified three clusters due to the
fact that we observed varied densities in data. Consequently, classes 2 and 4 are
jointly identified as a single cluster, see the blue cluster in Fig.5.6b. In contrast,
Class_2 becomes sparser using FSCM and we generally observe that the projected
data has approximately uniform densities in the populated areas, as shown in plot
(c). As a result, DBSCAN identified four distinct clusters by applying single density
threshold, as shown in plot (d). Further, our FSCM method significantly improved
FScore values of DBSCAN from 0.76 to 0.9, see Table.5.3.

For the Breast dataset, see Fig.5.7, plot(a) shows the original data with original
labeling, including two distinct classes, and the embedded FSC computed by FSCM.
As we can see that the Class_1 (dark blue) is significantly dense while the Class_2
(light blue) is sparse. As shown in plot (b), DBSCAN just identified the dense
cluster. Consequently, the majority of the data points belonged to the sparse class are
designated as noise, the red ×. In contrast, Class_1 becomes sparser using FSCM and
we generally observe that the projected data has approximately uniform distribution,
as shown in plot (c). As a result, DBSCAN identified two distinct clusters by applying
single density threshold, as shown in plot (d). As illustrated in Table.5.3, our FSCM
method significantly improved FScore values of DBSCAN from 0.82 to 0.96.

Table 5.4: Complexity of ReScale, DScale and FSCM.

Algorithm Time complexity Memory complexity
ReScale O(mnψ) O(mn+mψ)
DScale O(mn2) O(mn+ n2)
FSCM O(tf (mς + nς2)) O(mς + nς2)

5.6.5 Complexity Analysis

The computational complexity of ReScale, DScale and FSCM are shown in Table 5.4.
The result shows DScale has higher computational complexity than ReScale since it
computes and frequently updates a n× n distance matrix. While the computational
complexity of FSCM is roughly corresponding to the performance of Feature Space
Curvature modeling phase which is similar to standard SOM algorithm. Considering a
map of ς neurons and the input dataX ∈ Rn×m, then each learning epoch t ∈ [1, . . . , tf]
of the GSOM algorithm costs O(mς + nς2) elementary operations. Therefore, its
overall theoretical complexity is O(tf(mς + nς2)). The size of map ς is the only
parameter which could be quite big for the high-dimensional data.

98

5. New Method to Homogenize the Density

(a) Original labeled data and FSC (b) Dbscan(eps =0.365,minPts =10)

(c) Projected data by FSCM (d) Dbscan(eps =0.248,minPts =13)

Figure 5.6: Application of FSCM-DBSCAN on the Wifi dataset and the original datasets
in R2.

Furthermore, the computational complexity of the majority of existing density-
based clustering algorithms is O(n2) [217], thus our method doesn’t notably affect
their final complexities.

99

5. New Method to Homogenize the Density

(a) Original labeled data and FSC (b) Dbscan(eps =1.05,minPts =25)

(c) Projected data by FSCM (d) Dbscan(eps =1.695,minPts =19)

Figure 5.7: Application of FSCM-DBSCAN on the Breast dataset and the original datasets
in R2.

100

6
New Method for Extracting Insights from

the Shape of Cluster

Contents
6.1 Introduction . 101
6.2 Related work . 104
6.3 Background and Notation 105
6.4 Organization Component Analysis 107
6.5 Application of OCA in the Real Data 110

6.5.1 Parameter Selection . 111
6.5.2 Evaluation Quality of the Map 111
6.5.3 Identifying Spatial Patterns of Wilderness Sub-area. 111
6.5.4 Diagnosing Performance Bottleneck in HPC Applications. . 115

In this chapter, we present a novel topological-based method to extract insight
from the clustering result. This method enables us to interpret the result of clustering
mathematically by the explanation of internal variability of each cluster.

6.1 Introduction

Cluster analysis is used as a matter of course throughout the experimental sciences
to extract scientific information from data[220]. But it turns out that many well-
performed segmentation results cannot be turned into profound insights easily. Because
the process of making clusters is a generic mathematically oriented process but lacks
the intuition and domain knowledge that is often required to interpret and drill
down into the algorithmic results. However, cluster "Geometric Features" can still

101

6. New Method for Extracting Insights from the Shape of Cluster

be disclosed from metrics on the dataset, which could represent mathematically the
fine-grain structure of complex data.

Geometric features of data can reveal clusters of diverse shapes, sizes and densities
as demonstrated in Fig.6.1. Clusters can be spherical (a), elongated (linear) (b),
loop (c), tendril (d), and heterogeneous (e) [221]. We are interested in studying
such features of data since we assume insight into the shape of scientifically relevant
data, it has a good chance of giving insight into the science itself. Experience has
shown that this assumption is a reasonable one. For example, the study of loops
and their higher-dimensional analogues has recently offered insight into questions
in biophysics[222] and natural-scene statistics[223]; and, the study of tendrils has
recently offered insight into oncology[224]. However, aforementioned figures say we
should not select a final set of model types and then we build individual model, but we
should make modeling mechanism that can study all arbitrary shapes and computed
easily. Therefore, the basic goal of this chapter is to introduce a generalized method
for studying geometric features of clustered data.

Figure 6.1: Clusters of diverse shapes in R2

In our methodology, we propose a novel clustering result interpretation method
by combining techniques from algebraic topology and statistical learning to give
a quantitative basis for the study of the geometric features (shape) of a data
cluster. It learns to interpret a data cluster with correct topology preservation
map as modeling mechanism that doesn’t make assumptions about the form of the
mapping function. As a result, we can generally apply it to study the geometric
feature of arbitrary cluster-shape. Moreover, this topology preservation map describes
the idea of closeness in terms of relationships between sets rather than euclidean
distance in the feature multidimensional space. The key objective is that once
we represent high dimensional data by mapping functions on small space, we can
efficiently give direct insight into the data.

Another important factor is the objective of clustering algorithm. Since various
discriminative definitions of a cluster-shape can be formulated, depending on it.

102

6. New Method for Extracting Insights from the Shape of Cluster

For example, Density-based clustering such as DBSCAN[225], ISB-DBSCAN[226] or
RNNDBSCAN[227] is famous for its capability of finding out arbitrary shape clusters
from datasets. These approaches regard clusters as regions in the data space in
which the data points are dense, and separated by regions of low data point density
(noise). Since these methods apply a local cluster criterion to detect regions that
may have an arbitrary shape and the data points inside a region may be arbitrarily
distributed[228]. For such shape, it is very hectic to determine their innate structure
or quantify them by applying correlation oriented techniques since the assumption of
linear relationship between all variables behind these techniques do not often hold
true for this arbitrary distributed data. Throughout this chapter, we are interested
to extract insights from arbitrary cluster-shape by not making assumptions about
linearity. To do this, we propose a novel Directional Sequence Similarity method to
locally measure the non-linear relationships between features.

Furthermore, in practice, not all features are important and relevant to the overall
clustering task, many of them are often correlated and redundant, which may result
in adverse effects such as low efficiency and poor performance, and also, dramatically
increasing computational cost. Feature selection is one effective mean to identify
relevant features for dimension reduction [229]. Once a reduced (active) feature subset
is chosen, conventional clustering algorithm can then be applied by using the active
features. Consequently, unselected (illustrative) features remain untouched that can
be applicable to interpret the local prototype of cluster. In our approach, we consider
active features to model the overall clustering space and also illustrative features to
interpret the local establishment of each cluster with maximum comprehensiveness.

In this chapter, we introduce a new method for the purpose of interpreting the
clustering result through cluster-shape study which does not have assumption about
data either distribution or shape. Our modeling mechanism organizes an augmented
structure of a data cluster to represent its arbitrary shape by applying topology to
develop tools for studying qualitative features of a cluster. This cluster-organization
contains information which is equivalent to the topology-preserving map of finer-
grained dense areas and their interconnection inside a cluster. We show how to
efficiently and automatically interpret the topology-preserving map to extract not only
the innate cluster structure, but also the causal factors associated with its formation by
computing the non-linear local relationships between features. For that, we introduce
a new Directional Sequence Similarity method to locally quantify it. Furthermore, we
use illustrative features to obtain very detailed structure identification and a great
detail on non-homogeneous local geometrical space within the identified clusters by
generic clustering algorithms with using the active features.

103

6. New Method for Extracting Insights from the Shape of Cluster

The rest of this chapter is organized as follows. The intuition motivating the cluster-
shape interpretation is presented along with an overview of related work and methods
in section 6.2. In section 6.3, the basic notions of cluster-shape interpreting and
background techniques are defined. In section 6.4, our novel algorithm Organization
Component Analysis (OCA) to decipher a cluster-shape with respect to its self-
organizing map structure is presented. The experimental result of our OCA method
for the purpose of cluster-shape studying is illustrated in section 6.5.

6.2 Related work

There are various ways to explore the cluster-shape; through more rigorous analysis
or by visualization and human interaction or external knowledge-based supervision
or Topological Data Analysis.

Numerous statistical analytics techniques exist to study the multivariate data
and the shape of cluster. Gaussian mixture model[230] is a probabilistic model for
representing normally distributed subpopulations within an overall population. It
can describe the shape of cluster as a sequence of overlapped subpopulations which
have Gaussian distribution. Furthermore, in [231, 232], they discuss two multivariate
analysis procedures: PCA and exploratory factor analysis, which can extract the latent
structure of data. These techniques can identify a small set of synthetic variables,
called eigenvectors or factors, that explain most of the total variation presented in the
original variables and the shape of cluster. However, there are several requirements
for a dataset such as: normality, homoscedasticity, linearity, sampling adequacy and
no significant outliers. Taking advantage of the self-organizing map technique, we
developed an assumption-free and efficient cluster-shape analysis method.

The other approach is visual analysis that is usually a very intuitive and manual
way to explore the underlying structure of the data, possibly incorporating human
feedback into the process. HD-Eye method [233] explores different subspaces of the
data in order to determine clusters in different feature-specific views of the data.
IPCLUS [234] generates feature-specific views in which the data is well polarized.
A polarized data is a 2D subset of features in which the data clearly separates out
into clusters. Then a kernel-density estimator determines the views in which the
data is well polarized. Finally, the shape of cluster is defined by exploring different
views of the data. These methods are intuitive which make it difficult to separate the
definition of cluster from the perception of an end-user and even to automatize them.
Our approach mathematically combines the strengths of statistical and topological
methods to eliminate the need for expert human visual analysis.

104

6. New Method for Extracting Insights from the Shape of Cluster

Supervision also can play an effective role, because it takes the specific goal and
subjectivity of the analyst into consideration, which leads our insight of cluster-shape.
In [235], they propose an interactive approach to constrain clustering in which the
user can iteratively provide constraints as feedback to refine the clusters towards the
desired concept. The results indicate that significant profounder insight can be made
with only a few well-chosen constraints. Also, in [236], they describe an expectation
maximization (EM) algorithm, penalized probabilistic clustering, which interprets
pairwise constraints as prior probabilities that two items should, or should not, be
assigned to the same cluster. This formulation permits both hard and soft constraints
allowing users to specify background knowledge even when it is uncertain or noisy.
Normally, the supervision should be embedded inside the clustering algorithm, which
lead to poor generalization and automation. Our proposed Organization Component
Analysis method is not dependent on a particular clustering algorithm, therefore
any clustering result can be analyzed by it efficiently.

Topological Data Analysis (TDA) is a recent and fast-growing field providing a
set of new topological and geometric tools to study shape of possibly complex data
[237]. In [238], they purpose the Mapper that is a mathematical tool to identify shape
characteristics of datasets by applying topological method. The Mapper identifies
local clusters within the data and then it studies the interaction between these small
clusters by connecting them to form a graph whose shape captures aspects of the
topology of the dataset. Mapper graphs associated to datasets preserve a wealth of
information about the original shapes, but it is computationally expensive especially
for massive datasets and its size grows rapidly with the number of data points, for
that reason, Mapper takes transposed data matrix to build topological model. In
our method, we apply the self-organizing map (SOM) to efficiently learn and build a
topology-preserving mapping that projects multi-dimensional data onto a lower 2D
space by preserving the neighboring relations of the data.

The intention of our work is to purpose a novel generalized technique that can study
arbitrary shape of clusters by leveraging of self-organizing map and topology data
analysis; thereby, that is an assumption-free and automated, and it does not dependent
on any particular clustering algorithm. Especially, in our approach we apply topology-
preserving mapping to optimize the computation cost and increase the efficiency.

6.3 Background and Notation

In this section, we discuss an overview of technique that we use leverage in our
analytic approach. We firstly illustrate a brief mathematical notation, then we revisit
the self-organizing map algorithm.

105

6. New Method for Extracting Insights from the Shape of Cluster

We use D = (d1, d2, ..., dQ) to indicate a full dataset where di ∈ RM . We suppose
an active feature set Ma is selected and the rest of features Ml are illustrative ones,
where ∀Ma,Ml ⊂ M , Ma ∩Ml = ∅ and Ma ∪Ml = M . Then, clustering algorithm
(e.g. DBSCAN) is applied by using the active features to partition the Q observations
into h(≤ Q) clusters CL = {cl1, cl2, ..., clh} with discretionary shape. In this chapter,
we are interested in interpreting the shape of a particular cluster X = (x1, x2, ..., xN)
where X ∈ CL, xi ∈ RM and N ≤ Q.

Self-organizing map

Kohonen’s self-organizing map (SOM) is one of the most famous neural network
models. Self-organizing map fundamentally is a pattern recognition technique in
multivariate data, in which intra-pattern relations among the features are grasped
without the attendance of a potentially biased or subjective external influence [239].

The SOM often arranged a set of neurons in a 2D rectangular or hexagonal grid T
in size n, to establish a discrete topological mapping of an input space, X ∈ RM . Ω
is the set of neuron indexes. The neurons are represented by set of weight vectors
V = {v1, v2, ..., vn}, where vi is the weight vector associated with neuron i and is a
vector of the same dimension −M− of the input, n is the total number of neurons,
and let ri be the location vector of neuron i on the grid. At the start of the learning,
all the weights are initialized to small random numbers. Then the algorithm repeats
next two steps until the map converges in order to preserve maximum topological
properties of the data on the map [218].

First at each time-step t, presents an input x(t) at random, and selects the winner
neuron:

ν(t) = argmin
k∈Ω

‖x(t)− vk(t)‖ (6.1)

Second, update the weights of the winner and its neighbors:

∆vk(t) = α(t)η(ν, k, t)[x(t)− vν(t)] (6.2)

where η is the neighborhood function which Gaussian form is often used in
practice – more specifically:

η(ν, k, t) = exp

[
−‖rν − rk‖

2

2σ(t)2

]
(6.3)

with σ representing the effective range of the neighborhood, and it is often de-
creasing with time.

The coefficients {α(t), t ≥ 0}, termed the ’adaptation gain’, or ’learning rate’, are
scalar-valued that decrease monotonically, but satisfying:

0 < α(t) < 1, lim
t→∞

∑
α(t)→∞, lim

t→∞

∑
α2(t) <∞ (6.4)

106

6. New Method for Extracting Insights from the Shape of Cluster

Furthermore, we apply "No Move" [239] to learn convergence mechanism in our
approach. It considers stopping condition that defines no-improvement in SOM’s
status as no training samples changing their best match unit in a complete iteration
of the training set. Using this condition, the training process is stopped as soon
as it sees no-improvement.

As a result, the SOM can provide topologically preserved mapping [240] from input
to output spaces, which includes grid T and weight vectors V . For SOM training, the
weight vector associated with each neuron moves to become the centroid of a local group
of input vectors. The group i is represented by its centroid vector vi and the local groups
are connected via topological space T. We use it for vector quantization by subdividing
a subset of points into micro-clusters having points close to each other locally.

6.4 Organization Component Analysis

In this section, we will introduce our Organization Component Analysis (OCA)
method which analyses the shape of a particular cluster X to extract the Organization
Components OC = (oc1, oc2, ..., ocC) where occ ∈ RMl and C ∈ Z ∩ [1, |Ma|].

First of all, train the SOM network to learn the topology-preserving map (T, V)
and structure of the input data X. The key observation is that neurons that are
adjacent to each other in the topology should also move close to each other in the
input space, therefore it is possible to explore a high-dimensional inputs space in
the two dimensions of the network topology.

(a) SOM embedded graph (b) The blue and red lines are the shape axes.

Figure 6.2: Application of OCA to spatial pattern indicator from the Covertype dataset
cluster C3, which is a part of our empirical study. The Horizontal_distance_to_hydrology
and Elevation are selected active features. (a) shows the locations of the data points (green)
and the weighted graph that is embedded in the SOM topology space. (b) The blue points
are representing the SOM neurons, while the red and blue lines are major and minor axis,
respectively. The rest of the items are described in the section IV in details.

107

6. New Method for Extracting Insights from the Shape of Cluster

In order to be able to compute pairwise relations between neurons, an undirected
graph G = (E, V, w) is embedded in the topological space T. If G is represented in
T such that the vertices (V) of G are distinct elements in T, and an edge (E) in G
is a simple arc connecting its two ends such that E preserves the grid structure of
T, also w : E → R is a function mapping edges to their values which is euclidean
distance between two ends of each edge in the active feature subspace ∀Ma ⊂ M .
See Fig.6.2.a, the labeled purple points and the red lines represent the nodes and
edges respectively. Let V a = [va1, va2, ..., van], vai ∈ RMa be active feature subset,
then the weight of edge between neuron i and j is;

wij =‖ vai − vaj ‖, wij ≥ 0 (6.5)

Then we compute the axis Ic of the cluster. The axis is the (vao, vaq) ∈ RMa

endpoints of the longest line that can be drawn through the cluster topological
space T. Let ep be a set of the endpoints where ep = ∅ during the computing of
the first (major) organization component and it will be updated gradually. The
endpoints o 6= q of the Ic belongs to:

argmax
i,j∈{Ω\ep}

‖vai − vaj‖+ ∑
k∈ep

(‖vai − vak‖+‖vaj − vak‖)
 (6.6)

And the axis and its unit vector are (e.g., the red solid line and green solid
arrow in Fig.6.2.b),

Ic = −−−−→vaovaq, Îc = Ic
||Ic||

(6.7)

Then we update endpoints set:

ep = ep ∪ {o, q} (6.8)

Next, we describe the organization of the cluster in the direction of Î by capturing
the continuing interaction between small local clusters (neurons) aligned with the
Ic. To figure out this interaction we compute the geodesy path P = (p1, p2, . . . , pn′)
in the graph G (where P ⊆ Ω, p1 = o, and pn′ = q) by Dijkstra’s algorithm, which
is shown as pink nodes in Fig.6.2.b.

Technically, the relation between the neurons in path P can describe the major axis
establishment in RM . In order to characterize the relationship between the neurons
in P , we compute a sequence of forward difference vectors ∆ = [δ1, δ2, ..., δn′−1],
δi ∈ RM (Shown as red dotted arrows in Fig.6.2.b). Let vi ∈ RM represent the
weight vector of ith neuron in P then

δi ≡ |vi+1 − vi|�vi, ∀i ∈ (P \ {pn′}) (6.9)

108

6. New Method for Extracting Insights from the Shape of Cluster

If you imagine standing at ith neuron in RM , the vector δi tells you the changes
rate in direction of i+ 1th neuron.

We propose a Directional Sequence Similarity (DSS) method to compute the
similarity between sequence of differences in active subspace RMa and in each
illustrative feature on path P . Let A be sequence of difference in active subspace
RMa aligned with Ic (The length of black intervals in Fig.6.2.b),

A = UL∆T (6.10)

Where L is diagonal matrix in sizeM with lii = 1 if i ∈Ma else lii = 0. To facilitate
the computation, we define unit vector U ∈ RM with ui = Îci if i ∈Ma else ui = 0.

Afterwards we compute sequential alignment between A and each δ′i ∈ ∆T ,
which are columns of ∆, to measure the relationship between directional sequence of
changes in active subspace and each feature i belonged to illustrative subset Ml. Let
occ = [s1, s2, . . . , sM ′] be the associated organization component to the axis Ic, where
M ′ = |Ml| and si measures the sequence alignment between A and δ′i:

si =
∣∣∣∣∣ A.δ′i
‖ A ‖ × ‖ δ′i ‖

∣∣∣∣∣ (6.11)

Where 0 6 si 6 1, a sequence is identical with A when si = 1 or si = 0 non-
identical. And if a si is significantly similar to A, the ith illustrative feature can be
interpreted as an influencing feature on the organization component occ.

For any cluster, we can identify |Ma| organization components by repeating these
steps. The first organization component corresponds to the major discrete curve
that passes through the multidimensional active feature space and represents the
interrelationship among a chain of local micro-clusters in direction of main axis. The
next organization components correspond to the same concept that its associated
endpoints have been selected by maximization sum of their euclidean distance to
previously selected endpoints ep in the active feature multidimensional space. These
components can describe the fine-grain interconnection inside a cluster. And the most
influencing feature in each organization component can illustrate the gravitational
force among a chain of local micro-clusters. Through these organization components,
we can often find fine-grain patterns in categorized data that traditional methodologies
fail to find. For example in, Fig.6.2.b, the red dotted arrows show the first organization
component composition that vividly represents the main repetitive patterns among
the original data points (See green points in Fig.6.2.a).

We summarize the complete OCA algorithm for extracting insights from the
shape of cluster in Algorithm (4).

109

6. New Method for Extracting Insights from the Shape of Cluster

Algorithm 4 : OCA for cluster shape interpretation
Require: N data points with M features;

Ma : The active feature subset;
Ml : The illustrative feature subset;
n: Size of two-dimensional map;
C ∈ Z ∩ [1, |Ma|]: Number of Components;

Ensure: ep = {} endpoints
OC = {} Organization Compounds

1: Initiate SOM T in size n and train it until converges as discussed in Section
III.A. Let V = [v1, v2, ..., vn], vi ∈ RM contain neurons weight vectors.

2: Embedding the G = (E, V, w) in the T and compute the w in RMa (Eq.6.5)
3: for c = 1 to C do

21.1: Select endpoints o, q of axis Ic (Eq.6.6)
21.2: Compute axis Ic and unit vector Îc (Eq.6.7)
21.3: ep = ep ∪ {o, q}. (Eq.6.8)
21.4: Extract geodesy path P = (p1, p2, . . . , pn′) between o and q in G by Dijkstra’s

algorithm.
21.5: Compute sequence of forward difference vectors ∆ = [δ1, δ2, ..., δn′−1]. (Eq.6.9)

21.6: Compute A sequence of changes in active subspace RMa aligned with Ic
(Eq.6.10)

21.7: Compute occ = [s1, s2, . . . , sM ′] associated organization component to the axis
Ic. Any si measures the sequence alignment between A and δ′i ∈ ∆T . (Eq.6.11)

21.8: OC ← OC + occ
4: end for
5: return OC

6.5 Application of OCA in the Real Data

In this section, we apply OCA to two datasets from diverse fields to show the
implementation and application of our proposed OCA method for extracting insight
from arbitrary cluster-shape. We analyzed datasets of (i) cartographic data of
actual forest cover type; (ii) performance data of high performance computing (HPC)
STREAM benchmark. We show that studying the deformation of topology preserved
space is useful and efficient in detecting finer-grain pattern and relation among the
stratified data. The innovation in our method is to show that local geometrical feature
of clusters is important and can mathematically lead to novel and profounder insights
from the data. In continue, we discuss the OCA parameter selection and evaluation
method then we go into the analyses of datasets.

110

6. New Method for Extracting Insights from the Shape of Cluster

6.5.1 Parameter Selection

Our OCA method has only one parameter, which is n in performing the self-organizing
map. The size of the map n is determined by calculating the number of neurons from
the number of data points using n ≈ 5

√
N , which is an integer close to the result of

the right-hand side of the equation, and N is the number of observations [241].

6.5.2 Evaluation Quality of the Map

The important measure of the quality of the mapping is the topology preservation
[242]. We calculate the topographic error, te, i.e. the proportion of all data vectors
for which first and second Best Matching Units (BMU) are not adjacent units.

te = 1
N

N∑
i=1

u(xi) (6.12)

where u(xi) is equal to 1 if first and second BMU are adjacent and 0 otherwise.
So te ∈ [0, 1], the map highly preserves topology when te = 1 or te = 0 poorly.

6.5.3 Identifying Spatial Patterns of Wilderness Sub-area.

The first application is the identification spatial patterns of wilderness sub-area.
Identifying spatial patterns among potentially complex Geographical Information
System (GIS) data in a consistent manner is a challenge in the field since sub-area
can be small and have complex relationships. We show here that OCA can finely lead
us to identify these spatial patterns by analyzing cluster-shape. We also identified
interesting wilderness sub-area and their innate organization structure that may
be important for geoscientists.

Figure 6.3: Comanche Peak Wilderness Area, visualizations of the clustering result
(DBSCAN eps = 0.15, minPts = 30).

111

6. New Method for Extracting Insights from the Shape of Cluster

We use Covertype1 dataset (580,112 variable pairs, 17 numerical GIS variables
such as elevation, slope, aspect, distance to hydrology, and etc.), to demonstrate
fine-grain spatial patterns that can be identified among GIS data by using our OCA
approach. Instances in the dataset are drawn from four different wilderness areas
from the Roosevelt National Forest in north Colorado: Rawah, Neota, Comanche
Peak and Cache la Poudre, which are covered with seven different tree species. The
organization components derived from the cover-type data of species vary from area
to area, with some areas-species having particular pattern. We took the Comanche
Peak areas as a benchmark (253,364 data points), which would tend to be more
typical of the overall dataset, while this area would probably have Aspen as their
primary major tree species, followed by Krummholz [243].

By applying Robust Independent Feature Selection [14] method, we find that
"elevation" and "horizontal_distance_to_hydrology" are an excellent active feature
subset for categorizing wilderness sub-area, since most of tree species in the studied
wilderness areas grow within specific ranges of altitudes and available moisture in
a given cell. Then we apply the DBSCAN on this area-species by tuned hyper-
parameters eps = 0.15 and minPts = 30 and using the active features. As a
result, we stratify three distinct clusters in complex arbitrary shape, see Fig.6.3.
We detect tendril cluster C1 in the lower part of that altitudinal zone. In contrast,
we identify a small heterogeneous cluster C3 in highest elevation and an elongated
cluster C2 with three tendrils.

(a) SOM embedded graph (b) The Organization Components and axis

Figure 6.4: Application of OCA to Covertype dataset cluster C1; (a) shows the data
points and the SOM embedded graph.(b) The red and blue dashed arrows represent first
and second Organization Component, respectively.

We applied OCA in each cluster based on GIS data. In order to randomize the
experiments, we conducted 10 OCA on each chosen cluster. Then, for each cluster, the

1https://archive.ics.uci.edu/ml/datasets/covertype

112

6. New Method for Extracting Insights from the Shape of Cluster

average features influence as well as the standard deviations that have been computed
over all analysis. OCA achieved to the 98%, 95%, and 84% topology preservation in
average for cluster C1, C2 and C3 respectively by less than 300 iteration in average.

In Fig.6.4, as an example, we show plots of the organization components that we
have derived from cluster C1. Plot (a) shows the embedded graph that is computed
by our OCA method. The resulting graph has a structure shaped like a horizontal
letter C. As shown in plot (b), our OCA method identified two spatial patterns in
data. For first OC (red), the relationships are mainly aligned with increasing the
active feature values where there is a long connected path, but in other OC (blue),
the networks show a significantly decremental short path. Table.6.1 presents the
Directional Sequence Similarity that is computed by OCA for each cluster. In case of
cluster C1, this very high degree of DSS (69%) is evident with "Slope" in first OC.
There are geological issues that could explain such spatial pattern. The associated data
points to this OC are mainly belonged to Catamount soil family that is geomorphically
positioned in mountain slopes in nature. We also determined that the horizontal
distance changes to roadway can describe the spatial pattern associated with the
second OC. The associated data points to this OC are mainly belonged to Bullwark
soil family that is geomorphically positioned in mountain faceted spurs. Note that the
faceted spurs usually ends up to flat area which is appropriate place for making road.
In case of cluster C2, we can see euclidean distance to hydrology identified as most
influencing feature in first two organization components, with approximately 92%
and 70% DSS. Interestingly, the rest of the features mostly do not show significant
Directional Sequence Similarity with the active feature set. In cluster C3 case, the
cluster is shaped with the natural fire lines as most influencing feature with DSS 76%.

In order to verify our result, we carried out manually map visual study via
ArcGIS and UCDAVIS 2. On the map, we just applied the GIS data which have
been computed as must influencing features by our OCA method. As a result, we
could easily identify these sub-areas spatial pattern on map. For example, once we
recognized a spatial pattern in the hydrological map which is identical to shape of
cluster C2, the OCA of the sub-area reveals its organization structure significantly
similar to euclidean distance to hydrology. We figure out another instance that the
associated sub-area to C3 is a flat (high hill-shade noon) near to the Comanche peak
and it has not been touched with natural fires.

Moreover, we find that a PCA analysis of the same categorized data was not
able to detect the indicator to detect spatial pattern. For example, in Fig.6.5 we
presented the cluster C1 PCA result as contribution bi-plot. The blue vectors are
presenting the coordinates of the active features that are calculated as the correlation

2https://casoilresource.lawr.ucdavis.edu/see/

113

6. New Method for Extracting Insights from the Shape of Cluster

Table 6.1: Application of OCA to Comanche Peak Wilderness sub-areas, the features
influencing in the first and second organization components for each cluster.

Feature Cluster C1 Cluster C2 Cluster C3
OC1 OC2 OC1 OC2 OC1 OC2

Aspect 0.196 0.248 0.094 0.135 0.020 0.010
Slope 0.688 0.162 0.069 0.238 0.259 0.077
VDT_Hydro 0.247 0.305 0.202 0.131 0.148 0.095
HDT_Road 0.218 0.462 0.060 0.219 0.184 0.138
Hillshade_9am 0.169 0.206 0.049 0.216 0.192 0.120
Hillshade_Noon 0.176 0.219 0.059 0.182 0.361 0.446
Hillshade_3pm 0.183 0.253 0.09 0.149 0.105 0.067
HDT_Fire_Point 0.196 0.206 0.061 0.100 0.753 0.085
Hillshade_mean 0.175 0.222 0.060 0.182 0.191 0.144
Hillshade_9am_sq 0.171 0.215 0.053 0.203 0.353 0.246
DT_Hydro 0.164 0.201 0.944 0.697 0.293 0.358
Hillshade_Noon_sq 0.174 0.221 0.059 0.187 0.212 0.171
Hillshade_3pm_sq 0.177 0.238 0.072 0.167 0.148 0.103
cosine_slope 0.172 0.226 0.058 0.191 0.235 0.208
Interac_9amnoon 0.173 0.202 0.049 0.203 0.268 0.267
Interac_noon3pm 0.183 0.248 0.089 0.145 0.092 0.056
Interac_9am3pm 0.179 0.234 0.07 0.162 0.138 0.089

between them and the principal components. As expected, there is a very weak
linear correlation between them that means a PCA analysis of the same data was
not able to identify the spatial connectivity.

(a) PCA bi-plot

Figure 6.5: Application of PCA to Comanche Peak Wilderness detected sub-areas C1. The
larger the value of the contribution is, the more the feature contributes to the components.

In summary, we have identified any wilderness sub-area occurring consistently
aligned with some spatial pattern but non-linearly. We note that these spatial

114

6. New Method for Extracting Insights from the Shape of Cluster

patterns are easily indicated by our methods because of the topology preservation
property enjoyed by our approach. Moreover, we show that classical multivariate
analysis approaches such as PCA, cannot easily detect these relevant indicators
because by their nature they end up linearly separating points in the dataset that
are in fact topologically close.

6.5.4 Diagnosing Performance Bottleneck in HPC Applica-
tions.

The next dataset we studied is a dataset that includes various Performance Hardware
Counters3 (HWC) values in the HPC STREAM 4 benchmark. Performance hardware
counters values are unique metrics to understand the behavior of the application in
a given hardware. Hardware counters are available in almost all modern processors,
and count micro-architectural events such as L1, L2, L3: Levels of cache misses, MSP:
Conditional branch instructions mispredicted, INS: Total instructions executed, and
etc. Moreover, we drive a performance metric "Overlapping Index" (BOI) to indicate
proportion of shared resources on-chip. The STREAM benchmark is a state-of-art
HPC benchmark designed to measure sustainable memory bandwidth (in MB/s)
and a corresponding computation rate for four simple vector kernels (Copy, Scale,
Add and Triad). We executed STREAM application on the MareNostrum5 where
OMP_threads_number = 40 and Loop_size = 9M to collect the dataset (4264
variable pairs, 9 numerical HWC variables) by specified interval sampling mechanism
6. We mathematically diagnose patterns in these datasets that characterize the
application performance losses by applying our OCA approach. Note that OCA
extracted these deep insights without requiring the expertise to study the huge
amount of information manually and visually.

In [8], they propose the Completed Instructions (INS) combined with Instructions
Per Cycle (IPC) as an appropriate active feature subset. This combination focuses the
clustering on the “performance view” of the application. Then, we applied DBSCAN
algorithms to the extracted performance data by tuned hyper-parameters and using
the active features in order to determine the application structure. Fig.6.6 shows
the detected clusters (application phases). As a result, we stratified four distinct
clusters in elongated shape. One can then ask the question if each cluster represents
a distinct phase of application why they show heterogeneous performance behavior.
To answer this question, we applied the OCA to detect the HPC systems bottleneck
that can describe the variability among stratified data.

3https://icl.utk.edu/papi/
4http://www.cs.virginia.edu/stream/
5https://www.bsc.es/marenostrum/marenostrum
6https://tools.bsc.es/extrae

115

6. New Method for Extracting Insights from the Shape of Cluster

Figure 6.6: Performance data extracted from STREAM benchmark execution
(OMP_threads_number = 40 , Loop_size = 9M) , visualizations of the clustering result
(DBSCAN eps = 0.015, minPts = 6).

In this section, we report the results of the Triad operation (e.g., Cluster1 in
Fig.6.6), since it is the most complex scenario and is highly relevant to kernels used in
HPC applications. In order to randomize the experiments, we conducted 10 OCA on
Triad associated cluster and computed the average features influence as well as the
standard deviations over all analysis. In all conducted experiments, OCA achieves to
94% topology preservation in average, which shows strong mapping quality.

(a) SOM weight positions
(b) The blue and red lines are the first and second
shape axes respectively.

Figure 6.7: Application of OCA to STREAM dataset cluster C1; (a) shows the locations
of the data points and the weight vectors.(b) The blue points are representing the SOM
neurons, while the red and blue dashed arrows represent first and second Organization
component, respectively.

Fig.6.7 shows plots of the organization components that we have identified in
cluster1 of previously aforementioned example. Plot (a) shows the embedded graph

116

6. New Method for Extracting Insights from the Shape of Cluster

that is computed by our OCA method. Although all data points are representatives
of the same kernel, they can be categorized into three distinct sub-clusters that do
not detected by DBSCAN due to the fact that we select the ε value to identify the
main application trends. Note that the bottom sub-cluster includes the majority of
the data points. As shown in (b), our OCA method identified two sub-structures. We
identify that the first organization component indicates the main HPC application
performance behavior and the second one presents the reason of the inter-cluster
stratification. From Table.6.2, we diagnose that the magnitude of shared on-chip
resources (BOI) can describe approximately 70% of the performance losses, since each
thread can only use a fraction of the shared resources at specific moment. Furthermore,
we identify the performance effect of L1\L2, L1 and L2 miss ratio have become the
main concern when following the OC2 trajectory path, it is likely that approximately
50% of the performance problem is the L1 and L2 capacity. Also, we detect three
sub-groups that represent distinctive level of L1 and L2 miss ratio.

Table 6.2: Application of OCA to STREAM data set cluster C1, the features influencing
in the first and second OC.

L1 L2 L3 L1\L2 L2\L3 MSP BOI
OC1 0.223 0.220 0.159 0.227 0.222 0.051 0.693
OC2 0.492 0.500 0.086 0.483 0.134 0.015 0.189

In advanced experiment, we executed STREAM application with various combi-
nation of OMP_NUM_THREAD ∈ {1, 2, 4, 8, 16, 24, 32, 40, 48} and Loop_size ∈
[10k, 89M] to collect 134 datasets (1221 to 11,600 variable pairs, 9 numerical HWC
variables). We conducted the prior process on each obtained dataset to diagnose
the HPC system bottlenecks.

Fig.6.8, presents the contour plots of the mean value of IPC and INS (active
subspace), versus the log(loop size) and the OMP_threads_number and Fig.6.9 shows
contour plots of illustrative feature’s Directional Sequence Similarity with the major
organization component. As shown in the plot 6.8.a, the application roughly shows
highest performance by the small number of threads and it has high performance in
the area under the bell-shaped component as well. We detect significantly similar
pattern in the plot 6.9.g which identifies the performance of application mainly
influenced by the magnitude of shared on-chip resources. We also identify a minor
difference between two components in the right tail. It is caused by the imbalanced
thread distribution between sockets that increases the IPC mean. For example, in
OMP_NUM_THREAD = 16 and log(Loop_size) = 18 case only two threads
are assigned to the second socket; fourteen threads to the first one. From the plots
6.9.(a ∼ e), we can conclude that the bottleneck of the small, medium and big

117

6. New Method for Extracting Insights from the Shape of Cluster

problem sizes is L1, L2 and L3 misses ratio respectively. The most remarkable aspect
of the plot 6.9.a, see the yellow area in the small loop size, is that the exponential
relationship between loop size and OMP_number_threads. In the same way, we
recognize the similar pattern in the performance of application (IPC), you can see
the lightest orange area in the small loop size in plot 6.8.a. Although we identify L1
miss rates as a main bottleneck of small problem size, the performance of application
has still been acceptable, probably, in consideration of the relatively low latency
of L1 cache. It would be worth mentioning that, on the very small loop size, the
performance of application is reduced quickly by increasing the number of threads,
possibly, due to the fact that parallelism overhead is too remarkable in case of very
small vector size, as it can be seen in the right side of the plot 6.9.f. As it can be
seen in plot 6.8.b, there is roughly a linear relationship between INS and Loop_size
due to the vector size. Although the INS does not illustrate a performance issue, it
helps use to segregate main application trends perfectly.

Figure 6.8: STREAM benchmark, the plots are shown the contour plots of the mean value
of IPC and INS, versus the log(loop size) and the OMP_threads_number.

In order to verify the insight that extracted by the OCA, we performed manually
the HPC performance analysis with PARAVER 7 toolkit and we identified the same
performance bottleneck as well. However, it is a manual approach.

In summary, our Organization Component Analysis diagnoses performance bot-
tleneck of HPC applications automatically rather than the visual approach that is
too intuitive and laborious. In case of STREAM benchmark, we identified that

7https://tools.bsc.es/paraver

118

6. New Method for Extracting Insights from the Shape of Cluster

Figure 6.9: STREAM benchmark, the plots present the contour plots of illustrative
feature’s Directional Sequence Similarity with the major organization component, versus
the log(loop size) and the OMP_threads_number. The red dashed lines show the threshold
of three hierarchical levels of caches (32kB, 1MB and 33MB) receptively.

higher magnitude of shared resources on-chip will ruin the application performance
dramatically. Meanwhile the number of cache misses in the higher level of cache
hierarchic will be the performance bottleneck by increasing the loop size. In general,
the OCA can be a canonical approach to automatically detect the HPC application
performance bottleneck among complex performance data without expert human
visual analysis, which can broadly be applied to any HPC application.

119

7
Enhanced Cluster Identification and

Interpretation Pipeline

Contents
7.1 Background and Motivation 120

7.1.1 The Limitation of the DBSCAN 122
7.2 ECII Pipeline Architecture 125

7.2.1 Hyperparameter Optimization 126
7.2.2 Evaluation Metrics . 128
7.2.3 Components Interaction . 129

7.3 Practical Uses to Application Analysis 133
7.3.1 GROMACS . 133
7.3.2 Computation Bursts and Enhanced Cluster Analysis 133
7.3.3 Application Analyses . 134

In this chapter, we present our Enhanced Cluster Identification and Interpretation
(ECII) Pipeline, a new approach to automatizing the clustering process. It overcomes
the limitations of DBSCAN to tune its hyperparameters parameters, and it helps
non-expert users to extract fine-grain insight from the clustering results. Furthermore,
we demonstrate the usefulness of the described pipeline by evaluating the performance
of the state-of-art parallel application.

7.1 Background and Motivation

Traditional machine learning processes are inherently time-consuming and dependent
on human intervention and expertise. The theorem of “no free lunches” [244] also

120

7. Enhanced Cluster Identification and Interpretation Pipeline

implies that the only scenario when an approach outperforms another is when it is
customized to the specific problem on hand. This means that the model development
invariably has to go through the pains of data preparation, feature selection, feature
engineering, model training, evaluation, and tuning. Every time a new dataset is
encountered or a new problem arises.

In a report published by Forbes [245], data cleaning and preparation occupies 60%
of a data scientist’s workload, see Figure 7.1a. Since 57% of data scientists regard
cleaning and organizing data as the least enjoyable part of their work, see Figure 7.1b.
On the other hand, tasks such as data preparation and exploring multiple models to
select the optimal one can be easily automated using ML pipeline frameworks.

(a) How data scientists spend most of their time.

(b) What data scientists enjoy the least.

Figure 7.1: The result of a survey of how data scientists spend their time [245]

Machine Learning Pipeline aims to automate and accelerate the process of building
ML models and particularity clustering models in this work. It enables us to provide
the unlabeled dataset as input and receive an optimized clusters structure of the
dataset as output. This functionality enables users to generate profound insights by
leveraging the capabilities of the Machine Learning Pipeline.

121

7. Enhanced Cluster Identification and Interpretation Pipeline

ML pipeline enables professionals from various domains to leverage the benefits of
data science and Machine Learning. It accelerates processes, reduces errors and costs,
and provides greater accuracy of results by training multiple high-performing models.
It cuts down time spent on iterative tasks concerning model development. ML pipeline
channelizes more of experts’ time and resources into the model selection and model
tracking so that they can deal with more complex problems. Furthermore, these tools
can help developers to build scalable models with pipeline output acceleration.

7.1.1 The Limitation of the DBSCAN

Although DBSCAN is the most popular and widely used density-based clustering
algorithm that can detect the clusters of the arbitrary shapes and sizes in large
databases, it still has limitations. Three major drawbacks can be associated with the
DBSCAN algorithm which we propose our machine learning pipeline to overcome.

7.1.1.1 Hyperparameter Selection

Although DBSCAN has significant advantages in clustering, it also has the same
defects as other clustering algorithms, that is, the clustering performance depends
on the parameter settings. DBSCAN has two parameters eps and minPts, and
a given combination of them could lead to different cluster identification results.
Choosing the wrong values for these two parameters can lead to all points to be in
one single cluster or distinguish as noise. If the dataset and features are not so well
understood by a domain expert then, setting up the appropriate eps and minPts

could be tricky and may need comparisons for several iterations with different values
of eps and minPts. The ECII pipeline helps us to automatically tune the DBSCAN
hyperparameter to obtain the optimal clustering result.

In different datasets, the optimal clustering results of DBSCAN will have different
values of the parameters minPts and eps. Even in the same dataset, minPts takes
different values, and the optimal value of eps is quite different. In addition, there are
no theoretical guidance parameters for setting minPts and eps, which leads to the
selection of reasonable DBSCAN parameters. The reasonable DBSCAN parameters
completely depend on personal experience and a large number of experimental trials.
Since the clustering result of DBSCAN is sensitive to parameters, the parameters
minPts and eps must be set reasonably in the application, which limits the extensive
use of DBSCAN to some extent.

For this problem, many scholars have done some research on the direction of the
parameters setting of DBSCAN. In [246] and [247], the parameter eps is automatically
determined by using the k-dist list. In reference [248], the authors propose a hierarchical

122

7. Enhanced Cluster Identification and Interpretation Pipeline

adaptive alternating optimization method to find the optimal parameter combination
of DBSCAN. In [249], a normalized density list is generated by evaluating the local
density of the dataset by using the Affinity Propagation algorithm, and then the
density list is combined to determine the parameters of the DBSCAN. In [250], the
histogram equalization is applied to the pairwise similarity matrix of input data, and
then the optimal parameter combination of DBSCAN is determined by dominant sets
(DSets). In [251], the binary differential evolution algorithm is used to optimize the
optimal combination parameters minPts and eps. These methods have promoted the
development and application of DBSCAN to some extent. In this dissertation, a new
DBSCAN parameters optimization approach based on the grid search optimization
algorithm is proposed, which is not for finding a value of the parameters in the optimal
clustering but for finding the interval of the parameters to search for their optimal
configuration. Our method enables DBSCAN to select a more reasonable value of
eps and minPts from the optimal range when clustering.

Some particular hybrid-DBSCAN methods exist to solve difficulties in finding
appropriate input parameters. Darong and Peng [252] combine the grid partition
technique and DBSCAN to automatically generate input parameters. The efficiency of
this method has not been evaluated against noise and various data sets with different
densities. This method also requires input parameters for grid partitioning. Smiti and
Elouedi [253] combine Gaussian-Means (GM) and DBSCAN algorithm to determine
the input parameters in DBSCAN. However, GM provides the circular cluster shape
not the density-based clusters, and it is not strong against noise (outlier). It still
needs input parameter for the Gaussian distribution. These existing algorithms and
techniques still have their own drawbacks and limitations which lead to a bad clustering.

Recently, some researches have combined clustering algorithms with optimization
and meta-heuristic algorithms to improve the results of clustering. For instance,
Simulated Annealing [254], Particle Swarm Optimization [251, 255–257], Tabu Search
[258, 259], Harmony Search [260–262], Bees algorithm [263–265], and Ant Colony
Optimization [266, 267]. However, there is no particular research to solve the problem
of automatically choosing input parameters in DBSCAN algorithm. In this thesis,
we combine the DBSCAN algorithm with a new optimization approach to choose
well-suited DBSCAN input parameters.

Since a slightly different setting (changing minPts and eps values) in DBSCAN
may lead to total different clusters of a data set [268], an optimization procedure
would fit the requirements (finding the optimal combination of minPts and eps) for a
good clustering. Because an optimization algorithm is related to an optimal choice of
process decisions that satisfy definite constraints and make an optimization criterion
(performance or cost index) maximize or minimize [269, 270]. Since the eps parameter

123

7. Enhanced Cluster Identification and Interpretation Pipeline

can largely degrades the efficiency of the DBSCAN algorithm [271], the combination
of the analytical ways for estimating the parameters is employed. Our method can
create more diverse configuration of the parameters until an appropriate combination
of minPts and eps values be selected. We deiced to use an exhaustive grid search as
a preliminary optimization approach to establish preliminary ECII pipeline.

7.1.1.2 Varied Density

The second problem is the inability of DBSCAN to correctly detect clusters when the
density varies across the feature space. This problem is directly related to the use of
a single eps and minPts value. In Figure 7.2 we present a practical example. Figure
7.2a shows the original dataset clustering structure where each cluster is specified
by an ellipse. Figure 7.2b shows the identified clusters by relatively big eps where
compact clouds of points on the right side of the plot are not identified. To correctly
detect these clouds as different clusters we require using a smaller eps value. On
the other hand, Figure 7.2b shows the identified clusters by relatively smaller eps.
Although these compact data clouds are accordingly identified by DBSCAN, the sparse
cluster on the left side of the plot is distinguished as noise. Therefore, we equipped our
ECII pipeline with a new transformation technique to homogenize cluster densities
while preserving the topological structure of the dataset. We describe our Feature
Space Curvature Map (FSCM) technique with details in chapter 5.

7.1.1.3 Extracting Insight from the Clustering Result

In the end, after conducting the Clustering algorithm on the prepared data, interpreting
the result of the cluster analysis is the most crucial step. Distillation insight, the last
stage of the cluster analysis process, tries to find those hidden correlations among
data points, which are now formed into clusters. However, the machine learning
experts should perform this interpretation, and it is more challenging when there
are multidimensional clusters. Accordingly, in our ECII pipeline, we apply a novel
topological-based method to study potentially complex high-dimensional categorized
data by quantifying their shapes and extracting fine-grain insights about them to
interpret the clustering result. We describe our Organization Components Analysis
(OCA) technique with details in chapter 6.

Moreover, the validated cluster models should be interpreted in light of the
included dataset context. Therefore, a model can have a very good fit with the
data, but the result can be uninformative. Feature selection is one of the key ways
to avoid models with no practical application value. In our pipeline, we embed
a new feature selection technique in the ECII pipeline where selected features are
immune to the noise. We describe our Robust Independent Feature Selection (RIFC)
technique with details in chapter 4.

124

7. Enhanced Cluster Identification and Interpretation Pipeline

(a) Original data stratification.

(b) DBSCAN result minPts = 4, eps = 9.92.

(c) DBSCAN result minPts = 4, eps = 9.75. The
blue + points are noise.

Figure 7.2: Example of dataset of varies density across the feature space.

7.2 ECII Pipeline Architecture

We use our ECII pipeline to automate clustering analysis workflow and implement
AutoML solutions. The pipeline starts with ingesting raw data, which is then
engineered to suit algorithm and domain requirements by leveraging feature selection
and transformation. The clustering model is then trained on this data and validated
by hyperparameter tuning. The best-performing model is then deployed and used

125

7. Enhanced Cluster Identification and Interpretation Pipeline

for insight extraction.

7.2.1 Hyperparameter Optimization

ECII hyperparameter optimization process has three components: (1) a search space,
(2) a search method, and (3) an evaluation method. We need to decide on a set of
hyperparameter values that we want to investigate, and then we use our DBSCAN
model to calculate the corresponding evaluation method. Finally, we can choose the
optimum (eps,minPts) combination as the one that maximizes the mean Silhouette.
We describe each component in turn below.

7.2.1.1 Search Space

An optimization procedure involves defining a search space. This can be thought
of geometrically as an n-dimensional volume, where each hyperparameter represents
a different dimension. The scale of each dimension is the value that a related
hyperparameter may take on. In our case, a point in the search space is a vector
with a specific value for the eps and minPts.

Lets X indicate a dataset of n data points X = (x1, x2, ..., xn) where xi ∈ Rm.

minPts The purpose ofminPts is to smooth the density estimates. Because a cluster
is a maximal set of density-connected points to choose smaller values when the expected
number of detections in a cluster is unknown. However, smaller values make the
DBSCAN algorithm more susceptible to noise. Conclusively, the minPts value should
be set using domain knowledge and familiarity with the dataset. There is no automatic
way to determine the minPts value for DBSCAN in the literature. Hence, we use the
following general guideline [10, 272] to mathematically define the minPts search space:

• Generally, set minPts ≥ 2m where m is the number of features in X.

• Increasing the minPts can often improve the clustering results for datasets that
have one or more of the following properties:

– many noise points

– large number of points n

Due to the first role, we set the lower bound of the search space with the Bl = 2m.
Accordingly, to compute the upper bound, first of all, we use the average Maha-

lanobis Distance (DM) [273] of the dataset to measure the noise in dataset:

DM = 1
n

n∑
i=1

DM(xi) (7.1)

126

7. Enhanced Cluster Identification and Interpretation Pipeline

Where DM(xi) is the Mahalanobis Distance of the data point xi ∈ Rm from
the dataset X with mean µ = [µ1, µ2, µ3, . . . , µm] and (non-singular) covariance
matrix S which is defined as:

DM(xi) =
√

(xi − µ)TS−1(xi − µ) (7.2)

It is a multi-dimensional generalization of the idea of measuring how many standard
deviations away xi is from the mean of dataset. Thus, we take to account the
DM as a noise measure.

Then, due to the second set of roles, we compute the upper bound as follows:

Bu = max(2m+DM .log(n), ApplicationTask) (7.3)

As a result, we define the minPts search space as follow:

SSminPts = bBl, Bue (7.4)

Epsilon (eps/ε) We can subsequently determine the eps search space. We use the
leveraging of the elbow technique [81] to automatically determine the search space
of the eps value. We calculate the average distance between each point and its k
nearest neighbors, where k ∈ {Bl, Bu}, see Equation 7.4. Next, we plot the average
k-distances in ascending order on a k-distance graph for each k individually. Then
we use the Kneedle [83] technique to find the relatively optimal values for eps at
the point where each graph has the maximum curvature, see section 3.1.3.1. As a
result, we can define the eps search space as follow:

SSε = [Kneedle(Bl), Kneedle(Bu)] (7.5)

7.2.1.2 Search Method

We use the grid search to find the optimal hyperparameter configuration over the
previously defined search space since it is simple to implement, its parallelization
is trivial, and it is reliable on low dimensional spaces (e.g., 1d, 2d). Grid Search
guarantees the detection of the best hyperparameters.

With this technique, we simply build a grid with each possible combination of all
the hyperparameter values provided, calculating the score (mean Silhouette) of each
DBSCAN model, to evaluate it, and then selecting the model that gives the best results.

First of all, we cast the problem as an optimization problem:

λ∗ = argmax
λ∈Λ

Ψ(λ) (7.6)

127

7. Enhanced Cluster Identification and Interpretation Pipeline

Where Λ denotes all hyperparameters configuration on previously defined search
space, and Ψ is the hyperparameter response function for DBSCANi which is the
one obtained after choosing λi. We have to select two parameters, that is, λi =
(minPtsi, εi) where ∀minPtsi ∈ {Z ∧ SSminPts} and ∀εi ∈ {R ∧ SSε}.

We call Ψ(λ) the response surface over λ ∈ Λ since it is 2D search space. Then
we choose the number (S) of trial points Λ = {λ1, . . . , λS} , to evaluate Ψ(λ) for
each one, and return the λi that worked the best as λ∗. This strategy is made
explicit by Equation 7.6.

To choose the set of trials Λ, we use a combination of grid search and manual search,
as well as scikits.learn 1 machine learning software packages. As a result, the grid
search requires that we choose a set of values for each variable minPts and ε. For the
minPts, we choose each integer value belongs to the SSminPts. For the ε, we slice the
entire SSε interval into ξ sub-interval where ξ is manually set, and ξ > 10 works well.

Furthermore, the grid search can get extremely time consuming if the number
of possible hyperparameters is large. Therefore, after trying a range of values,
we can fine-tune by taking the best-performing hyperparameters and starting a
new search centered on them.

7.2.1.3 Evaluation Method

The grid search would train the DBSCAN model with each hyperparameter configura-
tion and output the configuration that achieved the highest score in the evaluation
method defined in Equation 7.6.

7.2.2 Evaluation Metrics

We use the computationally abridged version of Silhouette [274] to evaluate the
clustering result. Our version of Silhouette adopts a similar approach as that of
the original Silhouette, but abridged the distance of a data point to a cluster from
the average distance of xi to all (other) data points in a cluster to the distance to
the centroid of the cluster as follows:

a∗(xi) = dE(xi, Ch) (7.7)

b∗(xi) = min
h6=l

(dE(xi, Cl)) (7.8)

And the abridged Silhouette value for a single data point SI(xi) is defined as:
1http://scikit-learn.sourceforge.net

128

7. Enhanced Cluster Identification and Interpretation Pipeline

SI(xi) = b∗(xi)− a∗(xi)
max∗(b(xi), a∗(xi))

(7.9)

In the same way, the abridged Silhouette value for a full clustering SI is defined as:

SI = 1
n

∑
i∈X

SI(xi) (7.10)

The abridged Silhouette value also ranges in [−1, 1]. -1 shows a very bad clustering,
while 1 shows a perfect clustering. As a result, the overall complexity of the
computation of Silhouette is estimated as O(mn2), while that of abridged Silhouette
is estimated as O(qmn). When the number of clusters q is much smaller than n,
Silhouette that is much more computationally expensive than abridged Silhouette.

7.2.3 Components Interaction

Figure 7.3 shows the ECII pipeline architecture. Pipeline orchestration tools, includ-
ing MLflow2, Scikit-Learn3, Scikit-Optimize4, and Docker5, are the foundation for
executing our tasks. Besides the orchestration tools, we need a data store to keep
track of the intermediate pipeline results. The individual components communicate
with the data store to receive their inputs, and they return the results to the data
store. These results can then be inputs to the following tasks. ECII provides the layer
that combines all of these tools, and it provides a variety of pipeline components to
enhance the density-based cluster analysis. The following components are available:

Figure 7.3: ECII pipeline architecture.

2https://mlflow.org/
3https://scikit-learn.org/
4https://scikit-optimize.github.io/
5https://www.docker.com/

129

7. Enhanced Cluster Identification and Interpretation Pipeline

Data Retrieval In this step of our pipeline, we read data files (e.g., csv pikelet xlsx)
or parse the data from an external sources (e.g., prv) to ingest data into our machine
learning pipelines. Before passing the ingested dataset to the next component, we
convert the datasets into Pandas data-frame and then normalize the available data.

The data-retrieval component can ingest a few data structures, including comma-
separated value files (CSVs), excel spreed sheets, and python pikelet. Datasets
for performance data or trace files are often stored in PRV files. ECII provides
functionality to read and convert these files to data-frame data structures.

Data Preparation One major aspect of our ECII pipeline is focusing on consistent
preprocessing. As shown in Figure 7.3, the data preparation takes place after data-
retrieval. Scikit-learn Pipeline enables us to chain multiple estimator into one. This
is useful as there is often a fixed sequence of steps in processing the data, for example
data wrangling, feature selection, and transformation.

Data Wrangling The data we use to train our machine learning models can be
provided in formats our models can’t consume. For example, a feature we want to
use to train our model is available only as Yes and No tags, and our machine learning
model requires a numerical representation of these values (e.g., 1 and 0). In this step,
we convert features into consistent numerical representations so that our machine
learning model can be trained with the numerical representations of the features.

Feature Selection Next, we use our unsupervised approach for feature selection
on noisy data, called Robust Independent Feature Selection (RIFS), see Chapter
4. Specifically, we choose a feature subset that contains most of the underlying
information, using the same criteria as the Independent component analysis (ICA).
Simultaneously, the noise is separated as an independent component. The isolation of
representative noise samples is achieved using factor oblique rotation whereas noise
identification is performed using factor pattern loading. Our unsupervised RIFS
approach has an explicit mechanism for detaching and isolating the noise thus it
can produce an optimal feature subset. On the other hand, almost all traditional
unsupervised feature selection methods are not robust against the noise in samples.

Density Homogenization Then, we use our new Feature Space Curvature
Map technique (FSCM) which is a parametric multilinear transformation method to
homogenize cluster densities while preserving the topological structure of the dataset,
see Chapter 5. The transformed clusters have approximately the same density while
all inter-cluster regions become globally low-density. In our method, the feature space

130

7. Enhanced Cluster Identification and Interpretation Pipeline

is locally bent by dense data point concentrations the same way as stars bend the
space-time dimensions in the Theory of Relativity. We present a new Gravitational
Self-organizing Map to model the feature space curvature by plugging the concepts of
gravity and fabric of space into the Self-organizing Map algorithm to mathematically
describe the density structure of the data. To homogenize the cluster’s density, we
introduce a novel mapping mechanism to project the data from a non-Euclidean
curved space to a new Euclidean flat space. Specifically, this mechanism transfers the
basis vectors instead of the feature vectors to guarantee the continuity of the mapping
function and optimize the computation cost of the algorithm. As a result, our method
can efficiently and explicitly homogenize the density of any dataset globally to then
apply existing clustering algorithms without modification.

Clustering Modeling Now that the data preprocessing step is complete and the
data has been transformed into the format that our model requires, the next step
in our pipeline is to train the model with the freshly transformed data.

This ensures that all the data needed by the model is present and that it has
been reproducibly transformed into the features that the model requires. All of
these are necessary because we don’t want the pipeline to fail at our next step. We
want to ensure that the training proceeds smoothly because it is often the most
time-consuming part of the entire pipeline.

One very important feature of training a model in our pipeline is that the data
preprocessing steps that we discussed in the previous section are saved along with
the trained model weights. This is incredibly useful once our model is evaluated
because it means that the preprocessing steps will always produce the features the
model is expecting. Without this feature, it would be possible to update the data
preprocessing steps without updating the model, and then the model would fail or
the extracted insight would be based on the wrong data.

The initial cluster algorithm used was a K-means-like algorithm. As we explained
in Chapter 3, K-means-like algorithms always suppose a Gaussian model of the data.
However, the performance hardware counters data is not distributed following this
Gaussian model so the results obtained were not satisfactory. Finally, we selected
DBSCAN as the representative of density-based clustering due to its no assumption
of the underlying model. Even hierarchical clustering also shares this property
with density-based clustering, we discarded it due to the difficulty to manipulate
dendrograms with a high number of points.

131

7. Enhanced Cluster Identification and Interpretation Pipeline

Model Tuning Hyperparameter tuning is an important part of achieving an
accurate machine learning model. Depending on the use case, it may be something
that we do during our initial experiments or it may be something we want to include
in our pipeline as we did in our ECII pipeline.

We use the grid search as hyperparameter search approaches, see Section 7.2.1.
In grid search, every combination of parameters is tried exhaustively.

Scikit-Optimize, or skopt for short, is an open-source Python library for performing
optimization tasks. It offers efficient optimization algorithms, such as Grid search, and
can be used to find the minimum or maximum of arbitrary cost functions. In addition
to grid search, both of these packages support Bayesian search and the Hyperband
algorithm. We use the leveraging of this library to tune our clustering models.

Importantly, the library provides support for tuning the hyperparameters of
machine learning algorithms offered by the scikit-learn library, so-called hyperpa-
rameter optimization. As such, it offers an efficient alternative to less efficient
hyperparameter optimization procedures.

Interpreting Each cluster has a unique shape that comes out of metrics on data,
which can represent the organization of categorized data mathematically. Accordingly,
we proposed a novel topological-based method to study potentially complex high-
dimensional categorized data by quantifying their shapes and extracting fine-grain
insights about them to interpret the clustering result. We introduce our Organization
Component Analysis method for the automatic arbitrary cluster-shape study without
an assumption about the data distribution. Our method explores a topology-preserving
map of a data cluster manifold to extract the main organizational structure of a cluster
by leveraging the self-organizing map technique. To do this, we represent the self-
organizing map as a graph. We introduce organization components to geometrically
describe the shape of clusters and their endogenous phenomena. Specifically, we
propose an innovative way to measure the alignment between two sequences of
momentum changes on the geodesic path over the embedded graph to quantify the
extent to which the feature is related to a given component. As a result, we can
describe variability among stratified data, correlated features in terms of the lower
number of organization components.

Pipeline Orchestration We orchestrate our pipelines with Sklearn pipeline. De-
veloping pipeline today requires so much more than writing code. Multiple languages,
frameworks, architectures, and discontinuous interfaces between tools for each life-
cycle stage create enormous complexity. We use Docker to simplify and accelerate the
workflow. Sklearn pipeline with Docker containers enable us to use Docker images as

132

7. Enhanced Cluster Identification and Interpretation Pipeline

the execution environment for a single Stage or the entire Pipeline. Our orchestration
approach takes care of the coordination between the pipeline components. Then, we
use MLflow to make packing Sklearn models efficiently.

We will likely need to write our own Dockerfile if our model has dependencies
that can’t be included by MLflow’s docker build script. The run script should start
the MLflow model service on the artifact from the previous step.

7.3 Practical Uses to Application Analysis

In this section, we evaluate the performance of the GROMACS application executed
on the MareNostrum6 4 to demonstrate the value of our ECII framework and especially
the FSCM mechanism presented in this thesis. Our framework can point out the nature
of the fine-grain performance bottlenecks and their root causes. This analysis enables
the analyst to understand the the computation structure and the characteristics of the
application. Moreover, this information guides the analyst to apply the modifications
to correct the inefficiencies and improve the overall performance.

7.3.1 GROMACS

GROMACS 7 is an engine to perform molecular dynamics simulations and energy
minimization. These are two of the many techniques that belong to the realm of
computational chemistry and molecular modeling [135]. In our experiments, the
application ran with 64 MPI tasks and we obtained a trace (application data)
comprising just five full iterations.

7.3.2 Computation Bursts and Enhanced Cluster Analysis

To characterize parallel applications structure, the computation bursts are the
minimum analysis abstraction used in our analyses. In [73] they define a computation
burst, also named CPU burst or simply burst, as the sequential region of the application
between communications primitives or calls to a given parallel runtime. This definition
is based on the dichotomy that a parallel application can only be performing a parallel
primitive or processing data, i.e. computing.

We use the ECII pipeline to group the fine-grain CPU bursts’ behavioral trends
exhibited along with the application execution. The processor performance hardware
counters represent the most interesting piece of information when analyzing the
CPU bursts behavior as they provide a unique insight into the CPU performance

6https://www.bsc.es/marenostrum/marenostrum
7http: //www.gromacs.org

133

7. Enhanced Cluster Identification and Interpretation Pipeline

at a very fine grain. As a result, we associate each burst with a feature vector
of different performance data.

Then we highlight the usefulness of ECII pipeline to ease the characterization
of a message-passing parallel application and the ability to detect the finer grain
behavior structure in contrast to the existing techniques.

7.3.3 Application Analyses

The analyst/developer has to give thought to lots of different information to analyze
a parallel application. For example, Figure 7.4 presents the time-lines of five
performances obtained for the GROMACS application executed with 64 tasks. We
show the metrics Million of Instructions per Second (MIPS), Instructions per Cycle
(IPC), Level I (L1D) data cache misses ratio, and Level II (L2D) data cache misses
ratio in timeline 7.4a, 7.4b, 7.4c, and 7.4d respectively since the X − axis is the time,
the Y − axis are the application tasks on each time-line, and the color is a gradient
from green to blue expressing the magnitude of the given metric.

The timelines illustrate a structural pattern includes a series of one wide regular
phases followed by nine relatively smaller regions which are followed by small and
imbalanced phases (in dark blue on 7.4a and 7.4b). The structural pattern repeats
five times. As a result, we could deduce form this pattern that we are observing five
iterations of the main loop and nine iteration of the nested loop typically observed
in the message-passing applications.

We could use the cluster analysis to draw different conclusions. In [73] they applied
DBSCAN to group the CPU bursts characterized. However, they manually selected the
appropriate feature subset and tune the DBSCAN algorithm hyper-parameter. They
present the subset of hardware counters includes Completed Instructions combined
with Instructions per Cycle (IPC) can represent a useful way to determine the
application structure.

Regarding the DBSCAN hyper-parameter, in [73], they suggest that choosing a
quarter of the total tasks the application as the default value of minPts produces the
best results in 2-dimensional clustering. Furthermore, they use a histogram with the
sorted k-neighbour distance, being k the desired value of minPts. Then this distance
is sorted (descending) and plotted. The histogram will show a descending curve. They
select as the lower bound of eps, the distance value of the elbow point in the curve,
and the distance of the point with the second maximum sorted k-distance as the
upper bound of eps. In this example, the minPts equals to 16 (ApplicationTasks/4)
and the eps values range is [0.0086, 0.0380] by applying their approach.

Figure 7.5 illustrates the computed search space by the existing approach to
tuning the DBSCAN hyper-parameter. Plot 7.5a draws a sorted k-dist graph as

134

7. Enhanced Cluster Identification and Interpretation Pipeline

(a) Millions of instructions per second (MIPS)

(b) Instructions per cycle (IPC)

(c) Level I data cache misses per 103 instructions.

(d) Level II data cache misses per 103 instructions.

Figure 7.4: Time-lines of different performance hardware counter metrics of GROMACS
application executed with 64 tasks.

the blue curve, and the two black doted-lines show the eps lower and upper bound,
and the red arrow indicates the eps target interval. Plot 7.5b presents the hyper-
parameter search space. Technically, it is a 1D grid search space since it represents
a single minPts value. Then, we use an exhaustive grid search to find the optimal
eps values through the search space.

Figure 7.6 presents a cluster analysis using a restrictive (small) value of eps (0.0086)
and minPts of 16. A small eps value means that the radius of search of the algorithm
is shorter, and indeed restrictive, so the results will be a big number of clusters, more

135

7. Enhanced Cluster Identification and Interpretation Pipeline

(a) The sorted 16-dist graph. (b) The hyper-parameters search space

Figure 7.5: The existing approach to tune the DBSCAN hyper-parameters [73]. (a) The
sorted 16-dist graph was obtained from the GROMACS application. The blue dots represent
the distance to the 16th nearest neighbor for each point in the dataset. We use it to compute
the different eps values. (b) The search space to select the optimal eps value.

(a) Discovered clusters using a restrictive eps.

(b) The hyper-parameters search space

Figure 7.6: Cluster analysis of GROMACS application using DBSCAN clustering algorithm
over Completed Instructions and IPC. Due to the use of a restrictive eps (lower bound)
value, the detected structure is noisy.

136

7. Enhanced Cluster Identification and Interpretation Pipeline

compact/dense, and more noise points, as it can be seen in plot 7.6a. In terms of
the structure detected, the computation regions each cluster represents will be highly
detailed, showing internal behaviors that do not always reflect clear stages in the
application execution. As an example, Figure 7.6b shows the timeline containing the
clusters detected by DBSCAN. In this Figure, the X−axis of the time-lines is the time
and the Y − axis represents the tasks involved in the parallel application execution,
and the color indicates the cluster identifier assigned to each CPU burst. The timelines
contain five iterations of the application as well. On each iteration we see an initial
SPMD phase yellow and successive nine smaller phases green clearly detected while the
last part of each iteration does not present the regular SPMD structure we expected.

(a) Discovered clusters using a less restrictive
eps.

(b) Distribution of clusters in the time-line

Figure 7.7: A second cluster analysis of GROMACS application using the DBSCAN cluster
algorithm over Completed Instructions and IPC. Selecting a higher value of eps by Grid
search produces a coarser grain detection, showing an SPMD structure.

On the other hand, the cluster analysis of Figure 7.7 presents the optimal value of
the eps which we compute by using an exhaustive grid search through the previously
computed search space. Using a selected eps value, 0.037, and the same value for
minPts, 16, we obtain a small number of clusters, that aggregate more number of points
each, see Figure 7.7a. In this case, the time-line 7.7b shows the detected application
structure at a coarser granularity, and the typical SPMD structure appears.

137

7. Enhanced Cluster Identification and Interpretation Pipeline

7.3.3.1 Hyper-parameter Tuning

To illustrate the efficiency of our hyper-parameter tuning mechanism, see section
7.2.1, we apply our hyper-parameter tuning approach to improve the clustering
result by using the same feature space includes Completed Instructions combined
with Instructions per Cycle (IPC).

(a) The sorted 4-dist and 64-dist graph. (b) The hyper-parameters search space

Figure 7.8: Our ECII approach to tune the DBSCAN hyper-parameters over the Completed
Instruction and IPC. (a) The sorted 4-dist and 64-dist graph was obtained from the
GROMACS application. The blue and red curve represent the distance to the 4th and
64th nearest neighbor for each point in the dataset. We use it to compute the different
configuration of the eps and minPts values. (b) The hyper-parameters search space to select
the optimal eps value which is a 2D gird.

Figure 7.8 illustrates the computed search space by ECII hyper-parameter tuning
mechanism. It computes [4, 64] as minPts targeted search space through Equation
7.4. Plot 7.8a draws a sorted 4-dist and 64-dist graph as the blue and red curves,
and the two black doted-lines show the eps lower and upper bound through Equation
7.5, and the red arrow indicates the eps target interval. Plot 7.8b present the entire
hyper-parameter search space. As a result, it is a 2D grid search space.

Then, we use an exhaustive grid search to find the optimal eps and minPts values
through the search space. Figure 7.9 shows the result of the grid search. The optimal
minPts and eps are 4 and 0.0165 respectively.

In Figure 7.10a we present the results obtained by applying DBSCAN with the
parameters minPts = 16 and eps = 0.037 with just tuned eps. We can see in the
plot that two clouds inside the black box have been detected as single cluster. To

138

7. Enhanced Cluster Identification and Interpretation Pipeline

Figure 7.9: The result of our ECII approach to tune the DBSCAN hyper-parameters
over the Completed Instruction and IPC. The X − axis, Y − axis, and Z − axis represent
the eps, minPts, and Average Silhouette Width values respectively. The red dashed cycle
indicates the optimal hyper-parameter configuration.

capture the variability of the cloud inside the box we use the optimal configuration of
the both hyper-parameters minPts = 4 and eps = 0.0165. The results of using this
minPts and eps are contained in Figure 7.10b. We can see in the scatter plot that this
single cloud of the previous analysis now is detected as two distinguished Clusters
9 (light green) and 10 (black). Unfortunately, the optimal parameter configuration
provokes a loss-aggregation of the cloud in the blue box. Looking at the time-line
7.10c, we confirm these observations: in the initial section of the fourth iteration,
which indicated by number 2 in the time-line, we can see an SPMD region represented
by the Cluster 11 (black), while in the other four iterations an almost two times
thinner SPMD region represented by the Cluster 10 (light green) at the same position
in the sequence, e.g. see number 1 in the time-line.

7.3.3.2 Feature Selection

A common problem when using clustering algorithms is related to the dimensionality
of the data. With the performance counters data, we have up to 8 different counters
for each CPU burst and several derived metrics with “physical” meaning to the
analyst. Throughout this dissertation, we call the counters and derived metrics the

139

7. Enhanced Cluster Identification and Interpretation Pipeline

(a) Only selected optimal eps. (b) Selected optimal minPts & eps

(c) Clusters time-line distribution

Figure 7.10: Computation structure detection of GROMACS application by applying
DBSCAN cluster algorithm with and without the hyper-parameters tuning over the
Completed Instruction and IPC.

features. Table 7.1 presents the GROMACS application performance feature set.
Our proposal to address this problem is to reduce the dimensionality by selecting
features. In our ECII pipeline, we use our RIFS method, see section 4, to select a
subset of relevant features for building the DBSCAN model.

We apply our RIFS feature selection approach to improve the clustering results
on the GROMACS application by selecting the most two relevant features over
the feature set. As a result, it finds the Completed Instruction and L1_Rat as
the most relevant feature subset.

In Figure 7.11 we present the results obtained by applying DBSCAN, from the
previous section, over Completed Instructions and IPC, and its view over Completed

140

7. Enhanced Cluster Identification and Interpretation Pipeline

Table 7.1: The GROMACS Application Performance Counters Data.

Feature Description Type Category
PAPI_TOT_INS Completed Instructions int Native
PAPI_TOT_CYC Total cycles int Native
PAPI_L1_DCM L1D cache misses int Native
PAPI_L2_DCM L2D cache misses int Native
PAPI_BR_MSP Branch Misprediction int Native
PAPI_BR_INS Branches int Native
R_STALLS:SB SB full stall cycles int Native
R_STALLS:ROB ROB full stall cycles int Native
IPC PAPI_TOT_INS/PAPI_TOT_CYC float Derived
Locality_L1 PAPI_TOT_INS/PAPI_L1_DCM float Derived
Locality_L2 PAPI_L1_DCM/PAPI_L2_DCM float Derived
L1_Rat PAPI_L1_DCM/API_TOT_INS float Derived
L2_Rat PAPI_L2_DCM/API_TOT_INS float Derived
BRMSP_Rat PAPI_BR_MSP/API_TOT_INS float Derived
BRINS_Rat PAPI_BR_INS/API_TOT_INS float Derived

Instructions and L1_Rat which are selected by applying RIFS algorithm. We can
see in the Figure 7.11a that the cloud inside the black and blue box can be detected
as four and two different clusters respectively by changing the feature space (view),
see Figure 7.11b. On the other hand, the cloud inside the red box contains two
Clusters, 4 (dark green) and 9 (light blue), which could be merged as a single cluster.
Furthermore, by observing the computation structure these clusters provide in time-
line 7.10c, we detect that the clusters contained in the red box reflect pure SPMD
regions at the end of each iteration, while it is detected as two separated clusters
which is not reflecting the actual SPMD behavior.

Next, we apply the clustering in 2D selected feature space with the tuned hyper-
parameters minPts = 4 and eps = 0.0106. As a result, we obtain the results depicted
in Figure 7.12. We can see in the plot how the feature selection step enhances the
cluster identification process. It identifies four and two different clusters the clouds
present in the black and blue box in 7.11b respectively. It also identifies the cloud
inside the red box as a single cluster.

In Figure 7.13 we present the fine-grain computation structure detection of
the GROMACS application, using the DBSCAN cluster algorithm over Completed
Instructions and L1_Rat. Observing the computation structure of these clusters
provide by time-lines 7.13, we detect that the clusters 3 (red) and 5 (purple) presented
in the time-line 7.13a reflects SPMD regions at the beginning of each internal repetitive
region (light green). However, by looking at the time-line 7.13b, we can see that
the two clusters of the previous experiment represent six different SPMD phases

141

7. Enhanced Cluster Identification and Interpretation Pipeline

(a) Discovered clusters over Completed
Instructions and IPC.

(b) A view of the plot (a) over Completed
Instructions and L1_Rat.

Figure 7.11: Clustering scatter plot of GROMACS application using clustering algorithm
over Completed Instructions and IPC (a), and its view over Completed Instructions and
L1_Rat (b). The blue and black boxes highlight clouds of points that can be divided into
isolated groups, and the red box highlight the clouds of points that can be detected as an
isolated group by changing the feature subset. Note that the coloring is identical.

Figure 7.12: Clustering scatter plot of GROMACS application by using the DBSCAN
cluster algorithm result over Completed Instructions and L1_Rat with the parameters
minPts = 4 and eps = 0.0106.

including Cluster 3 (red), Cluster 8 (orange), Cluster 5 (purple), Cluster 10 (olive
green), Cluster 11 (black), and Cluster 13 (green) in the significantly different range

142

7. Enhanced Cluster Identification and Interpretation Pipeline

(a) Clusters time-line distribution of the first iteration over Completed Instructions and IPC.

(b) Clusters time-line distribution of the first iteration over Completed Instructions and L1_Rat.

(c) Clusters time-line distribution of the first iter-
ation’s initial section over Completed Instructions
and IPC.

(d) Clusters time-line distribution of the fourth
iteration’s initial section over Completed Instruc-
tions and IPC.

(e) Clusters time-line distribution of the first iter-
ation’s initial section over Completed Instructions
and L1_Rat.

(f) Clusters time-line distribution of the fourth
iteration’s initial section over Completed Instruc-
tions and L1_Rat.

Figure 7.13: Computation structure detection of the GROMACS application, using
DBSCAN cluster algorithm over Completed Instructions and L1_Rat with the parameters
minPts = 4 and eps = 0.0106.

of L1_Rat. Furthermore, by comparing the time-lines 7.13e with 7.13f, we can find
Cluster 11 (black) and Cluster 13 (green) also appear in the same range of L1_Rat,
but have not been merged. Finally, we see that Cluster 4 (green) detects a clear
SPMD phase since it appears in the same range of L1_Rat. We can see that the
appropriate feature subset can enhance DBSCAN to select finer grain clusters.

7.3.3.3 Density Homogenization

Afterward, we tackle the failure of DBSCAN to find clusters of varied densities by
applying our FSCM algorithm to homogenize the data density.

In Figure 7.14, we compare the DBSCAN clustering quality on original GROMACS
performance data and its transformation due to FSCM. It shows that the transformed
dataset is stratified more efficiently than the original data by DBSCAN. Plot(a) shows
the previous section’s DBSCAN clustering result over the Completed Instructions

143

7. Enhanced Cluster Identification and Interpretation Pipeline

(a) Previous clustering result (b) Initial state of FSC

(c) Curved state of FSC (d) Projected data by FSCM

(e) Dbscan (minPts = 4, eps =
0.0106), projected space

(f) Dbscan (minPts = 4, eps = 0.0106),
original space

Figure 7.14: Application of the FSCM on the GROMACS application, and using the
DBSCAN cluster algorithm over Completed Instructions and L1_Rat on projected new
feature space.

144

7. Enhanced Cluster Identification and Interpretation Pipeline

and L1_Rat. As shown in plot (a), DBSCAN identified 14 clusters since we observed
varied densities in the data. Plots (b) and (c) show the original data scatter plots with
the embedded FSC initial state and curved state computed by FSCM respectively.
Plot (d) presents the result of the FSCM’s bilinear transformation mechanism. As we
can see that the cloud of points at the top of the plot gets sparser, while the other
data clouds are more separated from each other. Consequently, Cluster 2 (yellow),
see the black box in the plot (a), is identified as two clusters Cluster 2 (yellow) and
Cluster 3 (red), see the black box in the plot (e). As a result, DBSCAN identified a
new distinct cluster by applying a single density threshold, as shown in plot (f).

(a) Scatter-plot of discovered clusters (b)

(b) Clusters time-line distribution

(c) Completed Instruction time-line distribution

Figure 7.15: Computation structure detection of GROMACS application by applying
DBSCAN (minPts = 4, eps = 0.0106) clustering algorithm over Completed Instructions
and L1_Rat on the FSCM’s homogenized feature space.

In Figure 7.15 we present the finer grain computation structure detection of the
GROMACS application by applying the FSCM method, and then using the DBSCAN

145

7. Enhanced Cluster Identification and Interpretation Pipeline

cluster algorithm over Completed Instructions and L1_Rat. In plot 7.15a, we can
see that the Cluster 2 (yellow) of the previous experiment represents two different
SPMD phases including Cluster 2 (yellow) and Cluster 3 (red), in the significantly
different range of Completed Instruction, see Figure 7.15c. Observing the computation
structure of these clusters provided by time-lines 7.15b, we detect that the Cluster
3 (red) presented reflects the SPMD region at the beginning of the fourth internal,
while clusters 2 (yellow) represent the initial regions of the other iteration.

7.3.3.4 Extracting Insight

Through this point, we enhanced the cluster analysis by tuning hyper-parameters,
using appropriate active features, and homogenizing the density to determine the
fine-grain application structure. As a result, we stratified fifteen distinct clusters in
different shapes. One can then ask the question, whether each cluster represents a
distinct phase of the application why they show heterogeneous performance behavior.

To answer this question, we conduct the OCA method on each cluster to detect
the HPC systems bottleneck that can describe the variability among stratified data.
In the all conducted experiment, OCA achieves more than 95% topology preservation
on average, which shows strong mapping quality.

In Table 7.2, we present the computed Directional Sequence Similarity (DSS)
for Cluster 1 to Cluster 5. Those clusters approximately represent the 89% of the
application execution time. As an example, in case of Cluster 1, the main performance
issue could be caused by poor cache usage, as the first organization component exhibits
a high DSS value between the Completed Instruction and Locality_L2 (55%). The
second organization component exhibits a very high DSS with the Locality_L1 (81%).

Figure 7.16, shows two histograms of the L1_Rat (a) and Locality_L2 (b) of
Cluster 1. The X − axis represents duration bins, the Y − axis represents processes,
and cells with values indicate that there are computations in the program of that given
duration. The color represents the L1_Rat. Locality_L2 for those computations
in the plot (a) and plot (b) respectively. As we can see those histograms present
significantly similar patterns. As a result, we can conclude that the performance
effect of Locality_l1 and Locality_L2 has become the main concern when following
the OC1 and OC2 trajectory path. The main performance problem can likely be
the L1 and L2 relational capacity. These observations present a useful starting
point for the analyst/developer to study what is causing these potential memory
problems and improve the regions detected.

146

7.
Enhanced

C
luster

Identification
and

Interpretation
Pipeline

Table 7.2: Application of OCA to GROMACS performance counter data cluster 1 to cluster 5, the feature influencing in the first and second
Organization Components.

Organization Component 1 Organization Component 2
Feature Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

IPC 0.40 0.37 0.56 0.11 0.10 0.18 0.53 0.26 0.10 0.11
PAPI_L1_DCM 0.49 0.38 0.44 0.39 0.21 0.32 0.23 0.21 0.37 0.31
PAPI_L2_DCM 0.18 0.33 0.28 0.37 0.36 0.23 0.44 0.13 0.33 0.32
PAPI_BR_MSP 0.20 0.09 0.11 0.47 0.34 0.12 0.14 0.28 0.07 0.05
PAPI_BR_INS 0.07 0.35 0.31 0.29 0.17 0.05 0.40 0.31 0.20 0.17
R_STALLS:SB 0.05 0.18 0.09 0.01 0.09 0.04 0.19 0.03 0.01 0.08
R_STALLS:ROB 0.16 0.24 0.13 0.01 0.11 0.13 0.24 0.06 0.02 0.31
PAPI_TOT_CYC 0.17 0.15 0.19 0.31 0.27 0.11 0.20 0.17 0.33 0.13
Locality_L1 0.42 0.32 0.08 0.15 0.14 0.81 0.07 0.17 0.50 0.20
Locality_L2 0.55 0.51 0.35 0.12 0.15 0.46 0.26 0.42 0.10 0.34
L2_Rat 0.14 0.26 0.22 0.14 0.20 0.10 0.23 0.20 0.12 0.46
BRMSP_Rat 0.12 0.08 0.09 0.40 0.18 0.12 0.09 0.36 0.05 0.06
BRINS_Rat 0.14 0.10 0.41 0.06 0.43 0.11 0.12 0.31 0.05 0.15

147

7. Enhanced Cluster Identification and Interpretation Pipeline

(a) Histograms of L1_Rat.

(b) Histograms of Locality_L2.

Figure 7.16: Histograms of Locality_L2 and L1_Rat for Cluster 1 in GROMACS
application. The patterns of both metrics are almost identical.

148

8
Conclusion

Contents
8.1 Feature Selection for Noisy Data 149
8.2 Extracting Insights from the Shape of Cluster 150
8.3 Homogenizing the Clusters Density 150
8.4 Enhanced Cluster Identification and Interpretation Pipeline151
8.5 Future Work . 152

Previous chapters of this thesis have presented and demonstrated the usefulness
of the main contribution of this thesis: the ECII clustering pipeline and its novel
components. We presented the research we conducted using a machine learning
pipeline to enhance the cluster analysis producer, and particularly in the parallel
performance analysis scenario. As contributions to the machine learning area, we
proposed and validated new feature selection technique for the noisy data, a multi-linear
transformation to homogenize the cluster density, and a novel approach to extract
insight from the clustering result. We also demonstrated the utility of the techniques
introduced by using them to perform clustering analyses of parallel applications.

8.1 Feature Selection for Noisy Data

This thesis has presented a new robust unsupervised feature selection approach called,
Robust Independent Feature Selection (RIFS). We propose to make the best use of
the independent components structure of a set of features, which is defined on the
mixing matrix, both to select the feature subset and to decouple the noise as a
latent independent source, simultaneously. Thus, RIFS isolates the noise by rotating

149

8. Conclusion

the mixing matrix obliquely. When we have compared our RIFS method with two
state-of-the-art methods, namely, Laplacian Score and Max Variance, the empirical
results on different real world data sets validate that the proposed method obtains
considerably higher effectiveness for both clustering and classification. Our proposed
RIFS algorithm performs well on original data and it is strongly resists noises.

8.2 Extracting Insights from the Shape of Cluster

We have presented a new topology-preserving approach to study the complex and
arbitrary shape of the stratified data called Organization Component Analysis (OCA).
We propose to make the best use of the self-organizing map structure of a high
dimensional categorized data, which is defined on the 2D grid of neurons, both to
recognize and quantify innate cluster structure and its formation, simultaneously.
Whereas cluster analysis identifies regions of higher density in these data, OCA
is able to extract finer-grain insights from the shape of a cluster, as it is clearly
demonstrated in this article. Here OCA is a general and an efficient method that is
assumption free, automated, and it can be applied on the result of any clustering
algorithm. Moreover, OCA creates a graph to visualize the shape of these clusters
by way of a graph. Furthermore, we propose a novel Directional Sequence Similarity
method to compute the similarity between two sequences of changes, in which the
rate of change is taken along a unit vector. Finally, we have shown that our novel
topology-preserving approach can lead to finer and profounder insights of two real-
world datasets. The usefulness of our OCA technique is not closed to these two types
of applications but can generally be applied to diverse data types, such as time series,
image segmentation, consumer behavior data and others.

8.3 Homogenizing the Clusters Density

Furthermore, we have presented a new topological Feature Space Curvature Map
(FSCM) method to homogenize the density of data to overcome the weakness of
density-based clustering algorithms in finding clusters of varied densities. Our FSCM
involves two steps: Feature Space Curvature modeling and Curvature Mapping to
non-linearly project a multi-dimensional dataset. In analogy to Relativity Theory,
we assume an m-dimensional feature space as an elastic Feature Space Fabric (FSF)
which is bent when data points are placed in it depending on their density. Therefore,
the massive data clouds wrap the FSC intensively while the sparse ones wrap it
slightly. We propose a new gravitation-based version of self-organizing map (GSOM)
to model the density structure of the data, which is defined on the m-dimensional

150

8. Conclusion

Regular Rectangular Grid (RRG) of neurons to recognize data density structure. In
consequence, GSOM guarantees the smoothness and continuity of the final FSC model
and it converges faster to a stable model than standard SOM. Then, we apply a
novel multilinear transformation to straighten out the wrapped FSC to reach a new
equidistant feature space when the data points are attached to the Feature Space Fabric.
Our parametric multilinear transformation approach projects the data points to the
new feature space, showing more uniform density among data aggregations than in the
original space. As a result, existing density-based clustering algorithms can efficiently
identify clusters within this data homogenized by FSCM, as it is clearly demonstrated
empirically in this thesis. Here FSCM is a general and an efficient preprocessing
method that is parametric, assumption free and automated that can be applied before
clustering analysis. This often leads to better not only clustering analysis results than
using original data with the advantages of being able to homogenize the density.

Finally, we have shown that our novel FSCM approach can efficiently improve
the clustering performance of three state-of-art density-based algorithms, DBSCAN,
OPTICS and DP with regard to FScore in nearly all datasets we have used in
the experiments. The usefulness of our FSCM technique is not closed to these
algorithms and datasets but can generally be applied to diverse combination of
clustering methods and dataset. In addition, FSCM surpasses both competitor CDF
transform methods ReScale and DScale since the prior just scales one-dimensional and
the latter is not included point-shifting and it doesn’t product a measurable metric
output. Moreover, FSCM is more generalized than these previously aforementioned
transform methods since it is a assumption free model-based approach permits both
potentially complex multi-density clusters and various cluster shapes. Furthermore,
FSCM enables an existing density-based algorithm to identify clusters of various
densities in a less computational cost than both ReScale and DScale methods and
has less parameter tuning than ReScale.

8.4 Enhanced Cluster Identification and Interpre-
tation Pipeline

After acquiring some expertise with the clustering analysis technique based on
the DBSCAN algorithm we detected the limitations of this algorithm. First, the
DBSCAN parameters could be a handicap for a non-expert user, and second, and more
importantly, for those inputs with different densities across the data space, the use of
a single hyper-parameter configuration limits the ability to correctly detect the actual
clusters where the dataset presents multiple densities. We proposed the Enhanced
Cluster Identification and Interpretation (ECII) Pipeline to overcome these problems.

151

8. Conclusion

ECII pipeline iteratively improves the quality of the generic DBSCAN algorithm,
using the Average Silhouette Width (ASW) Criterion to evaluate the resulting clusters
in each iteration. The proposed algorithm also takes advantage of the common
points of DBSCAN and the feature selection method. These methods basically select
the most relevant feature subset and then use the FSCM algorithm to homogenize
the density of the data as a preprocessing step. In DBSCAN, the different higher
and lower eps values applied to correspond to the higher and lower value of the
minPts is used as search space.

Then it generates a set of minPts and generates N increasingly sorted eps

values, and it applies an exhaustive grid search to look for the best hyper-parameter
configuration automatically. On each iteration it applies DBSCAN using minPts and
the corresponding eps to the input data set, evaluating the resulting clusters using
a quality score. Those individuals that belong to clusters that pass the score are
discarded in further iterations. The algorithm finishes after N iterations.

Using the ECII with the CPU burst data of a parallel application, and applying the
Average Silhouette Width to evaluate the clusters, we provide the developer/analyst
a high-quality SPMD computation structure detection with the added value that
reflects the fine grain of the computation regions. In addition, the algorithm just
requires the data set as input, but no other parameters.

8.5 Future Work

The improvement of the density-based clustering algorithms, particularly to make
them scalable to large and potentially complex datasets, has always been an interesting
topic for the clustering analysis community. The work presented here can be seen
as a first step toward developing an automated cluster analysis pipeline. There are
many ways in which this pipeline can be improved, modified for different applications,
or extended to other domains by embedding more data preprocessing steps and
using different clustering algorithms.

From the algorithmic point of view, we are working on improving the performance of
GSOM by relaxing the rigid boundary condition. We think the boundary nodes weight
vector can be updated aligned with their axes. As a result, the GSOM can extract the
finer-grain density structure of the data. We have also provided a small study to give
an insight into the effect of various distance metrics on the methods used in the study.

Furthermore, we would like to come up with a hybrid clustering approach to obtain
very detailed structure identification by giving the outer level flexibility to operate
on an approximate coarse grain euclidean space with DBSCAN and great detail on
non-homogeneous local space deformations with GSOM.

152

8. Conclusion

From the practical point of view, the proposed version of ECII pipeline has been
applied to real-life applications in several domains such as performance, machinery,
biological data, etc. We are looking for new applications and domains to apply
our purposed methods.

153

Bibliography

[1] James Brandt et al. “Quantifying effectiveness of failure prediction and response in
HPC systems: Methodology and example”. In: 2010 International Conference on
Dependable Systems and Networks Workshops (DSN-W). IEEE. 2010, pp. 2–7.

[2] Cisco bug: Csctf52095 - manually flushing os cache during load impacts server.
https://quickview.cloudapps.cisco.com/quickview/bug/CSCtf52095.
Accessed: 2017-02-07.

[3] Anthony Agelastos et al. “Toward rapid understanding of production HPC
applications and systems”. In: 2015 IEEE International Conference on Cluster
Computing. IEEE. 2015, pp. 464–473.

[4] James M Brandt et al. Enabling Advanced Operational Analysis Through
Multi-subsystem Data Integration on Trinity. Tech. rep. Sandia National
Lab.(SNL-CA), Livermore, CA (United States); Sandia National . . ., 2015.

[5] Abhinav Bhatele et al. “There goes the neighborhood: performance degradation due
to nearby jobs”. In: SC’13: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. IEEE. 2013, pp. 1–12.

[6] Matthieu Dorier et al. “CALCioM: Mitigating I/O interference in HPC systems
through cross-application coordination”. In: 2014 IEEE 28th international parallel
and distributed processing symposium. IEEE. 2014, pp. 155–164.

[7] Anthony Agelastos et al. “The lightweight distributed metric service: a scalable
infrastructure for continuous monitoring of large scale computing systems and
applications”. In: SC’14: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE. 2014,
pp. 154–165.

[8] Juan Gonzalez, Judit Gimenez, and Jesus Labarta. “Automatic detection of parallel
applications computation phases”. In: 2009 IEEE International Symposium on
Parallel & Distributed Processing. IEEE. 2009, pp. 1–11.

[9] Janos Abonyi and Balázs Feil. Cluster analysis for data mining and system
identification. Springer Science & Business Media, 2007.

[10] Martin Ester et al. “Density-based spatial clustering of applications with noise”. In:
Int. Conf. Knowledge Discovery and Data Mining. Vol. 240. 1996, p. 6.

[11] Mihael Ankerst et al. “OPTICS: Ordering points to identify the clustering
structure”. In: ACM Sigmod record 28.2 (1999), pp. 49–60.

[12] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter
optimization.” In: Journal of machine learning research 13.2 (2012).

[13] Fatima Batool and Christian Hennig. “Clustering with the average silhouette width”.
In: Computational Statistics & Data Analysis 158 (2021), p. 107190.

154

https://quickview.cloudapps.cisco.com/quickview/bug/CSCtf52095

Bibliography

[14] Kaveh Mahdavi, Jesus Labarta, and Judit Gimenez. “Unsupervised Feature
Selection for Noisy Data”. In: International Conference on Advanced Data Mining
and Applications. Springer. 2019, pp. 79–94.

[15] Kaveh Mahdavi, Jesus Labarta Mancho, and Judit Gimenez Lucas. “Organization
Component Analysis: The method for extracting insights from the shape of cluster”.
In: 2021 International Joint Conference on Neural Networks (IJCNN). IEEE. 2021,
pp. 1–10.

[16] Kaveh Mahdavi, Jesus Labarta Mancho, and Judit Gimenez Lucas. “Feature Space
Curvature Map: A Method To Homogenize The Density”. In: 2022 International
Joint Conference on Neural Networks (IJCNN). IEEE. 2022, pp. 1–10.

[17] Allen D Malony et al. “Parallel performance measurement of heterogeneous parallel
systems with gpus”. In: 2011 international conference on parallel processing. IEEE.
2011, pp. 176–185.

[18] Shirley Browne et al. “A portable programming interface for performance evaluation
on modern processors”. In: The international journal of high performance computing
applications 14.3 (2000), pp. 189–204.

[19] Dan Terpstra et al. “Collecting performance data with PAPI-C”. In: Tools for High
Performance Computing 2009. Springer, 2010, pp. 157–173.

[20] Allen D Malony et al. “An experimental approach to performance measurement of
heterogeneous parallel applications using cuda”. In: Proceedings of the 24th ACM
international Conference on Supercomputing. 2010, pp. 127–136.

[21] Ewing Lusk et al. “MPI: A message-passing interface standard”. In: International
Journal of Supercomputer Applications 8.3/4 (2009), p. 623.

[22] Susan L Graham, Peter B Kessler, and Marshall K McKusick. “Gprof: A call graph
execution profiler”. In: ACM Sigplan Notices 39.4 (2004), pp. 49–57.

[23] M Schulz et al. “Analyzing the Performance of Scientific Applications with Open|
SpeedShop”. In: Parallel Computational Fluid Dynamics: Recent Advances and
Future Directions (2010), p. 151.

[24] Laksono Adhianto et al. “HPCToolkit: Tools for performance analysis of optimized
parallel programs”. In: Concurrency and Computation: Practice and Experience 22.6
(2010), pp. 685–701.

[25] Sameer S Shende and Allen D Malony. “The TAU parallel performance system”. In:
The International Journal of High Performance Computing Applications 20.2 (2006),
pp. 287–311.

[26] Markus Geimer et al. “The Scalasca performance toolset architecture”. In:
Concurrency and computation: Practice and experience 22.6 (2010), pp. 702–719.

[27] Zoltán Szebenyi, Felix Wolf, and Brian JN Wylie. “Space-efficient time-series
call-path profiling of parallel applications”. In: Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis. 2009, pp. 1–12.

[28] Barcelona Supercomputing Center. “CEPBA-Tools. Paraver. Parallel Program
Visualization and Analysis tool Version 3.0”. In: vol. 1. 1. Citeseer. 2001.

[29] Score-P Project Homepage. http://www.score-p.org.

155

http://www.score-p.org

Bibliography

[30] Holger Brunst and Bernd Mohr. “Performance analysis of large-scale OpenMP and
hybrid MPI/OpenMP applications with Vampir NG”. In: International Workshop
on OpenMP. Springer. 2005, pp. 5–14.

[31] Dominic Eschweiler et al. “Open trace format 2: The next generation of scalable
trace formats and support libraries”. In: Applications, Tools and Techniques on the
Road to Exascale Computing. IOS Press, 2012, pp. 481–490.

[32] Andreas Knüpfer et al. “Introducing the open trace format (OTF)”. In:
International Conference on Computational Science. Springer. 2006, pp. 526–533.

[33] Michael Wagner, Andreas Knupfer, and Wolfgang E Nagel. “Enhanced encoding
techniques for the open trace format 2”. In: Procedia Computer Science 9 (2012),
pp. 1979–1987.

[34] Marty Itzkowitz et al. “Memory profiling using hardware counters”. In: Proceedings
of the 2003 ACM/IEEE conference on Supercomputing. 2003, p. 17.

[35] Nathan R Tallent et al. “Scalable fine-grained call path tracing”. In: Proceedings of
the international conference on Supercomputing. 2011, pp. 63–74.

[36] Harald Servat et al. “Detailed performance analysis using coarse grain sampling”. In:
European Conference on Parallel Processing. Springer. 2014, pp. 185–198.

[37] Gary Lakner et al. “IBM System Blue Gene Solution: Performance Analysis Tools”.
In: IBM Redpaper Publication (2008).

[38] Laksono Adhianto, John Mellor-Crummey, and Nathan R Tallent. “Effectively
presenting call path profiles of application performance”. In: 2010 39th International
Conference on Parallel Processing Workshops. IEEE. 2010, pp. 179–188.

[39] John Mellor-Crummey et al. “HPCView: A tool for top-down analysis of node
performance”. In: The Journal of Supercomputing 23.1 (2002), pp. 81–104.

[40] John Mellor-Crummey et al. HPCToolkit User’s Manual. 2012.
[41] Markus Geimer et al. “Scalable Collation and Presentation of Call-Path Profile Data

with CUBE.” In: PARCO. 2007, pp. 645–652.
[42] Robert Bell, Allen D Malony, and Sameer Shende. “Paraprof: A portable, extensible,

and scalable tool for parallel performance profile analysis”. In: European Conference
on Parallel Processing. Springer. 2003, pp. 17–26.

[43] Kevin A Huck et al. “Design and implementation of a parallel performance data
management framework”. In: 2005 International Conference on Parallel Processing
(ICPP’05). IEEE. 2005, pp. 473–482.

[44] J Mark Bull. “A hierarchical classification of overheads in parallel programs”. In:
Software Engineering for Parallel and Distributed Systems. Springer, 1996,
pp. 208–219.

[45] Felix Wolf and Bernd Mohr. “Automatic performance analysis of MPI applications
based on event traces”. In: European Conference on Parallel Processing. Springer.
2000, pp. 123–132.

[46] Felix Wolf and Bernd Mohr. “Automatic performance analysis of hybrid
MPI/OpenMP applications”. In: Journal of Systems Architecture 49.10-11 (2003),
pp. 421–439.

156

Bibliography

[47] Felix Wolf et al. “Efficient pattern search in large traces through successive
refinement”. In: European Conference on Parallel Processing. Springer. 2004,
pp. 47–54.

[48] Markus Geimer et al. “Scalable parallel trace-based performance analysis”. In:
European Parallel Virtual Machine/Message Passing Interface Users’ Group
Meeting. Springer. 2006, pp. 303–312.

[49] David Böhme et al. “Identifying the root causes of wait states in large-scale parallel
applications”. In: ACM Transactions on Parallel Computing (TOPC) 3.2 (2016),
pp. 1–24.

[50] Antonio Espinosa, Tomas Margalef, and Emilio Luque. “Automatic performance
evaluation of parallel programs”. In: Proceedings of the Sixth Euromicro Workshop
on Parallel and Distributed Processing-PDP’98-. IEEE. 1998, pp. 43–49.

[51] Josep Jorba, Tomàs Margalef, and Emilio Luque. “Performance Analysis of Parallel
Applications with KappaPI 2.” In: PARCO. Citeseer. 2005, pp. 155–162.

[52] Thomas Fahringer, Michael Gerndt, Graham Riley, et al. “Knowledge specification
for automatic performance analysis”. In: (1999).

[53] Hong-Linh Truong and Thomas Fahringer. “SCALEA: A performance analysis tool
for distributed and parallel programs”. In: European Conference on Parallel
Processing. Springer. 2002, pp. 75–85.

[54] Clovis Seragiotto et al. “On using aksum for semi-automatically searching of
performance problems in parallel and distributed programs”. In: Eleventh Euromicro
Conference on Parallel, Distributed and Network-Based Processing, 2003.
Proceedings. IEEE. 2003, pp. 385–392.

[55] Thomas Fahringer and Clovis Seragiotto. “Aksum: A performance analysis tool for
parallel and distributed applications”. In: Performance analysis and grid computing.
Springer, 2004, pp. 189–208.

[56] Barton P Miller et al. “The Paradyn parallel performance measurement tool”. In:
Computer 28.11 (1995), pp. 37–46.

[57] Philip C Roth and Barton P Miller. “On-line automated performance diagnosis on
thousands of processes”. In: Proceedings of the eleventh ACM SIGPLAN symposium
on Principles and practice of parallel programming. 2006, pp. 69–80.

[58] Michael Gerndt et al. “Performance analysis for teraflop computers: a distributed
automatic approach”. In: Proceedings 10th Euromicro Workshop on Parallel,
Distributed and Network-based Processing. IEEE. 2002, pp. 23–30.

[59] Michael Gerndt, Karl Fürlinger, and Edmond Kereku. “Periscope: Advanced
Techniques for Performance Analysis.” In: ParCo. 2005, pp. 15–26.

[60] Jeffrey K Hollingsworth, Barton Paul Miller, and Jon Cargille. “Dynamic program
instrumentation for scalable performance tools”. In: Proceedings of IEEE Scalable
High Performance Computing Conference. IEEE. 1994, pp. 841–850.

[61] Bryan Buck and Jeffrey K Hollingsworth. “An API for runtime code patching”. In:
The International Journal of High Performance Computing Applications 14.4 (2000),
pp. 317–329.

[62] Marc Casas, Rosa M Badia, and Jesus Labarta. “Automatic structure extraction
from MPI applications tracefiles”. In: European Conference on Parallel Processing.
Springer. 2007, pp. 3–12.

157

Bibliography

[63] Felix Freitag, Julita Corbalan, and Jesus Labarta. “A dynamic periodicity detector:
Application to speedup computation”. In: Proceedings 15th International Parallel
and Distributed Processing Symposium. IPDPS 2001. IEEE. 2001, 6–pp.

[64] Andreas Knüpfer et al. “Visualization of repetitive patterns in event traces”. In:
International Workshop on Applied Parallel Computing. Springer. 2006, pp. 430–439.

[65] Andreas Knüpfer and Wolfgang E Nagel. “New algorithms for performance trace
analysis based on compressed complete call graphs”. In: International Conference on
Computational Science. Springer. 2005, pp. 116–123.

[66] Oleg Y Nickolayev, Philip C Roth, and Daniel A Reed. “Real-time statistical
clustering for event trace reduction”. In: The International Journal of Supercomputer
Applications and High Performance Computing 11.2 (1997), pp. 144–159.

[67] Philip Charles Roth et al. “ETRUSCA, event trace reduction using statistical data
clustering analysis”. MA thesis. Citeseer, 1996.

[68] Dong H Ahn and Jeffrey S Vetter. “Scalable analysis techniques for microprocessor
performance counter metrics”. In: SC’02: Proceedings of the 2002 ACM/IEEE
conference on Supercomputing. IEEE. 2002, pp. 3–3.

[69] Rasmus Bro and Age K Smilde. “Principal component analysis”. In: Analytical
methods 6.9 (2014), pp. 2812–2831.

[70] Paul Kline. An easy guide to factor analysis. Routledge, 2014.
[71] Kevin A Huck et al. “Knowledge support and automation for performance analysis

with PerfExplorer 2.0”. In: Scientific programming 16.2-3 (2008), pp. 123–134.
[72] Timothy Sherwood et al. “Automatically characterizing large scale program

behavior”. In: ACM SIGPLAN Notices 37.10 (2002), pp. 45–57.
[73] Juan Gonzalez et al. “Automatic refinement of parallel applications structure

detection”. In: 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops & PhD Forum. IEEE. 2012, pp. 1680–1687.

[74] Pavel Berkhin. “A survey of clustering data mining techniques”. In: Grouping
multidimensional data. Springer, 2006, pp. 25–71.

[75] Dongkuan Xu and Yingjie Tian. “A comprehensive survey of clustering algorithms”.
In: Annals of Data Science 2.2 (2015), pp. 165–193.

[76] Jyoti Yadav and Monika Sharma. “A Review of K-mean Algorithm”. In: Int. J. Eng.
Trends Technol 4.7 (2013), pp. 2972–2976.

[77] Tsunenori Ishioka et al. “An expansion of X-means for automatically determining
the optimal number of clusters”. In: Proceedings of International Conference on
Computational Intelligence. Vol. 2. Citeseer. 2005, pp. 91–95.

[78] Hae-Sang Park and Chi-Hyuck Jun. “A simple and fast algorithm for K-medoids
clustering”. In: Expert systems with applications 36.2 (2009), pp. 3336–3341.

[79] Frank Nielsen. “Hierarchical clustering”. In: Introduction to HPC with MPI for Data
Science. Springer, 2016, pp. 195–211.

[80] Martin Ester et al. “Density-based spatial clustering of applications with noise”. In:
240.6 (1996).

158

Bibliography

[81] Nadia Rahmah and Imas Sukaesih Sitanggang. “Determination of optimal epsilon
(eps) value on dbscan algorithm to clustering data on peatland hotspots in sumatra”.
In: IOP conference series: earth and environmental science. Vol. 31. 1. IOP
Publishing. 2016, p. 012012.

[82] Estimate neighborhood clustering threshold - MATLAB
clusterDBSCAN.estimateEpsilon MathWorks Spain. https://es.mathworks.com/
help/radar/ref/clusterdbscan.clusterdbscan.estimateepsilon.html.
(Accessed on 04/01/2022).

[83] Ville Satopaa et al. “Finding a" kneedle" in a haystack: Detecting knee points in
system behavior”. In: 2011 31st international conference on distributed computing
systems workshops. IEEE. 2011, pp. 166–171.

[84] Jielin Wang et al. “Unsupervised learning of topological phase transitions using the
Calinski-Harabaz index”. In: Physical Review Research 3.1 (2021), p. 013074.

[85] Slobodan Petrovic. “A comparison between the silhouette index and the
davies-bouldin index in labelling ids clusters”. In: Proceedings of the 11th Nordic
workshop of secure IT systems. Vol. 2006. Citeseer. 2006, pp. 53–64.

[86] Artur Starczewski and Adam Krzyżak. “Performance evaluation of the silhouette
index”. In: International conference on artificial intelligence and soft computing.
Springer. 2015, pp. 49–58.

[87] James C Bezdek and Nikhil R Pal. “Some new indexes of cluster validity”. In: IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 28.3 (1998),
pp. 301–315.

[88] Olatz Arbelaitz et al. “An extensive comparative study of cluster validity indices”.
In: Pattern recognition 46.1 (2013), pp. 243–256.

[89] Katherine S Pollard and Mark J Van Der Laan. “A method to identify significant
clusters in gene expression data”. In: (2002).

[90] Steffen Huber et al. “DMME: Data mining methodology for engineering
applications–a holistic extension to the CRISP-DM model”. In: Procedia Cirp 79
(2019), pp. 403–408.

[91] Sayan Putatunda. Practical Machine Learning for Streaming Data with Python.
Springer, 2021.

[92] Petro Liashchynskyi and Pavlo Liashchynskyi. “Grid search, random search, genetic
algorithm: A big comparison for NAS”. In: arXiv preprint arXiv:1912.06059 (2019).

[93] Peter I Frazier. “A tutorial on Bayesian optimization”. In: arXiv preprint
arXiv:1807.02811 (2018).

[94] Dan Simon. Evolutionary optimization algorithms. John Wiley & Sons, 2013.
[95] Xinjie Fan et al. “On hyperparameter tuning in general clustering problemsm”. In:

International Conference on Machine Learning. PMLR. 2020, pp. 2996–3007.
[96] Lili Blumenberg and Kelly V Ruggles. “Hypercluster: a flexible tool for parallelized

unsupervised clustering optimization”. In: BMC bioinformatics 21.1 (2020), pp. 1–7.
[97] Viacheslav Shalamov et al. “Reinforcement-based method for simultaneous

clustering algorithm selection and its hyperparameters optimization”. In: Procedia
Computer Science 136 (2018), pp. 144–153.

159

https://es.mathworks.com/help/radar/ref/clusterdbscan.clusterdbscan.estimateepsilon.html
https://es.mathworks.com/help/radar/ref/clusterdbscan.clusterdbscan.estimateepsilon.html

Bibliography

[98] Toon Van Craenendonck and Hendrik Blockeel. “Constraint-based clustering
selection”. In: Machine Learning 106.9 (2017), pp. 1497–1521.

[99] Leandro L Minku. “A novel online supervised hyperparameter tuning procedure
applied to cross-company software effort estimation”. In: Empirical Software
Engineering 24.5 (2019), pp. 3153–3204.

[100] Ulrike Von Luxburg, Robert C Williamson, and Isabelle Guyon. “Clustering: Science
or art?” In: Proceedings of ICML workshop on unsupervised and transfer learning.
JMLR Workshop and Conference Proceedings. 2012, pp. 65–79.

[101] Lisha Li et al. “Hyperband: A novel bandit-based approach to hyperparameter
optimization”. In: The Journal of Machine Learning Research 18.1 (2017),
pp. 6765–6816.

[102] Girish Chandrashekar and Ferat Sahin. “A survey on feature selection methods”. In:
Computers & Electrical Engineering 40.1 (2014), pp. 16–28.

[103] Vipin Kumar and Sonajharia Minz. “Feature selection: a literature review”. In:
SmartCR 4.3 (2014), pp. 211–229.

[104] Dominik Janzing, Lenon Minorics, and Patrick Blöbaum. “Feature relevance
quantification in explainable AI: A causal problem”. In: International Conference on
artificial intelligence and statistics. PMLR. 2020, pp. 2907–2916.

[105] Lei Yu and Huan Liu. “Efficient feature selection via analysis of relevance and
redundancy”. In: The Journal of Machine Learning Research 5 (2004),
pp. 1205–1224.

[106] Bo Tang, Steven Kay, and Haibo He. “Toward optimal feature selection in naive
Bayes for text categorization”. In: IEEE transactions on knowledge and data
engineering 28.9 (2016), pp. 2508–2521.

[107] Fadi Thabtah et al. “Least Loss: A simplified filter method for feature selection”. In:
Information Sciences 534 (2020), pp. 1–15.

[108] Fei Zhao et al. “A filter feature selection algorithm based on mutual information for
intrusion detection”. In: Applied Sciences 8.9 (2018), p. 1535.

[109] Wanfu Gao et al. “Feature selection by integrating two groups of feature evaluation
criteria”. In: Expert Systems with Applications 110 (2018), pp. 11–19.

[110] Emrah Hancer, Bing Xue, and Mengjie Zhang. “Differential evolution for filter
feature selection based on information theory and feature ranking”. In:
Knowledge-Based Systems 140 (2018), pp. 103–119.

[111] Marko Robnik-Šikonja and Igor Kononenko. “Theoretical and empirical analysis of
ReliefF and RReliefF”. In: Machine learning 53.1 (2003), pp. 23–69.

[112] Christopher M Bishop et al. Neural networks for pattern recognition. Oxford
university press, 1995.

[113] Magdalene Marinaki and Yannis Marinakis. “An island memetic differential
evolution algorithm for the feature selection problem”. In: Nature Inspired
Cooperative Strategies for Optimization (NICSO 2013). Springer, 2014, pp. 29–42.

[114] Mahdieh Labani et al. “A novel multivariate filter method for feature selection in
text classification problems”. In: Engineering Applications of Artificial Intelligence
70 (2018), pp. 25–37.

160

Bibliography

[115] Hanchuan Peng, Fuhui Long, and Chris Ding. “Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-redundancy”. In:
IEEE Transactions on pattern analysis and machine intelligence 27.8 (2005),
pp. 1226–1238.

[116] Abdur Rehman et al. “Relative discrimination criterion–A novel feature ranking
method for text data”. In: Expert Systems with Applications 42.7 (2015),
pp. 3670–3681.

[117] Firuz Kamalov and Fadi Thabtah. “A feature selection method based on ranked
vector scores of features for classification”. In: Annals of Data Science 4.4 (2017),
pp. 483–502.

[118] J. Ross Quinlan. “Induction of decision trees”. In: Machine learning 1.1 (1986),
pp. 81–106.

[119] Huan Liu and Rudy Setiono. “Chi2: Feature selection and discretization of numeric
attributes”. In: Proceedings of 7th IEEE International Conference on Tools with
Artificial Intelligence. IEEE. 1995, pp. 388–391.

[120] Mark Andrew Hall et al. “Correlation-based feature selection for machine learning”.
In: (1999).

[121] Maryam Rahmaninia and Parham Moradi. “OSFSMI: online stream feature
selection method based on mutual information”. In: Applied Soft Computing 68
(2018), pp. 733–746.

[122] Pablo A Estévez et al. “Normalized mutual information feature selection”. In: IEEE
Transactions on neural networks 20.2 (2009), pp. 189–201.

[123] YongSeog Kim, W Nick Street, and Filippo Menczer. “Evolutionary model selection
in unsupervised learning”. In: Intelligent data analysis 6.6 (2002), pp. 531–556.

[124] Mark Hall et al. “The WEKA data mining software: an update”. In: ACM SIGKDD
explorations newsletter 11.1 (2009), pp. 10–18.

[125] Lior Wolf, Amnon Shashua, and Donald Geman. “Feature Selection for
Unsupervised and Supervised Inference: The Emergence of Sparsity in a
Weight-Based Approach.” In: Journal of Machine Learning Research 6.11 (2005).

[126] Hong Zeng and Yiu-ming Cheung. “Feature selection and kernel learning for local
learning-based clustering”. In: IEEE transactions on pattern analysis and machine
intelligence 33.8 (2010), pp. 1532–1547.

[127] Zheng Zhao and Huan Liu. “Spectral feature selection for supervised and
unsupervised learning”. In: Proceedings of the 24th international conference on
Machine learning. 2007, pp. 1151–1157.

[128] Isabelle Guyon et al. Feature extraction: foundations and applications. Vol. 207.
Springer, 2008.

[129] Zheng Alan Zhao and Huan Liu. Spectral feature selection for data mining. Taylor &
Francis, 2012.

[130] Yi Zhang, Chris Ding, and Tao Li. “Gene selection algorithm by combining reliefF
and mRMR”. In: BMC genomics 9.2 (2008), pp. 1–10.

[131] Yonghong Peng, Zhiqing Wu, and Jianmin Jiang. “A novel feature selection
approach for biomedical data classification”. In: Journal of Biomedical Informatics
43.1 (2010), pp. 15–23.

161

Bibliography

[132] Ali El Akadi et al. “A two-stage gene selection scheme utilizing MRMR filter and
GA wrapper”. In: Knowledge and Information Systems 26.3 (2011), pp. 487–500.

[133] Igor Vainer et al. “Obtaining scalable and accurate classification in large-scale
spatio-temporal domains”. In: Knowledge and information systems 29.3 (2011),
pp. 527–564.

[134] Eugene Tuv et al. “Feature selection with ensembles, artificial variables, and
redundancy elimination”. In: The Journal of Machine Learning Research 10 (2009),
pp. 1341–1366.

[135] Yijun Sun. “Iterative RELIEF for feature weighting: algorithms, theories, and
applications”. In: IEEE transactions on pattern analysis and machine intelligence
29.6 (2007), pp. 1035–1051.

[136] Yijun Sun, Sinisa Todorovic, and Steve Goodison. “A feature selection algorithm
capable of handling extremely large data dimensionality”. In: Proceedings of the
2008 SIAM International Conference on Data Mining. SIAM. 2008, pp. 530–540.

[137] Boris Chidlovskii and Loïc Lecerf. “Scalable feature selection for multi-class
problems”. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer. 2008, pp. 227–240.

[138] Steven Loscalzo, Lei Yu, and Chris Ding. “Consensus group stable feature selection”.
In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining. 2009, pp. 567–576.

[139] Yvan Saeys, Thomas Abeel, and Yves Van de Peer. “Robust feature selection using
ensemble feature selection techniques”. In: Joint European conference on machine
learning and knowledge discovery in databases. Springer. 2008, pp. 313–325.

[140] Diego Peteiro-Barral et al. “Scalability analysis of lter-based methods for feature
selection”. In: Advances in Smart Systems Research 2.1 (2012), p. 21.

[141] Guozhu Dong and Huan Liu. Feature engineering for machine learning and data
analytics. CRC Press, 2018.

[142] George EP Box and David R Cox. “An analysis of transformations”. In: Journal of
the Royal Statistical Society: Series B (Methodological) 26.2 (1964), pp. 211–243.

[143] MH Lee, Hossein Javedani Sadaei, and Suhartono. “Improving TAIEX forecasting
using fuzzy time series with Box–Cox power transformation”. In: Journal of Applied
Statistics 40.11 (2013), pp. 2407–2422.

[144] Jonathan Gillard. “A generalised Box–Cox transformation for the parametric
estimation of clinical reference intervals”. In: Journal of Applied Statistics 39.10
(2012), pp. 2231–2245.

[145] Liuquan Sun, Xingwei Tong, and Xian Zhou. “A class of Box-Cox transformation
models for recurrent event data”. In: Lifetime Data Analysis 17.2 (2011),
pp. 280–301.

[146] Mezbahur Rahman and Larry M Pearson. “Anderson-Darling statistic in estimating
the Box-Cox transformation parameter”. In: Journal of Applied Probability and
Statistics 3.1 (2008), pp. 45–57.

[147] Jason Osborne. “Improving your data transformations: Applying the Box-Cox
transformation”. In: Practical Assessment, Research, and Evaluation 15.1 (2010),
p. 12.

162

Bibliography

[148] Osman Dag, Ozgur Asar, and Ozlem Ilk. “A methodology to implement Box-Cox
transformation when no covariate is available”. In: Communications in
Statistics-Simulation and Computation 43.7 (2014), pp. 1740–1759.

[149] Sarah Stevens et al. “Analysing indicators of performance, satisfaction, or safety
using empirical logit transformation”. In: bmj 352 (2016).

[150] Gerald A Studebaker. “A" rationalized" arcsine transform”. In: Journal of Speech,
Language, and Hearing Research 28.3 (1985), pp. 455–462.

[151] Max Kuhn and Kjell Johnson. Feature engineering and selection: A practical
approach for predictive models. CRC Press, 2019.

[152] Hervé Abdi and Lynne J Williams. “Principal component analysis”. In: Wiley
interdisciplinary reviews: computational statistics 2.4 (2010), pp. 433–459.

[153] John Shawe-Taylor, Nello Cristianini, et al. Kernel methods for pattern analysis.
Cambridge university press, 2004.

[154] James V Stone. “Independent component analysis: a tutorial introduction”. In:
(2004).

[155] Dominic Langlois, Sylvain Chartier, and Dominique Gosselin. “An introduction to
independent component analysis: InfoMax and FastICA algorithms”. In: Tutorials in
Quantitative Methods for Psychology 6.1 (2010), pp. 31–38.

[156] Nicolas Gillis. “Introduction to nonnegative matrix factorization”. In: arXiv preprint
arXiv:1703.00663 (2017).

[157] Thomas M Cover. Elements of information theory. John Wiley & Sons, 2012.
[158] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016.
[159] Sven Serneels, Evert De Nolf, and Pierre J Van Espen. “Spatial sign preprocessing: a

simple way to impart moderate robustness to multivariate estimators”. In: Journal
of Chemical Information and Modeling 46.3 (2006), pp. 1402–1409.

[160] Alan D Fleming et al. “Automated microaneurysm detection using local contrast
normalization and local vessel detection”. In: IEEE transactions on medical imaging
25.9 (2006), pp. 1223–1232.

[161] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding convolutional
networks”. In: European conference on computer vision. Springer. 2014, pp. 818–833.

[162] Sebastian Bach et al. “On pixel-wise explanations for non-linear classifier decisions
by layer-wise relevance propagation”. In: PloS one 10.7 (2015), e0130140.

[163] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “" Why should i trust
you?" Explaining the predictions of any classifier”. In: Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining. 2016,
pp. 1135–1144.

[164] Ramprasaath R Selvaraju et al. “Grad-cam: Visual explanations from deep networks
via gradient-based localization”. In: Proceedings of the IEEE international
conference on computer vision. 2017, pp. 618–626.

[165] Wojciech Samek et al. Explainable AI: interpreting, explaining and visualizing deep
learning. Vol. 11700. Springer Nature, 2019.

163

Bibliography

[166] Junyuan Xie, Ross Girshick, and Ali Farhadi. “Unsupervised deep embedding for
clustering analysis”. In: International conference on machine learning. PMLR. 2016,
pp. 478–487.

[167] Bo Yang et al. “Towards k-means-friendly spaces: Simultaneous deep learning and
clustering”. In: international conference on machine learning. PMLR. 2017,
pp. 3861–3870.

[168] Mathilde Caron et al. “Deep clustering for unsupervised learning of visual features”.
In: Proceedings of the European conference on computer vision (ECCV). 2018,
pp. 132–149.

[169] Kamran Ghasedi Dizaji et al. “Deep clustering via joint convolutional autoencoder
embedding and relative entropy minimization”. In: Proceedings of the IEEE
international conference on computer vision. 2017, pp. 5736–5745.

[170] Xifeng Guo et al. “Deep clustering with convolutional autoencoders”. In:
International conference on neural information processing. Springer. 2017,
pp. 373–382.

[171] Xi Peng et al. “k-meansnet: When k-means meets differentiable programming”. In:
arXiv preprint arXiv:1808.07292 (2018).

[172] Martin HC Law, Mario AT Figueiredo, and Anil K Jain. “Simultaneous feature
selection and clustering using mixture models”. In: IEEE transactions on pattern
analysis and machine intelligence 26.9 (2004), pp. 1154–1166.

[173] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. “On clustering
validation techniques”. In: Journal of intelligent information systems 17.2 (2001),
pp. 107–145.

[174] Marina Meila. “How to tell when a clustering is (approximately) correct using convex
relaxations”. In: Advances in Neural Information Processing Systems 31 (2018).

[175] Tilman Lange et al. “Stability-based validation of clustering solutions”. In: Neural
computation 16.6 (2004), pp. 1299–1323.

[176] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. Introduction to
information retrieval. Vol. 39. Cambridge University Press Cambridge, 2008.

[177] Tauno Metsalu and Jaak Vilo. “ClustVis: a web tool for visualizing clustering of
multivariate data using Principal Component Analysis and heatmap”. In: Nucleic
acids research 43.W1 (2015), W566–W570.

[178] Michael Kern et al. “Interactive visual exploration and refinement of cluster
assignments”. In: BMC bioinformatics 18.1 (2017), pp. 1–13.

[179] Katja Hansen et al. “Visual Interpretation of Kernel-based prediction models”. In:
Molecular Informatics 30.9 (2011), pp. 817–826.

[180] Huan Liu and Lei Yu. “Toward integrating feature selection algorithms for
classification and clustering”. In: IEEE Transactions on knowledge and data
engineering 17.4 (2005), pp. 491–502.

[181] Joseph Lee Rodgers and W Alan Nicewander. “Thirteen ways to look at the
correlation coefficient”. In: The American Statistician 42.1 (1988), pp. 59–66.

[182] MTCAJ Thomas and A Thomas Joy. Elements of information theory.
Wiley-Interscience, 2006.

164

Bibliography

[183] Peter E Hart, David G Stork, and Richard O Duda. Pattern classification. Wiley
Hoboken, 2000.

[184] Mingjie Qian and Chengxiang Zhai. “Robust unsupervised feature selection”. In:
Twenty-third international joint conference on artificial intelligence. Citeseer. 2013.

[185] HS Shukla, Narendra Kumar, and RP Tripathi. “Gaussian noise filtering techniques
using new median filter”. In: International Journal of Computer Applications 95.12
(2014).

[186] Xiaofei He, Deng Cai, and Partha Niyogi. “Laplacian score for feature selection”. In:
Advances in neural information processing systems 18 (2005).

[187] Isabelle Guyon and André Elisseeff. “An introduction to variable and feature
selection”. In: Journal of machine learning research 3.Mar (2003), pp. 1157–1182.

[188] Jennifer G Dy and Carla E Brodley. “Feature selection for unsupervised learning”.
In: Journal of machine learning research 5.Aug (2004), pp. 845–889.

[189] Yijuan Lu et al. “Feature selection using principal feature analysis”. In: Proceedings
of the 15th ACM international conference on Multimedia. 2007, pp. 301–304.

[190] George P McCabe. “Principal variables”. In: Technometrics 26.2 (1984),
pp. 137–144.

[191] Deng Cai, Chiyuan Zhang, and Xiaofei He. “Unsupervised feature selection for
multi-cluster data”. In: Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining. 2010, pp. 333–342.

[192] Aapo Hyvärinen and Erkki Oja. “Independent component analysis: algorithms and
applications”. In: Neural networks 13.4-5 (2000), pp. 411–430.

[193] Jonathon Shlens. “A tutorial on principal component analysis”. In: arXiv preprint
arXiv:1404.1100 (2014).

[194] Vicente Zarzoso, Pierre Comon, and Mariem Kallel. “How fast is FastICA?” In:
2006 14th European Signal Processing Conference. IEEE. 2006, pp. 1–5.

[195] Alan E Hendrickson and Paul Owen White. “Promax: A quick method for rotation
to oblique simple structure”. In: British journal of statistical psychology 17.1 (1964),
pp. 65–70.

[196] Henry F Kaiser. “The varimax criterion for analytic rotation in factor analysis”. In:
Psychometrika 23.3 (1958), pp. 187–200.

[197] Ron Mancini. Op amps for everyone: design reference. Newnes, 2003.
[198] Kohei Arai and Ali Ridho Barakbah. “Hierarchical K-means: an algorithm for

centroids initialization for K-means”. In: Reports of the Faculty of Science and
Engineering 36.1 (2007), pp. 25–31.

[199] Xihong Cui et al. “GPR-Based Automatic Identification of Root Zones of Influence
Using HDBSCAN”. In: Remote Sensing 13.6 (2021), p. 1227.

[200] Marco Rovere et al. “Clue: A fast parallel clustering algorithm for high granularity
calorimeters in high-energy physics”. In: Frontiers in big Data 3 (2020), p. 41.

[201] Emmanuelle A Marquis et al. “On the use of density-based algorithms for the
analysis of solute clustering in atom probe tomography data”. In: Proceedings of the
18th International Conference on Environmental Degradation of Materials in
Nuclear Power Systems–Water Reactors. Springer. 2019, pp. 2097–2113.

165

Bibliography

[202] Mehjabin Khatoon and W Aisha Banu. “An efficient method to detect communities
in social networks using DBSCAN algorithm”. In: Social Network Analysis and
Mining 9.1 (2019), pp. 1–12.

[203] Carly GK Ziegler et al. “SARS-CoV-2 receptor ACE2 is an interferon-stimulated
gene in human airway epithelial cells and is detected in specific cell subsets across
tissues”. In: Cell 181.5 (2020), pp. 1016–1035.

[204] Conor Fahy and Shengxiang Yang. “Finding and tracking multi-density clusters in
online dynamic data streams”. In: IEEE Transactions on Big Data (2019).

[205] Sean M Carroll. Spacetime and geometry. Cambridge University Press, 2019.
[206] Cornelius Von Westenholz. Differential forms in mathematical physics. Elsevier,

2009.
[207] Charalampos Konstantopoulos. “A parallel algorithm for motion estimation in video

coding using the bilinear transformation”. In: SpringerPlus 4.1 (2015), pp. 1–20.
[208] Na Xiao et al. “A Novel Clustering Algorithm based on Directional Propagation of

Cluster Labels”. In: 2019 International Joint Conference on Neural Networks
(IJCNN). IEEE. 2019, pp. 1–8.

[209] Claudia Malzer and Marcus Baum. “Hdbscan (): An alternative cluster extraction
method for HDBSCAN”. In: CoRR, abs/1911.02282 (2019).

[210] Peng Liu, Dong Zhou, and Naijun Wu. “VDBSCAN: varied density based spatial
clustering of applications with noise”. In: 2007 International conference on service
systems and service management. IEEE. 2007, pp. 1–4.

[211] Shimei Wang, Yun Liu, and Bo Shen. “MDBSCAN: multi-level density based spatial
clustering of applications with noise”. In: Proceedings of the The 11th International
Knowledge Management in Organizations Conference on The changing face of
Knowledge Management Impacting Society. 2016, pp. 1–5.

[212] Alex Rodriguez and Alessandro Laio. “Clustering by fast search and find of density
peaks”. In: science 344.6191 (2014), pp. 1492–1496.

[213] Bo Chen et al. “Local contrast as an effective means to robust clustering against
varying densities”. In: Machine Learning 107.8 (2018), pp. 1621–1645.

[214] Abdulrahman Lotfi, Parham Moradi, and Hamid Beigy. “Density peaks clustering
based on density backbone and fuzzy neighborhood”. In: Pattern Recognition 107
(2020), p. 107449.

[215] Ye Zhu, Kai Ming Ting, and Mark J Carman. “Density-ratio based clustering for
discovering clusters with varying densities”. In: Pattern Recognition 60 (2016),
pp. 983–997.

[216] Ye Zhu, Kai Ming Ting, and Maia Angelova. “A distance scaling method to improve
density-based clustering”. In: Pacific-Asia conference on knowledge discovery and
data mining. Springer. 2018, pp. 389–400.

[217] Ye Zhu et al. “CDF Transform-and-Shift: An effective way to deal with datasets of
inhomogeneous cluster densities”. In: Pattern Recognition 117 (2021), p. 107977.

[218] Laura MP Mariño and Francisco de AT de Carvalho. “A new batch SOM algorithm
for relational data with weighted medoids”. In: 2020 International Joint Conference
on Neural Networks (IJCNN). IEEE. 2020, pp. 1–8.

166

Bibliography

[219] William Wells Adams et al. An introduction to Grobner bases. 3. American
Mathematical Soc., 1994.

[220] Guojun Gan, Chaoqun Ma, and Jianhong Wu. Data clustering: theory, algorithms,
and applications. SIAM, 2020.

[221] Shu-Chuan Chu. Improved Clustering and Soft Computing Algorithms. Flinders
University of South Australia, School of Informatics and Engineering, 2004.

[222] Marcio Gameiro et al. “A topological measurement of protein compressibility”. In:
Japan Journal of Industrial and Applied Mathematics 32.1 (2015), pp. 1–17.

[223] Gunnar Carlsson et al. “On the local behavior of spaces of natural images”. In:
International journal of computer vision 76.1 (2008), pp. 1–12.

[224] Monica Nicolau, Arnold J Levine, and Gunnar Carlsson. “Topology based data
analysis identifies a subgroup of breast cancers with a unique mutational profile and
excellent survival”. In: Proceedings of the National Academy of Sciences 108.17
(2011), pp. 7265–7270.

[225] Hans-Peter Kriegel et al. “Density-based clustering”. In: Wiley interdisciplinary
reviews: data mining and knowledge discovery 1.3 (2011), pp. 231–240.

[226] Yinghua Lv et al. “An efficient and scalable density-based clustering algorithm for
datasets with complex structures”. In: Neurocomputing 171 (2016), pp. 9–22.

[227] Avory Bryant and Krzysztof Cios. “RNN-DBSCAN: A density-based clustering
algorithm using reverse nearest neighbor density estimates”. In: IEEE Transactions
on Knowledge and Data Engineering 30.6 (2017), pp. 1109–1121.

[228] Yifeng Lu et al. “k-Nearest Neighbor based Clustering with Shape Alternation
Adaptivity”. In: 2020 International Joint Conference on Neural Networks (IJCNN).
IEEE. 2020, pp. 1–8.

[229] Salem Alelyani, Jiliang Tang, and Huan Liu. “Feature selection for clustering: A
review”. In: Data Clustering (2018), pp. 29–60.

[230] Carl Rasmussen. “The infinite Gaussian mixture model”. In: Advances in neural
information processing systems 12 (1999).

[231] Ian T Jolliffe and Jorge Cadima. “Principal component analysis: a review and recent
developments”. In: Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences 374.2065 (2016), p. 20150202.

[232] Marley W Watkins. “Exploratory factor analysis: A guide to best practice”. In:
Journal of Black Psychology 44.3 (2018), pp. 219–246.

[233] Alexander Hinneburg, Daniel A Keim, and Markus Wawryniuk. “HD-Eye: Visual
mining of high-dimensional data”. In: IEEE Computer Graphics and Applications
19.5 (1999), pp. 22–31.

[234] Charu C Aggarwal. “A human-computer interactive method for projected clustering”.
In: IEEE transactions on knowledge and data engineering 16.4 (2004), pp. 448–460.

[235] David Cohn, Rich Caruana, and Andrew McCallum. “Semi-supervised clustering
with user feedback”. In: Constrained Clustering: Advances in Algorithms, Theory,
and Applications 4.1 (2003), pp. 17–32.

[236] Zhengdong Lu and Todd K Leen. “Pairwise constraints as priors in probabilistic
clustering”. In: Basu et al.(2008) (2008), pp. 59–90.

167

Bibliography

[237] Pek Y Lum et al. “Extracting insights from the shape of complex data using
topology”. In: Scientific reports 3.1 (2013), pp. 1–8.

[238] Gurjeet Singh, Facundo Mémoli, Gunnar E Carlsson, et al. “Topological methods for
the analysis of high dimensional data sets and 3d object recognition.” In: PBG@
Eurographics 2 (2007).

[239] Hujun Yin. “The self-organizing maps: background, theories, extensions and
applications”. In: Computational intelligence: A compendium. Springer, 2008,
pp. 715–762.

[240] E Arsuaga Uriarte and F Díaz Martín. “Topology preservation in SOM”. In:
International journal of applied mathematics and computer sciences 1.1 (2005),
pp. 19–22.

[241] Jing Tian, Michael H Azarian, and Michael Pecht. “Anomaly detection using
self-organizing maps-based k-nearest neighbor algorithm”. In: PHM Society
European Conference. Vol. 2. 1. 2014.

[242] Marian Pena, Wesam Barbakh, and Colin Fyfe. “Topology-preserving mappings for
data visualisation”. In: Principal Manifolds for Data Visualization and Dimension
Reduction. Springer, 2008, pp. 131–150.

[243] Richard Hugh Moulton and Jakub Zgraja. “The Wilderness Area Data Set:
Adapting the Covertype data set for unsupervised learning”. In: arXiv preprint
arXiv:1901.11040 (2019).

[244] David H Wolpert, William G Macready, et al. No free lunch theorems for search.
Tech. rep. Technical Report SFI-TR-95-02-010, Santa Fe Institute, 1995.

[245] Gil Press. Cleaning Big Data: Most time-consuming, least enjoyable data science
task, survey says. 2021. url:
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-
most-time-consuming-least-enjoyable-data-science-task-survey-
says/?sh=45c424a96f63.

[246] Fatma Ozge Ozkok and Mete Celik. “A new approach to determine Eps parameter
of DBSCAN algorithm”. In: International Journal of Intelligent Systems and
Applications in Engineering 5.4 (2017), pp. 247–251.

[247] Wei-Tung Wang et al. “Adaptive density-based spatial clustering of applications
with noise (DBSCAN) according to data”. In: 2015 International Conference on
Machine Learning and Cybernetics (ICMLC). Vol. 1. IEEE. 2015, pp. 445–451.

[248] Alexander Dockhorn, Christian Braune, and Rudolf Kruse. “An alternating
optimization approach based on hierarchical adaptations of dbscan”. In: 2015 IEEE
Symposium Series on Computational Intelligence. IEEE. 2015, pp. 749–755.

[249] Xiaoming Chen et al. “APSCAN: A parameter free algorithm for clustering”. In:
Pattern Recognition Letters 32.7 (2011), pp. 973–986.

[250] Jian Hou, Huijun Gao, and Xuelong Li. “DSets-DBSCAN: A parameter-free
clustering algorithm”. In: IEEE Transactions on Image Processing 25.7 (2016),
pp. 3182–3193.

[251] Amin Karami and Ronnie Johansson. “Choosing DBSCAN parameters
automatically using differential evolution”. In: International Journal of Computer
Applications 91.7 (2014), pp. 1–11.

168

https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=45c424a96f63
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=45c424a96f63
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=45c424a96f63

Bibliography

[252] Huang Darong and Wang Peng. “Grid-based DBSCAN algorithm with referential
parameters”. In: Physics Procedia 24 (2012), pp. 1166–1170.

[253] Abir Smiti and Zied Elouedi. “Dbscan-gm: An improved clustering method based on
gaussian means and dbscan techniques”. In: 2012 IEEE 16th international
conference on intelligent engineering systems (INES). IEEE. 2012, pp. 573–578.

[254] G Phanendra Babu and M Narasimha Murty. “Simulated annealing for selecting
optimal initial seeds in the k-means algorithm”. In: Indian Journal of Pure and
Applied Mathematics 25.1-2 (1994), pp. 85–94.

[255] Amin Karami and Manel Guerrero-Zapata. “A fuzzy anomaly detection system
based on hybrid PSO-Kmeans algorithm in content-centric networks”. In:
Neurocomputing 149 (2015), pp. 1253–1269.

[256] George E Tsekouras. “A simple and effective algorithm for implementing particle
swarm optimization in RBF network’s design using input-output fuzzy clustering”.
In: Neurocomputing 108 (2013), pp. 36–44.

[257] Junyan Chen. “Hybrid clustering algorithm based on PSO with the
multidimensional asynchronism and stochastic disturbance method”. In: Journal of
Theoretical and Applied Information Technology 46.1 (2012), pp. 434–440.

[258] Lin Li and Suhua Liu. “Wheat cultivar classifications based on tabu search and
fuzzy c-means clustering algorithm”. In: 2012 Fourth International Conference on
Computational and Information Sciences. IEEE. 2012, pp. 493–496.

[259] Hong-Bing Xu, Hou-Jun Wang, and Chun-Guang Li. “Fuzzy tabu search method for
the clustering problem”. In: Proceedings. International Conference on Machine
Learning and Cybernetics. Vol. 2. IEEE. 2002, pp. 876–880.

[260] Yangyang Li et al. “A spectral clustering-based adaptive hybrid multi-objective
harmony search algorithm for community detection”. In: 2012 IEEE Congress on
Evolutionary Computation. IEEE. 2012, pp. 1–8.

[261] Carlos Cobos et al. “Web document clustering based on global-best harmony search,
K-means, frequent term sets and Bayesian information criterion”. In: IEEE congress
on evolutionary computation. IEEE. 2010, pp. 1–8.

[262] Liang Li et al. “A combinatorial search method based on harmony search algorithm
and particle swarm optimization in slope stability analysis”. In: 2009 International
Conference on Computational Intelligence and Software Engineering. IEEE. 2009,
pp. 1–4.

[263] Emrah Hancer, Celal Ozturk, and Dervis Karaboga. “Artificial bee colony based
image clustering method”. In: 2012 IEEE congress on evolutionary computation.
IEEE. 2012, pp. 1–5.

[264] Dervis Karaboga, Selcuk Okdem, and Celal Ozturk. “Cluster based wireless sensor
network routing using artificial bee colony algorithm”. In: Wireless Networks 18.7
(2012), pp. 847–860.

[265] Yannis Marinakis, Magdalene Marinaki, and Nikolaos Matsatsinis. “A hybrid
discrete artificial bee colony-GRASP algorithm for clustering”. In: 2009
International Conference on Computers & Industrial Engineering. IEEE. 2009,
pp. 548–553.

169

Bibliography

[266] Bo Zhao et al. “Image segmentation based on ant colony optimization and K-means
clustering”. In: 2007 IEEE International Conference on Automation and Logistics.
IEEE. 2007, pp. 459–463.

[267] Yanfang Han and Pengfei Shi. “An improved ant colony algorithm for fuzzy
clustering in image segmentation”. In: Neurocomputing 70.4-6 (2007), pp. 665–671.

[268] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques.
Elsevier, 2011.

[269] Stanisaw Sieniutycz and Jacek Jeowski. “1-brief review of static optimization
methods”. In: Energy optimization in process systems and fuel cells (2018), pp. 1–43.

[270] Yang Sun, Lingbo Zhang, and Xingsheng Gu. “A hybrid co-evolutionary cultural
algorithm based on particle swarm optimization for solving global optimization
problems”. In: Neurocomputing 98 (2012), pp. 76–89.

[271] Hongfang Zhou, Peng Wang, and Hongyan Li. “Research on adaptive parameters
determination in DBSCAN algorithm”. In: Journal of Information & Computational
Science 9.7 (2012).

[272] Jörg Sander et al. “Density-based clustering in spatial databases: The algorithm
gdbscan and its applications”. In: Data mining and knowledge discovery 2.2 (1998),
pp. 169–194.

[273] Shiming Xiang, Feiping Nie, and Changshui Zhang. “Learning a Mahalanobis
distance metric for data clustering and classification”. In: Pattern recognition 41.12
(2008), pp. 3600–3612.

[274] Fei Wang et al. “An analysis of the application of simplified silhouette to the
evaluation of k-means clustering validity”. In: International Conference on Machine
Learning and Data Mining in Pattern Recognition. Springer. 2017, pp. 291–305.

170

	List of Figures
	List of Abbreviations
	I Introduction and Related Work
	Introduction
	Motivation
	Objective
	Contributions
	Thesis Organization
	Publication

	Performance Analysis Field
	Description
	The Performance Data
	Dispatched Data
	Application Profile
	Event Traces

	Performance Analysis Tools
	Profile based tools
	Trace-file based tools
	Performance Analytics

	Cluster Analytics

	Introduction to Clustering Analysis Pipeline and Components
	Cluster Analysis
	Centroid-based clustering
	Hierarchical clustering
	Density-based clustering
	Evaluation Metrics

	Machine Learning Pipeline
	Machine Learning Pipelines
	Hyperparameters Tuning
	Unsupervised Machine Learning Pipeline

	Feature Selection
	Foundations of Feature Selection
	Feature selection methods

	Feature Transformation
	Individual Feature Transformation
	Multi-Feature Transformation

	Clustering Result Interpretation

	II New Techniques to Enhance the Clustering Analysis
	New Unsupervised Feature Selection Technique for Noisy Data
	Introduction
	Related Works
	Background
	Independent Component Analysis (ICA)
	Oblique Rotation.

	RIFS Algorithm Description
	Computational Complexity Analysis

	Empirical Study
	Parameter Selection
	Data Sets
	Study of Unsupervised Cases
	Study of Supervised Cases

	New Method to Homogenize the Density
	Introduction
	Related work
	The problem of multi-density
	Background
	Self-organizing map
	Multilinear Transformation

	Feature Space Curvature Map
	Feature Space Curvature Modeling
	Curvature Map

	Application of FSCM in the Real Data
	Datasets
	Evaluation Metric
	Experiment Setup
	Clustering Results
	Complexity Analysis

	New Method for Extracting Insights from the Shape of Cluster
	Introduction
	Related work
	Background and Notation
	Organization Component Analysis
	Application of OCA in the Real Data
	Parameter Selection
	Evaluation Quality of the Map
	Identifying Spatial Patterns of Wilderness Sub-area.
	Diagnosing Performance Bottleneck in HPC Applications.

	Enhanced Cluster Identification and Interpretation Pipeline
	Background and Motivation
	The Limitation of the DBSCAN

	ECII Pipeline Architecture
	 Hyperparameter Optimization
	Evaluation Metrics
	Components Interaction

	Practical Uses to Application Analysis
	GROMACS
	Computation Bursts and Enhanced Cluster Analysis
	Application Analyses

	Conclusion
	Feature Selection for Noisy Data
	Extracting Insights from the Shape of Cluster
	Homogenizing the Clusters Density
	Enhanced Cluster Identification and Interpretation Pipeline
	Future Work

	Bibliography

